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ABSTRACT

This paper implements and analyzes a dual-primal iterative substructuring method for the parallel and
scalable solution of a three-dimensional finite element based dynamic analysis of helicopter rotor blades.
Scalability and solution times are studied using two prototype problems – one for steady hover (symmetric)
and one for transient forward flight (non-symmetric) – carried out on up to 128 processors. Several problem
sizes of up to 0.48 million degrees of freedom are considered. A linear speed-up is observed with number of
processors up to the point of substructure optimality. Substructure optimality and hence linear speed-up
are shown to depend dramatically on the corner based global coarse problem selection. A minimal selection
is implemented in this paper consisting only of corner nodes that lie on substructure vertices while the
remaining corner nodes on substructure edges are treated as interface nodes with multiple dual variables.
The key conclusion is that this minimal selection is key to extending linear speed-up to as high a processor
number as possible, and minimizing the solution time for a fixed problem size. It is therefore an essential
requirement for the efficient solution of a large-scale 3-D FEM problem.

INTRODUCTION

This paper describes progress in research towards a
3-dimensional (3-D) brick finite element model (FEM)
based, parallel and scalable Computational Structural
Dynamics (CSD) solver for helicopter rotors. It is en-
visioned to be a central component of a next generation,
High Performance Computing (HPC) based, high fidelity
rotorcraft analysis [1]. A research effort was initiated re-
cently by the authors in Ref. [2] towards the development
of such a solver.

The state-of-the-art in dynamic analysis of heli-
copter blades involves a variational-asymptotic reduction
of the 3-D nonlinear elasticity problem into a 2-D lin-
ear cross-section analysis and a 1-D geometrically exact
beam analysis – based on Berdichevsky [3] and pioneered
by Hodges et al. [4]. Aeroelastic computations are per-
formed on the beam, followed by a recovery of the 3-D
stress field. The method is efficient and accurate – except
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near end-edges and discontinuities for which a 3-D anal-
ysis is still needed – as long as the cross-sectional charac-
teristic dimensions are small compared to the wavelength
of deformations along the beam. Modern hingeless and
bearingless rotors contain 3-D flexible components near
the hub that have short aspect ratios, open sections, and
end constraints, and hence cannot be treated as beams.
The critical couplings that determine blade dynamics are
dominated by these components. Critical stresses often
occur in these same components. Moreover, the treat-
ment of blades, depending on their advanced geometry
and material anisotropy, require continuous refinements
to beam modeling and analysis to accommodate new
physics. The objective of the present research is to de-
velop a 3-D FEM based rotor dynamic analysis that can
model generic 3-D components and dramatically increase
the scope of analysis for modern rotors.

With the emergence of rotorcraft Computational
Fluid Dynamics (CFD), physics-based models contain-
ing millions of grid points carry out Reynolds Aver-
aged Navier-Stokes (RANS) computations on hundreds
of cores, routinely, in a research environment for the ro-
tor, and even for the entire helicopter. Applications to-
day are focused on coupling CFD with relatively sim-
ple engineering-level structural models – carried out on
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a single processor while the remaining processors lie idle.
Assessments of the state-of-the-art in loads prediction,
however, make it clear that the progress has mostly been
in airloads, and much less in the accuracy of structural
loads [5, 6]. The intent of this research is to explore the
possibility of using 3-D FEM as the physics-based coun-
terpart in the structures domain.

There is no question that such a capability will be
powerful. First, it will enable the modeling of critical
couplings that occur in hingeless and bearingless hubs
with advanced flex structures. Second, it will enable the
direct calculation of stresses in these critical load bear-
ing components. Third, it will provide an equal fidelity of
representation of the physics of structures and fluids, un-
like the CFD/CSD simulations of today which are named
so merely for the symmetry of terminology. And finally,
even though this research is targeted towards HPC based
analysis, it will always provide as a by-product a means
(via static analysis) for extracting sectional properties
with which efficient lower order beam analyses can be
carried out when desired. The key question for such a
capability is whether an efficient solution procedure can
be found. The primary focus of the present research has
therefore been on answering this key question directly.

The work in Ref. [2] demonstrated that a 3-D FEM
based dynamic analysis of a rotor can indeed be car-
ried out in a fully parallel and scalable manner. An ad-
vanced multi-level iterative substructuring method — the
Dual-Primal Finite Element Tearing and Interconnecting
(FETI-DP) method pioneered by Farhat et al. [7, 8] —
was used to implement and study a parallel and scalable
solution of a simple 3-D rotary wing structural dynamics
prototype. It was concluded that for maximum efficiency,
i.e. minimum solution time for a fixed problem size, the
FETI-DP solver must be equipped with a minimal coarse
problem. A coarse problem is a higher level finite element
representation comprised of a selected subset of interface
nodes of the partitioned substructures. A minimal set of
coarse nodes is expected to maximize the linear speed-
up range to the highest number of processors for a fixed
problem size — an essential requirement for the efficient
solution of a large scale problem. The objective of this
paper is to implement and study such a coarse problem.

