SPIDER 2 TESTS - RESPONSE OF TYPICAL WALL PANELS TO DEBRIS AND FRAGMENT IMPACT

Michelle Crull, PhD, PE, US Army Engineering & Support Center, Huntsville, Attn: CEHNC-ED-CS, 4820 University Square, Huntsville, AL 35816-1822, Phone: (256) 895-1653; FAX: (256) 895-1737; E-mail: michelle.crull@us.army.mil

John W. Tatom, APT Research, Inc, 4950 Research Drive, Huntsville, AL 35805, Phone: (256) 327-3392; FAX: (256) 837-7786; E-mail: JTatom@APT-Research.com

Robert T. Conway, Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Hueneme, CA 93043, Phone: (805) 982-1248; FAX: (805) 982-3481; robert.conway1@navy.mil

BIOGRAPHY OF DR. CRULL

Dr. Crull has Bachelor's and Master's degrees in civil engineering from the University of Mississippi and a doctoral degree in structural engineering from Vanderbilt University. Michelle works for the US Army Corps of Engineers providing explosion effects expertise to the Army and DoD. She is co-author of DDESB Technical Paper 16. As a member of the DDESB Science Panel, Michelle participated in the planning and execution of the SPIDER 2 tests performed in 2009.

ABSTRACT

As part of the U.S. Department of Defense Explosives Safety Board (DDESB) Project ESKIMORE, the Science Panel Impact Debris Evaluation and Review (SPIDER) test program has been planned to develop improved predictions for the hazards inside an exposed site (ES) from fragments and debris. Data collected includes the mass and velocity required for perforation of the test cross-section and characteristics of all debris produced inside the ES.

The 2004 SPIDER 1 test program tested the hazard from high-angle debris striking typical roof sections at terminal velocity. Similarly, the 2009 SPIDER 2 test program conducted at Redstone Arsenal tested the effect of debris and fragments impacting wall cross-sections. The wall response (e.g. penetration, deformation, spalling, breaching, perforation) to variable masses and velocities of spherical steel and concrete impactors was determined. Impact velocity and residual velocity of perforating fragments and ES debris were measured for each test.

A trajectory analysis was used to choose SPIDER 2 steel and concrete impactor characteristics consistent with the masses, initial potential explosion site (PES) debris velocities (< 3000 fps), and low launch angles (< 15°) that can critically impact walls at 500 to 3000 ft from the PES. Primary steel fragments, with initial velocities of < 5000 fps, were also included in the trajectory analysis.

Report Documentation Page

Form Approved OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE JUL 2010	2. REPORT TYPE N/A	3. DATES COVERED -
4. TITLE AND SUBTITLE	·	5a. CONTRACT NUMBER
SPIDER 2 TESTS - Response 6 Fragment Impact	Of Typical Wall Panels To Debris A	nd 5b. GRANT NUMBER
rragment impact		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(US Army Engineering & Supp CEHNC-ED-CS, 4820 University	, ,	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

See also ADM002313. Department of Defense Explosives Safety Board Seminar (34th) held in Portland, Oregon on 13-15 July 2010, The original document contains color images.

14. ABSTRACT

As part of the U.S. Department of Defense Explosives Safety Board (DDESB) Project ESKIMORE, the Science Panel Impact Debris Evaluation and Review (SPIDER) test program has been planned to develop improved predictions for the hazards inside an exposed site (ES) from fragments and debris. Data collected includes the mass and velocity required for perforation of the test cross-section and characteristics of all debris produced inside the ES. The 2004 SPIDER 1 test program tested the hazard from high-angle debris striking typical roof sections at terminal velocity. Similarly, the 2009 SPIDER 2 test program conducted at Redstone Arsenal tested the effect of debris and fragments impacting wall cross-sections. The wall response (e.g. penetration, deformation, spalling, breaching, perforation) to variable masses and velocities of spherical steel and concrete impactors was determined. Impact velocity and residual velocity of perforating fragments and ES debris were measured for each test. A trajectory analysis was used to choose SPIDER 2 steel and concrete impactor characteristics consistent with the masses, initial potential explosion site (PES) debris velocities (< 3000 fps), and low launch angles (< 150) that can critically impact walls at 500 to 3000 ft from the PES. Primary steel fragments, with initial velocities of < 5000 fps, were also included in the trajectory analysis.

15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	42	RESPONSIBLE PERSON

The SPIDER test program is detailed including impactor, roof and wall target designs. Test results and analyses of results are presented for both SPIDER 1 and SPIDER 2 with emphasis on the SPIDER 2 tests.

INTRODUCTION

Debris produced from an explosion is categorized as primary or secondary. Primary fragmentation (e. g. fragmentation from the explosive device) is generally smaller with higher velocities. Secondary (e.g. structural debris, soil ejecta) is generally larger with lower velocities. Both categories of debris present a hazard to people and facilities in the vicinity of the explosion. So the question is "What is the hazard to people inside a structure that is impacted by debris from an explosion?"

The Science Panel Impact Debris Evaluation and Review (SPIDER) test program has been planned to develop improved predictions for the hazards inside an exposed site (ES) from fragments and debris. Data from the SPIDER tests include the mass and velocity required for perforation of the test cross-section (wall or roof section) and the characteristics of all debris, both primary and secondary, produced inside the ES. The SPIDER 1 test program completed in 2004 tested the hazard from high-angle spherical debris striking typical roof sections at terminal velocity. The SPIDER 2 test program conducted in 2009 was designed to determine the effect of spherical debris and fragments impacting wall cross-sections at higher than terminal velocity. The SPIDER 3 and SPIDER 4 test programs, which have not yet been conducted, are designed to test the hazard from high-angle cylindrical impactors striking roof sections at terminal velocity and from low-angle cylindrical impactors striking wall sections at higher than terminal velocity, respectively. Table 1 shows a summary of the entire SPIDER program.

In both SPIDER 1 and 2 test programs, the roof or wall response (e.g. penetration, deformation, spalling, breaching, perforation) to variable masses and velocities of spherical steel and concrete impactors was observed. Impact velocity and residual velocity of perforating fragments and ES debris were measured for each test for future use.

The SPIDER 1 test program is summarized and the SPIDER 2 test program is detailed including target wall and impactor designs. Test results are presented as well as analyses of these results. Recommendations are made for revisions to the Safety Assessment For Explosives Risk (SAFER) predicted kinetic energies required to perforate a given target type (ΔKE_n) (TP 14, 2009) values for the wall types tested.

Table 1 – SPIDER Program Summary

	TEST VARIABLE					
(General)	(Specific)	1	2	3	4	
Spherical	Steel Ball	X	Х			
Impactors	Concrete Ball	X	Χ			
Cylindrical	Steel Rod			Х	Χ	
Impactors	Concrete Rod			Χ	Χ	
Б. (Plywood Panel	X		Х		
Roof Targets	4" (101.6mm) Reinforced Concrete	X		Χ		
raigets	22 gauge Corrugated Metal Panel	X		Χ		
	5.5" (139.7mm) Reinforced Concrete		Х		Х	
Wall	22-gauge Corrugated Metal Panel		Χ		Χ	
Targets	8" (203.2mm) CMU-Reinforced & Grouted		Χ		Χ	
	8" (203.2mm) CMU-Unreinforced and Ungrouted		Х		X	
Impact	Perpendicular Impacts	X	Х	Х	Χ	
Angle	Non-Perpendicular Impacts					
1	Mid-Panel Impacts	X	Χ	Х	Χ	
Impact Location	Quarter-point Panel Impacts					
Loodion	Panel Edge Impacts					
Impact	Terminal Velocity	X		Х		
Velocity	Higher-than-Terminal Velocity		Χ		Χ	

SPIDER 1 TEST PROGRAM

SPIDER 1 was designed as a series of shots firing impactors at roof targets (SPIDER, 2005). The shots were fired at terminal velocity with a known mass (steel or concrete impactor), achieving a predetermined kinetic energy (KE) goal based on *SAFER*'s predictions of the KE required to perforate the roof of an ES. Spherical impactors were used to ensure that the orientation of the debris did not affect the results.

