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1. Introduction 

The advent of third-generation synchrotron radiation (SR) sources, the development of ultra large scale integrated (ULSI) 
circuits, and the expanding development of space observatories have created an increasing need for high quality, well 
characterized optical components and systems for use in the soft x-ray (SXR) region. For high-brightness "third generation" 
SR sources, beamline optics are required to withstand extreme power loads while providing precisely tailored radiation to 
experimental stations. The ever-increasing density of integrated circuit patterns is approaching fundamentallirnits of what can 
be accomplished with ultraviolet excirner lasers, and next-generation microelectronics will require the development of 
sophisticated and complex SXR optical systems. Next-generation SXR space observatories also will require utilization of 
complex aspheric optical elements in their telescopes and spectrometers to achieve large aperture combined with the highest 
possible spatial and spectral resolutions. It should also be noted that the need for new high precision SXR optics and optical 
systems has pressing applications in many other fields, ranging from biology to materials research. 

Due to short operating wavelengths, SXR optics must meet very stringent metrological requirements not usual to 
conventional optical elements used at longer wavelengths. The current lack of sufficiently precise, yet practically convenient 
metrological technologies presents varying degrees of difficulty in jUdging the quality of SXR optical components and the 
accuracy ()f an assembled optical system. At this stage of the development of SXR optics, it is desirable for manufacturers as 
well as users to have a practical design method as well as a simulation method that can provide tolerance estimates for the 
fabrication of optical components needed to secure the highest possible performance of a planned SXR optical system. 

To contribute towards the achievement of these ends, we have developed practical methods which incorporated analytic 
formulas and appropriate definitions into a ray tracing method based on Fermat's principle. They were found to be effective not 
only in designing a multi-element optical systems but also in estimating tolerances for fabrication and assembly errors of optics 
and maximizing the performance of resulted systems. The principles of the methods and some applications are given. 

2. Fermat's Principle and Ray-Tracing Formulas 

The theory of geometrical optics can be developed on the 
basis of a single hypothesis, known as Fermat's princip Ie [1]. 
F or a diffraction grating, the light path function F for a ray 
originating from a point A and diffracted at a point P (~,w,l) 
on the nth groove toward an image point B is defined by 
F • AP + PB + nm A.. Here, m is the spectral order and A. is 
the wavelength of the ray PB. Since the surface of the grating 
blank is expressed by ~ = j(w,l), Fis also a function ofw and 
l. Application of Fermat's principle to the light path function 
yields 6F. (aFlaw)6w + (aFlal)M • O. Fermat's 

principle as applied to the diffraction grating is now stated as 
(oF/Ow) • 0 and (oF/ol) • 0, and more explicitly as 

of/Ow· (L -L'Xo~/Ow) + (M -M') + mA.(en/Ow) • 0, 

(1) 
of/ol • (L -L'Xo~/()/) + (N -N') + mA.(en/o/) • 0, 

where (L,M,N) and (L ',M',N~ are the direction cosines of the 
incident ray AP and those of the diffracted ray PB of 

z 

y 
s:::::::r-~_~ ___ !2A(~X"y,z) 

x 

Fig. 1. Schematic diagram of the optical system. 
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r' 

wavelength A in mth order, respectively, and they are defined as 

L '" (~-x)/AP, M", (w-y)/AP, N", (I-z)/AP, L' '" (x'-O/PB, M' '" (y'-w)/PB, N' '" (z'-/)/PB. (2) 

Solving these equations simultaneously, we obtain 

L' - L + T, M' - M + m}.. Un - T ~ aw aw' 

All the equations derived above hold for gratings of any 
type, and the direction cosines (L ~M ~N ') of the diffracted 
ray PB can be computed whenever the surface figure ~ = 

j{w,!) and the groove pattern n = h(w,!) are known. 

We consider two image planes :E and :E 0' both of which 
are perpendicular to the x-y plane and pass through a point 
BoC~~,O) on the diffracted principal ray of wavelength A in 
mth order, the incident principal ray being AoO. The plane 
:Eo is perpendicular to the diffracted principal ray OBo. The 
plane:E makes an angle cf> with the plane :Eo: 

x'cos(J3o + tP) + y'sin(J3o + tP) • r~costP· (4) 

Here, Po is the angle of diffraction of the principal ray AoOBo, 
cf> = 0 for a monochromator, cf> = X - Po - n/2 for a flat-field 
spectrograph, and a series of image planes :E with cf> = Po 

N' _ N + m}.. Un _ T a~ , 
al al 

(3) 

y 

Ao(x,Y,0) 

r~ 

ro' 

Fig. 2. Schematic diagram of two image planes 1:: and 1:: 0. 

represents the focal plane for a Rowland-circle spectrograph. Thus, the intersection B(x:y:z ') of the ray PB with the image 
plane :E, i.e., the coordinates of the ray-traced spot are determined: 

X' - ~ + L' d, y' - w +M' d, z' -I + N' d, 

(5) 

For convenience we introduce in the plane :E a new rectangular coordinate system whose Yaxis lies in the x-y plane and 
Z axis is parallel to the z axis. The ray-traced image point B(x:y:z ') is then expressed in the new coordinates as B(Y,Z): 

Z - z'. (6) 

3. Hybrid Design Method 

It is desirable to have a practical method of designing a multiple-element optical system consisting of aspheric mirrors and 
varied-line-space and curved-groove gratings, both ruled and holographic. For this we have developed a hybrid design method 
which takes the advantages of both the ray-tracing and analytic methods [2]. 

