
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Puttie reporting burden for tfis collection of information is estimated to average 1 hour per response, nduding the time for reviewing instructions, searching existing data sources, gathenng and mantaimng the 
data needed, and completing and reviewing this collection of information  Send comments regarding tris burden estimate or any other aspect of this collection of information including suggestions for reducing 
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188). 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 
4302  Respondents should be aware that notwithstandng any other provision of law. no person shall be subject to any penalty for fating to comply with a collection of information if It does not display a currently 
valid OMB control number   PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD-MM-YYYY) 
29-10-2010 

2. REPORT TYPE 
Final technical (USC 53-4514-1073) 

3. DATES COVERED (From - To) 
01/01/2009-30/09/2010 

4. TITLE AND SUBTITLE 
The Near Wake of Bluff Bodies in Stratified Fluids 

and the Emergence of Late Wake Characteristics 

5a. CONTRACT NUMBER 
N00014-06-1-1073 
Sb. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Julian Andrzej Domaradzki, Principal Investigator 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Department of Aerospace and Mechanical 
Engineering 
University of Southern California 
854 W. 36th PI. RRB 10! 
Los Angeles, CA 90089-1191 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office  of Naval  Research 
Regional Office San Diego 
4520 Executive Dr., Suite 300 
San Diego. CA 92121-3019  

10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 20101112020 
14. ABSTRACT 
The primary goal of our work was to provide accurate 
field in the near wake region of a flow around a sphe 
canonical configuration used in investigating a struc 
and in numerical simulations. One of the difficulties 
simulations with experiments is lack of detailed info 
to initialize simulations. Despite importance of thi 
numerical investigation has been performed that conta 
computational domain (Hanazaki, 1988). However, the s 
Reynolds number (Re=200), well below turbulent regime 
this gap and to provide additional information useful 
modelling, and the interpretation of some experimenta 

information about velocity and density 
re in a stratified fluid. This is a 
ture of stratified wakes in experiments 
in comparing results of numerical 

rmation about near wake that is needed 
s configuration it appears that only one 
ins an actual sphere in the 
imulated flow in that work is at low 
. Our research work was designed to fill 
for numerical simulations, turbulence 

1 techniques. 

15. SUBJECT TERMS 
Stratified Wake; Numerical Simulations; Flow Around a Sphere 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

101 

19a. NAME OF RESPONSIBLE PERSON 
J.A. Domaradzki 

19b. TELEPHONE NUMBER (include area 
code) 

(213)740-5357 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Sfd. Z39 18 



The Near Wake of Bluff Bodies in Stratified 
Fluids and the Emergence of Late Wake 

Characteristics 

J.A. Domaradzki 
Department of Aerospace and Mechanical Engineering 

University of Southern California 
Los Angeles, CA 90089-1191 

October 29, 2010 

Final Report for the Period 01/01/2009-30/09/2010, 
ONR Contract No. N00014-06-1-1073 



The primary goal of our work was to provide accurate information about velocity and 
density field in the near wake region of a flow around a sphere in a stratified fluid. This is a 
canonical configuration used in investigating a structure of stratified wakes in experiments 
(e.g., Spedding et al. 1997, 2001, 2002) and in numerical simulations (e.g., Dommermuth et 
al. (2002), Diamessis et al. (2005), Brucker and Sarkar (2009)). One of the difficulties in 
comparing results of numerical simulations with experiments is lack of detailed information 
about near wake that is needed to initialize simulations. Despite importance of this config- 
uration it appears that only one numerical investigation has been performed that contains 
an actual sphere in the computational domain (Hanazaki, 1988). However, the simulated 
flow in that work is at low Reynolds number (Re=200), well below turbulent regime. Our 
research work was designed to fill this gap and to provide additional information useful for 
numerical simulations, turbulence modelling, and the interpretation of some experimental 
techniques. 

1    Summary of Research Activities 

The computations in the project were supervised by Prof. J.A. Domaradzki. A PhD student 
in the AME department, Trevor Orr, has worked on the project full time; this is the topic 
of his Ph.D. Thesis, with Qualifying Exam passed in September 2010. We have established 
collaboration with Prof. George Constantinescu and acquired a serial code for simulating 
a flow around a sphere in curvilinear coordinates using detached eddy simulations (DES) 
approach. The code was first implemented and tested for the flow without stratification. 
Subsequently, it has been modified to include effects of stratification, again in the framework 
of DES. Since the modified code already contained turbulence model we were able to move 
directly to simulating flows at experimental Reynolds numbers where comparisons with a 
single existing dataset of Spedding for a near wake are possible (Re=5000). The numerical 
results for the mean wake velocity were found to be in good agreement with experiments but 
rms velocities showed poor agreement. The initial hypothesis was that observed results for 
rms velocities were caused by internal waves reflecting from the computational boundaries. 
To decrease this effect various numerical absorbing layers were implemented and tested but no 
significant improvement has been observed. We undertook a systematic analysis of possible 
origins of the rms turbulent kinetic energy build up in the DES simulations for stratified 
wake: is it caused by numerical resolution?; by the turbulence model?; by the boundary 
conditions?; by stratification and internal waves? To increase the numerical resolution a 
parallel version of the code has been implemented on the USC Linux cluster. To determine 
the influence of the model we have initiated DNS runs (without a model) for a stratified 
case. To determine the effects of boundary conditions we have initiated DNS and DES for 
an unstratified case. The results for stratified flow cases for Re=200 and Fd= 0.125 and 0.250 
compare very well with Hanazaki (1988); for unstratified flow cases for Re=300 we obtain a 
good comparison with Johnson and Patel (1999). All relevant results are summarized in a 
separate section below. 

During the duration of the project PI was involved in additional, related research with 



unsupported Ph.D. student on subject of LES modeling. The relevant paper (attached) 
acknowledges partial ONR support for that work. Another invited review paper, currently 
in print, on subject of LES modeling without eddy viscosity models also acknowledges ONR 
support and is attached. 
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invited review for Int. J. Comp. Fluid Dyn., in print (2010). 
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Chapter 1 

Introduction and Background 

1.1    Introduction 

1.1.1 A Description of the Physical Problem 

The physical problem involves the numerical modeling of a sphere traveling horizontally through 
a stable, linearly stratified fluid of constant density gradient at moderate Reynolds (Re) numbers 
for a range of Froude (Fd) numbers. The investigation will study the effects seen by the presence of 
stratification in both laminar (low to moderate Re) and turbulent (moderate to high Re) regimes, 
but sphere motion at very low speeds (creeping flow) is not included in this work. 

Investigation of behavior of the flow around a body in a stratified fluid is of interest to engi- 
neering applications as well as some flows at the geophysical scale; flows over mountain ridges for 
instance. Engineering applications may involve flow around a submarine. Because the applications 
of these flows are quite varied, there are so-called canonical geometries which aid computational 
modelers in verifying the behavior of the computational models. The sphere is generally accepted 
to be one of these canonical problems because of its simple geometric shape as it contains a perfect 
symmetry about its center point. 

Flow around a submersed object in a stably stratified fluid has several physical features that are 
not found in a similar flow without density stratification; i.e. a homogeneous flow. This is because 
of restorative buoyancy forces within the fluid that return any disturbances in the stratification 
profile to its previously undisturbed, "at rest," condition. 

1.1.2 The Governing Equations 

Equations of motion and assumptions 

The problem of the sphere traveling horizontally through a continuously stratified fluid is gov- 
erned by a particular set of the Navier-Stokes equations of motion and the equation of continuity: 

dpui     dpuiUj      dP d2Ui 
dt dxj        dxi      '       dxj2 ei =0,    /, = pgSl3 (1.1) 

t + tH M 



where e* represents the orthnormal coordinate vectors in a Cartesian coordinate system, u = i^ei 
is the velocity vector field, P is pressure, p is the density, and /, is the component of body forcing 
due to gravity acting on individual fluid particles per unit volume. 

It is desirable to decompose both the pressure and density field: 

p (x, t) = p0 + p{z) + p (x, t) 

P(x,t) = P0 + P(z)+p'(x,t) 

(1.3) 

(1.4) 

This decomposition uses the concept of hydrostatic balance between a background pressure, p(z), 
and a background density distribution, p(z). Physically, this translates into a balance between the 
gravity force acting on a fluid particle and the restoring buoyancy forces exerted by any surrounding 
fluid particles while the fluid is at rest such that only disturbances to this equilibrium exhibit any 
net effect. Mathematically, the hydrostatic balance aids in the proper construction of boundary 
conditions, especially in fluids of infinite depth. Without the hydrostatic balance, the pressure 
conditions must be explicitly set at the boundaries. The primed quantities P and p are referred 
to as the perturbation pressure and perturbation density, respectively. 

The equation of continuity, Eq. 1.2, enforces the conservation of mass. The Boussinessq ap- 
proximation is used [26]. This assumes that any changes in density are only accounted for in the 
body forcing term. In addition, any effect of a fluid particles' density change on the equation 
of continuity is negligible and leaves the continuity equation as stating that the velocity field is 
divergence free. 

Substituting the two ideas above into the Eqs. 1.1 and 1.2: 

dui dui      dp       p d2Ui 

dt       3 dxj     dxi     po dxj2 e,+ e3 = 0 

dui 
dxi 

= 0 

(1-5) 

(1.6) 

An equation must also be presented for evolution of the perturbation density quantity. As 
stated by Kundu, an equation for the description of the density perturbations is provided by the 
concept of incompressibility (e.g. Kundu pg. 248 [26]); with the current formulation containing 
dissipative effects. The equation for the convection of density perturbations, known as "the density 
equation" becomes: 

dp dp d2p 
dt        3 dxj 

where K is the molecular diffusion coefficient. 

+ U3 - K 
dxj- 

= 0 (1.7) 

Non-dimensionalization of the governing equations 

It is beneficial to complete a non-dimensionalization of the governing equations to distill the 
physics of the problem into a problem controlled by parameters of similtude. Non-dimensionalized 
quantities within this section will be denoted by an asterik (*); which will be dropped after this 
section for aesthetics of the recast equations. The diameter of the sphere, D, the speed of the 
sphere, U, the characteristic density, po, and the background density stratification, dp(z)/dz, are 
intuitive choices for the characteristic quantities of the problem. Recasting Eqs. (1.5) and (1.6) in 
non-dimensional form: 



at* 
+ u 

, dui*     dp 

dxj 
f dn' 

1 dW 
Redxj*2 St + Fd2 e3 = 0 

du,m 

dxS 
= 0 

dp 
df 

+ u .dp 
u3 

1     d2L 
= 0 

(1.8) 

(1.9) 

(1.10) 
*3  dxj*        3      Pedx}*
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where t* = Ut/D, f* = f/D, u" = u/U, p" = p /p0U
2, p" = p / \-Ddp(z)/dz], Re = 

DU/u, Fd = U/(N D), Sc = K/V, and Pe = 1/ ScRe have been used as non-dimensionalization 
parameters. 

Here, N(z) = [-l)p(z)/dz] g/po is the Brunt-Vaisala frequency. In this study, the density 
stratification is continuous and linear in undisturbed conditions, resulting in N(z) = N = constant, 
but no generality has been lost in the governing equations. Through non-dimensionalization, if the 

Schmidt number is taken to be unity, it is apparent that Eqs. (1.8)-(1.10) are controlled by the 
parameter of the Proude and Reynolds number. 

1.1.3    Stratified Fluids 

The fluid may be a liquid or gas of a varying density where the continuum approximation is a 
valid assumption. If an infinite-in-the-horizontal volume of stationary fluid is positioned directly 
above a second similarly constructed volume of fluid, and the density of the fluid in the first volume 
is less than that contained in the second, and this pattern is repeated for all layers in the vertical, 
then the fluid may be considered stably stratified. A stable, continuously stratified fluid is the 
occurrence where these stacked layers become infinitesimally thin in the vertical direction, and the 
density gradient of the stratification maintains the stable condition for all these layers. 

The density gradient of the stratification is embodied within the so-called Brunt-Vaisala fre- 
quency which is commonly denoted as N(z). Physically, the Brunt-Vaisala frequency represents 
the frequency at which a fluid particle that has been vertically displaced by some amount will 
oscillate about its original equilibrium state. As the stratification gradient of the continuously 
stratified fluid becomes increasingly severe, the Brunt-Vaisala frequency increases proportionally 
to the value of the local density gradient. For the steady motions of submersed bodies, the Froude 
number becomes the analogue of the Brunt-Vaisala frequency , and as the Froude number decreases, 
the stratification of the fluid becomes increasingly severe. 

In low enough Froude number flows, a unique effect of stratification (excluding creeping flow) is 
referred to as the "blocking phenomenon." The blocking phenomenon is not a primary focus of this 
work but may be encountered for some flows contained within this investigation and mention of the 

physics of these flows is prudent. The blocking phenomenon is a result of the flow lacking enough 
kinetic energy to convert into the potential energy required to move vertically over a submersed 
obstacle. In two-dimensional flows, the effect of this energy deficit is that fluid particles are trapped 
on the upwind side of the object and are forced to move in unison with the obstacle's motion. The 
fluid behaving in this fashion is referred to as "blocked." In three-dimensional flows, the fluid has 
the ability to flow around the sides of the object if there is not enough kinetic energy to overcome 

the potential energy required to move over the object, but even in this case some blocking effects 



may still be seen in some planes of symmetry. A review article by Baines in 1987 [2] provides a 
review into the topic of the blocking phenomena. 

As the Froude number increases, the effects of stratification become less apparent, the Brunt- 
Vaisala frequency decreases, and as the Froude number approaches the infinite limit, the flow 
behaves as a homogeneous fluid flow. 