Scope of present work

The main emphasis in this work is on the use of
HPC as the enabler and driver of 3-D FEM based ro-
tor structures. Advanced element modeling like locking-
free elements, hierarchical elements, nonlinear constitu-
tive laws, and composite material modeling are beyond
the scope of this initial work. Realistic 3-D geometry
definition and grid generation is not part of this initial
endeavor. Simple grids are constructed that are adequate
for research purposes. Partitioning is a part of this work
due to its unique requirements. Most key elements of a
comprehensive rotorcraft analysis are not considered at

present: airloads, trim, extraction of periodic dynamics,
and multibody dynamics, are all part of future work.

The paper is organized as follows. The first section
describes briefly the formulation of the 3-D FEM analy-
sis. The second section presents a brief description of the
FETI-DP algorithm. The third section introduces the
key components of a 3-D rotor analysis: geometry and
grids, partitioning and corner selection, and the hover
and forward flight prototypes. The fifth section presents
scalability study on prototype problems on up to 128
processors. The last section documents the timings of
large-scale problems of size up to 0.48 million degrees of
freedom. The key conclusions and future research direc-
tions are summarized at the end.

3-D FEM FOR ROTORS

Formulation

The equations of motion are derived using gener-
alized Hamilton’s Principle governing the motion of a
non-conservative system between times t1 and t2

∫ t2

t1

(δU − δT − δW ) dt = 0 (1)

where δU , δT , and δW are variation in strain energy,
variation in kinetic energy, and virtual work respectively.
The expressions for each of these are derived in Ref. [2].
The formulation uses Green-Lagrange strains and second
Piola-Kirchhoff stress measures for strain energy. The
non-linear, geometrically exact implementation follows
the standard Total Lagrangian based incremental ap-
proach [9, 10]. The stress-strain relationship is assumed
to be linear.

The analysis of bending dominated problems involv-
ing thin structures using 3-D elements suffer from severe
artificial stiffening known as locking as the element thick-
ness tends to zero. A simple but effective way to pre-
vent locking is to use higher-order elements containing
sufficient number of internal nodes. An isoparametric,
hexahedral, quadratic brick element is developed in this
study with sufficient internal nodes (Fig. 1). It consists
of 8 vertex nodes and 19 internal nodes – 12 edge nodes, 6
face nodes, and 1 volume node. More efficient lower-order
locking-free brick elements, based on reduced-integration
or Enhanced Assumed Strain methods are beyond the
scope of this initial development.

Within isoparametric elements, geometry and dis-
placement solution are both interpolated using the same
shape functions. The shape functions are expressed in
element natural coordinates ξ, η, and ζ, where −1 ≤

ξ, η, ζ ≤ 1. We consider 2nd order Lagrange polynomials
in each direction.

Ha(ξ, η, ζ) = Ln
I (ξ) Lm

J (η) Lp
K(ζ) (2)

where H is a shape function and a its node point index.
Here n = m = p = 2; and I, J, K are node numbers in
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coordinates (only edge nodes shown)
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Figure 1: 27-node isoparametric, hexahedral brick
element in curvilinear natural coordinates; 4×4×4
Gauss integration points.

each direction varying as 1, 2, 3 respectively. Based on
the local node ordering shown in Fig. 1(b), we have for
example the shape function corresponding to node 11

H11 = L2

2
(ξ) L2

3
(η) L2

1
(ζ) =

1

4
η ζ(1 − ξ2) (η + 1) (ζ − 1)

The construction of the finite element matrices then fol-
low as given in Ref. [2].
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Figure 2: A cantilevered square plate modeled us-
ing a (12×12×1) grid of 3-D brick finite elements.

Preliminary verification

A preliminary verification of the 3-D bricks is carried
out by reproducing non-rotating thin plate and rotating
beam frequencies.
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Figure 3: Plate frequencies using 3-D bricks; sym-
bols are plate FEM results; non-dim. w.r.t.
√

D/ρta4; D = Et3/12(1−ν2), ρ: density, E: Young’s
modulus, ν: Poisson’s ratio.

Mode Beam freqs. 3-D freqs. Type

1 0.679 0.681 L 1
2 1.154 1.155 F 1
3 2.736 2.742 F 2/L 2
4 4.858 4.839 F 3/L 2
5 5.411 5.409 F 3/L 3
6 6.401 6.590 T 1
7 8.483 8.552 F 4/L 4
8 12.704 12.818 F 5/L 4
9 13.255 13.014 F 5/L 4
10 17.883 18.306 F 6/L 6

Table 1: Blade frequencies for a soft in-plane hin-
geless rotor at rotation speed of 27 rad/s; collec-
tive 20◦, twist −15◦

The shear-locking free behavior of the brick elements
is verified by re-producing classical Kirchhoff thin plate
frequencies for a square cantilevered plate. The plate is
modeled using a single layer of brick elements arranged
as a 12 × 12 rectangular grid (Fig. 2). The variation in
predicted frequencies with a gradual reduction in thick-
ness from 20% to 1% (Fig. 3) confirms that the 3-D fre-
quencies approach plate frequencies. The later are ob-
tained using converged rectangular Kirchhoff plate ele-
ments that are validated with classical results [11].