The hybrid method optimizes design parameters by minimizing an analytic merit function Q= 1:: i Q( A;) whose component 
Q(AJ closely represents the variance of the spots formed when an infmite number of rays of a design wavelength Ai are traced 
through the optical system concerned [3]. A component of the merit function is defined as 

(7) 
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where A; is a wavelength chosen in the required scanning range, Wand L are the width and height of the illuminated portion 
of the ruled area, respectively, H is the entrance slit height, and 

i __ 1_ (W'12 r lJ2 rH12 Y dw dl dz, 
WLH J-wn LlJ2 J-H12 

qio) E 1~ (L 2 g;lO .H Z g~l)· 1~ { W 2 L Z 
(gl2l0 • 2 gOlOgZl~ + HZ [ W Z (gl~l + 2 gOOl gZOl) + 2L2 (golOgOl2 + gOOlg021) U 

+ 4~ L 4 gOlOg030 + 9!O [ W Z L Z gZlO (W 2 gZlO + 2L2 g030) + L 2 H2 gOl2 (2L Z g030 +H2 g012) + H2 (W4 g2~1 .L 4g-;2ry] 

1 L6 2 1 W2L2H2( ) 
+ 448 go30 + 864 guo gOl2 + gOZl gZOl . 

In brief, for a given optical geometry, we (I) generate nine rays (n = 1,2, ... ,9) of wavelength A; randomly from the source, 
(2) determine the intersections of nth ray with the surfaces of the grating and the image plane, (w",l") and (Y",Z");by means of 
ray tracing, (3) substitute the values of (WWI"), (Y",Z"), and the height Z" of the source point into the analytic formulas for the 
spot diagrams 

2 2 2 3 Z Z 
Y" - w'/"oo + w,,/zoo + 1,,/020 + I"Z,.foll + z,,/ooz + w,.'h.oo + w"l"hzo + W"I"Z'/"ll + w"Z"h02 + ''', 

(4) solve the nine simultaneous equations for !ijt's and gij/s, (5) repeat steps (l )-(4) for the other design wavelengths"and,(6) 
calculate Q(A;)'S with the values ofthe!ijk's andgijk's. Finally, the design parameters are determined by minimiZingth~merit 
function Q =:E; Q(AJ If necessary, we may use Q =:E; €(A;)Q(Aj)' €(Aj) being a weighting factor. 

4. Resolving Power 

4. 1. Spectroscopic Systems 

The resolving power of spectroscopic systems, m= AI !:J. A, may be defmed, in accordance with the R!\yle,i~~~~~er:i.o1l; by 
assuming that two similar spectrum lines of A and A +!:J. A are resolved when their contours cross at thep!Jin,.t:of;~~'llJ,~l}~se 
height is 4htZ of the maximum (see Fig. 3a). In this Case,!:J.A is the full width of the ray-traced line profile at i~(~htZ)-m~um 
point. The resolving power thus defmed is denoted by m( I). This defIDition would be appropriate only yvh~.s~~al;~~ges 
have symmetric profiles of Gaussian type. To take into account the effect of asymmetric line profiles, we defme the reSolving 
power m(2) by introducing an effective Gaussian line profile in place of an actual asymmetric line profilei(referi~o fig. 3b for 
defIDing the effective Gaussian profile) [2]. 

1 

(a) 

Ray-traced 
line profile 

(b) 

Fig. 3. Defmitions of the resolving power based (a) on the Rayleigh criterion and (b) on the effective Gaussian profiles. 
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To define the resolving power m(2), we (1) calculate the standard deviation 0 y of ray-traced spots in the direction of 
dispersion, (2) convert 0 y to the standard deviation o. of the spectral spread for the rays of wavelength A by multiplying the 
recipr6callinear dispersion at A, (3) represent the line profile under consideration by an effective Gaussian profile whose 
standard deviation is given by 0., and (4) assume that two similar spectral lines of A and A+!J. A are resolved when their effective 
Gaussian lines are separated by!J. A=2.6430). to make the minimum resultant intensity between the lines 8/n 2 as great as the 
resultant intensity at the central maximum of either of the lines. Thus the resolving power m(2) is defined by 

tJt(2). )../11)" • ),,/2.6430).. 

4. 2. Demagnifying Projection Lithography Systems 

The square-wave modulation transfer fimction (MTF) has 
frequently been used to evaluate the imaging characteristics of 
demagnifyingprojection optics [4]. On referring to our previous 
experience gained through projection lithographic processes 
including resist processes, we assume that a projected line-and­
space pattern at a given spatial frequency is properly resolved 
when the modulation of the intensity distribution of the mask 
image formed on a wafer is 45% or more. 

To estimate the performance of a demagnifying projection 
optics by means of ray tracing, we (I) consider a grid pattern of a­
)lIllline-and-space on the reflection mask (see Fig. 4), (2) assume 
that the space portion of this grid pattern emits light into the 
entrance pupil of the system, (3) choose three 6a x 6a-J.lm2 areas 
centered around the two comer points at the right (or left) and the 
central point ofthe ring field formed on the mask, and take these 
areas as distributed light sources, each containing 9 elemental 
sources of a x a J.lm2, (4) generate rays randomly from each one 

(10) 

of these three areas and construct spot diagrams in the plane of the 
wafer by tracing rays through the projection optics, (5) construct Fig. 4. Source pattern on the mask. 

the intensity distributions of the projected image in the two 
directions, x and y, parallel to the grid lines by counting the 
number of spots falling into individual zones of (6aM/1 OO)-J.lm wide taken in the x and y directions, M being the magnification 
of the projection optics, and (6) estimate the modulation of the intensity profiles of the pattern thus obtained in the two directions 
and apply the "~45%" criterion to the estimated modulations. 