1.2    Stratified Flow Around a Sphere 

A submersed body is assumed to be in a steady non-oscillatory motion. References to the flow 
around the body indicate that the observer's reference frame is fixed with respect to the body as 
it moves through a stationary fluid, and variances to this convention are otherwise noted. Ref- 
erences to "the sphere" are intended to reference the sphere traveling horizontally through the 
linearly stratified fluid at a constant speed. Flows that maintain an orderly, predictable behavior 
insensitive to perturbations or initial conditions are called laminar. Flows that do not maintain 
these properties are generally referred to as turbulent; although there is no universally accepted 
definition of turbulence. A sketch of the physical problem is seen in Figure 4.1. 

1.2.1    Behavior of Flow Around the Sphere 

The first region of physical interest is the behavior of the flow around the body, including the 
flow close to the surface of the sphere. Early focus on the flow upwind and around a submersed 
obstacle in a stratified fluid is typified by the flow over mountains or hill-shaped objects, especially 
in some of the earliest work on the topic. Although physically focused on a geophysical problem, 
these studies are typically intended to describe the behavior of fluid particles as they approach 
and eventually attempt to flow around a submersed obstacle, which is analogous to the flow of 
fluid particles around the sphere. Attempts to quantify the ability of fluid particles to traverse 
an obstacle is discussed by Sheppard 1956 [43] by considering energy arguments. The efforts of 
Drazin 1961 [17] attempt to resolve the question of whether a fluid particle will flow over or around 
a three-dimensional object. A review of the various attempts to quantify and refine the theories 
presented by [43] and [17] are discussed in Hanazaki 1988 [21]. The relevant summaries to these 
works as applied to the sphere case is that fluid particles in the region affected by the presence 
of the sphere gain a directional preference as to whether they will flow over or around the side of 
the sphere because of the addition of the buoyancy forcing due to gravity. The further away from 
the sphere's region of influence, the less this preferred-direction effect is seen and the free stream 
motions of the fluid are generally considered to be unaffected. Thus, the flow around the sphere is 
mainly concerned with particle paths. The behavior of these particle paths becomes more effected 
by the presence of the sphere the closer the flow advects the particles to the sphere surface. 

Within this region close to the sphere, the fluid particles on the surface of the sphere are assumed 
to be "stuck" to the surface and cannot be advected away from the surface. This is referred to as the 
"no-slip condition," and is used for both homogeneous and stratified flows. The no-slip condition 
forces the relative velocity of the attached fluid to be zero with respect to the surrounding free 
stream flow. Viscous forces develop within the fluid due to this momentum mismatch near the 
surface of the sphere. This region is referred to as the boundary layer [40]. The Reynolds number 
is the ratio of momentum to viscous effects and serves as an indicator of the behavior of fluid flow 
near physical boundaries and subsequent flow development downstream of these boundaries. 



The boundary layer of the sphere exhibits different characteristics depending upon the Reynolds 
number, the Froude number, and possibly the diffusivity [22] of the flow. In turn, the engineering 
characteristics (e.g. drag or shedding cycles) of the sphere may depend on the characteristics of 
the boundary layer. The boundary layer on the surface of the sphere may be roughly characterized 
by two regimes separated by a "critical" Reynolds (/?ecrjj) number [26]. In this study, focus will 
be maintained in the "sub-critical" regime, Re < Recru, where the boundary layer flow is laminar. 

In a homogeneous fluid, viscosity affects the flow around the sphere in the laminar boundary 
flow around the sphere below a Reynolds number of approximately 25 such that the particles 
close to the surface of the sphere travel a path parallel to the contour of the sphere surface in 
an axisymmetric manner [52]. Above a Reynolds number of 25, and below a Reynolds number 
of roughly 200 [25], the flow behaves in a steady, axisymmetric manner, but the flow creates a 
so-called recirculation bubble, or vortex ring, that forms behind the sphere [52]. In this case, the 
convecting fluid particles within the flow do not follow the contour of the sphere's surface. Instead, 
the particles are convected away from the surface of the sphere, and the flow velocity field creates 
a stationary region of vorticity behind the sphere known as a "separation bubble." The point at 
which the fluid particles traveling within the boundary layer stop following the surface contour is 
commonly referred to as the "separation point," and the boundary layer after the separation point 
itself is often referred to as being "separated." 

These two particular cases of boundary layer behavior dependent on the Reynolds number 
provide an opportunity to discuss separation in the context of boundary layer flows. Qualitatively, 
separation is the terminology given to the process of the fluid particle within the boundary layer 
erupting into the free stream [54]. The exact definition of a separation point is continually evolving 
within literature starting with the original definition of Prandtl [39] with additional modifications 
to account for behavior of unsteady flows (e.g. [42] or [20]). These modified definitions all tend 
to collapse back to the original Prandtl definition for the case of steady, or near-steady flows. 
Thus, in this study, the choice for the definition of the "separation point" is where the surface skin 
friction coefficient initially approaches zero, and a "separation line" is the interpolation between the 
individual separation points. Boundary layers are then considered "separated" after the separation 
point, except in the rare exception of reversed boundary layer flows that do not qualitatively 
coincide with the physical description of [54]. The separation behavior of the sphere traveling 
through the stratified fluid is of interest, especially as it relates to the separation behavior seen in 
a homogeneous fluid. 

Claims to the first study of the relationship between the separation line on the sphere in con- 
tinuously stratified fluid arrives from Lofquist &; Purtell 1984 [34]. There is additional work done 
by Sysoeva & Chashechkin 1986 [51]; and qualitative results again by Chashechkin & Sysoeva in 
1988 [8], specifically at that time with Fd < 0.2. The first computational work done in the area of 
the stratified fluid's effect on separation is from Hanazaki 1988 [21]. The result of these investiga- 
tions is that separation behavior in the vertical plane is delayed as compared to the homogeneous 
case as the separation point moves further and further downstream on the surface of the sphere. 
However as the severity of the stratification increases, the vertical separation point tends to move 
slightly upwind as the flow approaches a quasi two-dimensional regime induced by the extreme 
stratification. 

According to Hanazaki 1988, at Re = 200, Fd = 0.5, separation in both vertical and horizontal 
planes is totally suppressed although Sysoeva & Chashechkin 1986 do not see a total suppression 
of separation at that Reynolds number. Lofquist & Purtell 1984 do not register a total suppression 



of separation at 700 < Re < 1000, Fd = 0.5 either but do measure a maximum separation angle 
of 160 degrees. Additional work by Chomaz et al. in 1992 [10] present separation studies at both 
low and high Reynolds numbers. Their experimental results indicate that a difference in Reynolds 
number accounts for the discrepancy of separation suppression between [34] and [21]. They also 
discount the discrepancy at Re = 200 between Hanazaki and Sysoeva &: Chashechkin as likely due 
to the apparent inability of the shadowgraph technique to accurately capture separation location 
[10]. 

The sketch of Figure 5 in Chomaz et al. [10] extends the earlier two dimensional outlook from 
the vertical and horizontal planes and is a qualitative interpretation of how stratification affects 
the separation line on the lee side of the sphere. Generally, as the Reynolds number is decreased, 
the surface area in the separated region decreases [10]. There have been no computational studies 
of the effects of stratification on the shape of the separation line for the sphere at any Reynolds 
numbers other than what may be implied from the data from Hanazaki 1988 at a Reynolds number 
of 200. 

1.2.2    The Wake Region 

The second physical region of interest is the wake region located on the downwind, lee, side of the 
sphere. There are several types of laminar wake behaviors behind the sphere; depending generally 
on the value of the Reynolds number and Froude number. The various types of wakes found 
in homogeneous fluids will be listed as: steady asymmetric vortex, unsteady symmetric vortex 
shedding, asymmetric vortex shedding, but reviews of the Reynolds numbers these occur at may be 
found in [25] or [10]. The properties of the wake may change depending on Froude number as well, 
but most structures present in the stratified wake are identifiable as some form of the previously 
mentioned homogeneous wake behaviors. One unique regime found in the stratified fluid flows is 
the existence of the standing lee wave, which is a laminar mechanism. Above a Reynolds number of 
2000, it is expected that the wake region will become turbulent for all Froude numbers higher than 
2. Below a Froude number of 2, the balance between strength of stratification and inertial effects 
(suggested as Fd > C * Re~ll2 by [31] where C is a calibrated constant) will determine whether 
the wake is turbulent or laminar according to Figures 2 & 3 in Lin et al. [32]; reproduced here for 
convenience as Figure 4.5. 

Theoretical work done in the wake of the sphere utilizes linear theory in the context of a moving 
point source that is naturally generating internal waves (e.g. Lighthill [28]). Internal waves may 
exist for all stratified flows. For flows involving a density interface of layered fluids, the internal 
waves are concentrated along the density interface between layers whereas for continuously stratified 
flows, internal waves may propagate freely throughout the fluid. The result of linear theory gives 
insight into the behavior of the internal waves. Linear analyses are generally presented in terms of 
the lines of constant phase of any waves that propagate outward from the sphere. Linear theory 
may also be used as a reference to measure the wavelength of any waves present behind the sphere. 
Because of this, comparisons of experimental and computational observations are often made in 
some fashion with linear theory. 

As mentioned, a unique characteristic of the flow in a stratified fluid is the existence of dominant 
lee waves. A stationary lee wave is an internal wave propagating with a phase speed relative to 
that of the sphere it follows such that in the frame of reference to the body, it is stationary. The 
existence of a standing lee wave is seen in the work of Hanazaki 1988. Hanazaki 1988 [21] conducted 
simulations at a steady Reynolds number of 200 for a range of Froude number of 0.15 to 200, which 
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is effectively an unstratified flow at that Reynolds number. Hanazaki's work makes comprehensive 
numerical study of the relationship between the drag on the sphere by standing lee wave behavior 
in the near wake as well as provides qualitative information about the flow field surrounding a 
sphere in a continuously stratified fluid. The conclusion of the Hanazaki work is that the linear 
theory predictions are generally well represented [21]. 

The work of Lofquist & Purtell in 1984 [34] also investigates the drag coefficient of a sphere 
moving through a linearly stratified fluid. Lofquist & Purtell 1984 suggest that regardless of 
Reynolds number, the lee wave, which is dependent on the stratification, induces drag [34]. It is 
suggested that there is an increase in drag coefficient that is independent of Reynolds number as 
the fluid becomes increasingly stratified until a Froude number of about 0.125. Below that Froude 
number, the drag coefficient begins to decrease as Froude number decreases. This is shown in 
Figure 4 of that work [34]. A general agreement to this trend is stated by Hanazaki, presented as 
Figure 8 in that work [21]. However, the Hanazaki work suggests the decrease in drag coefficient 
begins to occur after Fd = 0.25. 

In turbulent stratified flows around a sphere, the wake region can be broken down into three 
regions: the near wake, the non-equilibrium regime, and the far wake (e.g. Spedding 1997 [49] ). 
The near-wake is located where the flow exhibits similar characteristics to the unstratified case. 
After the near-wake regime, there is the so-called non-equilibrium (NEQ) region, where buoyancy 
effects become apparent as the flow begins to exhibit a reduction in vertical velocity fluctuations. 
Finally, there is the far-wake quasi-2D regime (Q2D), where the flow characteristics become quasi 
two-dimensional as "pancake" eddies form. The near-wake region typically exists for Nt < 2; the 
NEQ region for 2 < Nt < 50, and the Q2D regime from Nt > 50 according to Spedding 1997 [49]. 

The stratification is believed to have little influence on the turbulence of the near-wake. The 
phenomenological argument is made that in the very near wake at high Reynolds number, the 
kinetic energy in the wake is high compared to the potential energy required to move a fluid particle 
vertically in the wake. This is the characteristic of the near-wake behavior. The work by Hopfinger 
et al. [23] gives interesting insight into the behavior of the flow at a Reynolds number of 3000. 
The Froude number parameter denotes a possible change in the mechanism for generating internal 
waves. If the Froude number is less than 2, then the wake is dominated by lee waves. If the Froude 
number is greater than 2, then the internal wave field is dominated by the turbulent wake and 
internal waves produced are seemingly random. This suggests that even at high Reynolds number 
flows, the stratification has the ability to influence the flow characteristics even when stratification 
is not considered severe. 

As the kinetic energy from the near-wake decays, the available surplus in converting kinetic to 
potential energy decreases and as a result, the growth rate of the wake's vertical height decreases 
so that the wake spreads faster in the horizontal than the vertical. This is the essence of the NEQ 
regime. Schooley & Stewart 1963 [41] first noticed this behavior, is also noted by Pao & Kao 1977 
[38] and reviewed by Lin & Pao 1979 [30]. The NEQ region is often referred to as the "collapse" 
of the wake. This phraseology is not globally accepted as an accurate description of the physical 
behavior in this region. Once the vertical velocity perturbations are negligible when compared to 
the horizontal ones, the wake has evolved into the far-wake region according to Bonnier et al. 1998 
[5]. 

Recent interest in continuously stratified flows around submersed bodies is partially focused on 
turbulent far-wakes and whether the far-wake exhibits any characteristics dependent on the shape 
of the submersed body. In 2004, Meunier and Spedding speculated that the momentum induced by 



a towed body, and not the particular shape, is important for the characteristics exhibited by the far 
wake [35]. In 2006, Meunier and Spedding generalized that result to include the effective momentum 
diameter hypothesis to encompass self-propelled submersed bodies [36]. Thus, all submersed bodies 
traveling through a stratified fluid, whether towed or self-propelled, may be appropriately scaled 
by an effective momentum diameter [36]. As a result, a sphere traveling horizontally and steadily 
through a continuously stratified fluid is, by geometry, its own effective diameter and the canon of 
the sphere is confirmed. 

Recent computational investigations have been typically focused on effects of stratification in 
the far wake behind the sphere. Currently, far-wake numerical simulations require an initialization 
procedure to create an initial turbulent flow-field to begin integration of the governing equations 
in time ([16] [15]). Dommermuth et al. 2002 [16] initialized far wake simulations based in-part 
on the results of Bevilaqua & Lykoudis 1978 [3]. The data available is a Gaussian distribution 
of the average turbulent kinetic energy [3]. Diamessis et al. 2005 also followed this initialization 
procedure [15], and recent researchers have also used a similar scheme [7]. It should be noted that 
results in [3] are not collected from stratified flow experiments. 