Next, the bricks are verified using the rotating fre-
quencies of a slender beam-like geometry of rectangular
cross-section, high aspect ratio, and uniform chord. The
beam has dimensions of 20c × c × c/4 in span, chord,
and thickness directions; a uniform twist of −15◦ about
mid-chord; and is set at a collective pitch angle of 20◦.
The rotation axis is along mid-chord. The material mod-
ulii are E = 8.2700 × 107 Pa and G = 3.4458 × 107 Pa
(ν = 0.2), density is ρ = 192.2208 kg/m3, and c = 0.0864
m. The discretization uses 16 × 4 × 2 elements denoting
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Figure 4: Blade frequencies vs. normalized rota-
tional speed for a soft in-plane hingeless rotor;
collective 20◦, twist −15◦

the number of bricks along span, chord, and thickness,
respectively. The frequency plot for a hingeless blade is
shown in Fig. 4, compared with converged second-order
non-linear beam element results (40 elements). The 3-
D boundary conditions are zero deflections at all root
nodes. The rotor speed is normalized with respect to a
baseline value of 27 rad/s. The first ten rotating frequen-
cies at 27 rad/s are tabulated in Tab. 1. A noticeable dis-
crepancy occurs in torsion frequency (3%) compared to
its neighboring frequencies. Its exact nature and source
is not studied here – it is desired that a cross sectional
refinement study be carried out. The frequency plot for
a fully articulated blade (5% hinge offset) is shown in
Fig. 5. The articulation has zero hinge stiffness. The
boundary condition is simply zero deflections at a single
articulation node. Incorporating rotational hinge stiff-
ness require special care in 3-D FEM. Unlike beams, there
are no rotational states in bricks, and incorporating them
require a special formulation that is currently being pur-
sued as part of multibody dynamics research.

PARALLEL NEWTON-KRYLOV SOLVERS

Parallel Newton-Krylov solvers are developed for
hover and transient forward flight. Each Newton iter-
ation consists of a fully parallel linear solver based on
iterative substructuring.

In iterative substructuring, the substructure interi-
ors are solved using direct factorization. This operation is
naturally parallel. The substructure interfaces are solved
iteratively, using Krylov updates, the building blocks of
which are constructed using fully parallel substructure-
by-substructure operations. The building blocks are: (1)
residual calculation, (2) preconditioning of the residual,
and (3) a matrix-vector multiplication procedure. The
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Figure 5: Blade frequencies vs. normalized rota-
tional speed for a fully articulated rotor; collec-
tive 20◦, twist −15◦

Krylov updates – Conjugate Gradient (CG) updates for
symmetric systems and Generalized Minimum Residual
(GMRES) updates for non-symmetric systems – are con-
structed using these building blocks.

The goal of iterative substructuring is to construct
the building blocks in a scalable manner. This means if
the substructures have an average size H , and the finite
element mesh within each substructure has an average
size h, then the condition number of the preconditioned
interface problem must not grow with the number of sub-
structures as long as the mesh within each substructure is
refined to keep H/h constant. A large problem will then
converge with the same number of Krylov updates (iter-
ation counts) as a small problem. The preconditioner is
then called an ‘optimal preconditioner’ and the solver is
said to exhibit ‘optimal numerical scalability’.

The FETI-DP algorithm is such an iterative sub-
structuring method. It can be constructed to guarantee
optimal numerical scalability for problems governed by
PDEs of up to 4th order and with heterogeneous proper-
ties.

The FETI-DP algorithm

In the FETI-DP algorithm, the substructure inter-
face is sub-divided into two categories: a selected set of
corner nodes and a remaining set of non-corner nodes.
The corner nodes are used to formulate a primal inter-
face problem. Hence they are also termed primal nodes.
The non-corner nodes are used to formulate a dual inter-
face problem. Hence they are also termed dual nodes. In
the primal interface problem, the variables (called primal
variables) are the original finite element degrees of free-
dom. In the dual interface problem, the variables (called
dual variables) are a set of auxiliary variables, that are
not a direct subset of the original finite element degrees of
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(a) 3 constraints (b) 4 constraints - 1 redundant (c) 6 constraints - 3 redundant

Figure 6: Each figure is a top view of 4 neighboring
substructures; at a dual node common to 4 sub-
structures continuity can be enforced pairwise by
(a) a minimum of 3 constraints across 3 pairs of
substructures, (b) 4 constraints across 4 pairs and
(c) a maximum of 6 constraints across 4 pairs.

freedom. Each dual variable is used to enforce continuity
of the original finite element degrees of freedom across
two substructures. The two interface problems are cou-
pled, and the building blocks of the coupled dual-primal
interface problem can be constructed in a fully parallel
manner requiring communication only between the dual
nodes of neighboring substructure — as long as the pri-
mal nodes are available in all. The primal problem is
therefore solved in every processor and require a global
communication between all substructures. The primal
nodes or corner nodes are the key to ensuring optimal
numerical scalability. These form a coarse finite element
representation of the problem, and ensure scalability by
propagating local substructure information globally.

Each substructure interface node can be a face, edge,
or a vertex node. A node that is common to two and only
two substructures is a face node. A node that is common
to at least three substructures is an edge node. Of these,
those that occur at the end point of edges are vertex
nodes. The edge and vertex nodes that are common to
more than two substructures can be selected as corner
nodes. This selection was used in our earlier work in
Ref. [2]. This however leads to a large number of coarse
nodes, and because the coarse problem require global
communication, they limit the linear speed-up range for
a given problem size. In this paper, only the vertex nodes
are selected as corner nodes. This is a minimal selection
as it excludes all edge nodes. An illustration is given later
in the section on ‘partitioning and corner selection’.