5. Spectral Purity 

The spectral purity of the beam emerging from the exit slit is an important factor in evaluating the performance of a high­
resolution monochromator on a synchrotron radiation beamline, whose source is of continuum. It is also important that the 
resolving power estimated should not contradict with the spectral purity. 

The spectral purity may be examined by analyzing the frequencies at which rays of various wavelength components of the 
continuum pass through the exit slit of a given width. Referring to Fig. 5, we (1) assume that the monochromator is tuned to 
a wavelength Ao and that a continuum band which extends over arange of A, sA S 1..2 is incident on the grating, choice of the limits 
A, and 1..2 being made on account of the reciprocal linear dispersion, (2) generate rays of various wavelengths in the continuum 
band randomly in the bending magnet source or the central cone of the undulator under consideration and trace the generated 
rays through the beamline optics until the number of rays passed through the exit slit reaches 1000, (3) identify each through-ray 
by its wavelength A and the Y coordinate of its intersection with the plane of the exit slit, the Y axis being taken as the line 
perpendicular to the slit and going through the center of the slit opening, (4) construct the spectral purity plot diagram by plotting 
(A,Y)'s for the through-rays, (5) estimate from the spectral purity plot diagram the frequency distribution v (A) of the wavelength 
component A by counting the number of points (A ,Y)'s falling onto individual parallel zones having a width of (A2-1..1)/1 00 nm 
and a height equal to the width of the exit slit, and (6) calculate the spectral purity AJiAT, where AR and AT are the area under the 
frequency distribution curve between (1..0-1.32150).) nm and (1..0+1.32150.) run and the total area under the whole curve, 
respectively. 
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Fig. 5. Intensity distribution of the continuum band and explanations of through-rays and spectral purity plot diagrams. 

6. Slope error and figure error 

We consider an ellipsoidal mirror whose surface figure is defmed by 

(11) 

in a rectangular coordinate system attached to the mirror. The vertex 0 of the mirror is taken as the coordinate origin and the 
mirror normal at 0 as the x axis. In Eq. (II), A, B, and C are the ellipsoidal semi axes with respect to the x, y, and z axes, 
respectively, and (~,w,l) are the coordinates of a point P on the mirror surface. The quantity I!. ~ is the deviation from the ideal 
ellipsoidal surface, and is assumed to be constituted of the surface figure error I!. ~ FE and thermal deformation I!. ~ TD: 

(12) 

The figure error arises from the imperfection in polishing the surface of a mirror or a grating blank, and it often is 
represented by values of the slope error. We assume that the slope errors Sy and Sz at P(~,w,l) in the y and z directions are 
distributed randomly with a probability density function 

(13) 

where ° I and 02 are the standard deviations of Sy and Sz, respectively. We assumed here that the Sy and Sz have no mutual 
correlation and their respective averages over the mirror surface are zero. The sequence, { (Sy, sz); }, of normal random slope 
errors with the probability density j(SySz) are generated from 

(14) 

with the aid of the sequence {u;} of uniform random numbers on the interval [0,1]. 

The corresponding figure error I!. ~FE is obtained by integrating d(1!. ~FE) '" s"dw + sydlunder an assumption 01 = 02 '" °SE: 
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(15) 

7. SR Beamline Optics 

Examples are given for the design, resolving power, spectral purity of an undulator beamline optics, and thermal 
deformation. 

7.1. Validity of various ray-deviation formulas 

Equations (9) express the aberrations (up to third order) in spectral images formed in the plane ~ (see Fig.2). They 
represent ray-traced spot diagrams also, and they are called spot diagram (SD) formulas. The accuracy of Eqs. (9) is limited 
only by the neglect of the fifth- and higher-order terms in performing power series expansions. 

It is of practical interest to examine, with reference to exact ray tracing, the validity of the SD formulas and also that of 
similar formulas based on light path fimction (LPF). The LPF -based formulas, which are widely in use for the design of grating 
instruments, are given by [5] 

(16) 

where the image plane is assumed to be perpendicular to the principal diffracted ray (~o in Fig. 2 and <I> = 0 in Eq. (4». The 
expansion coefficients of the light path fimction F contain the coordinates (r', ~,z,) of point B, which are unknown functions of 
the coordinates (~,w,l) of point P (see Fig. 1). Partial differentiation of F therefore is not possible in principle. To circumvent 
this problem, it is customarily assumed that the deviation of the spot B formed by the ray APB from the spot Bo of the principal 
ray AOBo in the image plane is negligible so that the unknown quantities r', ~, and z' in the expansion coefficients of the light 
path fimction can be approximated by the corresponding quantities ro', ~o, - z ro' 1 r, which are all associated with the principal 
ray AoOBo: 

(17) 

With this approximation, Eqs. (16) are expressed as 

(I 8) 

(19) 

It can be shown analytically that the LPF -based formulas are correct to third order only when ~ 0 = 0 and the tangential and 
sagittal focal curves cross on the grating normal [I]. The same results are obtained [l] for another ray-deviation formulas that 
are based on the wavefront aberration (WFA) theory [6,7]. In practice these LPF- and WFA-based formulas can safely be 
applied to cases in which defocus (F200) and astigmatism (F020) are small over the design wavelength range (i.e.,the 
corresponding angles of diffraction ~o are not too large). 