None of the aforementioned simulations have included the sphere explicitly within the domain. 
This is because the computational cost to both model the proper fluid mechanics on the sphere and 
reproduce the far-wake is prohibitively expensive with current computational resources. Through 
non-dimensionalization and algebraic relationships, the regimes become separated by N * t, or 
equivalently FdT1 x/D. In a study where Fd = 5, for example, the near-wake regime may not end 
until roughly 20 body lengths downstream of the body, and the Q2D regime does not begin until 
250 body lengths downstream. By comparison, the boundary layer at the stagnation point of a 
sphere at a Reynolds number of 10,000 is roughly one-hundredth of a body length thin. 

Brucker k. Sarkar 2010 [7] suggest that there still is "no dataset which characterizes the full 
state of the turbulence in the near wake region." There is then an opportunity to explicitly account 
for the sphere within the computational domain and provide detailed information about turbulent 
fluctuations as well as the density field in the near-wake. The density perturbation field in particular 
is challenging to collect experimentally. Bonneton et al. 1996 [4] explore the behavior of density 
stratification in the wake of the sphere and show a strong correlation between the density and 
the vertical velocity perturbations. There is also work by Bonnier et al. 2000 [6] collecting time 
dependent density field information in the far wake, but that work is limited to measurement via 
conductivity probe. Many early experiments rely on shadowgraph or dye dispersion techniques 
(e.g. [31]) not able to detect perturbation velocities, and other optical techniques have difficulties 
in collecting information about the three dimensional density field. 

According to the literature (e.g. [27] [15] [7]), the only known simulation to explicitly account for 
the sphere within the computational domain while modeling the physical problem under discussion 
is that of Hanazaki in 1988 [21]. Whilst the Froude number range is considerable in Hanazaki's 
1988 work, the chosen Reynolds number and solution method negates any unsteady effects, let 
alone the required turbulent fields of the near-wake that may be of interest to far-wake modelers. 
The proposed investigation fits an unfilled niche between existing experimental work done in the 
near wake and Q2D regimes and the investigations of computational modelers in the far wake. 



Chapter 2 

Numerical Method 

2.1    Numerical Method 

The numerical model is solved on a discretized grid that is fitted to a fixed, structured body-fitted 
coordinate system. The Cartesian coordinates Xi are transformed into generalized coordinates £; 
but the flow components Uj and density perturbation p in the governing equations remain in the 
Cartesian coordinates. This is the so-called partial transformation formulation of the governing 
equations (e.g. Constantinescu 1998 [12]). The effective result of this transformation is that 
the physical grid is transformed into a computational grid by the transformation relations such 
that the Cartesian coordinate derivatives are represented in the transformed coordinates: x =< 
*(€I*?IC)I V(&*?i0i z(^rlX) >• This formulation has been used successfully in several studies of 
varying geometric configuration [25], [12], [11], [13], [14]. 

The governing equations must again be recast to reflect the new body-fitted coordinate system. 
A review of these transformations can be found in Appendix A of Sortiropolous 1991 [45] or in 
Chapter 2 of Liseikin 1999 [33]. 

The Jacobian of the general transformation between coordinate systems is denoted: 

•A 
dxi 

(2.1) 

The determinant of the Jacobian is simply denoted as J. Here, Xi represents the Cartesian co- 
ordinates and p represents the coordinates of the transformed computational grid. Equations 
(1.8)-(1.10) are transformed: 

dt d&     dxt d&     Re d& V*7     At*/. 

dui 

w 
dp      ,ridp 1 
ot o£J Pe 

= 0 

^3 = 0 (2.2) 

(2.3) 

= 0 (2.4) 

where 

OXi 



and V3 is the contravariaiit velocity. Also, in Eq. (2.2), the Cartesian unit vector has been dropped 
from the explicit statement of the equation and is presumed to be understood. 

2.1.1 Computational Domain 

The numerical model is discretized using finite difference schemes, generally of 2nd or 5th order 
for the momentum equations and 1st order for density. Finite difference calculations are performed 
on the computational grid. For this study, the physical grid is constructed in spherical coordinates 
in an 0-0 topology, where there are known relations between < r, 0,0 > and x such that there are 
also known relations between x and £, similar to what is done in [25]: 

r = - + (*_ - y) [ tan
C

hi; + 1 j (2-5) 

9 = */~* (2.6) 

0 = 27r-^i- (2J) 
where subsequently: 

x = rcos9,   y — r sin#cos<£,   z = rsin#sin0 (2.8) 

Rmax is chosen to approximate a far-field condition in the simulations. Figure 4.2 gives a graphical 
representation of a typical physical grid used in this study. A sketch of the body fitted coordinate 
system as related to the sphere is found in Figure 4.3. 

The computational grid is then constructed from the known relations of Eqs. (2.5)-(2.8). A 
visualization of the computational grid is in Figure 4.4. There is a periodic overlap of one grid point 
in the azimuthal direction such that T/I = r/mal_i and 772 — Vmax- Additionally, a grid singularity is 
created by the choice of coordinates in the physical domain, located at 9 = {0 = £mjn,"" = imax}- 

2.1.2 Numerical Solver 

The governing equations are integrated by an added transient term in pseudo-time such that 
when the solution exhibits a steady state in pseudo-time, the governing equations have also con- 
verged in real time. This is the main concept of a so-called dual-time stepping scheme, and the 
implementation by Arnone et al.[l] is followed. 

Shorthand notation for specific operators within the governing equation is introduced: 

C0NV() = V^ 

PRESS^) = %w 
VISC() = ± d (\ ik d 

J-—    -oJ*—- 

and the explicit discretizations of the continuous operators CONV{ ), PRESS( ), and VISC{ ) 
are found in Constantinescu 1998 [12]. 
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Flow quantities are linearized for implicit treatment of flow variables in pseudo-time integration. 

gm+l =Qm + AQ (2.9) 

Then the momentum equation (2.2) becomes: 

"'     A    "*    +   '       "'   + CONVm(Ui
m+1) 

AT At ,m+1 (2-10) 

+ PRESS(p'm+1) - VISC{ur+l) + T^rfo = 0 

"m" indicates the m-th discrete point in pseudo-time integration and "n" indicates the previous 
level in the discretized physical time integration. Each iteration begins with m = n, and as 
limAQ_oQm+1 = Qm, implying Qm+1 = Qn+1. 

The momentum equation is split in psuedo-time to solve for both the momentum and pressure 
variables. The details are available in Constantinescu 1998 [12]. Once the momentum and pressure 
field are projected to level "m+1", the additional equations for the turbulence model and the 
density perturbation are advanced in pseudo-time. The superscript in Eq. (2.10) for the density 
variable is denoted level "m" for this reason. 

The solver uses a non-staggered formulation that stores both pressure and velocity at the nodal 
grid points. Without a proper formulation, this can create the now-famous "checkerboarding" 
problem. To counter this potential issue, the solver uses the method of Sortiropolous and Patel 
[46], which adds an artificial dissipation term to the pressure equation. Values of the pressure 
dissipation coefficient used in this study were usually 0.05-0.1. The details of its implementation 
within the numerical integration scheme can be found in Constantinescu 1998 [12]. 

2.1.3    Turbulence Modeling 

As discussed in Section 1.2.2 the Reynolds number ranges investigated in this proposal are antic- 
ipated to exhibit turbulent wake behavior. Because of the finite discretized nature of the numerical 
experiment and present limits on computational resources, the turbulent motions must be approx- 
imately modeled. Turbulence modeling is a still-active area of research, and discussion will be kept 
to the type of modeling employed in this numerical experiment. 

Reynolds Averaged Navier Stokes (RANS) formulations are an extensively used method to 
model turbulent flows. They are particularly suited for flows where only the mean flow properties 
are desired (e.g. Wilcox pg. 30 [55]). RANS formulations are based on the idea of averaging flow 
field properties, and they tend to "average-out" the temporal features in the flow as the number 
of samples or length of averaging time increases. RANS formulations are particularly useful in 
exploring the behavior of separated boundary layers; assuming the separation point exhibits a 
quasi-steady nature. RANS formulations are unsuitable if the time-dependent, spatially developing 
structures of the flow away from the boundary are of interest, especially in the axisymmetric case 
of the sphere [13]. 

An alternative approach that attempts to represent the aforementioned large-scale motions is 
referred to as Large Eddy Simulation (LES). Large eddy simulation attempts to spatially and 
temporally resolve large-scale motions in space and time but to model any motion that is spatially 
unresolvable. These spatially unresolvable motions are commonly referred to as the sub-grid scale 
motions.    A major drawback of LES occurs in modeling flows in the presence of a wall, and 
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consequently boundary layers. This is because the scales that exist within boundary layers are 
very small compared to the other large-scale motions in the flow. As such, the spatial resolution 
required in pure LES is very fine, and computational costs can be comparable to Direct Numerical 
Simulation; which is very costly. Thus LES flows near boundaries can be cost-prohibitive and 
current research in LES simulations deals with wall-modeling close to boundaries. 

Instead of RANS or LES alone, Detached Eddy Simulation (DES) is used in this investigation. 
The essence of DES is that it uses RANS as a wall-model within boundary layers and an LES 
sub-grid scale type model for resolution of the flow away from walls. DES has, on its own, a variety 
of formulations (e.g. Spalart et al. 1997 [48] or Strelets 2001 [50]) and is not specific to a particular 
turbulence modeling formulation; only that it behaves in the prescribed RANS/LES manner. 

The current investigation uses the Spalart-Allmaras DES (SA-DES) formulation of Constanti- 
nescu 2004 [14]. Near solid boundaries, where separation occurs, SA-DES uses the one-equation 
Spalart-Allmaras RANS formulation [47] to predict boundary layer behavior; including separation. 
Outside of the boundary layer region, the model automatically switches to an eddy resolving LES- 
type mode. The LES-type model behaves like a Smagorinsky model, which in itself attempts to 
represent the Kolmogorov spectrum for sub-grid scales as determined by Lilly in 1967 [29]. With 
this formulation, computational costs can remain closer to LES even with the sphere present in 
the simulation. It should also be noted that the SA-DES eddy viscosity may be used for the den- 
sity perturbation's eddy viscosity since the both the molecular Schmidt number and the turbulent 
Schmidt number are taken to be unity in the turbulent cases as is alluded to in Section 1.1.2. 

The addition of the DES turbulence model to the equations of motion, Eq. (2.10), modifies the 
viscous operator to be time dependent; i.e. VISC( ) —> VISCm( ) in the following way: 

vise ,(} " \Re + Re?) [Jd& Uff"V J. 
where -^ u^/(UD), where vt is the eddy viscosity. 

Consequently, Eq. (2.10) stays effectively unmodified to the user, and the turbulence model is 
turned off as the term ^ * 0.  The SA-DES formulation for the eddy viscosity is reproduced 
from Nikitin et al. 2000 [37] as follows: 

du dP 
QJ; + V>— = cblSi> + - [(v (v + <>) V v) + cb2 (V*)2 

Cwlju 

(2.11) 

where: 

vt = J>/„i,    Ui = X= - X3 + eV    *      v 

S = S + (*//«?) ,    /„2 = l-x/(l + x/*i) 

Sn2d 

d- min(dw,CDESA) 
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and S is the magnitude of the vorticity; dw is the physical distance to the wall; A is the local grid 
spacing; Cb\ = .1355, a = 2/3, q,2 = 0.622, K — .41, c^i = C^JK

2
 + (1 + CB2)/CT, C„,2 = 0-3, c„,3 = 2, 

and c„i =7.1 are modeling constants. The value of COES is generally set at 0.65 following the 
work done by Shur et al. [44] for homogeneous turbulence. 

2.1.4    Boundary Conditions 

Momentum, Turbulence Model, and Density B.C.'s 

On the surface of the sphere, Rmin = Cmm> Dirichlet boundary conditions are enforced for momen- 
tum and the turbulence model variable, whilst density perturbations use the zero-normal gradient 
boundary condition to enforce incompressibility within the diffusive density equation: 

u = 0,   P = 0,   ^-=0 (2.12) 
an 

At the domain boundary far from the sphere, mixed boundary conditions are used due to the 
geometry of the physical grid. The first condition is referred to as an "inflow" boundary and has 
a Dirichlet condition for the velocity, the turbulent variable, and any density perturbations for the 
surface along {£mtn = 0 < 6 < .557T, C,max = Rmax}' 

3 = el,  i> = 0,  p =0 (2.13) 

If the inflow boundary is far upstream from the sphere, it is considered sufficient to use the Dirichlet 
conditions for low Reynolds number, stratified cases, according to Hanzaki 1988[21]. Hanazaki used 
an outer domain distance of 20 sphere diameters [21]. In the current study, the domain boundary is 
set 14.5 sphere diameters away from the surface of the sphere. This distance was found sufficient for 
low Reynolds simulations in [25] and was also found sufficient for turbulent, high Reynolds number 
(Re > 105) simulations [14]. Both [25] and [14] were simulations of a sphere traveling steadily 
through a fluid of a uniform density. 

The second condition on the domain boundary away from the sphere is considered an "outflow" 
boundary condition. Outflow boundary conditions rely on information from inside the compu- 
tational domain.   The outflow boundary is contained on the surface where {.557r < 9 < n = 
smaxi Qmax — ttrnaxi'- 

£•£*-*£-*&-—• (2-14» 
For momentum, these conditions allow a fluid particle to accelerate in the vertical due to buoyancy 
forcing but without accelerating in the horizontal. Incompressibility is applied via the density 
equation; leaving 113 in the formulation of the boundary condition to represent the transport of the 
background fluid density (e.g. Kundu pg. 249 [26]). 

On the singularity lines present at 8 = {0, ir}, all variables for momentum, the turbulence 
model, and density are extrapolated from the interior and averaged over the repeated nodes. Along 
the periodic overlap in the ?/ direction, periodicity is applied to each respective flow variable. 

