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Abstract 

Europeans will soon send inhabited missions into space with the Ariane 5 launcher and spaceshuttle Hermes 

combination. In case of an incident at  launch, either on the pad or up to some speed after launch, it is proposed 

toeject the flightcrew tosafety on individualejectorseats. The risks which would be confronted by the astronauts 

have been studied. 

This paper presents the development of a method for calculating the probability that a fragment of the launcher 
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hits an ejector seat either in flight or at ground level during the initial launch phase. 

Introduction. 

Despite a high confidence in the launcher's reliability, the risk of accidents exists ; the possibility of 

explosion of the launcher is not to be excluded. 

With the projected inhabited missions of Ariane 5, ejection of the astronauts on individual ejector 

seats is proposed when its explosion risk has been (<estimated* as excessive. 
-- - 

If the seats hGe beenejectedsucce~fuf~, accurate evaluation of the hazards is important to assure 

the safety of the astronauts after the explosion. These Hazards are known and are : 

- the shock wave propagating through the air (gas dynamic problem.. .), 

- thermal phenomenon due to the fireball (thermal exchanges, combustion, chemical 

kinetic problems.. .) 

- fragment trajectories. 

The last item is considered a danger due to the risk of launcher fragments hitting the astronauts on 

the ejector seas  and is also the subject of this payer.. 

It is interesting to calculate whether there exists an eoptimab time, beyond which the hit probability 

is less than a given value. - 

Presented in the following is the current stage of our work in trying to solve this problem. 

Ejection of the astronauts. 

In d l  ejection Gtuailons, the mode of operation ofthe seat is the same. As the seat separates from the 

Hermes cabin, the drogue is deployed (the deployment can be delayed for ground level escape) and 

maintains the seats attitude during rocket burn. The parachute deployment phase will follow a 



Fig. 1 - ejector seat sequence 

conventional ejector seat sequence . Finally, the crewperson is pulled off the seat by the inflating 

parachute and descends with it. 

Description of the Ariane 5 Launcher. 

In its ~&IERMES* configuration, Ariane 5 consists of a cryogenic stage HI55 (155 tonnes of liquid 

oxygen and liquid hydrogen) propulsed by a HM60 Vulcain motor and two boosters with solid 

propellant P230 (230 tonnes of Ammonium Perchlorate). 

Elements of the problem. 

Accidents involving liquid propellant rockets have shown that they can generate violent explosions. 
- 

We know however that while their potential explosive yield is very high, their actual yield is in fact 



much lower. 

The most likely causes of accidents are 

- 

- failure of an interior bulkhead which 

separates fuel and oxidizer within the stage, 

--excessive air-load on, and break-up of 

the launcher (malfunctioning of the vehicule.. .) 

- desuuct command (the launcher could 

be considered dangerous to the population. . . ) 
-others.. . 

Before procee&ng to the description of the model, we 

-must -. specify that our approach is of the first order. That 

is to say that we only treat amongst the accident 
a 

Fig 2 - M a n e  5 launcher 

scenarios those which will give the greatest explosion energy. 

- . * crlgtfon of the model - The 1- 

As described in [1,2], because the Liquid Oxygen/Liquid Hydrogen mixture is not hypergolic, 

mixing between these products can occur before explosion. As mentioned earlier, we will overes- 

timate thereaction energy, so the T.N.T. equivalent <<Yn is taken to be the upper bound as described 
- 

in [I] .  In fact we have a relation as : 

where W, is the total propellant mass prior the explosion. With Y we may deduce the effective 



reacting propellant mass W, which has volume V, and released energy E ([I]). 

Classically, if we compare this explosion with a mechanical one (compressed gas reservoir), we 

obtain the <<pressure>> P of the combustion gases by manipulating the relation : 

where r is a generalized local adiabatic exponent. 

Alternatively, we know that detonation (Chapman-Jouguet detonation) can occur after the ignition. 

Use of a code modelling thermochemical relations shows that the characteristics of the C-J 

detonation products for a stoechiometric mixture are : 

-the products : H20,02,  H2, OH, H, 0. 

- detonation temperature : 4347 K. 

- C-J pressure : 43770 Bars. 