The validity of individual formulas is depicted clearly in Fig. 6, which compares the spot diagrams generated for a 142 0 

constant-deviation grazing incidence monochromator by the SD- and LPF-based formulas with those constructed by exact ray 
tracing. Specifications of the monochromator are: wavelength range, 15 nm - 150 nm; m = +1; r = 319.9 mm; '-0' = 317.8 nm; 
R = 1000 mm; 1/0 = 550 grooves/mm; 2a = 3.877791 x 10-9 mm; 6b = -6.844844 x 10-14 mm; 4c = 3.654780 X 10-20 mm; and 
ruled area, 60 (W) x 30 (L) mm2

• The monochromator has a rather large astigmatism as can be seen in Fig. 6. The spot 
diagrams in Figs. 6b (SD-based formulas) are very similar to the corresponding ones in Fig. 6a (ray tracing), proving the validity 
of the SD-based formulas. On the other hand, the spot diagrams generated from the LPF-based formulas (Fig. 6c) are quite 
different in shape and magnitude from those constructed by exact ray tracing and the SD-based formulas. Spot diagrams 
constructed by the WFA-based formulas also deviate considerably from Figs. 6a and 6b (see Ref. 1). These results show the 
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limitation in the applicability of the LPF- and WFA-based formulas to a system in which astigmatism is not corrected to a 
sufficient degree. . 

A=20nm 60nm 140nm 
40

w IT] o( (a) 

E -40 .s 40

w 
f- o( IT] I 
0 

(b) ill 
I 

W 
-40 0 

<{ 40 

rn rn 
~ 

0 (c) 

-40_1 1 -1 0 1 -1 1-1 0 1 

IMAGE WIDTH (mm) 

Fig. 6. Spot diagrams constructed for the 142° constant -deviation grazing incidence monochromator with (a). exact ~ay tra«lng, 
(b) SD formulas, and (c) LPF formulas. .' . 

7.2. Design, resolving power, and spectral purity ofundulator beamline optics 

A. Design 

We consider an objective 
Monk-Gillieson (M-G) type 
grazing incidence VLS plane 
grating monochromator (pGM) M I 
shown in Fig. 7. A fixed 
spherical concave mirror M 
accepts radiation from a source 
point S at an angle of incidence 
88'? and delivers a converging 
beam onto a ruled VLS plane 
grating G at an angle of Fig. 7. Schematic diagram of the M-G type VLS~PGM' 

, \';i:> 
incidence ex. The diffracted rays . .... ..... ' .. 
of wavelength A in mth order are focused onto the fixed exit slit Ex after reflected by a movable pl~e fuiITor,M .. Wavel~ngth 
scanning is carried out by combining simultaneous translation and rotation of M with simple rotation of G sotpaf fu~ direction 
of the exiting beam remains unchanged. . ..' . . .... 

'( ',> ~,(, \ 

This monochromator, M-G type VLS PGM, was designed by means of the hybrid method described in Section 3, The. design 
conditions and the results are summarized below. '. '. 

Given conditions: r '" SM = 18000 mm, e = 88°, R (radius of curvature ofM) = 155700 mm, D '" MG=20()mm, <j>-K= ~ 0, 

o = 112400 mm, ruled area = 60 (W) x 25 (L) mm2
, spectral order m = + 1, and wavel~ngth range = 0.5 - 10 nm. 

Designed parameters: 2a = l.762906xl0- to mm, 6b = 5.299280xlO-17 mm, 4c = 1.354672><10-23 mm, D' '" GM = 40 l.l 0 rom 
at A =5 nm, and r' '" MEx = 1647.78 mm at A =5 nm. (Note here that D' and r' are wavelength dependc:nt.) 

We also designed holographic plane gratings for the monochromator under the same given conditions as described above 
for the ruled VLS gratings. We designate the holographic gratings (HG) recorded with (1) two spherical wave fronts and (2) 
an aspheric and a spherical wave front as HG(S+S) and HG(A +S), respectively, and the ruled VLS gratings as RG(VLS). The 
design parameters thus obtained with Ao=441.6 nm are summarized below. 
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HG(S+S): rc = -2194.42 mm, y = -71.2090°; rD = 959.60 mm, 0 = 6.4964°. 
HG(A+S): Rl = 1200 mm,pc = 585.44 mm, qc = 614.96 mm, llc = -35.3665°, y = -36.8560°; rD = 979.50 mm, 0 

= 27.3893°. 

The perfonnance of all the gratings thus designed was evaluated in tenns of resolving power and spectral purity detennined 
from ray-traced spot diagrams, assuming Lu (undulator length) = 4.4 m, Oy = 41.1 Jlm, 0, = 212.7 Jlm, Oy' = 9.7 Jlrad, and 0; 
= 18.9 Jlfad .. We considered here the effect of aberrations only and put aside any contribution from higher order overlapping 
and surface scattering. The results will be given in the following subsections B and C. 