Three types of roofs were used representing common roof construction and types used in *SAFER* (TP 19, 2009).

- $-\,$ Reinforced Concrete Roof: 4" (102mm) thick, one-way, simply supported 8' x 8' (2.44m x 2.44m), 3000 psi (20.7 MPa) reinforced concrete slab; #3 60 ksi (414 MPa) rebar on 10" (254mm) centers, each way, with 0.75" (19mm) bottom cover.
- Panelized Wood Roof: 8' x 8' (2.44m x 2.44m) section with 0.5" (12.7mm) CDX plywood sheathing on 2" x 6" (51mm x 152mm) wood joists at 24" (610mm) spacing. Minimum 4" x 8" (102mm x 203mm) beams support the roof joists. Typical nailing, steel connectors, and built-up roofing materials were used.
- Corrugated Steel Panel: 22 Gauge Verco HSB36 Corrugated Steel Panel. The
 12' (3.66m) steel panels spanned one way over typical 8" x 2.5" x 14 gauge (203mm)

x 64mm x 14 gauge) steel channels at 5' (1.5m) (nominal) spacing. The valleys of the corrugated steel panel were bolted to the flange of each of the three supports.

Impactor masses were chosen based on the then-current *SAFER* predictions of the KE required to perforate the chosen target(s). This value is known as the ΔKE_n value in *SAFER* and is stored by roof or wall type. Table 2 shows the ΔKE_n values from Revision 3 of TP 14, 2007.

Table 2 – SAFER Parameters for Kinetic Energy Absorbed by Exposed Site Components, ΔKE_n (TP 14, 2007)

	KE Absorbed by Roof or Wall, ΔKE _n		
ES Roof Types	ft-lb	Joules	
4" (101.6mm) Reinforced Concrete	10,000	13,560	
Plywood and Wood Joist	300	406.8	
Light Metal Deck (22 gauge)	500	678	
ES Wall Types			
6" (152.4mm) Reinforced Concrete Tilt-up	37,500	50,850	
Corrugated Steel	500	678	
Unreinforced Masonry	4,500	6102	
8" (203.2mm) Reinforced Masonry	15,000	20,340	

Impactors were launched from a Davis gun (breechless powder gun). Each impactor was placed in a lightweight plastic sabot prior to launch to obtain the projectile diameter required by the Davis gun. The sabot was stripped away from the impactor (in flight) prior to impact with the target roof.

The term "perforation" is used to indicate that the entire impactor passed through the target, whereas "penetration" refers to the impactor breaking the surface plane of the front face of the target (but not exiting through the rear face of the target). Impactor penetration (into the panel thickness) does not realistically occur in the thin plywood and steel panels. Response was photographed and described and the impact and residual velocities (when perforation occurred) of the steel and concrete impactors were also measured.

SPIDER 1 results are summarized in Table 3. The minimum KE is the highest KE that did not result in perforation while the maximum KE is the lowest KE that did result in perforation. Figure 1 shows the front and back faces of the 4" concrete target at threshold (entire impactor did not exit the back face of the wall) kinetic energy for a 13.1 lb (5.94 kg) concrete impactor.

Table 3 – SPIDER 1 Results Summary

				Perforation KE		
		Perforation	n KE (ft-lb)	(Jou	ıles)	
		Min	Max	Min	Max	
Roof	Impactor	(No Perf)	(Perf)	(No Perf)	(Perf)	
4" (102mm) Reinforced	Concrete	9,091	20,830	12,326	28,242	
Concrete	Steel	6,900	8,727	9,355	11,832	
0.5" (13mm) Plywood	Concrete	136	225	184	305	
	Steel	40	115	54	156	
22 Gauge Corrugated	Concrete	2,260	3,576	3,064	4,848	
Steel	Steel	1,000	1,215	1,356	1,647	

Note: Gray shading means threshold perforation obtained (entire impactor did not pass through target).

Figure 1 – Concrete Impactor on Concrete Target at Threshold KE (20,830 ft-lbs/28,242 Joules)

The *SAFER* predictions of the KE required to perforate the roof types tested in the SPIDER 1 test program (see Table 2) were compared to the observed KE values shown in Table 3. As a result, the SAFER ΔKE_n values were changed in the TP 14 as shown in Table 4 (TP 14, 2009).

Table 4 – *SAFER* Parameters for Kinetic Energy Absorbed by Exposed Site Roof Components, ΔKE_n (TP 14, 2009)

	KE Absorbed by Roof, ΔKE _n			
ES Roof Types	ft-lb	Joules		
4" (101.6mm) Reinforced Concrete	10,000	13,560		
Plywood/Wood Joist (2x10 @ 16"				
(406.4mm))	50	67.8		
Plywood Panelized (2x6 @24" (609.6mm))	50	67.8		
Light Steel Panel (22 gauge)	1000	1356		

SPIDER 2 TEST PROGRAM

SPIDER 2 was designed as a series of shots firing spherical steel and concrete impactors at various wall targets at velocities consistent with debris and primary fragments at low launch angles. A trajectory analysis was used to choose SPIDER 2 steel and concrete impactor characteristics that are consistent with the masses, initial potential explosion site (PES) debris velocities (< 3000 fps), and low launch angles (< 15°) that can critically impact walls located between 500 to 3000 ft from the PES. Primary steel fragments, with initial velocities of < 5000 fps, were also included in the trajectory analysis.

Target Wall Designs

Three wall targets were used for SPIDER 2 tests. Each represents a common ES wall construction in *SAFER*. The concrete masonry unit (CMU) wall was used to test perforation resistance of both the unreinforced, ungrouted cells and the reinforced, grouted cells.

- Reinforced Concrete Wall Design: Nominally 9' x 9' (2.74m x 2.74m), 5.5" (140mm) thick, 1-way simply supported, 4000 psi (27.6 MPa) (f_c ') reinforced concrete slab with #5 60 ksi (414 MPa) rebar on 16" (406mm) centers, each way, centered within the slab depth. This reinforced concrete section was tested in SciPan 1 and 2, for its response to the blast overpressure loads, and represents the high-bay tilt-up ES model in *SAFER*. Rebar starts at 6" (152mm) from edges (free edge and edge of channel support, top and bottom) and provides 36 16" x 16" (406mm x 406mm) square targets framed by the rebar.
- Corrugated Steel Panel: The 22 Gauge Verco HSB-36 Corrugated Steel Panel is representative of all metal siding ES buildings in SAFER. The 12 ft (3.66m) steel panels span one way over typical 8" x 2.5" x 14 gauge (203mm x 64mm x 14 gauge) steel channels at 5.0 ft (1.5m) (nominal) spacing. The valleys of the corrugated steel panel are secured to the flange of each of the three supports.
- $-\,$ Reinforced Type A CMU Wall: This CMU wall consists of 8" x 8" x 16" (203mm x 203mm x 406mm) standard lightweight CMU in a running bond, with #4 60ksi (414 MPa) vertical rebar @ 24" (610mm) (every third cell). This slab is used primarily for testing impact on the unreinforced, ungrouted cells and for at least two tests on

reinforced, grouted cells. The wall is 6'8" (2.03m) wide x 8' (2.4m) tall with the outside vertical cores reinforced.