If, as a first approach, we suppose that the pressure, specific volume, temperature.. . profiles after the 

detonation shock are of the Taylor-Zeldovich type for a spherical propagation, we have the 

alternative initial condition for the gas pressure. 

Calculation of the fragment velocities (a first approach). 

In a first step, we <<construct>> the launcher. A launcher is composed of structures (propellant 

reservoirs for example.. .), of objects (cryogenic motors, Helium sphere.. .) and propellant. The 

expIosion center may then be placed. 

The ejection speed of a given fragment is assumed to be consistent with that of a <<cone elements C, 

, i.e. a cone defined by a solid angle Q emanating from the explosion center. The structures and the 

unburnt propellant included in the cone C, are all part of the fragments' <<environment>> (Fig. 3). Its 

D mass W,is concentrated on the surface of a thin spherical cap. A technique following that of Bessey's 



Fig. 3 - acone element>, C,  

-- 

([4]) may be used with a correct state equarion ([27,45]) for the exploding gases to calculate the 

fragment velocities. 

Calculation of the fragment velocities (a second approach). 

Another method to compute (estimate) the ejection speed of a-ven fra-pent. is to study the 

interaction between fluid and rigid moving bodies ([41,42]). In this case, we utilise the idealized cone 

environment de-scribed in the former paragraph. 

The two-dimenional domain is discretized, and an algorithm forthe advancement in time of the 

solution can be applied as follows : 

-1- the Euler partial differential equations are solved(finite differences) ; the 

<<fragment>> (with the mass W,) is considered as a reflector, 



-2- we compute the body forces from the pressure field (no body moments), 

-3- we compute the acceleration of the fragment, and we move it by one time-step, 

-4- the grid is adapted, 

-5- we update the characteristics of the gas around the fragment, 

-6- back to -1- 

Comparing the results between the above two methods, we have observed that the velocities are 

greater using the former method (up to 100% greater for small values of Q [13]). Eventhough the 

former method gives seemingly erroneous results, similar results to the second method may be 

achieved by application of a modifieddischarge coefficient k. The former method then is quite useful 

as it is quicker than the latter at estimating the initial velocities and may be easily corrected. 

Breakup of the booster P230. 

) We must consider a simultaneous explosion of the HI55 and the two P230 ; the booster fragment 

velocities can be estimated following the same procedures outlined above. 

Fragment trajectories. 

These are calculated using the fourth order Runge-Kutta method. The drag coefficient of a fragment 

Fig 4 - Calculation of A, and A,, 



is a function of the two dimensionless parameters &=A&A,, and Mach number (1431 ). A, and 

A,, are the maximum and average presented fragment areas, We suppose there is no lift, and the 

wind is a function of altitude (2) but there is no z component. 

We can estimate A, and A,, in the following way. If these two values are not <<evident>,, we 

ccdiscretite,, the fragment (Fig. 4), then we pmject these pointson to a plane. A, is the greatest area 

of the smallest polygon containing all the projected points when the projection direction is varying; 

A,,, is the average value. 

f the mpdel - The I,-r ex~losion - secondmodel. 
Computahnal time in the first model is very important for fragment treatment. Replacing every 

costly (computational time) step in the first approach by an analytic (or quasi-analytic) formula 

reduces calculation time drastically. 

Fragment velocities - Analytic formulation. 

By studying the physical parameters needed h the iterative cdculation.of a fragment's velocity V, 

it can be shown (with redistic simplifications and similitude theory) that V can be written : 

W, is the ma1 mass ejected in the cone C, with solid angle Q, W, is the compressed combustion gas 

mass in C$ The above function V(.,.) is determined by parameter estimation with the simplest 

suitable functions bases [8]. The parameter estimations may easily be computed using a computa- 

tional system such as us <<Mathematics>,. The result of this analytic approach compares well with the 

former computational aIgorithm ([8]). 

Fragmenfstrajectories - quasi analytic formulation [36]. 

The position and the velocity of the fragment must be determined on several points along the 

trajectory; ule need intermediary results. 



Before proceeding to the description of the problem's solution it is necessary to define the 

approximated physical environment : 

- assume non-sphericity of the Earth for the impact point calculation, 

- include effects of the Earth's rotation, 

- the Earth's gravitational acceleration (g) varies with altitude, 

- atmospheric effects; in this first study, in order to develop a method able to give results 

in real time, we considered drag effects only (atmospheric density and fragment drag 

coefficient are assumed to vary as a function of position). We assume that the effect of lift 

is averaged out by the fragments tumbling motion and there is no wind. 