B. Resolving power 

To gain a better understanding of the 
resolving power, we have examined the 
behavior of if(1) and if(2) as a function 
of the ruled width W. This is because the 
resolving power is influenced directly by 
the amount of aberrations in spectral 
images, which increase with increasing W. 
We constructed spot diagrams and line 
profiles for the three gratings HG(S+S), 
HG(A+S), and RG(VLS) as a function of 
W. The ruled width was varied by 
masking down the ruled area stepwise 
from W=60 mm (full ruled width) to 
W=7.5 mm by a factor of 0.5, while 
keeping the groove length unmasked 
(L=30 mm). To take into account these 
four different masked apertures on the 
grating, we also computed the 
transmittance of rays through the 
respective apertures. For this, rays were 
generated randomly in the central cone of 
the undulator until the number of rays 
diffracted from the unmasked ruled-area 
reached 1000. Then, the transmittance 
was given by the ratio of 1000 to the total 
number of rays generated. 

Figure 8 shows spot diagrams and 
line profiles thus obtained for rays of ),,=5 
nm in the cases of (a) HG(S+S), (b) 
HG(A+S), and (c) RG(VLS). The values 
of transmittance were found to be the 
same in all the cases (a), (b), and (c); 
28.83%, 55.25%, 88.42%, and 99.80% 
for W =7.5, 15, 30, and 60 mm, 
respectively. These values were taken 
into consideration in drawing the line 
profiles. The full width, t.. WF, of the 
individual line profiles at their (4/n;2)­
maximum points is indicated by arrows 
and the effective Gaussian line profiles are 
shown by dotted lines. Before examining 
the behavior of if( 1) and if(2), we should 
estimate their statistical dispersion arising 

W=7.5mm 15mm 30mm 60mm 

(a) 

(b) 

(c) 

-50 0 50 -50 o 50 -50 o 50 -50 o 50 

WiDTH (~m) 

Fig. 8. Spot diagrams and line profiles constructed as a function of the ruled 
width Wfor the M-G type VLS-PGMequipped with (a) HG(S+S), (b) HG(A+S) 
or (c) RG(VLS). 

from random generation of rays. For this we constructed spot diagrams and line profiles by tracing 1000 diffracted rays for ten 
different sets of randomly generated rays of 5 nm through the individual gratings of Fig. 8 as a function of the width W of the 
unmasked portion of the ruled area. The resulted spot diagrams and line profiles were found to be very similar to the 
corresponding ones in Fig. 8. The mean values of if(l) and if(2) obtained are summarized in Table 1. The statistical dispersion 
of if(1) is much larger than that of if(2), but not large enough to alter any conclusion to be drawn from their mean values. 

-192-



For HG(S+S) we notice in Table I that with an 
increase in W, the gradual decrease in .w(l) fonus a 
sharp contrast to the rapid decrease in .w(2). We also 
note in Fig. 8a (1) that the line profile rapidly 
develops shading (coma-type aberrations) with 
increasing W, while 11 W F remains nearly unchanged 
and (2) that the effective Gaussian line profile nearly 
coincides with the ray-traced line profile for W= 7.5 
and 15 mm, whereas 
those for W = 30 and 60 mm are much wider than the 
corresponding ray-traced line profiles. 

Table 1. Mean values of the resolving powers mel) and m(2) of the 
M-G type VLS-PGM as a function of the width W of the· unmasked 
portion of the ruled area. 

W HG (S+S) HG(A+S) RG(VLS) 
(mm) 

mel) m(2) m(l) m(2) m(l) m(2) . 

7.5 28100 28300 29200 29800 28600 29900 

15 18500 18600 28500 29600 29300 29600 
. .. 

30 16100 6400 28000 29200 28100 296000 

60 14300 2900 27800 28500 28000 2920'0 

HG(A+S) and RG(VLS) exhibit a striking 
contrast to HG(S+S) in their behavior with changes in 
W. Regardless of the width W of the unmasked 
portion of the ruled area, both HG(A+S) and 
RG(VLS) provide nearly the same value of ~29000 for .w(1) and .w(2) and also maintain sharp Gaussian type line profiles. 
These findings suggest the need for careful examination of the resolving power in relation with the spectral purity of the beam 
emerging from the exit slit. . 

c. Spectral purity 

The spectral purity of the beam 
emerging from the exit slit of the M-G 
type VLS-PGM was examined by 
analyzing the frequencies at which rays of 
various wavelength components passed 
through the exit slit of 5-J..lm wide. For 
this, we assumed that the monochromator 
was tuned to a wavelength of 5 urn and 
that a continuum band which extends 
over a range of 4.995 urn ~ A ~ 5.005 urn 
was incident on the grating. Rays of 
various wavelengths in the continuum 
band were generated randomly in the 
central cone of the undulator and were 
traced through the monochromator 
equipped with HG(S+S), HG(A+S) or 
RG(VLS) until the number of rays passed 
through the exit slit reached 1000. Each 
through ray is identified by its wavelength 
A and the Y coordinate (see Fig. 7) of its 
intersection with the plane of the exit slit. 
Plotting (A,Y)'s for the through rays, we 
obtain a diagram similar to the spot 
diagram, which we call the spectral purity 
plot diagram. The frequency distribution 
v(A) of wavelength components of the 
continuum band is estimated for the 
through rays by counting the number of 
points (A.,Y)'s falling onto individual 
parallel zones of 5x 10-5 urn wide and 5-
flm high in the spectral purity plot 
diagram. The procedure of constructing 
the spectral purity profile is similar to that 
of making the line profile from the spot 
diagram. 

Figures 9a, 9b, and 9c show the 

W=7.5 mm 15 mm 

l o,af >:: ..... H •• Jf:· 

(a) 
cr.=8.65x10·'nm 

r:rn~rnQQj:: 
""'(1) 

~2x1O"'nrrt-4 ~2x10'n~ ~2x10·'n~ 1-<--:-2x10~r~'; 1(" 
10 - . 