Pressure B.C.'s 

The pressure boundary condition is controlled by using the normal component of the momen- 
tum equation Eq.   (2.2) on the computational boundaries located at Rmin and Rmax to enforce 
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conservation of mass [19]: 

f)u rl - 
•< (2-15) v (p) = -% ~ C0NVW + visc(u) - JLp 

This provides an explicit equation for the pressure variable when put into discretized form along 
both the sphere surface and the far field domain boundary. 

Along the singularity lines present at 6 = {0, n}, the pressure is extrapolated from the interior; 
subject to the conservation of mass constraints and similar to what is recommended in Johnson 
1999 [25]. Along the periodic overlap in the rj direction, periodicity is applied to the pressure field 
as well. 

2.1.5    Computational Outflow Boundary Treatments 

The physical problem being modeled exists within an infinite domain and may contain internal 
waves that propagate from within the turbulent wake structure (see Section 1.2.2). An infinite 
domain would allow any internal waves to propagate out towards infinity, which is the expected 
behavior (e.g. Lighthill, Section 4.9 [28]). This is known as the radiation condition. 

Introducing an artificial boundary at the edge of the physical domain complicates computational 
simulations containing waves because the radiation condition may not be appropriately met. Tur- 
bulent wakes produce waves close to the computational boundary. The exact correction required to 
ensure the radiation condition to be completely satisfied is as-yet elusive, and several approaches 
are actively under investigation (e.g. Givoli 2004 [18]). 

Viscous Damping 

It is desirable to find a method capable of reducing these potentially reflected waves while at 
the same time maintaining a certain simplicity in its implementation. A tempting methodology 
is to introduce some artificial viscous damping to the equations of motion, Eq. (2.2), near the 
region of the boundary, but far enough from the region of interest so as not to adversely affect the 
investigation's observations: 

NS(q) = -u(x)q (2.16) 

NS(q) = n(x)^ (2.17) 

where NS{q) represents the original Navier-Stokes bracketed term in Eq. (2.2) operating on any 
desired quantity q that is to be damped. i/(x) and fi(x) are the damping coefficients which are 
allowed to vary spatially. Israeli and Orszag 1981 [24] show that the damping term must vary 
smoothly in space to avoid reflections off of the damper interface itself, and they show that Eq. 
(2.16) is superior in its wave damping properties. In flows with turbulent quantities where fluctua- 
tions may be centered about some mean profile value, Eq. (2.16) may be extended to what is used 
in Brucker 2010 [7]: 

NS(q) = -v(x)(Q-q) (2.18) 

where Q represents the characteristic mean quantity of the flow variable q that is to be attained 
within the damping region. 
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Damping with Zonal DES 

An original unpublished method that may be viable is to use the eddy viscosity of the turbu- 
lence model itself, rather than an arbitrary addition to the equations of motion, to damp out any 
oscillations towards or near the boundary. The idea is to use the "switch"' inherent to the DES 
formulation Eq. (2.11) to explicitly turn off the LES mode towards the outflow boundary and 
return the turbulence modeling to RANS; explicitly: 

d = dw for x € ft(.?damp) (2.19) 

where dw is the physical distance to the wall as in the original SA-RANS model [47] and Q{£damp) 
is the domain in which clamping is desired. This would create a RANS simulation at the outflow 
and would maintain the DES behavior desired in the separation and wake region. 

An additional possibility of using the DES formulation as a damper is to increase the value of 
CDES found in Section 2.1.3 for areas near the computational outflow boundary. Constantinescu 
and Squires 2004 [11] show that by increasing the value of CDES the smaller scales in the energy 
spectra decay as CDES is increased. Conceptually, for high enough vales of CDES, damping acts 
similar to RANS. 
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Chapter 3 

Preliminary Results 

3.1    Laminar Regime 

3.1.1    Re=200 DNS Results 

In order to ensure the code produces viable results for stratified flow cases, it is important to 
compare code results with existing data sets. Since Hanazaki 1988 [21] is related to the proposed 
work, it is a natural benchmark to compare the current numerical code against. 

Perhaps a natural starting point is in comparison of the drag coefficients. Results in Figure 4.8 
are in excellent agreement with those of Hanazaki, except for the low Fd — 0.125 case. This is an 
interesting discrepancy between the two works as they tend toward agreement in all other cases at 
Re = 200. 

Figure 4.7, which is a measure of the change in stream-wise drag coefficient as function of the 
Froude number at a Reynolds number of 200. Here, after a value of Fd = 0.25 (l/Fd = 4), the 
data of Hanazaki sees a sharp decline in the drag coefficient as the affect of stratification on the 
surrounding flow becomes more severe, whereas the value of the current work trends to capture 
experimental trends more closely. The experimental data of both Mason and Lofquist and Purtell 
show an increasing trend until Fd ~ 0.15 {l/Fd = 7); followed by a gradual decline in ACD as 
\/F approaches a value of 10. 

Hanazaki suggests that the discrepancy between the computational results and prior experi- 
mental data is due to Reynolds number difference. The experimental data of Lofquist & Purtell 84 
[34] show that experiments were conducted at a Reynolds number of approximately 220 for the low 
Froude number cases. This is not a far departure from the numerical simulations at the Reynolds 
number of 200 reported by Hanazaki. Hanazki does not report on vortex shedding present at these 
low Reynolds numbers [21], an observation also noted by Chomaz et al. 1993 [9]. 

The simulations presented in this investigation do capture the vortex shedding behavior regime. 
Analysis of the drag coefficient curves presented in Figure 4.9 shows that there is a strong lateral (y- 
plane) periodic force indicative of vortex shedding. Spectral analysis of the lateral drag coefficient 
signal shows that there is a Strouhal number of 0.18 for the Fd=0.125 case. Strouhal numbers for 
this case's drag signals can be seen in Table 3.1. 

The shedding of the vertical component of vorticity, wz, over the course of 1 shedding cycle is 
presented in Figure 4.11. Qualitatively, it is apparent that the sign of LUZ on either side of the x-axis 
alternates every quarter period in the wake region. 

In homogeneous fluid flows around a sphere, drag coefficients may also depend on the location 
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St Power 
x: {0.035,0.355} 

0.18 
{28,16.23} 

426.5 
No significant peaks. 

Table 3.1: Drag coefficient Strouhal numbers: Re=200, Fd=0.125 

of the separation point/line on the sphere. To locate the separation point on an azimuthal plane 
of the sphere, the skin friction coefficient is used as an indicator for separation. The skin friction 
coefficients for a range of Fd are shown in Figure 4.12. 

As mentioned in Section 1.2.1, a zero skin friction coefficient may not be the best absolute 
indicator for separated flow. A qualitative idea of what is physically occurring in these steady Hows 
can be derived by looking at the streamlines close to the sphere as in Figure 4.14. The necessity of 
this additional information may be seen in in Figure 4.12 (c), where there is an apparent crossing of 
the zero value for polar values of roughly 145° and 160° for the vertical azimuthal plane. Inspection 
of Figure 4.14 (c) shows that particles in the flow eject away from the body of the sphere, and indeed 
the separation point is located at 145° where this first occurs. 

In Figure 4.13, comparison is made of the vertical and horizontal separation points' location 
as compared to the data of Hanazaki 1988. It becomes apparent from this figure that there are 
differences between the two cases. 

As suggested in Section 1.2.2, one of the main advantages of computational investigations into 
stratified flows is the relative ease which it is possible to obtain instantaneous density profiles of 
the entire flow field. In Hanazaki 1988, isopycnals are presented and that trend is followed here. 

An advantage of the linear density stratification is that with non-dimensionalization, the actual 
density gradient term "drops out" of the governing equations. Thus, any linear gradient may be 
imposed on the density perturbation field to represent the more physically intuitive isopycnals; 
the numerical values of which are then arbitrary. Isopycnals from the simulations are presented in 
Figure 4.15. From this figure, the flow slowly becomes more two dimensional as the Froude number 
decreases; signifying the tendency of the flow to begin its pseudo two dimensional layered behavior. 

Finally, contours of vertical components of velocity, w, are presented in Figure 4.16. These 
contours for this low Reynolds number case serve as contrast contours to identify lines of constant 
phase. Lines of constant phase are located where the vertical component of velocity is zero according 
to linear theory as w = N * sin(6) [28]. Here, 0 is the angle of the motion of the fluid particle with 
respect to the horizontal; making lines of w = 0 equivalent to lines of constant phase. 

Perhaps the most striking feature in comparing Figure 4.16 (a)-(d) is that the lines of constant 
phase appear to have similar patterns in the free stream portion of the flow, but different spacing 
depending on Froude number. Figure 4.16 hints that reported values for flow behind the sphere in 
stratified flow simulations should perhaps be given in terms of possibly ~ -pqfj versus p. 

3.1.2    Re=1000 Preliminary Results 

Comparisons are initially made with the laminar, unsteady unstratified case at a Re=300 of 
Johnson [25] to verify the unsteady behavior of the numerical solver. The resulting stream-wise 
drag coefficient in the prepared case is Cdx = .654±.004, Cdy = —.054±.015, and Cdz = -.035±.01. 
As is shown in Table 3.2, the average drag coefficient in the stream-wise direction and the drag 
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coefficient on a rotated plane of symmetry (the lateral plane, denoted by the L subscript) compare 
favorably to Johnson's results. 

Orr '10 Johnson '99 

cDl 0.654 ± 0.004 0.656 ± .0035 
CDL 0.064 ± 0.019 0.069 ± .0016 
Stx 0.13 0.137 
stL 0.13 0.137 

Table 3.2: Drag Coefficient and Strouhal Number at Re=300, Fd=oo 

Orr '10 Lee '00 

CDr 0.555 ± 0.04 0.545 
CDV 

-0.022 ± 0.08 N/R 

CDZ 
-0.017 ± 0.155 N/R 

Stx {0.04 to 0.05, 0.135 to 0.15} {0.043, 0.164} 

Table 3.3: Drag Coefficient and Strouhal Number at Re=500, Fd=oc. N/R: not reported 

Further comparison to the work of Lee 2000 [27] is made to compare the unsteady behavior at 
a Reynolds number of 500. The time series drag coefficient data is again compared in Table 3.3. 
Results appear to compare favorably against this data set. Strouhal numbers associated with both 
the unsteady motion of the separation point and the unsteady vortex shedding produce similar 
temporal behavior; within a 10% error of what is produced by Lee. There are inherent differences 
between the numerical method of Lee 2000 and the current study, and it is possible that either 
grid resolution, or the discretization scheme, or even the solution method may account for this 
discrepancy. Of interest is that the ratio of peak Strouhal numbers between Lee and the current 
study is within a few percent; suggesting that whatever the discrepancy in exact value of Strouhal 
numbers, the relations between the various physical mechanisms of the simulations seem to be in 
agreement. 

After the above comparisons to check unsteady behavior, the Reynolds number is further in- 
creased to 1000. The general approach for Re=200 is followed as a guide for the analysis of Re=1000. 
At this Reynolds number, there are four distinct regimes of the wake reported by Lin et al. [32]: 
the lee wave instability, the non-axisymmetric vortex, the symmetric vortex shedding, and the non- 
symmetric vortex shedding. Data is presented at Froude numbers of 2, 0.5, and 0.25. These points 
correspond to non-symmetric vortex shedding, non-axisymmetric vortex, and lee wave instability 
regions, respectively. The data for the expected symmetric vortex shedding region is not available 
at this time. 

The relationship for the drag coefficients as seen in Figure 4.17 remain relatively unchanged from 
the Re=200 cases presented in the Figure 4.7 counterparts. It will be of interested to examine the 
Fd=0.125 case to see if the trend at Re=1000 is continued as is seen at Re=200 for the stream-wise 
drag coefficient. 

Inspection of the Re=1000, Fd=0.25 case warrants further explanation as unsteady effects were 
observed whereas the guide of Lin et al. suggests a steady lee wave formation behind the sphere. 
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Evidence of unsteady vortex shedding is seen by inspection of the drag coefficient time-series in 
Figure 4.22 and supported by the strong spectral peak contained in Figure 4.23. Qualitative 
appearance of vortex shedding similar to the behavior in Figure 4.11 has been confirmed and is not 
reproduced here. 

Inspection of the pressure coefficients in the vertical (z > 0) and horizontal (y < 0) in Figure 
4.18 suggest that while general relationships between the two planes remain roughly the same, there 
are a few quantitative differences between the Re=200 and Re=1000 case as the Froudc number 
decreases. This is especially clear at a Froude number of 0.25, where an internal hydraulic jump (as 
defined by Hanazaki 1988 [21] is seen for the Re=1000 case, whereas it is not seen for the Re=200. 
Fd=0.25 case. 

By comparing Figure 4.12 and Figure 4.19, interesting agreement is seen in the behavior of the 
separation point at a Reynolds number of 1000 is qualitatively similar to the Reynolds number of 
200 case for varying Froude numbers. The separation point is notably delayed in the vertical plane 
by the stratification. The separation point also does not seem to move as rapidly downwind in the 
horizontal as compared to the vertical planes, just as in the Reynolds number 200 case. This may 
be inferred from Figure 4.20, but a more diverse range of Froude numbers for data collection would 
be prudent. Comparison between Figure 4.13 and Figure 4.20 is a challenge due to lack of available 
data at Re=1000. It does appear that the variance of vertical and horizontal separation point 
decreases between the two Reynolds numbers, which may owe to the higher energy contained in the 
higher Reynolds number flows. The data point at Re=200, Fd=0.5 for the horiztonal separation 
has been verified as a simulation result, but the reason for this "odd" data point location is not 
yet known. Separation points may be qualitatively inferred from inspection of the instantaneous 
velocity vector field as the boundary layer point at separation is assumed to be quasi-steady. This 
is available in Figure 4.21. 