To implement the minimal coarse problem, the
FETI-DP solver must now treat all substructure edge
nodes that connect to four substructures as dual nodes,
as in Refs. [12, 13]. Each of these dual nodes must then
be equipped with sufficient dual variables to enforce con-
tinuity of finite element degrees of freedom across, not
two, but four substructures. As illustrated in Fig. 6,
a minimum of three dual variables per nodal degree of
freedom is required for this purpose, each enforcing con-
tinuity across a single pair of substructures. However, a
maximum of six can be used leading to a set of multiple
redundant dual variables.

Parallel CG and GMRES Updates

In addition to the communication required by FETI-
DP in constructing the building blocks, the CG and GM-
RES updates require additional processor synchroniza-
tion points of their own. These must be minimized to
prevent high communication costs diminishing scalabil-
ity of the parallel implementation regardless of the nu-
merical scalability of the underlying algorithm.

A Conjugate Gradient (CG) update requires three
processor synchronization points – vector inner products
that require global communication including a norm cal-
culation to determine the stopping criteria. The total
number can be reduced to just one using advanced norm
estimation techniques [14, 15]. This has not been in-
cluded at present. The requirement is more severe for
the GMRES update and is more relevant to rotary wing
structures due to its non-symmetric nature.

A Generalized Minimum Residual (GMRES) up-
date incurs significantly more communication cost than
a CG update. At the heart of a GMRES update is the
Arnoldi algorithm. To solve Ax = b, it constructs m
orthonormal basis vectors Vm = [v1, v2, . . . , vm] span-
ning the m-dimensional Krylov subspace Km(A, r0) =
span(r0, Ar0, . . . , A

m−1r0), where r0 = b−Ax0 and x0 is
the current estimate of the solution, and a matrix H̄m of
size (m+1)×m the top m×m block of which is an upper
Hessenberg matrix Hm. The construction of each vector
requires orthogonalization with respect to every one of
the previous. Traditionally, a Modified Gram-Schmidt
procedure is preferred for this orthogonalization step
because of its numerical stability over Classical Gram-
Schmidt. However it requires as many as m synchro-
nization points compared to only one in Classical Gram-
Schmidt. In this study we implement a Reorthogonalized
Classical Gram-Schmidt procedure that produces orthog-
onalization superior to Modified Gram-Schmidt while re-
quiring only two synchronization points [16, 17].

COMPONENTS OF 3-D ROTOR ANALYSIS

R = 15 c

0.05 R
0.1 R 0.1 R

Figure 7: Planform of a prototype hingeless rotor
blade used in this study; c = 0.53 m.

3-D geometry and grids

Geometry and grids are critical components of a 3-D
rotor analysis, but are not the present focus of this work.
It is assumed that suitable geometry and grid generators
will be available to the solver from other sources. For

5



the purposes of solver development, a simple grid gener-
ator is developed that can discretize only one continuous
structure, assumes that the cross-sectional discretization
is same along span, and that all sections are solid. Within
these assumptions, it is easy to accommodate arbitrary
airfoil shapes, twist, planform, and advanced geometry
tips.

Grid n1 × n2 × n3 Total DOFs

Small scale
1 96 × 4 × 2 25,920
2 48 × 4 × 4 25,920
3 64 × 4 × 4 34,560

Large scale
1 32 × 12 × 12 120,000
2 48 × 12 × 12 180,000
3 64 × 12 × 12 240,000
4 128 × 12 × 12 480,000

Table 2: 3-D FEM rotor grids

Figure 8: A hingeless rotor blade prototype with
128 × 12 × 12 elements (every 3 span stations
shown); 0.48 M degrees of freedom

The geometry considered is a hingeless rotor blade
(Fig. 7) with a generic, symmetric airfoil with 5% thick-
ness. The planform is generic with a sweep of 20◦ out-
board from 95% span station. Each finite element can
accommodate its own material model and ply direction
but here we use simple isotropic properties: E = 73 GPa;
ν = 0.3; and ρ = 2700 kg/m3. The rotational speed is
a steady Ω = 27 rad/s. With c = 0.53 m, these values
generate typical stiffness and inertia of soft in-plane ro-
tors. No attempt is made to place the sectional offsets
at quarter-chord.

We consider three small scale problems for the scal-
ability study and four relatively large scale problems for
timing study. The problem sizes are listed in Tab. 2. n1,

Figure 9: Cross-section of prototype blade showing
12×12 bricks with 576 nodes; exaggerated vertical
scale.

Blade partitioned into
   8x2 substructures

Figure 10: 3-D FEM of a hingeless rotor blade us-
ing isoparametric brick elements; blade partitioned
into 8 × 2 substructures for illustration.

n2, and n3 are numbers of elements along span, chord,
and thickness. The largest problem size consists of 0.48
million (M) DOFs. For this size, the discretized blade
and the cross section are shown in Figs 8 and 9 respec-
tively.

Partitioning and corner selection

Figure 10 shows a rotor blade partitioned into 16
substructures using a 8 × 2 decomposition in span and
chord wise directions. The partitioning requirements are
unique in structures. The partitioner performs three
tasks: (1) re-orders substructure nodes and element con-
nectivity, (2) selects corner nodes, and (3) constructs sub-
structure to substructure communication maps.