=3.22% 

(b) 

(c) 

Fig. 9. Spectral purity plot diagram and spectral purity profiles constructed for 
the M-G type VLS-PGM as a function of the width W of the unmasked portion 
of the ruled area. 

-193-

------_1mMi,'*4,;t, I I 1 f ____ IIIIIIIIIIIIIIIIIIIIIIIIIIIII ____ •••••••••••••••• 



spectral purity plot diagrams 
and the corresponding spectral 
purity profiles obtained for W 
= 7.5, 15,30, and 60 mm in 
the cases of HG(S+S), 
HG(A+S), and RG(VLS), 
respectively. The two 
horizontal dotted lines in each 
spectral purity plot diagram 
indicate a slit opening of 5 
j..lm. The percentage T of all 
the rays generated that were 
through-rays is indicated at the 
top of the respective spectral 
purity plot diagrams. The 
standard deviation 0v of the 

Table II. Degree of the spectral purity of the beam emerging from the M-G type VLS-PGM 
as a fimction of the width W of the unmasked portion of the ruled area .. 

W HG(S+S) HG(A+S) RG(VLS) 
(mm) 

A.Jl)IAT A.J2)IAT A.Jl)IAT A.J2)IAT A.JI)IAT A.J2)IAT 

7.5 84% 84% 85% 85% 86% 85% 

15 73 76 86 85 85 84 

30 58 74 85 84 86 85 

60 49 79 84 85 82 85 

distribution v (A) is given at the bottom of each diagram. The values of 0 v are a measure of the spectral purity. In Fig. 9, it is 
interesting to note the following facts. When 0 v is greater than 1.7 x 10-4 nm, the wavelength band-pass width corresponding 
to a slit opening of5-j..lffi, the spectral purity is degraded and the values of ..w(1) and ..w(2) are greatly different. In case (a) with 
W= 30 and 60 mm, o:s are larger than I.7x IO-4 nm, and ..w(1) '" 16100 (or 14300) and ..w(2) '" 6400 (or 2900)for W = 30 mm 
(or 60 mm), respectively. In all other cases, 0v <I.7xlO-4 nm, and ..w(1) '" ..w(2) regardless of the values of W 

The spectral purity of the beam emerging from the exit slit may also be estimated from the ratio of the area A 9{ under the main 
peak between (5 - flAI2) nm and (5 + flAI2) nm and the total area AT under the whole frequency distribution curve, where fl A 
is either the full width of the ray-traced line profile at its (4/n 2)-maximum point or 2.64230 A according to whether the resolving 
power is defined by ..w(l) or ..w(2). Accordingly, we differentiate the area A9{ specified by ..w(1) from the one designated by ..w(2) 
and denote the former by A.Jl) and the latter by A.J2). The ratios A.Jl)IAT and A.J2)IAT were computed for HG(S+S), 
HG(A +S), and RG(VLS) as a fimction of W, the width of the unmasked portion of the ruled area. The results are listed in Table 
II. The table clearly shows (1) that in the case ofHG(S+S) the ratio A.Jl)IAT rapidly decreases with an increase in W, whereas 
A.J2)IAT remains at ~80% regardless of Wand (2) that in the cases ofHG(A+S) and RG(VLS) all the ratios listed in the table 
remain nearly unchanged as W is varied andA.Jl)IAT andA.J2)IAT are practically the same for all values of W 

The results shown in Figs. 8 and 9 and Tables I and II indicate that the definition of ..w(2) is more realistic as compared with 
others especially when the monochromator under consideration yields spectral images with asymmetric profiles. 

7. 3. Thermal deformation 

The heat load exerted on beamline optics by undulator radiation can distort their surfaces. The effect is the greatest on the 
first optical element, which is usually a mirror. The performance of such a thermally deformed mirror can be simulated by means 
of ray tracing. The thermal deformation is calculated in four steps: (1) calculation of individual harmonic power densities of 
undulator radiation incident on the mirror surface by means of a code such as URGENT [8], (2) calculation of the harmonic 
power densities absorbed at each mesh element on the mirror surface, (3) calculation of thermal deformation by means of a 
finite-clementcode (e.g., ANSYS, a commercial soft ware), and (4) derivation of an analytic expression of fl ~m by fitting the 
surface deformation data with a polynomial of the form 

Os:i+js:6, (20) 

where Aij's are the deformation coefficients. 

As an example we show the result of a simulation made on the thermal deformation of a spherical mirror exposed to 
undulator radiation. The machine parameters assumed for the undulator are: wavelength of the fimdamental radiation = 4.5 nm; 
undulator period length Au = 39 mm; number of magnet period N = 123; deflection parameter K = 1.4057; electron energy 1 In e 

c2 (m" electron mass; c, velocity of light) = y = 2395.08; rms transverse size of the electron beam in the horizontal direction 
oy=0.330 mm; rms transverse size of the electron beam in the vertical direction Oz = 0.063 mm; rms angular divergence of the 
electron beam in the horizontal direction 0/ = 30 j..lrad; rms angular divergence of the electron beam in the vertical direction 
0: = 16 J..lfad. The mirror is assumed to accept undulator radiation of 0.5 mrad (h) x 0.5 mrad (v) through a beam defining 
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aperture. It is also assumed that the mirror is a directly water-cooled metallic spherical concave mirror having the following 
specifications: radius of curvature R = 75 m; dimensions = 178 mm (W) x 66 mm (H) x 28 mm (D); blank material = brazed 
assembly of GlidcopTM and OFHC copper, whose surface is plated with electroless nickel; and water-cooling channel = machined 
series circuit with a rectangular cross section (hydraulic diameter = 0.4763 cm) for turbulent water flow (flow rate = 5.53 
liters/min and Reynolds number> 4000). 