The largest difference between the Re=1000 cases and the Re=200 cases is the ability to observe 
unsteady effects. Time series signals are then used as the analysis tool, particularly for the density 
perturbation field. A probe is placed at an Fd~~l x/D ~ 4 (Fd=2) to observe the unsteady behavior 
of the flow in the near-wake. By inspection of Figure 4.24 and Figure 4.25 it is possible to see that 
there is a clear correlation between the vertical velocity, w', and the density perturbation field, p'. 
Note that inspection between Figure 4.24 (a) and (b) at t* ~ 130 show a slight difference in signal 
values, indicating they are not perfectly correlated, but the two signals do remain highly correlated. 
Figure 4.25 serves as an additional qualitative indicator of this and clearly w' is a leading order 
term in Equation 1.10, but analyses of the phase lag of the two signals may be required as complete 
evidence of this claim. 

Inspection of the lines of constant phase in Figure 4.26 indicates that the variance in Reynolds 
number does not appear to affect the internal wave properties in the free stream as is also seen in 
Section 3.1.1. 
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3.2    Turbulent Regime 

3.2.1    Re=5000 SA-DES Results 

Based on available data, this investigation is also performed at a Reynolds number of 5000, 
FVoude number of 2, and Schmidt number of 1 while using the SA-DES formulation discussed in 
Section 2.1.3. All discussion within this section uses these parameters. Two sets of data are used 
to benchmark the behavior of the simulation at this Reynolds number. 

First, the perturbation velocities of the simulations are measured against the current computa- 
tional standard procedure of using the azimuthally averaged velocities u',v',w'. Both the average 
and perturbation velocities of the simulation is compared against the Gaussian profiles of Diamessis 
et al. [15]. All data is averaged in the azimuthal direction, <j>, then spatially averaged along the 
x-direction. The radial perturbation velocities here are defined as: 

u'(r) = ((u(£,t)-Ux(r))4)x 

v'(r) = (WW)<)x 

w'(r) = ((!«(£, <))*)i 

ux(r) = (MfTi))*)i 

where u, v, w represent the Cartesian vector components of the velocity vector field and Ux(r) 
is the stream-wise averaged velocity dependent only on radial distance from the x-axis. u' is also 
referred to as the stream-wise perturbation velocity. 

The data is collected at the same location that Diamessis et al. initialize their simulations [15] 
at Nt — 3, which is the equivalent downstream distance of (l/Fd)(x/D) = 3, taken from the 
center of the sphere. The mean streamwise velocity profile is compared in Figure 4.27. The mean 
average velocity compares relatively well to the Gaussian profile fit. This appears to indicate that 
the SA-DES model does a relatively good job of predicting the mean flow properties in the wake. 

Further comparison is made against the Gaussian fitted profile of [15], where the perturbation 
velocities u', v', w' are averaged together. This is the assumption made for the velocity perturbation 
initial condition field by Dommermuth et al. [16] and Diamessis et al. [15] as well as Bruker & 
Sarkar [7]. The comparison can be seen in Figure 4.29. There is the expected drop in turbulent 
fluctuations at the center of the core, indicating a relatively lower region of turbulent production 
there. This trend is also reflected by the Gaussian fit. Again, the computational result appears to 
compare favorably to the Gaussian averaged profile currently used by computational modelers. 

The individual perturbation velocities are also investigated. The result can be seen in Figure 
4.29. As seen, the perturbation velocities are not equally contributing to the average profile seen in 
Figure 4.29. The components of the perturbation velocities make up the turbulent kinetic energy, 
i.e. k = 1/2 (u2 + v2 + to2)1/2, and thus, the question is raised of whether the assumption of the 
equipartition of the turbulent energy remains valid for [15], [16], and [7]. It appears here that 
stream-wise fluctuations contribute the most to the average turbulence profile; followed by the 
vertical velocity perturbations and the lateral velocity perturbations. As the distance from the x- 
axis increases, stream-wise fluctuations decrease quickly, whereas both lateral and vertical velocity 
perturbations appear not to decay until well away from the x-axis.  If there is this anisotropy in 
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the perturbation profiles, it is perhaps natural to seek experimental data which is not azimuthally 
averaged. 

For this reason, a second comparison is made against an available experimental data set (y = 0) 
produced by Spedding at USC. Because of the experimental techniques used to collect the data, 
specific planes must be chosen to investigate the flowfield. Thus, the velocity field in the vertical 
plane is available for comparison (i.e. Ux(z), u'(z) and w'(z)). The perturbation quantities are 
defined as: 

u'(z) = [u(x,t)-Ux(z)}x 

v'(z) = [v(x,t)}x 

w'(z) = [w(x,t)}x 

Ux(z) = [u(x,t)]x 

where Ux{z) is now the mean profile in the vertical slice, the subscript x indicates spatial averaging 
in that direction, and there is no azimuthal averaging for any flow variable. The general pattern of 
comparison from before is continued with the experimental data. Initial comparisons are made for 
the predicted mean steam-wise velocity profile against the experimental profile as seen in Figure 
4.30. Again, without the azimuthal averaging the DES simulation appears to predict the mean 
profile with some degree of accuracy. 

Additional comparisons are made for the available perturbation velocities, u' and w'. The 
simulations prediction of v! against experimental data is seen in Figure 4.31. The model appears 
to over-predict the turbulent fluctuations in the "core" (\z\ < 1) of the wake region. However, the 
model still captures the drop in fluctuations near the center of the core at z = 0 for v! seen in 
earlier comparisons. For the most part, the stream-wise fluctuations are located within the core 
region. Although there is some minor diffusion of stream-wise fluctuation seen out of the core for 
z < — 1, perturbations appear fully decayed at z = -2. 

Remaining comparisons against the data of Spedding may then be made for the vertical velocity 
fluctuations, w'. In the Guassian profile, there was some apparent diffusion out of the turbulent 
core for w' as seen in 4.29, and when compared to experimental data in the vertical plane in Figure 
4.32, this diffusion of w' out of the core becomes even more obvious. The SA-DES model appears 
to capture the turbulent levels contained within the core \z\ < —1 reasonably well. Once again, 
the reduction of turbulence near the center of the core at z = 0 is seen. Major levels of vertical 
perturbation velocities are seen outside of the core and decay of these perturbations is very slow 
compared to the stream-wise fluctuation profile of Figure 4.31. This region of high vortical velocity 
shall be referred to as the "tails" of the vertical perturbation velocity profiles. 

This appears to indicate some issue with the SA-DES modeling as the simulation trend does 
not appear to correctly follow the experimental data trend produced by Spedding. In light of 
Section 2.1.5, which was in turn guided by conversations with other investigators in this field, the 
suggestion is made that internal waves axe, at this point, a main suspect in the cause of these vJ 
tails due to the reflection of the internal waves off of the domain boundary. 

To assess this suggestion, the method of Section 2.1.5, a zonal DES damper, was utilized to 
investigate the possibility of a quick fix to this behavior. An example of results of this attempt 
are seen in Figure 4.33. It is clear by comparing Figures 4.32 and 4.33 that some degree of w' 
is removed from outside the core region. However, it also appears that now fluctuations have 
increased inside the core region. This result gives indication that some boundary treatment may 
be beneficial to the accuracy of the numerical simulation.  Because of the apparent failure of the 
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SA-DES RANS damper, a more recognized method is pursued in the form of the artificial viscous 
dampers of Section 2.1.5. 

Viscous damping to the w' equation is investigated. Viscous dampers are applied to the region 
within the computational domain where no data collection is desired. An example region of viscous 
damping is shown in Figure 4.34, although the damping region may be applied as needed but guided 
by the discussion of Section 2.1.5. An example effect of the addition of the viscous damping term 
is shown in Figure 4.35. Here, the perturbation velocities are presented in the azimuthal average 
fashion to include a more three dimensional view of the effects of the damper. Clearly, energy has 
been added to the core of the wake while the "tails" of the perturbation velocity have not even 
decayed as in the SA-DES RANS case. This trend was observed for a wide range O(0.1)-O(100) of 
the v(x) coefficient seen in Eq. (2.16) for a variety of damping region shapes. 

These attempts at boundary conditions leave the question of the origin of the " tails" unanswered 
as of yet. Further discussions with researchers in the field of stratified turbulence have suggested 
that grid resolution is perhaps an additional reason for the poor comparison with experiments. 
Qualitative inspection compared to the grid resolution may be compared in Figure 4.34. The 
turbulent regime investigations are left with four potential "tail" inducing culprits: the artificial 
domain, the damper type, the grid resolution, and the turbulence model itself. 

22 



Chapter 4 

Future Work 

4.1 Laminar Regime 

There is quite a possibility that the impact of the Schmidt number on the flow around the sphere 
on a sphere traveling horizontally through a stratified fluid has not yet been investigated completely. 
This problem may be particularly difficult for experimentalists to accomplish: a water tank is not 
set up to work with air, and a wind-tunnel is not particularly adept at investigations using water 
as its working fluid. This puts the current investigation in a unique position to possibly expand 
knowledge in this niche area. 

4.2 Turbulent Regime 

A two-tiered approach is planned: 

First, DNS parallelized computations will be made at a Reynolds number of 5000 across a range 
of Proude number. As shown in Section 3.2, comparison with data from USC is available as a 
benchmark for computational agreement. This approach has a major advantage over other proposed 
approaches, despite its high computational cost, in that there is no reliance on any turbulence 
modeling. Thus, a degree of complexity is removed from the numerical investigation, which will 
allow the first tier of the proposed work to focus on the underlying physics of the problem. 

A second benefit of the DNS approach is that because resolution requirements are already high, 
the question of internal wave reflection either due to grid coarsening or the limitations of the finite 
boundary may be alleviated. If the grid is found to be sufficiently fine, but reflections are still 
encountered due to the location of the domain boundary, then the resolution requirements will still 
aid in implementation of the boundary treatments as discussed in Section 2.1.5. 

The second step of the two-tiered approach is to return to utilization of turbulence modeling. For 
all its benefits, DNS has an overwhelming drawback: with current world-wide computational re- 
sources, DNS is not a tool that can be applied for geophysical flows, or even many engineering-based 
flows. Ultimately, a viable turbulence model must be located within the engineering community for 
the simulation of the turbulent near-wake of flow behind a sphere traveling horizontally through a 
stratified fluid. 
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The choice of turbulence model with which to continue investigation is currently under consid- 
eration. The Spalart Allmaras Detached Eddy Simulation (SA-DES) method as shown in Section 
3.2 has not produced necessarily successful results. However, a proclamation of the SADES method 
inappropriate model, for near-wake flows may be a mistake. Indeed, its "ease" in implementation, 
especially for pre-written SA-RANS based codes, makes it highly tempting as a turbulence model. 
However, investigations utilizing SA-DES may prove as difficult as investigations with any other 
types of turbulence model. A second possible choice for turbulence modeling is Large Eddy Simu- 
lation using the Truncated Navier-Stokes (LES-TNS) method (e.g. Tantikul & Domaradzki 2010 
[53]). This has an advantage over the SA-DES method in that USC houses the resident experts in 
the LES-TNS method. 
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Figures 
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Figure 4.1: Sketch of Physical Problem 

Figure 4.2: Example of 0-0 grid topology 
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Figure 4.3: Sketch of Body-Fitted Coordinate System 
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Figure 4.4: Sketch of Computational Grid 
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Figure 4.5: Figure 2 of Lin et al. 92 [32], (Fi = Fd); reproduced here for convenience. 
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Figure 4.6: Figure 3 of Lin et al. 92 [32], (Fi = Fd); reproduced here for convenience. 
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A) Lofquist & Purtell '84, (- with V) Mason 77. 
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Figure 4.8: Re=200, Sc=l: Surface pressure coefficient, Cp, vs. angle, 0, in the (-) vertical(z > 0) 
and (- • -) horizontal (y < 0) plane. 9 is taken from the negative i-axis. (a) Fd=oc (b) Fd=l (c) 
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(e) 

Figure 4.11: Re=200, Sc=l, Fd=0.125: Vertical vorticity contours in the horizontal plane at z=0. 
Contours of uiz are leveled between ±1 in increments of 0.1 
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Figure 4.13:  Re=200 Separation point location vs.   1/ (2Fd).  Orr '10 (Sc=l):  (v) vertical, (0) 
horizontal. Hanazaki '88 (Sc=oo): (—) vertical, (—) horizontal. 