Reinforced Type B CMU Wall: This CMU wall consists of 8" x 8" x 16" (203mm x 203mm x 406mm) standard lightweight CMU in a running bond, with #4 – 60ksi (414 MPa) vertical rebar @ 16" (406mm) (every other cell). This slab will be used primarily to conduct the reinforced, grouted cell tests. The wall is 8' (2.4m) wide x 8' (2.4m) tall with the outside vertical cores reinforced.

Debris and Fragment Impactor Designs

Spherical impactors were used to insure that the orientation of the debris on impact did not affect results. The concrete spheres had a strength, f_c , at least 1000 psi (6.89 MPa) greater than the concrete slab (nominally = 5000 psi (34.5 MPa)). Figure 2 shows various impactors in the sabots.

Figure 2 – Concrete (bottom row) and Steel (top and middle row) Impactors in Sabots

The sizes of the impactors were determined based on *SAFER* KE bins 3 through 7 (TP 14, 2009) and the average fragment mass corresponding to the average *SAFER* KE for each bin (see Table 5). Impactor weights were adjusted slightly depending on commercially available steel spheres and concrete spherical molds (see Table 6).

Instrumentation

Each test was recorded using two high-speed video cameras, one focused perpendicular to the line of flight and one focused on the rear of the wall that recorded debris on the backside of the wall. The camera focused perpendicular to the line of flight recorded the impactor flight and impact on the front face as well as debris on the backside of the wall. This camera was used to measure impact velocity and, when perforation occurred, to determine the residual velocity of the impactor and wall debris.

An accelerometer was attached to the wall near the aim point and used to measure impact velocity in conjunction with a break-wire fastened to the muzzle of the gun. Additionally, Doppler radar was used to measure impact velocity.

Table 5 – SAFER KE Bins and Corresponding Average Fragment Weights

					- 9	- 9 9		9	
Material	SAFER KE Bin	SAFER KE Min (ft-lbs)	SAFER KE Avg (ft-lbs)	SAFER KE Max (ft- lbs)	Average Fragment Weight ¹ (lbs)	SAFER KE Min (Joules)	SAFER KE Avg (Joules)	SAFER KE Max (Joules)	Average Fragment Weight ¹ (kg)
Concrete	7	100	173	300	0.420	136	235	407	0.191
Concrete	6	300	547	1,000	1.000	407	742	1,356	0.454
Concrete	5	1,000	1,700	3,000	2.380	1,356	2,305	4,067	1.080
Concrete	4	3,000	5,000	10,000	5.610	4,067	6,779	13,558	2.545
Concrete	3	10,000	17,000	30,000	13.400	13,558	23,049	40,675	6.078
Steel	7	100	173	300	0.199	136	235	407	0.090
Steel	6	300	547	1,000	0.473	407	742	1,356	0.215
Steel	5	1,000	1,700	3,000	1.130	1,356	2,305	4,067	0.513
Steel	4	3,000	5,000	10,000	2.660	4,067	6,779	13,558	1.207
Steel	3	10,000	17,000	30,000	6.340	13,558	23,049	40,675	2.876

¹Note: Shape factors, drag coefficients based on the fragment material, and the average fragment mass are used to determine the terminal velocity for that fragment. The average SAFER KE for a particular SAFER KE bin represents the kinetic energy of the average fragment weight for that bin traveling at its determined terminal velocity.

Table 6 – Impactor Sizes

Impactor	Material	Impactor Diameter (in)	Impactor Weight (lbs)	Impactor Diameter (mm)	Impactor Weight (kg)
C1	Concrete	2.25	0.51	57.15	0.23
C2	Concrete	3	1.15	76.20	0.52
C3	Concrete	3.75	2.2	95.25	1.00
C4	Concrete	5	5.75	127.00	2.61
C5	Concrete	7.4	17.4	187.96	7.89
S1	Steel	1.125	0.2	28.575	0.09
S2	Steel	1.5	0.5	38.10	0.23
S3	Steel	1.875	1	47.625	0.45
S4	Steel	2.5	2.298	63.50	1.042

Testing

SPIDER 2 tests were performed throughout the summer of 2009. Two different size gas guns were used to fire the wide range of impactor diameters shown in Table 6. Each impactor was placed in a polyurethane sabot (see Figure 2) prior to launch to obtain the projectile diameter required by the gas gun. The sabot was stripped from the impactor (in flight) prior to impact with the target wall. Impact velocities and results

(whether or not the impactor perforated the wall) were recorded. Sizes of any hole or deformation on both the front and rear of the wall were measured. If debris was expelled from the rear of the wall (spall), the total number of significant debris pieces landing beyond one wall height was catalogued and the weights and distances to the furthest piece of debris and the largest piece of debris were measured. The front and the rear of the target were photographed after each test, as was the spall pattern. Figure 3 shows a typical wall setup.

Initial velocities were estimated using the impactor weight and the SAFER ΔKE_n values for the wall types tested. Velocities were adjusted based on the results of a particular impactor size and velocity against a particular wall target. For example, if the first test did not result in a perforation the velocity was increased until perforation was achieved. Conversely if the first test resulted in perforation the velocity was decreased until the wall was not perforated. This was continued until the KE necessary to perforate the wall was bounded. In certain cases, the number of impactors and sabots, limitations on velocities that could be achieved and/or undamaged wall targets limited this iterative process.

Figure 3 – Reinforced Concrete Wall Test Setup

Test Results

Test results for all wall and impactor types are summarized in Table 7. No useful results were recorded for some shots due to testing errors such as misfires and impactor breakup by the sabot splitter. These test shots (2, 22, 33, 36, 72, 73, and 74) are not included in this table.

Again, the term "perforation" is used to indicate that the entire impactor passed through the target, whereas "penetration" refers to the impactor breaking the surface plane of the front face of the target (but not exiting through the rear face of the target). The minimum KE is the highest KE that did not result in perforation while the maximum KE is the lowest KE that did result in perforation.

As was noted in the SPIDER 1 tests, the corrugated steel panels appear to be much more resistant to perforation than predicted. Looking at the structural response of these panels, it appears that the panels undergo a membrane action type of response with very large deflections allowing the panel to resist perforation, given that a tear in the panel is not initiated. Other times the impactor perforated the panel at a much smaller KE and the damage was very localized. This seemed to be dependent on where the impactor struck the panel along the corrugation pattern (valley, ridge or transition region) and where the impactor struck the panel with respect to the support. If a tear in the panel was initiated, the impactor would perforate cleanly with minimal reduction in velocity.

Observed Wall Damage

In addition to whether or not the impactor perforated the wall, it is of interest to note whether or not the impactor caused the wall to spall. Spall can be a hazard to personnel behind the wall. In no cases did the corrugated steel panel spall. However, spall was often significant off the rear of the reinforced concrete and the masonry walls. Table 8 shows the maximum KE at which no spall occurred and the minimum KE at which spall did occur.

It should be noted that in all tests the reinforced masonry cells produced spall and all of the concrete impactors caused the reinforced concrete wall to spall. The air gap in the unreinforced masonry cells resulted in some impacts which did not produce spall. Likewise some steel impactors did not cause spall of the reinforced concrete wall.

Reinforced Concrete Wall

Figure 4 shows the front and back of a reinforced concrete wall after perforation by a 2.5" (63.50mm) steel impactor.