The surface defonnation of the mirror M is calculated by using URGENT and ANSYS. URGENT calculation shows that 
the mirror receives a total power of209 W and absorbs 127 Won its surface. The results of ANSYS calculation are curve fitted 
to Eq. (20). This yields the thennally defonned surface of the spherical mirror M as 

~ • R- R[l- (w 2 + 12)/R2]112+ 3.09499 xlO-4 - 3.39872 xlO-8w 2 _ 8.21102 xlO-812 

+ 4.75112 xlO-12w 4 + 4.833510 xlO-llw 212 - 4.880480 xlO-71 4 - 3.812470 xlO-16w 6 (21) 

- 1.569350 xlO- 14w 41 2
+ 5.484390 xlO-12w 21 4

+ 2.030340 xlO-816 , 

where R is the radius of curvature of the mirror. 

To evaluate the perfonnance of this defonned mirror by means of ray-traced spot diagrams, it is required to incorPor~teEqs. 
(15) and (21) into an exact ray tracing procedure. The ray-tracing procedure can easily be modified to meet the requli'eil1ent 
by following the method given in Ref 9. Rays from the central cone of the undulator can be generated by a simulationcooe [10] 
that takes into account the machine parameters and emission probability. 

8. Demagnifying Projection Optics 

Examples are given for the tolerance for the figure errors in the individual components of projection optics, thes~ffecf"of 
figure errors in projection optics on the resolution of mask pattern images, and simulation of Foucault knifefectgeite~tii1g~for 
assembly errors [11]. , , 

8. 1. Tolerance for the figure errors of ellipsoidal mirrors 

A measure offigure errors that are allowable to achieve near diffraction limited perfonnance of a mirrorsyst~~iis~¥bVidect 
by Rayleigh's quarter wavelength rule [12] and the Marechal condition [13]. These tolerance criteria give:x/g:Eeak~t(Wyal1ey 
(P-V) and ')J28 nns for each mirror of the two-mirror system: 1.6 nm P-V and 0.46 nm nns for A = 13 nn.1:.i Thesei'91efances 

,,',\' '/,/,n' ,y",,,'ti;j./"~" ""j' 

often are too tight in practice. It is therefore desirable to develop a means of obtaining a practically reasonl.tblet()let"apcefotthe 
figure error. One approach to this task would be the use of ray tracing. We have tried to utilize the method descnlJed iri"Secuon 
6 for exploring the possibility. For this we used the NTT's projection optics as an example. ' 

The optical configuration of 
the NTT's EUV projection litho­
graphy system is illustrated in Fig. 
10. The system consists of the 
illumination optics for producing 
a ring field on a reflection mask 
and the projection optics for 
imaging a reduced pattern of the 
mask on a wafer. 

Synchrotron radiation of 40 
mrad (h) x 4 mrad (v) from a 600 
Mev, 500 rnA (1.2 A max) super­
conducting compact electron 
storage ring at the NTT SR facility 
is shaped to a parallel beam of 20 
mm (h) x 10 mm (v) by a concave 
toroidal mirror and a convex 
toroidal mirror and then focused 
on the reflection mask, RMK, by a 
rotatable concave cylindrical 
mirror and a concave toroidal mirror. 

Convex 
Collimated Beam 
.~ Toroidal Mirror 

------===-~ 
---::~ 

Mask Stage Reflection mask 

l
i,~, ,~/ Toroidal Mirror 

1~:j\1 
5/ ~I ) 

I "'--=---
Ring Field 
Illumination 
(Radius 62.5 mm) '-,-,j 

Two ·Aspherical Mirror System 
NA: 0.1 
Demagnification: 1/5 
Ring Field:100 mm x 0.2 mm 

Concave 
Toroidal 
Mirror 

Wafer Stage 

Fig. 10. Optical configuration of the NTT's EUV projection lithography system. 

The focused beam illuminates a ring field of 5 mm (h) x I mm (v) on RMK, the radius 
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of the ring image being 62.5 mm. The ring field is expanded to 100 mm (h) x 1 mm (v) by oscillating the cylindrical minor 
through angles of ±53.13°, and it is further extended to 100 mm (h) x 125 mm (v) by translating RMK vertically. 

The illuminated area of RMK is projected on the wafer by a demagnifying optics with a numerical aperture of 0.1 and a 
magnification of 1/5. The demagnifYing optics is of telecentric and consists of a convex ellipsoidal minor M 1 of k = ~ 10 and 
a concave ellipsoidal minor M2 of k = ~.1, k being the conic coefficient (see Fig. 10). This coaxially symmetric two-minor 
system was chosen because of its simplicity, reasonable abenation balancing, high throughput, relatively large fabrication 
tolerance, and easy assembling. The diameters ofMl and M2 are 60 mm and ISO mm, respectively, and both the minors have 
almost the same radius of curvature, ~500 mm. The surfaces ofMl and M2 are very close to sphere: the maximum deviation 
of the surface figure ofMl (or M2) from its reference spherical surface is less than 0.6 (or 2.0) 11m. An addition of vertical 
translation of the wafer to the motions of the rotatable cylindrical minor and RMK will produce the image of20 mm (h) x 25 
mm (v) on the wafer. 