34 



(a) (b) (c) 

• i=£TL 

(d) 

Figure 4.14: Re=200, Sc=l: Streamlines on the lee side of the sphere, (a) Fd=oc, (b) Fd=1.0,(c) 
Fd=0.5, (d) Fd=0.25, (e) Fd=0.125 
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Figure 4.15: Re=200, Sc=l: Isopycnal lines. Levels of density are chosen between ±1.5 in incre- 
ments of 0.075. (a) Fd=l (b) Fd=0.50 (c) Fd=0.25 (d) Fd=0.125 
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Figure 4.16: Re=200, Sc=l: Contours of vertical velocity, w. Levels are between ±.01 in increments 
of 0.001. (a) Fd=l, (b) Fd=0.50, (c) Fd=0.25, (d) Fd=0.125 
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Figure 4.17:  Re=1000, Sc=l: ACD vs.   1/ (2Fd).  (D) Orr '10, (- with o) Hanzaki '88, (- 
with A) Lofquist & Purtell '84, (- with V) Mason 77. 
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Figure 4.18: R.e=1000, Sc=l: Time-averaged s\irfacc coefficient of pressure, Cp, vs. angle, 6, in 
the (-) vertical(z > 0) and (— • —) horizontal (y < 0) plane. 0 is taken from the negative x-axis. 
(a) Fd=oo (b) Fd=2 (c) Fd=0.50 (e) Fd=0.25 

39 



03 

025 

0.2 • 

0.13 • 

0 1 : 

0.05 

0 

• / 

50 100 ISO 

(IX 

0.3 

0.25 

02 " 

019 

0.1 

035 

" 
/'                                     / /'                                       / 

', 
'/' sr>J* V 

50 100 
e 

150 

(c) (.1) 
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Figure 4.20: Re=1000, Sc=l: Separation point location vs. 1/ (2Fd). (v) vertical, (0) horizontal. 
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Figure 4.21: Re=1000, Sc=l: Instantaneous vectors in vertical plane (z > 0) on lee side of sphere, 
(a) Fd=oo (b) Fd=2 (c) Fd=0.50 (d) Fd=0.25 
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Figure 4.22: Re=1000, Sc=l, Fd=0.25: Drag coefficient time series. - CDX, - • - CoY, — Cp2 
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Figure 4.23:  Re=1000, Sc—1, Fd=0.25:  Drag coefficient power spectra. -      CDr,       -     •     -      CDy 
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Figure 4.24: Re=1000, Sc=l, Fd=2: Time history of data signal at x/D~2. (a) w (b) p' 
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Figure 4.25: Re=1000, Sc=l, Fd=2: Power spectra of data signal at x/D~2. (a) w (b) p' 
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Figure 4.26: Re=1000, Sc=l: Contours of vertical velocity, w. Levels are between ±.01 in incre- 
ments of 0.001. (a) Fd=2, (b) Fd=0.50, (c) Fd=0.25 
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Figure 4.27: R.e=5000, Sc=l, Fd=2: Azimuthally averaged stream-wise velocity profile. 
'10, - Diamessis '05. (i.e.) 
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Figure 4.28:  Re=5000, Sc=l, Fd=2:   Azimuthally and spatially averaged (u^) velocity profile at 
(l/Fd)(x/D) =3. ( ) Orr '10, (-) Diamessis '05. (i.e.) 
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Figure 4.29:   Re=5000, Sc=l, Fd=2:   Azimuthally and spatially averaged u[ velocity profile at 
(l/Fd)(x/D) = 3. ((u'j, <t/>, (w')) Orr '10, (-) Diamessis '05. (i.e.) 
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Figure 4.30: Re=5000, Sc=l, Fd=2: Spatially averaged ux velocity profile in vertical center-plane 
{y = 0) at (l/Fd)(x/D) =3. ( ) Orr '10, (•) Spedding 
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Figure 4.31: Re=5000, Sc=l, Fd=2: Spatially averaged u' velocity profile in vertical center-plane 
{y = 0) at (1/Fd){x/D) =3. ( ) Orr '10, (•) Spedding 
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Figure 4.32: Re=5000, Sc=l, Fd=2: Spatially averaged w' velocity profile in vertical center-plane 
(y = 0) at {l/Fd)(x/D) = 3. (- • -) Orr '10, (•) Spedding 
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Figure 4.33:   Re=5000, Sc=l, Fd=2:   Example of SA-DES RANS damper affect on w' velocity 
profile in vertical center-plane (y = 0) at (l/Fd)(x/D) = 3. (- • -) Orr '10, (•) Spedding 

Figure 4.34: Example of viscous damping layer region in the vertical plane (z > 0); 0 indicates no 
damping, 1 indcates full damping. Mesh density visible in vertical plane (z < 0) for qualitative 
comparison. 
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Figure 4.35:  Re=5000, Sc=l, Fd=2:   Example of viscous damper affect on w' velocity profile in 
vertical center-plane (y = 0) at (l/Fd)(x/D) =3. ( ) Orr 10, (•) Spedding 
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We propose a large eddy simulation (LES) technique based on the previously developed 
| Trancated Navier-Stokes (TNS) method. In TNS, the Navier-Stokes equations are 
« solved through a sequence of direct numerical simulation runs and a periodic processing 
» of small scales to provide the necessary dissipation. In the simplest case, the processing 

is accomplished by filtering the turbulent fields with a properly chosen filter. In the 
previous work, the period for processing was selected in advance for each case using 

* heuristic arguments validated by trial and error. In this work, we develop a criterion that 
~i automates the selection of a time instant in simulations when the processing occurs. 

The criterion is based on the relationship between the energy of the flow field and the 
energy of the same field filtered with the chosen filter. The procedure is tested in LES 
of the turbulent channel flow performed at various Reynolds numbers and in domains 
of different sizes for which Direct Numerical Simulations (DNS) and experimental data 

S are available for comparisons. 

Si Keywords: large eddy simulations; truncated Navier-Stokes equations; explicit filter- 
's ing; automatic filtering criterion 

o 

* 

'A 

1.    Introduction 

Several classifications of the subgrid-scale (SGS) models for large eddy simulations (LES) 
have been proposed in the literature on the subject. In a review paper of Domaradzki and 
Adams [1], the SGS models are divided into two general categories: the traditional models 
that use the explicit expressions for the SGS terms, the SGS stress tensor in particular and 
the models that construct the unknown primitive variables, such as velocity, in order to 
use these variables to compute the SGS terms directly from the definitions. The traditional 
SGS modeling approaches can be subdivided into three groups: the eddy viscosity models, 
the similarity models and the mixed models. The examples of the models in the other 
group are the velocity estimation model proposed by Domaradzki et al. [2,3] and Stolz 
et al.'s [4] approximate deconvolution model (ADM). Kosovic et al. [5], characterized by 
the use of explicit filtering, divided SGS models into three groups. First are the models 
that use an explicit SGS expression but do not employ explicit filtering; for instance, the 
classical Smagorinsky eddy viscosity model. Second are the models that use an explicit SGS 
expression and employ explicit filtering, e.g. the dynamic Smagorinsky model. The third 
category are the so-called implicit models because equations of motion are solved without 
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neither explicit filtering nor explicit SGS terms. Such approaches rely on the properties of the 
numerical scheme to provide implicit dissipation and are known as the Monotone Integrated 
Large Eddy Simulations (MILES) or the Implicit Large Eddy Simulations (ILES). An in 
depth review of the ILES is given in the monograph edited by Grinstein et al. [6]. For high- 
order, nondissipative numerical schemes, this classification can be extended to include 
models that do not use the explicit SGS terms but employ the explicit filtering to model the 
effects of the SGS dissipation. The modeling approach discussed in this paper belongs to this 
group and originated from the SGS velocity estimation model proposed by Domaradzki and 
Saiki [2]. The model was developed in spectral space representation and later implemented 
in the physical space by Domaradzki and Loh [7]. 

The original velocity estimation model encountered difficulties in the LES of high 
Reynolds number flows because it did not produce enough SGS dissipation. To address 
this shortcoming, Domaradzki ct al. [3] have introduced the modification of the velocity 

" estimation model that solves LES equations in parallel with the Truncated Navier-Stokes 
(TNS) equations on a finer mesh; TNS provides the estimated velocity that is used to 

» compute the SGS stress tensor needed in LES. More specifically, the TNS equations are 
just Navier-Stokes equations discretized on a mesh by a factor of two smaller than the LES 

3 equations of interest. The estimated velocity to be advanced in TNS is obtained in two steps. 
u First, the velocity from LES is 'de-filtered', providing large-scale velocity represented on 
- a coarse LES mesh. Second, the small-scale perturbation velocity is created by nonlinear 

interaction of the reconstructed field. The total estimated velocity is a sum of both parts 
and is represented on a finer TNS mesh. The estimated velocity is advanced in time using 

3 TNS equations, i.e. using a Navier-Stokes solver on the fine mesh. The velocity field from 
jj TNS is then used at each time-step to the SGS stress model directly from the TNS field, and 

this stress model is used to advance in time the LES equations. This process of two parallel 
runs is continued for some fixed time period T until the accumulation of energy in the small 

1 scales of the TNS begins to affect the large scales. To assure the accurate large-scale results, 
the whole process has to be reinitialized every time period T, with reduced energy in the 
small-scale region obtained by a low-pass filter. The results from LES for homogeneous 
turbulence and turbulent channel flow test cases are in a very good agreement with the 
Direct Numerical Simulations (DNS) and the experimental data. The disadvantage of this 
approach is that the procedure is quite complicated and requires more computational time 
compared to other the LES modeling approaches because additional TNS equations must be 
solved. However, a significant speed up of computations is possible for a simplified version 
of the model that employs only the TNS equations as shown by Domaradzki et al. [3]. 
Such a simplification is based on the observation that the TNS velocity on the fine mesh 
already contains information about large scales of the flow and thus the LES equations 
are redundant. Since the small scales of TNS fields are subjected to periodic filtering, the 
physical meaning is ascribed only to the large TNS scales given on the coarse LES mesh. 
In this approach the estimated small-scale velocity field provides the SGS effects on the 
large scales via nonlinear interactions in the Navier-Stokes equations. The approach is 
less complicated in terms of the numerical implementation and retains the same quality of 
the results as the original method. However, the user still needs to specify the time period 
T for filtering and re-initialization of the TNS in order to prevent the accumulation of 
energy in the small scales and the resulting error propagating toward the large scales and 
contaminating them. Our goal in this work is to investigate a procedure that determines the 
time period T automatically, without a need to provide its value as a parameter by the user. 
Once the procedure is defined in the next section it will be subsequently tested in LES of 
the turbulent channel flow problem in the following sections. 

u 



Journal of Turbulence 3 

The explicit filtering as a LES tool has been employed in different forms previously, 
usually as a method to control numerical instabilities. Visbal and Rizzetta [8], [9] studied 
the application of a high-order finite difference method to the LES of compressible flows. 
They used fourth- and sixth-order compact differencing schemes for spatial discretization 
and different explicit and implicit time marching methods. The simulations were performed 
with the unfiltered Navier-Stokes equations and the high-order, Pade-type, low-pass spatial 
filter was employed at each time-step to remove spurious high-frequency modes which 
arise because of the lack of the dissipation in the spatial discretization. It was found that the 
compact/filtering scheme performed better or comparably to the constant coefficient and 
dynamic Smagorinsky models for a number of different turbulent flows. Bogey and Bailly 
[10] investigated jet flows using LES with explicit filtering. The numerical simulations 
were performed using a low-dissipation numerical scheme with the explicit fourth-order 
13-point centered finite differences for spatial discretizations and the second-order six-stage 

S low-storage Runge-Kutta algorithm for time integration. The explicit selective/high-order 
filtering was employed to emulate the dissipative effects of the neglected SGS. Interestingly, 

o the filtering was not applied at every time-step but every second or third time-step. The 
results from the simulations with the filtering applied at every two or three iterations exhibit 

S no relationship between the frequency of application of the filtering and the quality of the 
u results. When spectral methods, which have negligible numerical dissipation, are employed 
^ to simulate high Reynolds number flows, explicit filters and penalty techniques must be 

used to stabilize numerics, e.g. in Diamessis et al. [11], and in Minguez and Pasquetti [12]. 
2 Such methods are known as the stabilized LES and use filtering at each time step. The 
" numerical dissipation associated with one of these methods has been investigated recently 
j by Diamessis et al. [13]. In using such techniques one must recognize that achieving 

numerical stability does not necessarily imply physically correct results. Therefore, such 
techniques must always be validated by comparing results they produce with experiments 

! and DNS results. 
In the work described here, we use spectral methods stabilized by the weak, explicit 

filter applied at each time step and much less frequent periodic filtering that is used not as a 
stabilization tool but primarily as an SGS modeling tool based on physical considerations 
of the energy transfer and the spectra in developed turbulence. 

5 

2.    Filtering and filtering criterion 

g In LES, the filtering operation is applied to a full and turbulent velocity field to separate it 
o into the large, resolved scales and the small SGS. Ideally, the filter should retain complete 

information about the large scales and substantially remove or attenuate the small scales, 
allowing the user to focus the computational power on the large scales. Since the compu- 
tational space in the simulations is discrete, filters are given in the discrete form as well. 
A convenient filter with desirable properties has been proposed by Stolz et al. [4] for the 
Approximate Deconvolution Model (ADM). If G represents the primary filter used the 
filtering operation can be written in the physical space as 

/oo 

G(x - x')u(x')dx' (1) 
-oo 

and in the spectral space as 

S(k) = G(k)u(k). (2) 
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where u is the one-dimensional velocity component, u is the filtered velocity, G(x) is the 
filter kernel in the physical space and G(k) is the filter kernel or the filter transfer function 
in Fourier space. The approximate deconvolution of the primary filter is given as 

N 

e„%c-' = £(/-cr. (3) 

The secondary filter, which affects only the small resolved scales, is constructed in ADM as 
a product of Qs and G [4] and the corresponding filtered velocity is expressed as follows: 

u=(QNG)*u. (4) 

o 

S The numerical evaluation of the filter operation, Equation (1), requires the quadrature 
rule. We select the box filter with filter width A as the primary filter and the trapezoidal 

2 integration rule and A = 2/J for physical LES scales. For this choice, the one-dimensional 
*, transfer function is 

". - 1 
a G(*)=-(l+cos*A). (5) 

a 
The discrete filter on equidistant mesh in the x direction is 

H 
.  I 

| u(x,) = du
0u(Xi) +    Jj   d,"«(xi+/), (6) 

1 '—u#o 
o 

$ where d" are filter coefficients computed by Loh et al. [14] using the numerical integration 
with trapezoidal rule over interval A spanning three neighboring points on a uniform mesh, 
i.e. A = 2h, where A is the filter width. The filtering in the simulations is done sequentially 

0 in each Cartesian direction. For the nonuniform mesh in the vertical direction, the discrete 
2 filter has the same form as given in Equation (6) but the filter coefficients are different, d", 
* with the explicit formulas given in Loh et al. [14]. 