Corrugated Steel Panel Wall

Figure 5 shows the front and back of a corrugated steel panel wall after impact (no perforation) by a 3" (76.20mm) concrete impactor.

Reinforced CMU Wall

Figure 6 shows the front and back of a CMU wall after impact (no perforation) of a 1.125" (28.58mm) steel impactor in an unreinforced, ungrouted cell. Figure 7 shows the front and back of a CMU wall after impact (no perforation) of a 5" (127.00mm) concrete impactor in a reinforced cell.

Table 7 - SPIDER 2 Test Results

Shot Wall	-		Table 7	- SPIDER 2	1631163	uits	1	-
45 CMU A (HC) C1 No 583.79 2699 177.94 3659 46 CMU A (HC) C1 No 598.75 2839 182.50 3849 47 CMU A (HC) C1 No 687.83 3747 209.65 5080 50 CMU A (HC) C3 No 311.38 3312 94.91 4491 51 CMU A (HC) C3 Yes 387.40 5127 118.08 6951 49 CMU A (HC) C3 Yes 446.19 6801 136.09 9221 48 CMU A (HC) C3 Yes 466.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) </td <td>Shot</td> <td>Wall¹</td> <td>Impactor</td> <td>Perforated</td> <td>_</td> <td>Energy</td> <td>,</td> <td>Energy</td>	Shot	Wall¹	Impactor	Perforated	_	Energy	,	Energy
46 CMU A (HC) C1 No 598.75 2839 182.50 3849 47 CMU A (HC) C1 No 687.83 3747 209.65 5080 50 CMU A (HC) C3 No 311.38 3312 94.91 4491 51 CMU A (HC) C3 Yes 387.40 5127 118.08 6951 49 CMU A (HC) C3 Yes 446.19 6801 136.00 9221 48 CMU A (HC) C3 Yes 446.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) </td <td>44</td> <td>CMU A (HC)</td> <td>C1</td> <td>No</td> <td>562.01</td> <td>2501</td> <td>171.30</td> <td>3391</td>	44	CMU A (HC)	C1	No	562.01	2501	171.30	3391
47 CMU A (HC) C1 No 687.83 3747 209.65 5080 50 CMU A (HC) C3 No 311.38 3312 94.91 4491 51 CMU A (HC) C3 Yes 387.40 5127 118.08 6951 49 CMU A (HC) C3 Yes 446.19 6801 136.00 9221 48 CMU A (HC) C3 Yes 466.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 793 38 CMU A (HC) S1 No 683.22 1168 186.91 1583 43 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) </td <td>45</td> <td>CMU A (HC)</td> <td>C1</td> <td>No</td> <td>583.79</td> <td>2699</td> <td>177.94</td> <td>3659</td>	45	CMU A (HC)	C1	No	583.79	2699	177.94	3659
50 CMU A (HC) C3 No 311.38 3312 94.91 4491 51 CMU A (HC) C3 Yes 387.40 5127 118.08 6951 49 CMU A (HC) C3 Yes 446.19 6801 136.00 9221 48 CMU A (HC) C3 Yes 466.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 342.49 1843 105.00 2498 41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Ne 381.23 2257 116.20 3060 53 CMU A (RC) </td <td>46</td> <td>CMU A (HC)</td> <td>C1</td> <td>No</td> <td>598.75</td> <td>2839</td> <td>182.50</td> <td>3849</td>	46	CMU A (HC)	C1	No	598.75	2839	182.50	3849
51 CMU A (HC) C3 Yes 387.40 5127 118.08 6951 49 CMU A (HC) C3 Yes 446.19 6801 136.00 9221 48 CMU A (HC) C3 Yes 466.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2498 41 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (47	CMU A (HC)	C1	No	687.83	3747	209.65	5080
49 CMU A (HC) C3 Yes 446.19 6801 136.00 9221 48 CMU A (HC) C3 Yes 466.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (50	CMU A (HC)	C3	No	311.38	3312	94.91	4491
48 CMU A (HC) C3 Yes 466.53 7435 142.20 10081 37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 Yes 381.23 2257 116.00 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A	51	CMU A (HC)	C3	Yes	387.40	5127	118.08	6951
37 CMU A (HC) S1 No 435.50 589 132.74 799 38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A	49	CMU A (HC)	C3	Yes	446.19	6801	136.00	9221
38 CMU A (HC) S1 No 583.07 1056 177.72 1431 39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69	48	CMU A (HC)	C3	Yes	466.53	7435	142.20	10081
39 CMU A (HC) S1 No 613.22 1168 186.91 1583 43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70	37	CMU A (HC)	S1	No	435.50	589	132.74	799
43 CMU A (HC) S3 No 344.49 1843 105.00 2498 42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66	38	CMU A (HC)	S1	No	583.07	1056	177.72	1431
42 CMU A (HC) S3 Yes 352.69 1932 107.50 2619 41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 <td< td=""><td>39</td><td>CMU A (HC)</td><td>S1</td><td>No</td><td>613.22</td><td>1168</td><td>186.91</td><td>1583</td></td<>	39	CMU A (HC)	S1	No	613.22	1168	186.91	1583
41 CMU A (HC) S3 No 362.86 2045 110.60 2772 40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 <td< td=""><td>43</td><td>CMU A (HC)</td><td>S3</td><td>No</td><td>344.49</td><td>1843</td><td>105.00</td><td>2498</td></td<>	43	CMU A (HC)	S3	No	344.49	1843	105.00	2498
40 CMU A (HC) S3 Yes 381.23 2257 116.20 3060 53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (RC) S3 Yes 405.02 2547 123.45 3454 57 <t< td=""><td>42</td><td>CMU A (HC)</td><td>S3</td><td>Yes</td><td>352.69</td><td>1932</td><td>107.50</td><td>2619</td></t<>	42	CMU A (HC)	S3	Yes	352.69	1932	107.50	2619
53 CMU A (RC) C4 No 459.32 18837 140.00 25539 54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58	41	CMU A (HC)	S3	No	362.86	2045	110.60	2772
54 CMU A (RC) C4 Yes 577.43 29770 176.00 40362 52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77	40	CMU A (HC)	S3	Yes	381.23	2257	116.20	3060
52 CMU A (RC) C4 Yes 663.38 39293 202.20 53274 55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60	53	CMU A (RC)	C4	No	459.32	18837	140.00	25539
55 CMU A (RC) C5 Yes 410.10 45441 125.00 61610 69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60	54	CMU A (RC)	C4	Yes	577.43	29770	176.00	40362
69 CMU B (HC) C1 No 730.71 4228 222.72 5733 70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61	52	CMU A (RC)	C4	Yes	663.38	39293	202.20	53274
70 CMU B (HC) C1 No 739.17 4327 225.30 5866 66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71	55	CMU A (RC)	C5	Yes	410.10	45441	125.00	61610
66 CMU B (HC) S3 Yes 344.49 1843 105.00 2498 68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62	69	CMU B (HC)	C1	No	730.71	4228	222.72	5733
68 CMU B (HC) S3 Yes 387.14 2327 118.00 3155 67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75	70	CMU B (HC)	C1	No	739.17	4327	225.30	5866
67 CMU B (HC) S3 Yes 405.02 2547 123.45 3454 57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 <td>66</td> <td>CMU B (HC)</td> <td>S3</td> <td>Yes</td> <td>344.49</td> <td>1843</td> <td>105.00</td> <td>2498</td>	66	CMU B (HC)	S3	Yes	344.49	1843	105.00	2498
57 CMU B (RC) C4 Yes 515.09 23689 157.00 32118 58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	68	CMU B (HC)	S3	Yes	387.14	2327	118.00	3155
58 CMU B (RC) C4 No 532.15 25284 162.20 34281 77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	67	CMU B (HC)	S3	Yes	405.02	2547	123.45	3454
77 CMU B (RC) C5 No 230.31 14332 70.20 19432 76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	57	CMU B (RC)	C4	Yes	515.09	23689	157.00	32118
76 CMU B (RC) C5 Partial 278.48 20953 84.88 28408 60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	58	CMU B (RC)	C4	No	532.15	25284	162.20	34281
60 CMU B (RC) C5 Yes 351.54 33390 107.15 45271 61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	77	CMU B (RC)	C5	No	230.31	14332	70.20	19432
61 CMU B (RC) S4 No 626.64 14012 191.00 18998 71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	76	CMU B (RC)	C5	Partial	278.48	20953	84.88	28408
71 CMU B (RC) S4 Yes 716.47 18317 218.38 24835 62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	60	CMU B (RC)	C5	Yes	351.54	33390	107.15	45271
62 CMU B (RC) S4 Yes 807.08 23244 246.00 31514 75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	61	CMU B (RC)	S4	No	626.64	14012	191.00	18998
75 CMU B (RC) S5 Yes 409.12 15275 124.70 20710 59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	71	CMU B (RC)	S4	Yes	716.47	18317	218.38	24835
59 CMU B (RC) S5 Yes 459.32 19253 140.00 26103	62	CMU B (RC)	S4	Yes	807.08	23244	246.00	31514
	75	CMU B (RC)	S5	Yes	409.12	15275	124.70	20710
56 CMU B (RC) S5 Yes 467.52 19947 142.50 27044	59	CMU B (RC)	S5	Yes	459.32	19253	140.00	26103
	56	CMU B (RC)	S5	Yes	467.52	19947	142.50	27044