To estimate a practically 
reasonable tolerance for the 
figure enor of the demagnifYing 
projection optics, we follow the 
procedures described in 
Sections 4.2 and 6. We consider 
a O.5-l1m line-and-space grid 
pattern on the reflection mask 
and assume that the space 
portions of this grid pattern emit 
light into the entrance pupil of 
the system. We choose three 3 
x 3 )1ffi2 areas, A, B, and C. The 
areas A and B are taken at 
around the two comer points at 
the right (or left) of the ring field 
of 5 mm (h) x I mm (v) formed 
on RMK and the area C is taken 

0SE(M2) = 0 
0SE(MI) = 0.05 ).1rad 

0.1 11m / division 

0SE(M2) = 0 
0SE(M I) = O~ I !!fad 

:"~~jH~t :., 
0.1 11m / division 

0SE(M2) = 0 
0SE(MI) = 0.2 !!fad 

0.1 11m / division 

Fig. 11. Ray-traced images of the source pattern C on the mask. The source pattern is of 
Fig. 4 with a= 0.5 11m. 0SE is the rms slope enor of the minor specified in parentheses. 
Ml and M2 are the convex and the concave ellipsoidal minor. 

at around the center of the ring field. We consider these area as distributed light sources, each containing 9 elemental sources 
of 0.5 11m x 0.5 11m. Ten thousand rays generated from each one of these three sources A, B, and C were traced through the 
convex ellipsoidal minor Ml and the concave ellipsoidal minor M2. The spot diagrams thus obtained with the three sources 
were found to be indistinguishable from one another as far 
as the same slope enors are assumed for the projection 
system. In Fig. 11 are shown, as an example, the spot 
diagrams constructed for the source C and for certain 
values of slope enors assumed on M 1 and M2. 

While constructing such spot diagrams with assumed 
slope enors ofMl and M2, we can calculate from Eq. (15) 
the conesponding figure enors ofMl and M2. Figure 12 
shows the relation between the rms slope enor and the rms 
figure enor thus obtained for Ml and M2 of the NTT's 
projection optics. It is seen that the rms figure enor is 
affected by the rms slope enor more strongly for M2 than 
forMl. 

To estimate the tolerance for the figure enor, we need 
information on the intensity distributions of the images in 
the horizontal and vertical directions. Such information can 
be obtained from the spot diagrams by constructing image 
pattern profiles in the two directions. The image pattern 
profiles were constructed by counting the number of spots 
falling into individual vertical or horizontal zones of 0.006-
11m in width in the image plane. The intensity profiles of 
spot diagrams constructed for Ml and M2 with nine sets of 
figure enors are shown in Fig. 13. 

.'-. --[}-convex mirror 

3.5 
-, '!--Cllncavc mirror 

r--. 

S 3 
c:: 
'-' 

l-< 2.5 0 
l-< 
l-< 
(1.) 

2 (1.) 1.80 nm 
l-< 
;::::! 

1.52 rim 

~ 1.5 
C/J 

S 1 
l-< 

0.5 

0 
0.16 J1rad 

0 0.05 0.1 0.15 0.2 
fIllS slope error (J.1rad) 

Fig. 12. Relation between the rms slope enor and the rms 
figure enor in the case of the NIT's projection system 
consisting of the ellipsoidal minors Ml and M2. 
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Fig. 13. Spot diagrams and their intensity profiles constructed for the demagnifying projection system with various sets of the 
rms figure errors ofM! and M2. . . 

In Fig. 13 the rms figure errors are assumed to be 0FE = 0, 1.0, and 1.8 nm for the convex ellipsoidal miiror MI and 0FE 
= 0, 1.0, and 1.5 for the concave ellipsoidal mirror M2. The" ~ 45%" criterion was applied to the modulations estimated from 
Fig. 13 and other similar spot diagrams. The result shows that any combination of 0FE(MI) > 1.2 nm and 0FE(M2) >, 1.5 nm 
yields a modulation less than 45 %. We therefore adopt 1.2 nm and I.5 nm as the tolerances for the rms figure errors ofMI and 
M2, respectively. . 

The surface figures ofMI and M2 fabricated were measured with a Zygo Mark IV interferometer. The ~s (or Peak-to­
Valley, P-V) values of the figure errors were found to be ~1.8 nm (or ~5.5 nm) and ~I Snm (or~.4 nm) forMl and M2, 
respectively. The spot diagram and its intensity profiles constructed with these tolerance values are shown at the lower right 
of Fig. 13. The figure clearly shows that a O.l-Ilm line-and-space pattern cannot be resolved with the projection optics 
fabricated, in agreement with the experimental result. This suggests the need for improved surfacefiguresofMI and M2. 'As 
stated above, the present simulation gave the tolerances of 1.2 nm (or 0.11 wad) and 1.5 nm (or 0.04 Ilrad) for the rms figure 
error (or rms slope error) ofM1 and M2, respectively. These values would ease the Mareshal condition of 0.46 nm rms for 
both M1 and M2, but their reliability still remains to be proved experimentally. 

8. 2. Simulation of Foucault knife edge testing for assembly errors 

This subject is reported by T. Haga and M. C. K. Tinone in the Proceedings of this workshop. The interested reader is 
referred to their article entitled "Numerical analysis of EUV optics assembly using at-wavelength Foucault testing" in this 

volume. 
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