•j Jcanmart and Winckclmans [15] proposed a significant simplification of the filtering 
procedure in Equation (4), which dispenses entirely with the the Van Cittert approximate 

| deconvolution in Equation (3). Indeed, using the formula for the sum of a geometric 
sequence 

Equation (3) is expressed formally as 

I-(l-G)N+l 

QN = K—~- , (8) 

and the transfer function of the ADM filter in Equation (4) becomes 

QNG = l-{l-G)N+\ (9) 
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i.e. the ADM filter Qs C on the LHS is easily implemented through the recursive application 
of the (/ - G) filter on the RHS. Also, the Equation (5), which is the transfer function of 
the stencil-3, second-order filter, can be rearranged as follows: 

/ 1 — cos(kh)\ T /kh\ 
G(k)=\-( _!_J) = 1-Sin2(—), (10) 

which immediately leads to the expression for the transfer function for the ADM filter (9) 

(0TO(*)=l-sin2<"+"(^). (11) 

Equation (11) is the transfer function of the high-order filter obtained from the recursive 
* application of the stencil-3, low-order filter (/ — G). This filter can be applied sequentially 

in each direction in three-dimensional space. In particular, the 1-D filter selected in this 
" work is Q$G, with the transfer function (1 - sml2(kh/2)). 

In a simulation with general finite difference schemes, the inability to represent the 
high wave number modes accurately results in the undesired dispersion error. This error 

< causes unphysical and rapid oscillations in the marginally resolved regions, which may lead 
to numerical instabilities and a break down of the simulation. To eliminate such spurious 
modes an artificial dissipation through additional damping terms is usually employed. The 

3 spectral methods used in this work are well known for high accuracy or spectral convergence. 
However, spectral convergence is achieved only when the spectral methods are applied to 
sufficiently smooth problems. The loss of fast convergence for the problems that have 
potential to develop non-smooth solutions in finite time undermines the advantages of 

•g spectral methods. Gottlieb and Hesthaven [16] reported the use of spectral filters acting in 
& a similar fashion as additional dissipative terms that help to stabilize simulations without 

affecting the spectral convergence. Besides the ability to retain the spectral convergence 
and stabilize the simulation, the filtering also decreases the aliasing errors. According to 
Gottlieb and Hesthaven [16], there is no unique choice of the filter function as long as 

2 certain basic requirements arc satisfied. The baseline DNS code employed for simulations 
£ in this work has been developed by Diamessis et al. [11] and employs the exponential filter 

<r(*) = 

1, 0<k<k, 

(12) exp[-a(^H ****»• 
where p is the filter order, N is the highest mode in the spectral domain, ki is the filter 
lag and a = — loge^ with e^ being the machine precision. The filter in Equation (12) is 
intentionally selected such that it affects only the high-frequency modes and its purpose 
is only to stabilize the numerical simulation and enhance the convergence rate of the 
approximation. 

The filtered solution fF may now be expressed in terms of the modes in Legendre space 
of the numerical solution as 

Nk-\ 

fF = 52<T(kj)fjPj{Zj). (13) 
;=0 
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Figure 1. One-dimensional transfer function. Dash-dot line: explicit primary filter; dashed line: 
secondary filter with N = 3; solid line: secondary filter with N = 5; dotted line: spectral filter as in 
Equation (12). 

where kj is the jth discrete Legendre mode. The filtering in Fourier space is done in the 
similar fashion [16]. 

Transfer functions for different filters described above are shown in Figure 1. By design, 
the exponential filter affects only modes in the vicinity of the mesh cutoff. The secondary 
filter in Equation (4) with N = 5 retains almost all information for scales k < kf, where 
k* = TT/(A) is the nominal cutoff wave number for the physical LES scales. This is the an 
important characteristic of the secondary filter compared with other candidate filters and 
is chosen on this basis for the current work. The scales between k* and the mesh cutoff 
k* = n/ h are strongly attenuated by the filter and play a role of the estimated SGS in TNS. 

The TNS equations are equivalent to the under-resolved DNS stabilized by the ex- 
ponential filter given in Equation (12). In the under-resolved DNS, the energy begins to 
accumulate in small scales and the long-time dynamics will be incorrect. The velocity esti- 
mation model [3] removes this accumulated energy by periodic filtering with the secondary 
filter of the form given in Equation (4). The time interval between applications of the filter 
has to be manually prescribed by the user in advance. The method would gain in generality 
if the filtering operation could be activated automatically based on a physically established 
criterion. 

To establish such a criterion, the combinations of an energy spectrum E(k) for the 
full turbulent velocity field and two secondary filters are theoretically considered. The 
secondary filters are built from the primary filters with different filter widths. We choose 
two filter widths, h and A, where h is the mesh size used in the simulation and A = 2h. 
The filter width h is related to the grid cutoff wave number, kh

c, by the relation k* = n/h, 
and the filter width A = 2/i is related to the LES cutoff wave number, kf, by the relation 
k* = ?r/(A). The filtered quantities obtained using the filters corresponding to the cutoff 
wave numbers k^. and k^ are denoted by tilde and hat, respectively. Figure 2 shows the 
attenuated spectra of the inertial, dissipation and k~x ranges. If the velocity field is filtered 
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Figure 2. Energy spectrum plot of the infinite inertial range. Thick solid line: energy spectrum; thin 
solid line: filtered energy spectrum with spherical tophat filter; dotted line: filtered energy spectrum 
with secondary filter, N = 5; dashed line: filtered energy spectrum, N = 3; dash-dot: filtered energy 
spectrum with primary filter; vertical dashed line: k*; vertical dash-dot line: Jfc* (a) energy spectrum 
plot with the filtered energy spectrum; filter with filter width A, and (b) energy spectrum plot with 
the filtered energy spectrum; filter with filter width h. 
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Table 1.   Filtered energy ratios. 

Energy spectrum Secondary filter; 1(A) N = 5 1(h) Hh) 
/(A) 

Dissipation 
Inertial 
Batchelor 

0.0896 
0.0234 
0.0699 

0.0061767 
0.00021466 
0.00068 

0.00689363 
0.009173504 
0.009728183 

2 

with the former filter, the corresponding spectrum of the filtered field is denoted as E(k) 
and the energy removed by the filtering in a range of wave numbers resolved in TNS up to 
jfc* = n/h is 

rk 

1(h) = i ' (E(k) - E(k))dk, 
Jo 

and the similar integral for the other filter. The expression 

(14) 

1(h) = tf (E(k) - E(k))dk 

'(A)      tf (E(k) - E(k))dk 
(15) 

is the ratio of energies removed by both filters in the range of wave numbers resolved in 
TNS. This ratio has been computed for the progressively shallower energy spectra, starting 
with the dissipation range spectrum form [17], the inertial range &~5/3 spectrum and the 
Batchelor's k~* spectrum. For illustration, in Figure 2(a) and (b) we plot the inertial range 
spectrum and the filtered energy spectra for two different filter widths. The results for the 
computed energy ratio are shown in Table 1. Depending on the spectrum, this ratio varies 
in the narrow range of between 0.007 and 0.010. We will use these bounds as guidelines to 
decide when the filtering in the simulations should be activated. 

In actual TNS for turbulent channel flow, the energy ratio is computed from the simu- 
lation data using the formula 

/ '(*) \   ,.* _ /1 £LiKfl» - 5»x«» - s*)]1 

W(A)/ 
(z) = 

SIM , { E«=I [("« _ "«)("" _ "»)] I SIM 
(16) 

where {) is a plane averaged quantity, followed by integrating it over z'- 

l(h)\ 

\I(&))SIM     L    \l(A)jSIM
{z)dZ- (17) 

When this last quantity exceeds the theoretical value (1(h)/I(&))Theory from Table 2, it is 
an indication that the small scales in TNS become too energetic. Therefore, when 

I(h)\ / 1(h) \ 

J^))slM
>\l(^))THfory 

(18) 

the filtering will be activated to attenuate the small scales. Thus, this condition serves as 
the automatic filtering criterion in TNS. 



Journal of Turbulence 9 

3.    Numerical simulations 

The method is validated in this study by performing LES of the incompressible turbulent 
channel flow because of the wealth of the experimental and the DNS data that can be used 
for comparison. The fluid is contained between two solid walls separated by the distance 
Lz. The horizontal domain has the dimension Lx for the streamwise direction and Ly for the 
spanwise direction. The no-slip boundary conditions are imposed on the upper and lower 
walls and periodic boundary conditions are applied in the horizontal directions. The code 
uses a pseudospectral numerical method based on the Fourier expansions in the streamwise 
and the spanwise directions and the Legendre polynomials in the vertical direction (see 
[11]). In the numerical method used in this paper, the spectral filtering is applied in both 
the Fourier and the Legendre spaces to maintain the stability and spectral accuracy of the 
solutions, and also to help in eliminating the aliasing effects. The MPI-based parallel solver 
was employed in the numerical simulations presented in this paper. The assignment of 
different sections of the computational domain to individual processors is based on one- 
dimensional domain decomposition, which partitions the domain in distinct vertical slabs 
of thickness Lx/Np and Ly/Np, when operating in physical (Fourier) space, where Np is 
the number of processors. The simulations were performed at the University of Southern 
California High Performance Computing Center's Linux cluster. In order to reduce the total 
computational time and cost caused by the interprocessor communication, the condition 
for the automatic filtering indicated in Equation (18) was checked at every 20 time steps, 
while the spectral filtering with the exponential filter given in Equation (12) was applied at 
every time step in the simulations. 

The TNS equations are the standard Navier-Stokes equations for incompressible flows 

>• 

o 

D 

3«; 3M;M; 1   3 5 32M; 
-r- + ——L = - + v —, (19) 
dt dXj p dXi dxjdXj 

dU; 
*7 = 0. (20) 

g where the tilde notation is used to indicate that the spectral support for a given quantity in 
discretized equations is not sufficient to capture all dynamically relevant scales of motion but 
is sufficient to resolve fields filtered with the filter given in Equation (4). The pressure term is 
decomposed into mean P{x) and fluctuating component p(x, t). For a given, constant mean 
pressure gradient driving the flow, the statistically steady state is eventually established in 
which r0 = —&(dP/dx), where r0 is the wall shear stress and S = Lz/2 is the channel half 
width. By introducing the shear velocity ux = (r0//o)l/2, the Navier-Stokes equations are 
rewritten as follows: 

)«,- dUiUj ( \   dp ul       \ d2Uj 

dt dXj \p dXj       S      )        dXjdXj 

A statistically steady state is established much faster if the constant mass flux is imposed 
instead of the constant pressure gradient. The constant mass flux in the simulations is 
enforced by setting the mean pressure gradient to the instantaneous wall shear stress at each 
time step, which is equivalent to using in Equation (21) the following expression for uT 

<K«i> 3("i> 
Ur(0 = J-v-t[i(Lz.t)+v-^-(0.t), (22) 

V        3*3 dx-i 
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where (...) indicates the plane averaged quantity. The above equations are normally nondi- 
mensionalized by the channel half width & = Lz/2 and the nominal friction velocity 
«o = (W/o)l/2 f°r tne constant pressure gradient case, i.e. r0 = -8(dP/dx), giving 

3JJ,      duiiti ( 1 dp        .    \        1      d2Uj 
—- + —— =-( --u2

r&j,) + —, (23) 
dt        dxi \pBxj        r  ')      Re0dXjdXj K    ' 

f- = 0. (24) 
dXj 

where Reo = ^ is the nominal Reynolds number. Note that the nominal Reynolds number 
Reo is used only as the parameter in the simulations and its value, while close, is usually 
different from the actual Reynolds number ReT — uzS/v based on the actual friction veloc- 
ity as shown in Equation (22). Only in the statistically steady state and in constant pressure 
gradient simulations Reo = Rer. The actual friction velocity nondimensionalized by UQ is 

Reo  ox-$ Reo  ax} 

- The parameters used in the simulations are gathered in Table 2 and the cases used for 
comparisons are collected in Table 3. The LES simulations were run until they reached the 
statistically steady state. In each case, the filtering criterion has been selected from the the 
range between 0.007 and 0.009 suggested by the theory. The comparison data in Table 3 

2 are taken from the literature. Cases TNSZ1 and TNSZ2 are the results from the LES using 
the velocity estimation model by Domaradzki et al. [3]. The case HiDNS is from Gilbert 
[18] at ReT =210. The DNS results at Rer = 2003 for the case HiDNS2 are from the work 
of Hoyas et al. [19]. The case HiDNS3 are the DNS results at Rex = 944 from the work 
of Del Alamo et al. [20]. The ratio of the total number of mesh points used in TNS and 
DNS shown in Table 2 demonstrates that TNS resolutions can be of the order of few tenths 
of 1% of the DNS resolutions. This indicates significant saving in term of computational 

| effort for TNS compared with DNS. 

>. a 

" 4.    Results and discussion 
o 

In this section, the results from the simulations for all cases from Table 2 are compared 
with the baseline data for cases listed in Table 3. The comparisons involve mean and RMS 
turbulent velocities. 

The Re 180 case is the classical test case at Rez =» 180 with the domain size 4TT x 27r x 2 
for which the detailed DNS data exist [18], The filtering condition is set to 0.008 resulting 
in the filter being turned on automatically every 360 to 580 time steps. The case is run 
for 24,000 times steps and is well converged to a statistically steady state when the data 
for plotting are taken. In Figure 3(a) we plot the mean velocity, and the RMS velocities 
are shown in Figures 3(b)-(d). The results for the case Re 180 are compared with the 
high resolution DNS results of Gilbert and Kleiser [18] (case HiDNS), TNS results of 
Domaradzki et al. [3] (case TNSZ1) and under-resolved DNS performed with the same 
resolution of 64 x 64 x 65 as for the LES cases Re 180 and TNSZ1. The mean velocity in 
the Re 180 case agrees quite well with both HiDNS and TNSZ1 cases. Only in the range of 
z+ between 7 and 15, the result from this simulation slightly over predicts results from those 
two baseline cases. This overshoot of the mean velocity is due to the slight under-prediction 
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Table 3.   Parameters for the reference simulations. 