The node re-ordering brings the interior nodes first,
followed by interface nodes, and then the boundary
nodes. The interface nodes consist of face, edge, and
vertex nodes. These are then separated into corner and
non-corner nodes for treatment as primal and dual inter-
face nodes respectively.

Selection of corner nodes is the most important re-
quirement and must be performed in an intelligent man-
ner. First, the selection must ensure null kernels in every

6



Coarse nodes

Figure 11: A typical substructure showing baseline
coarse problem selection; circles are dual interface
nodes, squares are primal coarse nodes.

Coarse nodes

Figure 12: A typical substructure showing minimal
coarse problem selection; circles are dual interface
nodes, squares are primal coarse nodes.

substructure, i.e. constrain rigid body motion by ensur-
ing that the non-corner restriction of the stiffness matrix
is invertible. Second, it must be as small as possible,
enough just to provide global error propagation but no
larger. A selection containing all of the edge and ver-
tex nodes common to more than two substructures (see
Fig. 11) was used in our previous study [2] and is re-
ferred to in this paper as the baseline coarse problem.
The selection studied in this paper contains only a sub-
set of these corner nodes, and consists only of the ver-
tex nodes that lie at the end of the edges (see Fig. 12).
This is referred to as the minimal coarse problem. Its
size is now independent of the cross sectional grid and is
at the most 8 per substructure. Note that the vertices
that occur at the boundaries of the structure must also
be included, even though they are common to only two
substructures, to satisfy the first criteria of null kernels.
Otherwise, the substructures at the tip end will contain
rigid body rotational modes making them non-invertible.

The substructure to substructure connectivity needs
to be calculated only once. Each substructure creates a
destination and a reception map. The former contains
the substructures to which quantities are to be sent, and
the corresponding destination node numbers. The latter

contains the substructures from which quantities are to
be received, and the corresponding recipient node num-
bers. The dual nodes that lie on the edges communi-
cate with four neighboring substructures. The dual nodes
that lie on the faces communicate only with two neigh-
boring substructures.

Hover and forward flight prototypes

The hover prototype simply solves for steady blade
response at a fixed collective with pressure airloads of
100 N/m2 (418 lb/ft radial distribution) on the top sur-
face. The airloads have the non-linear characteristics of
a follower force. The non-linear solution procedure uses
Newton-Raphson outer iterations. Within each iteration,
the implicit FETI-DP inner solver uses CG updates. A
CG update is adequate in ideal hover as the stiffness
matrix is symmetric. The initial iterations converge the
structural non-linearities associated with rotation. Once
converged, the airloads are imposed. The virtual work
during each airload iteration is calculated based on the
previous iteration deformation state.

The transient forward flight prototype uses a New-
mark scheme with a 5◦ azimuth step. The dynamic stiff-
ness is now non-symmetric, therefore, the inner Krylov
solver uses a GMRES update. For purposes of scalability
study, the response for a single time step suffices, as the
structure of the dynamic stiffness matrix remains same
for all. We consider the following dimensions of Krylov
subspace: m = 30, 40, and 50, deemed more than ade-
quate for large scale problems. Note that increasing m
improves efficiency (faster convergence) at the cost of re-
duced scalability (greater communication).

SCALABILITY OF 3-D ROTOR ANALYSIS

First, the study is conducted on a local unix cluster
of 2.2 GHz dual core AMD Opteron processors. This to
compare present results consistently with those reported
earlier in Ref. [2]. Subsequently all computations are
carried out on an Army DoD Supercomputing Resource
Center (DSRC) cluster of 3.0 GHz dual core Intel Wood-
crest processors. All times are wall clock times.

Consider the problem of size 48× 4 × 4, partitioned
into ns = 8 × 2 = 16 substructures (as in Fig. 10). The
FETI-DP/CG convergence for the baseline and minimal
coarse problems are compared in Fig. 13. The minimal
coarse problem in this comparison uses the fully redun-
dant set of 6 dual variables per edge corner (nλ = 6).
This is the most efficient implementation, even though
as shown in Fig. 14, using nλ = 4 is equally efficient.
Clearly, a minimal set of nλ = 3 is not desirable. Hence-
forth, nλ = 4 is used, unless otherwise mentioned.

Figure 13 shows that the minimal coarse problem
increases the number of FETI-DP iterations required for
convergence. This is expected due to the smaller coarse
problem size, but the smaller coarse problem also reduces
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Figure 13: Typical FETI-DP/CG convergence of
baseline coarse problem vs. minimal coarse prob-
lem; later uses 6 dual variables per edge corner.

the time taken for each iteration, as a result of which the
increase in total solver time is only marginal, as will be
shown later. The main contribution of the smaller coarse
problem, however, is to delay the growth in total solver
time to a greater number of substructures.