Notes: ¹ HC refers to unreinforced ("hollow") cells and RC refers to reinforced cells in the CMU walls

Table 7 - SPIDER 2 Test Results (Continued)

Shot Wall¹ Impactor Perforated (f(*)ec) Kinetic Energy (f(*)energy (f(*)e) Kinetic Energy (Joules) 25 Concrete C4 No 669.78 40054 204.15 54306 26 Concrete C4 No 761.87 51826 232.22 70267 27 Concrete C5 No 484.71 63479 147.74 86065 32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80	Table 7 – 31 IDEN 2 Test Nesdits (Continued)								
Shot Wall¹ Impactor Perforated (ft/sec) Energy (ft-lb) (m/sec) (Joules) Energy (Joules) 25 Concrete C4 No 669.78 40054 204.15 54306 26 Concrete C4 No 761.87 51826 232.22 70267 27 Concrete C5 No 1016.86 92322 309.94 125172 30 Concrete C5 No 484.71 63479 147.74 86065 32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 741.80 19635 226.10 26622 80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Kinetic</td><td></td><td>Kinetic</td></t<>						Kinetic		Kinetic	
Shot Wall¹ Impactor Perforated (ft/sec) (ft-lb) (m/sec) (Joules) 25 Concrete C4 No 669.78 40054 204.15 54306 26 Concrete C4 No 761.87 51826 232.22 70267 27 Concrete C4 No 1016.86 92322 309.94 125172 30 Concrete C5 No 484.71 63479 147.74 86065 32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 741.80 19635 226.10 26622 80					Velocity		Velocity	Energy	
26 Concrete C4 No 761.87 51826 232.22 70267 27 Concrete C4 No 1016.86 92322 309.94 125172 30 Concrete C5 No 484.71 63479 147.74 86065 32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete<	Shot	Wall ¹	Impactor	Perforated	(ft/sec)		(m/sec)		
27 Concrete C4 No 1016.86 92322 309.94 125172 30 Concrete C5 No 484.71 63479 147.74 86065 32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 3466 14 Concrete<	25	Concrete	C4	No	669.78	40054	204.15	54306	
30 Concrete C5 No 484.71 63479 147.74 86065 32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete <td>26</td> <td>Concrete</td> <td>C4</td> <td>No</td> <td>761.87</td> <td>51826</td> <td>232.22</td> <td>70267</td>	26	Concrete	C4	No	761.87	51826	232.22	70267	
32 Concrete C5 No 520.67 73246 158.70 99309 31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete </td <td>27</td> <td>Concrete</td> <td>C4</td> <td>No</td> <td>1016.86</td> <td>92322</td> <td>309.94</td> <td>125172</td>	27	Concrete	C4	No	1016.86	92322	309.94	125172	
31 Concrete C5 Yes 548.49 81283 167.18 110205 28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete<	30	Concrete	C5	No	484.71	63479	147.74	86065	
28 Concrete C5 Yes 638.42 110121 194.59 149305 3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel	32	Concrete	C5	No	520.67	73246	158.70	99309	
3 Concrete S4 No 583.99 12169 178.00 16500 4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel <t< td=""><td>31</td><td>Concrete</td><td>C5</td><td>Yes</td><td>548.49</td><td>81283</td><td>167.18</td><td>110205</td></t<>	31	Concrete	C5	Yes	548.49	81283	167.18	110205	
4 Concrete S4 No 666.01 15828 203.00 21460 5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2	28	Concrete	C5	Yes	638.42	110121	194.59	149305	
5 Concrete S4 No 741.80 19635 226.10 26622 80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 <td>3</td> <td>Concrete</td> <td>S4</td> <td>No</td> <td>583.99</td> <td>12169</td> <td>178.00</td> <td>16500</td>	3	Concrete	S4	No	583.99	12169	178.00	16500	
80 Concrete S4 Yes 847.96 25658 258.46 34787 1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C4	4	Concrete	S4	No	666.01	15828	203.00	21460	
1 Concrete S4 Yes 948.16 32079 289.00 43494 13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4	5	Concrete	S4	No	741.80	19635	226.10	26622	
13 Concrete S5 No 383.53 13424 116.90 18200 29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 <	80	Concrete	S4	Yes	847.96	25658	258.46	34787	
29 Concrete S5 No 520.08 24683 158.52 33466 14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 No 341.83 2087 104.19 2829 65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No </td <td>1</td> <td>Concrete</td> <td>S4</td> <td>Yes</td> <td>948.16</td> <td>32079</td> <td>289.00</td> <td>43494</td>	1	Concrete	S4	Yes	948.16	32079	289.00	43494	
14 Concrete S5 Yes 533.13 25938 162.50 35168 12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 No 341.83 2087 104.19 2829 65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes	13	Concrete	S5	No	383.53	13424	116.90	18200	
12 Concrete S5 Yes 591.21 31897 180.20 43246 34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 No 341.83 2087 104.19 2829 65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 Yes	29	Concrete	S5	No	520.08	24683	158.52	33466	
34 Steel C2 No 171.42 525 52.25 711 79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 No 341.83 2087 104.19 2829 65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 3	14	Concrete	S5	Yes	533.13	25938	162.50	35168	
79 Steel C2 Yes 254.20 1154 77.48 1564 35 Steel C2 No 341.83 2087 104.19 2829 65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 35	12	Concrete	S5	Yes	591.21	31897	180.20	43246	
35 Steel C2 No 341.83 2087 104.19 2829 65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 3	34	Steel	C2	No	171.42	525	52.25	711	
65 Steel C2 Yes 380.58 2586 116.00 3507 64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361	79	Steel	C2	Yes	254.20	1154	77.48	1564	
64 Steel C2 Yes 426.51 3248 130.00 4404 63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.	35	Steel	C2	No	341.83	2087	104.19	2829	
63 Steel C2 Yes 557.74 5555 170.00 7531 20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	65	Steel	C2	Yes	380.58	2586	116.00	3507	
20 Steel C4 No 175.52 2751 53.50 3730 23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	64	Steel	C2	Yes	426.51	3248	130.00	4404	
23 Steel C4 No 228.02 4642 69.50 6294 21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	63	Steel	C2	Yes	557.74	5555	170.00	7531	
21 Steel C4 Yes 278.77 6939 84.97 9408 78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	20	Steel	C4	No	175.52	2751	53.50	3730	
78 Steel C4 No 284.22 7213 86.63 9779 24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	23	Steel	C4	No	228.02	4642	69.50	6294	
24 Steel C4 Yes 297.90 7924 90.80 10743 10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	21	Steel	C4	Yes	278.77	6939	84.97	9408	
10 Steel S2 No 319.55 793 97.40 1075 9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	78	Steel	C4	No	284.22	7213	86.63	9779	
9 Steel S2 Yes 351.38 959 107.10 1300 6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	24	Steel	C4	Yes	297.90	7924	90.80	10743	
6 Steel S2 No 361.55 1015 110.20 1376 8 Steel S2 Yes 370.73 1067 113.00 1447	10	Steel	S2	No	319.55	793	97.40	1075	
8 Steel S2 Yes 370.73 1067 113.00 1447	9	Steel	S2	Yes	351.38	959	107.10	1300	
	6	Steel	S2	No	361.55	1015	110.20	1376	
7 Steel S2 Yes 457.02 1622 139.30 2199	8	Steel	S2	Yes	370.73	1067	113.00	1447	
	7	Steel	S2	Yes	457.02	1622	139.30	2199	