The results' accuracy must be consistent with the uncertainties related to the physical parameters: 

- uncertainty in the main body state vector (i.e. position and velocity) at vehicle destruct 

time, . - 

- uncertainty in destruct velocity imparted to the fragment, 

- uncertainty due to effects of the atmosphere during freefall. 

Our methodology is to solve the problem utilising aquasi-analytic approach. It's not possible to solve 

the complete governing equations of the system andytically, some approximations to these complete 

equations must be applied to determine achievable analytic solutions. 

This is done by applying a uniform space partitioning technique. In each sub-space created we can 

simplify the physical framework and thus solve analytically the reduced equations. The new 

simplified theoretical framework within each sub-space becomes: 

- plane movement, 

- drag coefficient and atmospheric density are assumed to be constant, 

- drag force direction is assumed to be constant, 

- Earth's gravity is assumed to be constant. 

Such a partitioning is defined by the mplet (dx, dz, da) where: 

- dx is the length (overall free-fall range) of the sub-space, 

- dz is the height (maximum altitude variation) of the sub-space, 

- da is the maximum variation of the fragment velocity angle inside the sub-space. 



- 

Thus, the fmjjment impact point calculation consists of partitioning and making a sequence of 

elementary calculations inside each subsequent sub-space. The resultsof thecalculations within each 

sub-space become the initial conditions of the next, with the constant parameters updated. 

The final result accuracy is improved albeit at the expense of calculation time by finer partitioning. 

The choice of rriplet (dx, dz, da) influences our method's operation and is a way to control response 

time or result accuracy. 

In order to irrprove the method's performance, atmospheric effects beyond a certain altitude may be 

eliminated as air density reduces, as a result an andytic calculation taking only gravitational forces 

into account is performed. 

The method has been tested for a wide range of realistic trajectories and comparison has been made 

with reference trajectories calculated by numerical integration. The computational time remains low 

even for accurate results i.e. in the case where the calculation e m  is of the same order as those due 

to the atmospheric parameter uncertainties (i.e. drag coefficients, atmospheric density, ....). The 

computational time can be up to 1000 times less than that of numetical integration; the average gain 

is usually of the order of 100 times, 
- 

To give an idea of the dimensions involved, the rripiet for a partition could be : dx = 50 km, dz = 1 

km, da = 1 . 

The main advantage of this method is that its control mode (dx, dz, da) can be chosen independently 

of the initial conditions. Computation time is only dependent on desired accuracy (i.e. chosen triplet) 

an# not on the initial conditions. These characteristics are particularly useful for real time 
~ - 

applications. - -~ -  

. . ~ r o b m t v  of t- 

The above moctel is deterministic ; however some parameters are wncertainn. To account for this, 

we have created a model which utilises the Monte-Carb method. The values for certain variables are 
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randomly selected for each fragment within <<uncertain bounds>>. These are : 

- Initial fragment velocity, because of the uncertainty of the propellant weight inside 

the cone C,, 

- The attitude of the fragment, 

. - Drag coefficient (1431). 

Computation of hit probability is simple and classical ; if necessary, the trajectories of the fragments 

or the seats are approximated by cubic polynomials. Attitude, <cconfiguration~~ (propulsed or with a 

parachute) of the seats and relative movement with the fragments are taking into account. 

The fragmentation. .. . 

An important parameter in a Monte-Carlo approach is the number of hazardeous fragments, their 

) mass distribution and their location on the launcher. 

At the moment, this is for us an unresolved problem. 

We know that the number of fragments over a given mass may be predicted by a Mott equation ( [2 ] )  

from which we have simply extrapolated for the Ariane 5 launcher. - 
An obvious extension of our quasi-analytic trajectory calculation method will be to take into account 

lift and wind effects. 

For the Monte-Carlo modeling, an obvious extension is the random choice of the T.N.T. equivalent 

parameter c<Y>>, including multiple explosions, different explosion scenarios.. ., and an improved 

knowledge of the corresponding fragmentation. 

We are very grateful to Joseph Sasso for his attentive reading and remarks of this paper. 
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