The solver times for two problems of sizes 48×4×4
and 96 × 4 × 2 elements are shown in Figs. 15 and 16
respectively, comparing the baseline versus the minimal
coarse problem implementations. It is clear that the opti-
mal number of substructures — number of substructures
for which the solver time is minimum — is extended by
the minimal coarse problem. For the problem of size
48×4×4 the baseline coarse node selection (as in Fig. 11)
produces an optimality at 24 substructures whereas the
minimal coarse node selection (as in Fig. 12) produces
an optimality at 48 or more substructures. Similarly, for
the problem of size 96×4×2, the optimality is extended
from 32 to 64 substructures.

ns FE Sub. Coarse FETI Solver
LU problem total

8 198 453 125 517 1099
12 197 257 101 398 758
16 193 174 99 334 611
24 191 101 149 258 510
32 190 67 279 222 569
48 190 35 866 186 1088

Table 3: Solver time (s) vs. number of substruc-
tures ns with baseline coarse problem; single pro-
cessor; 48 × 4 × 4 elements.

The reason behind this extension is clear from the
detailed break-up of solver timings for the baseline and
the minimal coarse problem implementations and are
given in Tabs. 3 and 4. In the tables, ‘FE’ refers
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Figure 14: FETI-DP/CG convergence of minimal
coarse problem showing the effect of 3, 4, and 6
dual variables per edge corner.

ns FE Sub. Coarse FETI Solver
LU problem total

8 198 496 32 601 1134
12 198 290 23 479 796
16 193 204 19 438 664
24 192 124 15 346 487
32 191 86 14 297 400
48 191 51 20 260 333
96 190 20 94 546 662

Table 4: Solver time (s) vs. number of substruc-
tures ns with minimal coarse problem; single pro-
cessor; 48 × 4 × 4 elements.

to the time taken to construct the structural matrices.
‘Solver total’ refers to the total solver time. The two
together constitute the total simulation time. ‘Solver to-
tal’ consists of three parts: (1) ‘Substructure LU’ time,
which refers to the substructure factorization, (2) ‘Coarse
problem’ time, which refers to the coarse problem fac-
torization, and (3) the ‘FETI-DP’ time, refers to the
Krylov solver time including residual, preconditioner,
and matrix-vector multiplies. The tables show that the
dramatic reduction in coarse problem time and the delay
in its growth leads to a significantly higher substructure
optimality for the same problem size. This has important
ramifications for scalability and timings for the parallel
implementation.

The parallel implementation solves each substruc-
ture on a separate processor. To calculate parallel speed-
up, the parallel solver time is compared with the serial
solver time with the same number of substructures as
the parallel solver. This ensures that computations of
the same complexity are compared and that the speed-up
is not contaminated with the benefits of substructuring
itself.
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Figure 15: Solver time (s) vs. number of sub-
structures for calculations on a single processor;
48 × 4 × 4 elements; hover.
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Figure 16: Solver time (s) vs. number of sub-
structures for calculations on a single processor;
96 × 4 × 2 elements; hover.
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Figure 17: Parallel speed-up for calculations on
multiple processors; each substructure on each
processor; 48 × 4 × 4 elements; hover.
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Figure 18: Parallel speed-up for calculations on
multiple processors; each substructure on each
processor; 96 × 4 × 4 elements; hover.
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Figure 19: Solver time (s) vs. number of substruc-
tures for calculations on a single processor; three
problem sizes; hover.
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Figure 20: Parallel speed-up for calculations on
multiple processors; three problem sizes; each
substructure on each processor; hover.
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Figure 21: Solver time (s) vs. number of substruc-
tures for calculations on a single processor; three
problem sizes; forward flight.
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Figure 22: Parallel speed-up for calculations on
multiple processors; three problem sizes; each
substructure on each processor; forward flight.
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The parallel speed-up for the two problems are
shown in Figs. 17 and 18. In each figure, the speed-up
obtained from the two coarse node selections are com-
pared. It is clear that the minimal coarse node selection
extends the linear speed-up range to a greater number of
processors. Thus, for a given problem size, the minimal
selection enables the fastest parallel solver time. From
Fig. 17, the problem of size 48 × 4 × 4 that could be
solved in 21s using 24 processors, but no faster, can now
be solved in 7s using 48 processors. The detailed break-
up of the parallel solver times is given in Tab. 5.

np FE Sub. Coarse FETI Solver
LU problem total

8 24 66 4.18 67 137
12 16 26 1.97 34 62
16 12 13 1.19 21 35
24 8.2 5.5 0.68 11 18
32 6.1 2.9 0.54 7.6 11
48 4.2 1.2 0.69 5.2 7

Table 5: Solver time (s) vs. number of proces-
sors np with minimal coarse problem; 48 × 4 × 4
elements.

Similarly, from Fig. 18, the problem of size 96×4×2
that could be solved in 11s is now solved in 6s. How-
ever, for this problem the optimality is not yet reached
with the available 48 processors. In order to study the
full scalability range, all calculations are re-performed on
the DSRC cluster, where more processors are available.
Henceforth, all studies are conducted on this platform.
Figures 19 and 20 show the single processor timings and
parallel speed-up respectively of the same problems. An
additional problem of size 64× 4 × 4 elements is consid-
ered which could be partitioned into 128 substructures
and analyzed on 128 processors. Even though the actual
timings are significantly superior on this platform (5–10
times faster), the conclusions on scalability remain the
same. The two problems of sizes 96×4×2 and 64×4×4
elements that have optimality of 64 show linear speed-up
up to 64 processors, the problem of size 48 × 4 × 4 that
has optimality of 48 shows linear speed-up up to 48 pro-
cessors. The solver times for serial and parallel compu-
tations for the problem of size 64×4×4 are documented
in Tabs. 6 and 7 respectively.