Notes: ¹ HC refers to unreinforced ("hollow") cells and RC refers to reinforced cells in the CMU walls

Table 7 - SPIDER 2 Test Results (Continued)

Shot	Wall	Impactor	Perforated	Velocity (ft/sec)	Kinetic Energy (ft-lb)	Velocity (m/sec)	Kinetic Energy (Joules)
11	Steel	S4	No	232.94	1936	71.00	2625
17	Steel	S4	Yes	259.97	2412	79.24	3270
19	Steel	S4	No	267.39	2551	81.50	3459
18	Steel	S4	Yes	270.08	2603	82.32	3529
16	Steel	S4	Yes	270.34	2608	82.40	3536
15	Steel	S4	No	274.67	2692	83.72	3650

Notes: ¹ HC refers to unreinforced ("hollow") cells and RC refers to reinforced cells in the CMU walls

Table 8 – Kinetic Energies at which Impactors Caused Spall

Target	Impactor	Max. KE (ft-lbs) w/o Spall	Min. KE (ft-lbs) w/ Spall	Max. KE (Joules) w/o Spall	Min. KE (Joules) w/ Spall					
Reinforced Concrete	Concrete	N/A	40,054	N/A	54,306					
Reinforced Concrete	Steel	12,169	13,424	16,500	18,200					
Unreinforced Masonry	Concrete	4,327	5,127	5,866	6,951					
Unreinforced Masonry	Unreinforced Steel 589 1.056 799 1.431									
Reinforced Masonry	Concrete	N/A	18,837	N/A	25,539					
Reinforced Masonry Steel N/A 14,012 N/A 18,998										
Note: Gray shading n	neans all im	Note: Gray shading means all impactors caused spall.								

Figure 4 – Front (left) and Back (right) of Reinforced Concrete Wall After 2.5" (63.50mm) Steel Impactor Perforation

Figure 5 – Front (left) and Back (right) of Corrugated Steel Panel After Impact (No Perforation) by 3" (76.20mm) Concrete Impactor

Figure 6 – Front (left) and Back (right) of CMU Wall After Impact (No Perforation) by 1.125" (28.58mm) Steel Impactor on Unreinforced Cell

Figure 7 – Front (left) and Back (right) of CMU Wall After Impact (No Perforation) by 5" (127.00mm) Concrete Impactor on Reinforced Cell

COMPARISON OF TEST RESULTS TO PREDICTED RESULTS Comparison to *SAFER* Threshold Kinetic Energies

The threshold kinetic energies (ΔKE_n) at which debris will begin to perforate the wall used by SAFER (TP 14, 2009) were used as baseline predictions for the SPIDER 2 tests. Table 9 shows a comparison of the SAFER ΔKE_n to the observed minimum and maximum perforation KEs. For Table 9 the minimum KE is the highest KE that did not result in perforation while the maximum KE is the lowest KE that did result in perforation.

It should be noted that the SAFER ΔKE_n shown for reinforced concrete is for a 6" (152.4mm) reinforced concrete tilt-up panel while the reinforced concrete panels tested were 5.5" (127mm) thick. While the SAFER ΔKE_n appears to be quite conservative for concrete impactors it may be unconservative for steel impactors.

The $SAFER \, \Delta KE_n$ for unreinforced masonry were in close agreement with the results for concrete impactors but unconservative for steel impactors. The $SAFER \, \Delta KE_n$ for reinforced masonry were in close agreement for steel impactors and slightly conservative for concrete impactors.

Comparison of SAFER AKE_n with Other Predicted Threshold Kinetic Energies

The threshold kinetic energies of the steel impactors on a 5.5" (139.70mm) reinforced concrete wall and a 22 gauge steel panel were predicted using the methods described in DDESB Technical Paper 16 (TP 16, 2009). It should be noted that the TP 16 method is applicable to a flat steel plate not a corrugated steel panel. Table 10 shows the predictions for the 22 gauge steel panel and Table 11 shows the predictions for the reinforced concrete wall.

Additionally, LS-Dyna was used to predict the threshold kinetic energy for a 2.5" (63.50mm) steel impactor striking a 5.5" (139.70mm) reinforced concrete wall (the $SAFER \Delta KE_n$ is for a 6" (152.4mm) reinforced concrete wall). The LS-Dyna prediction is shown in Table 11.

Comparing the TP 16 predicted threshold kinetic energies with the observed kinetic energies shown in Table 9, the TP 16 methodology is overly conservative for the 22 gauge steel panel. As discussed above, in some cases the corrugated steel panels appear to undergo a membrane action response with very large deflections without perforation while at other times the damage was very localized and seemed to depend on whether the impactor struck the panel on the ridge, valley or transition region of the corrugation.

Comparing the test results for the 5.5" (139.70mm) reinforced concrete wall with the predicted threshold kinetic energies using TP 16 methods, the TP 16 method (27,658 ft-lbs or 37,499 Joules) is unconservative for impactor S4 compared to between 19,635 and 25,658 ft-lbs (26,622 – 34,787 Joules) observed. However, the TP 16 method is overly conservative (5,590 ft-lbs or 7,579 Joules) when compared to the observed

results (24,683 - 25,938 ft-lbs or 33,466 - 35,168 Joules) for impactor S5. The LS-Dyna prediction (34,047 ft-lbs or 46,162 Joules) is also unconservative for impactor S4.

It should be noted that the LS-Dyna calculations were a very rough first attempt at modeling the reinforced concrete wall subject to the S4 steel impactor. The blind prediction was intended as an initial feasibility study of the capabilities of the model to accurately capture the penetration phenomenon and perforation thresholds of reinforced concrete slabs of finite thickness. Further refinement of the model is planned in conjunction with future SPIDER test series.

Table 9 – Summary of Results, Comparison of Predicted Kinetic Energies with Observed Kinetic Energies

Observed Rinetic Energies							
Target	Impactor	SAFER ∆KE _n (ft-lbs)	Observed Min. KE (ft-lbs)	Observed Max. KE (ft-lbs)	SAFER ∆KE _n (Joules)	Observed Min. KE (Joules)	Observed Max. KE (Joules)
Reinforced Concrete	Concrete	37,500	73,246	81,283	50,843	99,309	110,205
Reinforced Concrete	Steel	37,500	24,683	25,658	50,843	33,466	34,787
Corrugated Steel	Concrete	500	4,642	1,154	678	6,294	1,564
Corrugated Steel	Steel	500	2,692	959	678	3,650	1,300
Unreinforced Masonry	Concrete	4,500	4,327	5,127	6,101	5,866	6,951
Unreinforced Masonry	Steel	4,500	2045 ^A	1,843	6,101	2,772	2,498
Reinforced Masonry	Concrete	15,000	18,837	20,953	20,337	25,539	28,408
Reinforced Masonry	Steel	15,000	14,012	15,275	20,337	18,998	20,710

^AImpactor grazed web of masonry unit slowing it down as it passed through the unreinforced cell. Spall hole on back of wall indicates that impactor almost perforated.

Note: Gray shading means threshold perforation obtained (entire impactor did not pass through target).

Table 10 – Comparison of TP 16 and *SAFER* Threshold Kinetic Energies for 22 Gauge Steel Panels

	Predicted Threshold Kinetic Energy				
Steel Impactor Number	SAFER ∆KE _n (ft- lbs)	DDESB TP 16 (ft-lbs)	SAFER ∆KE _n (Joules)	DDESB TP 16 (Joules)	
S1	500	103	678	140	
S2	500	125	678	170	
S3	500	148	678	200	
S4	500	194	678	263	
S5	500	250	678	340	

Table 11 – Comparison of TP 16, LS-Dyna and SAFER Threshold Kinetic Energies for Reinforced Concrete Walls

	Predicted Threshold Kinetic Energy					
Steel Impactor Number	SAFER ∆KE _n (ft- lbs)	DDESB TP 16 (ft-lbs)	LS-Dyna (ft-lbs)	SAFER ∆KE _n (Joules)	DDESB TP 16 (Joules)	LS- Dyna (Joules)
S1	37,500	50,681	-	50,843	68,714	-
S2	37,500	59,431	-	50,843	80,577	-
S3	37,500	52,062	-	50,843	70,587	-
S4	37,500	27,658	34,047	50,843	37,499	46,162
S5	37,500	5,590	-	50,843	7,579	-

Conclusions and Recommendations

The SPIDER 2 testing has shown that the SAFER ∆KE_n values are

- in close agreement with the observed values for concrete impactors on unreinforced masonry and steel impactors on reinforced masonry
- slightly conservative for concrete impactors on reinforced masonry
- conservative for concrete and steel impactors on corrugated steel
- unconservative for steel impactors on unreinforced masonry
- unconservative for concrete and steel impactors on reinforced concrete (note: SAFER ΔKE_n is for 6" (152.40mm) reinforced concrete rather than the 5.5" (139.70mm) reinforced concrete tested)

Although, as yet no decisions have been made based on the SPIDER 2 results, they will likely lead to changes in the SAFER ΔKE_n for reinforced concrete tilt-up, corrugated steel, and unreinforced masonry walls in future versions of SAFER. Corroborating the results from SPIDER 1, the impactor material type has a strong influence on target perforation; therefore, future versions of SAFER will need to have separate ΔKE_n values for different impactor materials.

It is not necessary for debris impacting walls to perforate the walls to result in hazards to personnel on the other side of the wall. Spall from the back of the wall may present a hazard. Additionally, the impacting debris may break up resulting in more pieces of debris on the back side of the wall and, in reality, an explosion would result in multiple pieces of debris impacting the exposed structure which was not characterized in the tests where only a single piece of debris impacted the structure at one time.

Future Testing

SPIDER 1 and 2 utilized spherical impactors. Future test series (SPIDER 3 and 4) will be similar to the SPIDER 1 and 2 test series using cylindrical impactors. The goal of these tests is to eventually develop perforation prediction models based on either unit kinetic energy or as a function of mass and velocity as independent variables. The impactors will be steel and concrete cylinder with length-to-diameter ratios of 2 and 10.

Acknowledgements

The SPIDER 2 testing was funded by the Department of Defense Explosives Safety Board (DDESB) and conducted at the Redstone Test Center, Test Area 1 at Redstone Arsenal. The authors thank Mr. Jesse Davis of APT Research, Inc. for his invaluable support in coordinating the tests and recording data and Mr. Youssef Ibrahim of NAVFAC ESC for performing the LS-Dyna calculations. The authors also appreciate the contributions of the other members of the DDESB Science Panel, especially Mr. Michael Swisdak and Ms. Lea Ann Cotton.

References

Conway, Robert and Tancreto, Jim, "SPIDER 2 – Phase 1 Test Plan: Response of Typical Wall Panels to Debris Fragment Impact", Naval Facilities Engineering Service Center, 28 May 2009.

Department of Defense Explosives Safety Board Technical Paper (TP) 14, "Approved Methods and Algorithms for DoD Risk-Based Explosives Siting", Department of Defense Explosives Safety Board, February 2007.

Department of Defense Explosives Safety Board Technical Paper (TP) 19, "User's Reference Manual Safety Assessment for Explosives Risk: Risk Analysis Software", Department of Defense Explosives Safety Board, February 2007.

Department of Defense Explosives Safety Board Technical Paper (TP) 14, "Approved Methods and Algorithms for DoD Risk-Based Explosives Siting", Department of Defense Explosives Safety Board, July 2009.

Department of Defense Explosives Safety Board Technical Paper (TP) 19, "User's Reference Manual Safety Assessment for Explosives Risk: Risk Analysis Software", Department of Defense Explosives Safety Board, July 2009.

Department of Defense Explosives Safety Board Technical Paper (TP) 16, "Methodologies for Calculating Primary Fragment Characteristics", Department of Defense Explosives Safety Board, April 2009.

Swisdak, Michael, Conway, Robert and Cotton, Lea Ann, "Project ESKIMORE – The DDESB Long-Term Testing Initiative", 33rd DoD Explosives Safety Seminar, Department of Defense Explosives Safety Board, 2008.

Tatom, John, and Santis, Lon, "A New Tool for Managing Risk Associated with Commercial Explosives Operations", Minutes of the 8th Annual Australian Explosive Ordnance Symposium, November 2007.

Tatom, John, Tancreto, James, and Swisdak, Michael, "SPIDER – A Test Program to Determine the Response of Typical Wall and Roof Panels to Debris Impact", <u>Minutes of 7th Australian Ordnance Symposium</u>, November 2005.