np FE Sub. Coarse FETI Solver
LU problem total

8 30 79 9.7 298 388
16 24 30 5.2 199 234
32 23 12 3.0 139 154
64 21 5.3 6.8 124 136
128 21 2.7 65.5 349 418

Table 6: Solver time (s) vs. number of substruc-
tures ns with minimal coarse problem; 64 × 4 × 4
elements.

np FE Sub. Coarse FETI Solver
LU problem total

8 2.5 11.95 1.63 40 53.4
16 1.1 1.59 0.48 12 14.4
32 0.55 0.33 0.16 4 4.52
64 0.27 0.08 0.16 1.8 2.04
128 0.16 0.02 0.78 3.4 4.23

Table 7: Solver time (s) vs. number of proces-
sors np with minimal coarse problem; 64 × 4 × 4
elements.

The conclusions drawn on substructure optimality
and parallel speed-up using the FETI-DP/CG solver is
carried over to the FETI-DP/GMRES solver. Figures 21
and 22 show the single processor timings and parallel
speed-up respectively. For these results, the GMRES
solver uses a restart parameter of m = 30, and a Classical
Gram-Schmidt with Re-orthogonalization based Arnoldi
algorithm (see Ref. [2]). The actual timings are lower
because the convergence criteria is set to 10−8, as com-
pared to 10−12 for the CG, due to the oscillatory nature
of residual convergence beyond this value.

LARGE SCALE PROBLEMS

The implicit parallel solvers developed in this study
using the FETI-DP method of iterative substructuring
can solve hover and forward flight response in a scal-
able manner. As an example, each Newton iteration of a
34, 560 DOFs problem could be solved 64 times faster on
64 processors than one a single processor. Realistic blade
models will contain millions of DOFs for which, not just
scalability but actual solver timings are of equal impor-
tance. By extending substructure optimality and linear
speed-up to as high a processor number as possible, the
minimal coarse problem now enables the benchmarking
of actual solver timings on a large scale problem size. In
this section, a problem of size 0.48 M DOFs containing
128× 12× 12 brick elements is considered. Only the size
is realistic, the geometry is still simple without realistic
3-D hub structures or internal construction details of a
typical blade.

The discretized blade and cross-sections were shown
earlier in Figs. 8 and 9. The cross-section contains 12×12
second order elements with a total of 24×24 nodes. The
blade is discretized into 64 × 2 = 128 substructures and
analyzed on 128 processors. Even though the substruc-
ture optimality of this model is expected to be far greater
than this number, the partitioner is limited at present to
spanwise and chordwise partitions only, with no parti-
tioning across thickness. At this level of decomposition,
each substructure contains two layers of bricks each. The
FETI convergence criteria for all cases are set to 10−6 for
the preconditioned residual.

The solver times for a single Newton iteration is
shown in Tab. 8. The FETI-DP/CG solver is used on the
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symmetric stiffness matrix corresponding to hover. The
FETI-DP/GMRES solver is used on the non-symmetric
stiffness matrix corresponding to a single time step of
implicit Newmark for transient forward flight. The for-
ward flight cases converge faster because the mass matrix
improves the condition number of the dynamic stiffness
matrix leading to lesser number of iterations. The iter-
ation count can be reduced further by using a greater
value of restart parameter m. The consequent increase
in communication, however, does not appear to incur a
penalty as the solver time follows the same trend as iter-
ation count. The m = 30 value is considered baseline in
this study.

Solver FE Sub. Coarse FETI Solver Iter.
type LU problem total

CG 2.9 35.4 3.14 220 258 509
GM30 2.9 35.9 3.15 142 180 325
GM40 2.9 35.5 3.14 135 173 309
GM50 2.9 35.4 3.14 130 168 296

Table 8: Solver times (s) for FETI-DP/CG and
FETI-DP/GMRES (m = 30, 40, 50) prototypes;
analysis of 0.48 M model on 128 processors, each
substructure on each processor.

The number of dual variables per edge corner (nλ)
has an important effect on solver time. Four variables
per edge corner (nλ = 4) is considered baseline in this
study. The variation from a minimum of 3 to a max-
imum of 6 is shown in Tab. 9. In general, increase in
number of dual variables leads to faster convergence but
at a greater communication cost. From Tab. 9 however
communication cost is not a concern — iteration count
and solver times both show the same trends. It is clear
that more than 3 is desired and 4 is close to optimal –
hence chosen as baseline. 5 is not preferred as one out
of the two cross directions (see Fig. 6) must be picked
arbitrarily.

Dual variable GM30 GM40 GM50
per edge corner

3 252 (489) 225 (428) 220 (416)
4 180 (325) 173 (309) 167 (296)
5 183 (327) 159 (274) 164 (285)
6 202 (366) 183 (327) 179 (314)

Table 9: Solver times (s) and iteration count (in
brackets) vs. number of dual variables per edge
corner; FETI-DP/GMRES with m = 30, 40, 50,
analysis of 0.48 M model on 128 processors, each
substructure on each processor.

Finally, the solver times for a range of problem sizes
are shown in Tab. 10. The cross sectional discretiza-
tion is kept constant for these problems, only the span-
wise discretization is increased from 32 to 128 progres-
sively. Each problem is partitioned into 32, 48, 64 and

128 substructures and analyzed on the same number of
processors. The DOFs per substructure remains fixed at
3750. For optimal numerical scalability, all of these prob-
lems should demonstrate the same solution time. How-
ever they do not – as shown in Tab. 10. From 32 to 48
substructures there is a loss in numerical scalability, be-
tween 48 and 64 scalability is maintained, and from 64
to 128 there is further deterioration. Thus even though
the solver demonstrates linear parallel speed-up the nu-
merical scalability of the underlying FETI algorithm has
deteriorated. This is a recognized artifact of 3-D brick
elements the remedy for which is an edge based augmen-
tation to the coarse problem (Ref. [8, 18]). Note that
this augmentation places the coarse problem effectively
in-between the baseline and minimal selections. This
augmentation has not been implemented yet. It is ex-
pected to not only restore numerical scalability but also
reduce solver times further.

Note that the difference between the solver times
of the large scale problem and small scale problems is
caused by the increase in DOFs per processor. Thus, a
thickness wise partitioning that will provide less DOFs
per processor, and the edge based augmentation to the
coarse problem, together, are expected to bring down the
large scale solution time drastically to the same levels as
the small scale problems.

Processors DOFs GM30 GM40 GM50
np

32 120,000 112 104 96
48 180,000 135 117 114
64 240,000 134 123 117
128 480,000 180 173 167

Table 10: Solver times (s) vs. problem size
with fixed size per processor (3750); FETI-
DP/GMRES with m = 30, nλ = 4; analysis of 0.48
M model on 128 processors, each substructure on
each processor.

CONCLUSIONS AND FUTURE WORK

The main objective of this paper was to demonstrate
a parallel and scalable solution for a 3-D FEM based
dynamic analysis of helicopter rotor blades. The proto-
type analysis was formulated using second order, isopara-
metric, hexahedral brick elements to discretize a rotor
blade structure. A dual-primal iterative substructuring
based implicit Krylov solver was developed for a fully
parallel solution. The method was built upon the FETI-
DP domain decomposition algorithm, and equipped with
both CG and GMRES updates to account for the non-
symmetric nature of the inertial terms. A detailed scala-
bility study was carried out for both hover and transient
forward flight. Based on this study, the following key
conclusions are drawn.
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1. A 3-D FEM based rotor dynamic analysis can be
carried out in a fully parallel and scalable manner.
Given a fixed problem size, there is always an opti-
mal number of substructures into which it can be de-
composed that requires the minimum solution time.

2. The analysis presented in this paper exhibits par-
allel scalability up to substructure optimality. That
is, p-processors, with a separate substructure in each
processor, can solve a given problem p-times faster
compared to a single processor. Beyond substruc-
ture optimality, there is no reason to use more pro-
cessors – unless a larger problem is attacked – in
which case, linear speed-up is restored again up to
the new optimality.

3. The drop in scalability beyond substructure optimal-
ity is due to two factors: the increasing substruc-
ture to substructure communication cost, and, the
global coarse problem communication cost. The first
penalty is minor, and can be reduced by minimizing
the number of synchronization points of the Krylov
update. This is more relevant to the GMRES up-
dates. The second penalty is major and arises out
of the coarse problem size.

4. The size of the coarse problem is the key driver for
both scalability as well as solution time. The global
communication required by the coarse problem de-
termines scalability. The size of the coarse problem
determines solution time. In order to ensure scal-
ability while minimizing solution time, a minimal
coarse problem should be selected.

5. A minimal selection consists only of corner nodes
that lie on substructure vertices. The remaining cor-
ner nodes that lie on substructure edges must then
be treated as interface nodes equipped with multiple
dual variables.

6. For a minimal coarse problem, the edge corners are
associated with a minimum of three to a maximum
of six dual variables. In the later case, three are
redundant. It is observed that four variables, with
one redundant, is the most efficient option.

In summary, the rotor FEM analysis developed in
this study solves one Newton iteration of a 34, 560 DOFs
problem in 4.52 seconds on 32 processors and 2.04 sec-
onds on 64 processors. A large-scale problem of size
480, 000 DOFs required 258 seconds in hover and around
180 seconds in forward flight for a single Newton itera-
tion. However it was carried out only on 128 processors
due to the limitations of the current partitioner. Im-
proved partitioning using thickness-wise decomposition,
and further refinement to the solver using edge based
augmentation of the coarse problem is expected to pro-
vide solution times of the large-scale problem that are
comparable to the smaller problem. It is clear however

that HPC is both the key driver as well as the key enabler
for a 3-D FEM based rotor dynamic analysis.

In way of conclusion, a brief summary of future
research directions is provided below, that are consid-
ered important for the essential capabilities of a next-
generation, rotary wing dynamic analysis. They are:

1. Fundamental research: Domain decomposition in
combined space and time for scalable solution of pe-
riodic dynamics. Multibody dynamics within 3-D
FEM analysis.

2. Applied research: Advanced finite elements, e.g.,
locking-free, hierchical, composite brick elements.
Isogeometric elements. 3-D multidisciplinary in-
terfaces for fluids, non-rotating structures, thermal
stresses, and electro-mechanical actuators. Reduced
order structural/FEM hybrid models.

3. Application development : 3-D geometry, grids, and
partitioning. Geometry parameterization for opti-
mization. Smart substructuring.
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