RESPONSE OF TYPICAL WALL PANELS TO DEBRIS AND FRAGMENT IMPACT

Michelle Crull, PhD, PE - US Army Engineering and Support Center, Huntsville

John Tatom - APT Research, Inc

Robert Conway – Naval Facilities Engineering Service Center

34th DoD Explosives Safety Seminar Portland, OR 14 July 2010

Acknowledgements

- DoD Explosives Safety Board
- Redstone Test Center, Test Area 1
- DDESB Science Panel Members
 - ► Mr. Michael Swisdak
 - ► Ms. Lea Ann Cotton
- Mr. Jesse Davis, APT Research, Inc.
- Mr. Youssef Ibrahim, NAVFAC ESC

Outline

- Introduction
 - ► SPIDER Program Overall
 - ► SPIDER 1 Test Program
- SPIDER 2 Testing
- Results
- Comparison of Test Results & Predictions
- Conclusions and Recommendations

Purpose of SPIDER Test Programs

- To develop improved predictions for the hazards inside an exposed site (ES) from fragments and debris
 - ➤ SPIDER 1 spherical impactors striking roof targets at terminal velocity (completed)
 - ➤ SPIDER 2 spherical impactors striking wall targets at greater than terminal velocity (completed)
 - ➤ SPIDER 3 cylindrical impactors striking roof targets at terminal velocity (planned)
 - ➤ SPIDER 4 cylindrical impactors striking wall targets at greater than terminal velocity (planned)

SPIDER 1 Test Program Summary (1 of 2)

Roof Types

- ▶ 4" thick, 3000 psi, simply supported, one way reinforced concrete slab with #3 bars @ 10" on center, each way
- ▶ ½" plywood sheathing on 2" x 6" wood joists @ 24" on center
- ▶ 22 gauge corrugated steel panels, one way with supports at 5' on center

Approximate Spherical Impactor Weights(lbs)

- ► Steel 0.15, 0.18, 0.34, 0.38, 0.42, 0.75, 0.8, 2.4, 4,15, 4.3, 5.6
- ► Concrete 0.7, 0.9, 0.95, 1.5, 2.0, 2.8, 3.9, 9.25, 9.6, 13.1, 21.8

SPIDER 1 Test Program Summary (2 of 2)

Results

			Observed Test Results	
			Largest Non-	Smallest
		SAFER AKE _n	Perforating KE	Perforating KE
Target	Impactor	(ft-lbs)	(ft-lbs)	(ft-lbs)
Concrete	Concrete	10,000	9,091	20,830
	Steel	10,000	6,900	8,727
Plywood	Concrete	300 - 600	136	225
Flywood	Steel	300 - 600	40	115
Corrugated	Concrete	500	2,260	3,576
Steel	Steel	500	1,000	1,215

Proposed Changes to SAFER ∆KE_n Roof Values

	∆KE _n (ft-lb)			
	SAFER 3	SAF	ER 3+	
	All			
Exposed Site Roof Type	Fragments	Steel	Concrete	
4" Reinforced Concrete	10,000	10,000	20,000	
5/8" Plywood/Wood Joist	300	50	150	
Lightweight Metal Deck	500	1,000	3,000	

SPIDER 2 Target Walls

- 5.5" thick, 4000 psi, simply supported, one way reinforced concrete slab with #5 bars @ 16" on center, each way
- 22 gauge corrugated steel panels, one way with supports at 5' on center
- 8" x 8" x 16" lightweight CMU, running bond w/ #4 vertical rebar @ 24" on center (CMU Type A Wall)
- 8" x 8" x 16" lightweight CMU, running bond w/ #4 vertical rebar @ 16" on center (CMU Type B Wall)

SPIDER 2 Spherical Impactors

		Impactor	Impactor	
		Diameter	Weight	
Impactor	Material	(in)	(lbs)	
C1	Concrete	2.25	0.51	
C2	Concrete	3	1.15	
C3	Concrete	3.75	2.2	
C4	Concrete	5	5.75	
C5	Concrete	7.4	17.4	
S1	Steel	1.125	0.2	
S2	Steel	1.5	0.5	
S3	Steel	1.875	1	
S4	Steel	2.5	2.298	
S5	Steel	3.41	5.877	

Concrete (bottom row) and Steel (top & middle row) Impactors in Sabots

Impactor Weight ~ Average Fragment Mass Corresponding to Average SAFER KE

Instrumentation

- 2 high-speed video cameras
 - ▶ Perpendicular to line of flight recording impactor flight, impact on front face & debris on backside – measured impact velocity & residual impactor & debris velocity
 - ► Focused on rear of wall recording debris on backside
- Accelerometer on wall near aim point measuring impact velocity in conjunction with break-wire at gun muzzle
- Doppler radar measuring impact velocity
- Still photos taken of front and backside of wall, debris field and significant debris after each shot

Testing

- 2 sizes of gas guns used
- Initial velocities estimated using impactor weights & SAFER ∆KE_n for wall type
- Velocities adjusted based on results of previous test(s) until ∆KE_n was bounded
- Polyurethane sabot stripped from impactor at gun muzzle
- Impact velocities & perforation results recorded
- Spall total number of significant debris pieces landing beyond one wall height, weights & distances to furthest debris and largest debris measured

Concrete Impactor Perforating Reinforced CMU Cell

Typical Wall Responses

Perforation of RC Wall by 2.5" Steel Impactor

Front

No Perforation of Steel Wall by 3" Concrete Impactor

Front

No Perforation of Unreinforced CMU by 1.125" Steel Impactor

Front

No Perforation of Reinforced CMU by 5" Concrete Impactor

Front

SPIDER 2 Test Results Compared to SAFER ΔKE_n

_		ples .	Largest	
		SAFER	Non-	Smallest
		ΔKE_n (ft-	Perforating	Perforating
Target	Impactor	lbs)	KE (ft-lbs)	KE (ft-lbs)
Reinforced	Concrete	37,500	73,246	81,283
Concrete	Steel	37,500	24,683	25,658
Corrugated	Concrete	500	4,642	1,154
Steel	Steel	500	2,692	959
Unreinforced	Concrete	4,500	4,327	5,127
Masonry	Steel	4,500	2045 ^A	1,843
Reinforced	Concrete	15,000	18,837	20,953
Masonry	Steel	15,000	14,012	15,275

Almpactor grazed web of masonry unit slowing it down as it passed through the unreinforced cell. Spall hole on back of wall indicates that impactor almost perforated. Note: Gray shading means threshold perforation obtained.

SAFER AKE_n vs. DDESB TP 16 & LS-Dyna Predictions

	Predicted Threshold Kineti				
		Energy			
	Steel	SAFER	DDESB		
	Impactor	ΔKE_n (ft-	TP 16	LS-Dyna	
Target	Number	lbs)	(ft-lbs)	(ft-lbs)	
	S1	500	103	-	
Corrugated	S2	500	125	-	
Corrugated Steel	S3	500	148	1	
Steel	S4	500	194	-	
	S5	500	250	-	
	S1	37,500	50,681	-	
Reinforced	S2	37,500	59,431	-	
Concrete	S3	37,500	52,062		
	S4	37,500	27,658	34,047	
	S5	37,500	5,590	-	

Conclusions (1 of 2)

- The SPIDER 2 testing has shown that the SAFER ∆KE_n values are
 - ▶ in close agreement w/ observed values for concrete impactors on unreinforced masonry & steel impactors on reinforced masonry
 - slightly conservative for concrete impactors on reinforced masonry
 - conservative for concrete & steel impactors on corrugated steel

Conclusions (2 of 2)

- The SPIDER 2 testing has shown that the SAFER ∆KE_n values are
 - unconservative for steel impactors on unreinforced masonry
 - ▶ unconservative for concrete and steel impactors on reinforced concrete (note: SAFER ∆KE_n is for 6" (152.40mm) reinforced concrete rather than the 5.5" (139.70mm) reinforced concrete tested)

Recommendations

- Recommend changing SAFER △KE_n values for:
 - ▶ Reinforced Concrete Roof & Walls
 - ► Corrugated Steel Roof & Walls
 - ► Plywood Roof
 - ► Reinforced & Unreinforced CMU Walls
- Designate separate SAFER △KE_n values for concrete and steel impactors

Questions?