TNSZ1 4n x In x 2 64 x 64 x 65 
TNSZ2 2.57T  X 0.57T X 2 96 x 128x65 
HiDNS 3.6;r xl.fex2 160 x 160 x 129 

Case               Domain size                Resolution             A*+ x Ay+ x Az+ Rex 

35.73 x 17.88 x 0.85 182 
78.62 x 11.79 x4.49 961 
14.85 x 7.83 x 0.063 210 

HiDNS2     8ff x 3TT x 2           6144x4608x633     8.3x4.1x8.9' 2003 
HiDNS3     8^x3^x2          3072 x 2304 x 385     7.6 x 7.6 x 0.032 944 

Note: aFor HiDNS2, Az+ = Az+M; for all other cases A;+ is the distance between the first grid 
point and the boundary. 

of the energy dissipation in the buffer region. The imbalance between the kinetic energy 
production and the dissipation is caused by less frequent filtering compared with the TNSZ1 
case. The under-resolved DNS underpredicts the mean velocity in the log region. In Figure 
3(b), the streamwise RMS velocity in the simulation is plotted together with all comparison 
cases as in Figure 3(a). The urms from simulation compares well with both baseline cases 
HiDNS and TNSZ1. The same trend continues for the spanwise RMS velocity shown in 
Figure 3(c), but the vertical RMS velocity is somewhat underpredicted for both Re 180 and 
TNSZ1 cases (Figure 3(d)). 

The second test case Re 1050 is LES performed in a domain with the size 2.57r x 0.57T x 
2, the resolution of 96 x 128 x 65 mesh points, at Reo = 1050. The results for this case are 
plotted in Figure 4 together with the experimental results from Wei and Wilmarth [21], the 

\ DNS results from Del Alamo et al. [20], the LES results from Piomelli [22] obtained using 
the dynamic Smagorinsky model, the LES results from Domaradzki et al. [3] obtained 
with the velocity estimation model (the case TNSZ2) and the results from DNS without 
any modeling but at the same low resolution of 96 x 128 x 65 as in two LES cases. The 
resolution chosen is the same as the one used for the case TNSZ2 in Domaradzki et al. [3] 
and comparable to the resolution used by Piomelli [22]. The filtering condition is set to 0.007 
and the filter is found to be activated every 350 to 620 time steps. The statistically steady 
state was reached after about 16,000 time steps. All LES mean velocity data, including 
the case Re 1050, are shown in Figure 4(a) and are in good mutual agreement, though they 
slightly overpredict the experimental data. Figure 4(b) shows the plot of the streamwise 
RMS velocity from simulation compared with other baseline cases. The agreement with the 
experimental data and the TNSZ2 data is good between z = 0 and z = 0.2, but the quality of 
comparison deteriorates for larger values of z. The vertical RMS velocity LES data shown 
in Figure 4(c) are in good agreement with the experiments throughout the entire domain. 
No results for the spanwise velocity are presented here because the experimental data for 
that velocity were not available for comparisons. 

This Reynolds number was also selected to investigate in more detail the dependence 
of TNS on the mesh resolution. It is well known (e.g. [22]) that the predictions of the 
mean velocity profile, RMS velocities and high-order statistics depend on the grid resolu- 
tion, particularly in the wall region. We have performed two additional TNS simulations 
at Reo = 1050 with increased resolutions. The case Rel050h is the LES performed in the 
same domain size as the one used in the case Re 1050, but with the grid resolution adjusted 
according to the discussion in Piomelli [23], Piomelli and Balaras [24] and the recommen- 
dations by Sagaut [25]. The main effect of the changed resolution is that the first mesh point 
away from the wall is at z+ < 1, as required for the wall-resolved LES. The Figures 5(a)-(c) 
show the plots obtained from the simulation for this case compared with the experimental 
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•i 

and DNS data from the same sources as the reference data used in Figures 4(a)-{c)- Thus, 
the mean velocity profile shown in Figure 5(a) improves. Also, for this resolution, the mean 
velocity for the under-resolved case is predicted quite well. This case uses only the weak 
stability filter of Equation (12) at each time step and, based on the prediction of the mean 
velocity, provides a sufficient substitute for an explicit SGS model. The TNS filter leads to 
noticeable improvements in the prediction of the RMS velocities over the lower resolution 
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Figure 3. Results from simulation of the case Re 180. Dashed line: Re 180; diamond mark: HiDNS; 
dotted line: TNSZ1; dash-dot line: under-resolved DNS; (a) mean velocity profiles, (b) streamwise 
RMS turbulent velocity, (c) spanwise RMS turbulent velocity and (d) vertical RMS turbulent velocity. 
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Figure 3.   (Continued) 

case Re 1050. The results obtained using the TNS filtering are also better than for the under- 
resolved case, though not much. The effective friction Reynolds number also shows the 
improvement in capturing the near-wall dynamics by the computational grid. However, there 
is still the overshoot of the streamwise component of the RMS velocity in near-wall region 
and the wall normal component of the RMS velocity in near-wall region is slightly under- 
predicted, indicating that the gird does not fully resolve the structures in the near-wall region 
which are significant in the turbulent energy production and for the SGS interactions. The 
case Re 1050h2 doubles the mesh resolution in the streamwise direction to satisfy the gener- 
ally accepted criteria for wall-resolved LES [23-25]. The results arc significantly improved 
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for the TNS case, but no further improvement is observed for the under-resolved case with 
the stability filter. The mean velocity profile and the RMS velocity plots agree very well with 
the DNS data as seen in the Figures 6(a)-(c)- The small overshoot in the buffer region is still 
present but the turbulent intensities in the log region are different from the intensities in the 
cases Re 1050 and Rel050h. There is no overshoot in near-wall region for RMS streamwise 
component of the velocity and the RMS wall-normal component of the velocity agrees very 
well with the DNS data. These results indicate that the grid resolution in the Re 1050h2 
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Figure 4. Results from simulation of the case Re 1050. Dashed line: Re 1050; triangle mark: Wei & 
Wilmart; dash-dot line with plus mark: Piomelli; dotted line: TNSZ2; dash-dot line: under-resolved 
DNS; diamond mark: HiDNS3; (a) mean velocity profiles, (b) streamwise RMS turbulent velocity 
and (c) vertical RMS turbulent velocity. 
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case in conjunction with the TNS procedure is able to resolve the near-wall dynamics. 
However, though the application of only stability filter allows to capture the mean flow, the 
prediction of the rms velocities for this case does not have the same quality as the full TNS 
method. 

Figures 7(a)-(d) show plots obtained in LES at Reo = 2000 in the domain size 2.57T x 
0.5JT x 2, and the resolution 256 x 128 x 131. The filtering criterion is set to 0.008 and 
the filter turns on automatically every 80 to 160 time steps. This is more frequent filtering 
than in previous cases, indicating that the simulations at high Reynolds number require 
more dissipation. The statistically steady state is reached after about 21,000 time steps. 
The comparisons are made with the under-resolved DNS and the HiDNS2 case, which is 
the fully resolved DNS of Hoyas and Jimenez [19], but in the larger domain 87T x 2M X 2. 
The resolution used in the Re2000Sh case is selected based on the observations from the 
cases Rel050h and Rel050h2 and also from the computational expense considerations. 
The mean velocity shown in Figure 7(a) slightly overpredicts the DNS results in the 
similar way as in the lower Reynolds number case Rel050h (Figure 5(a)). The quality of 
the prediction for the streamwise RMS velocity presented in Figure 7(b) is lower. LES 
overpredicts the peak of the urms from the HiDNS2 case and underpredicts the DNS results 
in the range z+ > 200. The remaining two RMS turbulent velocity components are shown in 
Figures 7(c) and exhibit good agreement with the DNS data at z+ < 800. The overprediction 
and the underprediction of the peak of urms could come from the insufficient grid resolutions 
in the near-wall region. Nevertheless, at this high Reynolds number, for the computational 
expense the quality of the low-order statistics is quite satisfactory. 
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5.    Conclusions 

The numerical code employed in this work uses spectral methods stabilized by a weak filter 
which allows it to run for all Reynolds numbers and resolutions considered. Despite the sim- 
ulations being stable, the results from such runs do not compare well with the baseline DNS 
and the experimental data, as expected from under-resolved DNS, unless very high resolu- 
tion is employed. It is thus clear that, beyond numerical stabilization techniques, additional 
turbulence modeling procedures are required to obtain physically correct results in simu- 
lations that do not resolve all relevant scales of motion. We have presented the LES model 
that utilizes the low-pass filtering operation as the only modeling tool. The entire procedure 
follows closely the previously developed TNS approach which uses the filter periodically 
to modify smallest resolved scales. In the present TNS implementation, the energy of these 
scales is monitored and the filter is turned on automatically whenever the energy exceeds a 
threshold defined by a specific criterion. We have tested the model on the turbulent channel 
flow problem at different Reynolds numbers, computational resolutions and domain sizes. 
Satisfactory comparisons among TNS results and various reference cases have been ob- 
tained. In particular, the quality of the results is comparable to the previous TNS procedure 
which uses a fixed time interval for the filtering as well as additional SGS-estimated velocity. 

The main goal of LES is to predict accurately low-order statistics using the lowest possi- 
ble numerical resolution. Because of that the grid resolutions used in the reported work were 
selected to test and study the dependency of the quality of low-order statistics' predictions on 
the grid resolutions, using guidelines from previous work regarding the wall-resolved LES 
of the channel flow. The cases Re 1050 and Re2000Sh were selected to test the proposed TNS 
method with coarse resolution. The overpredicted wall shear stress and the overshoot in the 

| near-wall region in urms show that the grid resolutions are not sufficient to resolve the struc- 
tures near the wall. The TNS filtering that provides SGS dissipation tends to overdissipate en- 

•g ergy in the log region as seen in the results for urms and wrms for these cases. When resolution 
g is increased, the quality of the results improves significantly. This is clearly seen in the plots 

of Urms for the cases Re 1050, Rel050h and R1050h2, where the overshoot in the near-wall 
2 region decreases when the grid resolution increases. The mean velocity profiles for these test 

cases also improve and this improvement makes the shear stress predictions more accurate. 
1 The case Re2000Sh was conducted to test the performance of our approach at high Reynolds 
>. number as the simulations would expect to depend more on the filtering to provide energy 

dissipation. Even though the simulations in these cases are done at high Reynolds number 
and the employed grid resolutions arc marginal, the predictions of the mean velocity profiles 

1 are reasonable. The improvement in the quality of the predictions using this approach at 
high Reynolds numbers should be expected as the grid resolution is increased further. 

In summary, we have shown that the TNS method is capable to produce quality LES 
results despite a lack of an explicit SGS model. In TNS, the smallest scales resolved by 
the mesh provide a model of SGS. They are modified periodically by the explicit filtering 
operation, which is triggered by a condition based on the analysis of the energy spectra 
in developed turbulence. We believe that the simplicity and the flexibility are the features 
of the method that should be appreciated. Like with any modeling procedure, there is 
always room for improvement. For instance, it is rather obvious that the filtering criterion 
will depend on the filter's form. However, one may conjecture that TNS results should be 
independent of the filter's form as long as the filter's effect is to substantially attenuate small 
scales while leaving the large scales unchanged and if the filtering criterion is derived for 
the specific filter used. We will investigate the dependence of the model on the filter form 
in the subsequent work. 
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1.    Introduction 

The equations for large eddy simulation (LES) are traditionally obtained by the filtering 
approach proposed by Leonard (1974) where a spatial filter that strongly attenuates 
scales of motion smaller than the prescribed filter width A is applied to the Navier- 
Stokes equations. If the filtered quantities are denoted by an overbar, the LES equations 
for an incompressible flow become 

d__   _a__ _    _i_9__       a2 d 
dt  %     dxj  l   3        pdxi dxjdxj   '     dij 1J' 

K*-°- <2) 

where iii = (111,112,113) = (u,v,w), p, and v are the velocity, pressure, and the kinematic 
viscosity, respectively, and r^ is the subgrid-scale (SGS) stress tensor 

Tij = UiUj — Ui Uj. (3) 

The form of equations (1) and (2) requires that the filtering and differentiation com- 
mute (Ghosal and Moin (1995), Vasilyev et al. (1998)). In practice, however, the above 
equations are frequently the starting point in SGS modeling without regard to formal 
requirements for their derivation in the filtering framework. The important point is that 
the LES equations have the form of the Navier-Stokes equations for the filtered velocity 
Hi plus the additional force term which is the divergence of the subgrid scale stress tensor 
(3), and which is required to close the LES equations. Various SGS models differ in how 
the SGS stress tensor is expressed (or modeled) in terms of the filtered velocity tij. 

Among SGS models the most important category are the eddy viscosity models. Their 
origin goes back to Boussinesq (1877) who proposed that the effects of turbulence can 
be accounted for by the viscosity increased over its value in laminar flows. With the 
advent of computers and attempts to perform general circulation simulations, the eddy 
viscosity concept was used by Smagorinsky (1963) to model "The lateral transfer of 
momentum and heat by the non-linear diffusion, which parametrically is supposed to 
simulate the action of motions of sub-grid scale,...", thus starting the modern era of LES 
and SGS modeling. There are a number of excellent reviews of theory and practice of 
SGS modeling in the eddy viscosity framework, e.g., by Galperin and Orszag (1993), 
Lesieur and Metais (1996), Piomelli (1999), Meneveau and Katz (2000), Pope (2000), 
and Sagaut (2002), and such methods are not addressed in this review. 

Despite its practical utility the eddy viscosity concept has not been accepted as a fully 
satisfactory solution of the turbulence modeling problem because it is not consistent with 
some observed features of turbulence physics. For instance, a purely dissipative character 
of the eddy viscosity does not allow such models to describe an inverse energy trans- 
fer (backscatter) observed in actual turbulent flows. The dynamic Smagorinsky model 
of Germano et al. (1991) formally allows for the backscatter but this may lead to unstable 
simulations. In practice various averaging procedures for the dynamic Smagorinsky coef- 
ficient are used to render the eddy viscosity a positive quantity. Nevertheless the dynamic 
procedure offers a significant improvement over the eddy viscosity models with constant 
coefficients. This is because the modeled SGS transfer is consistent with the actual en- 
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ergy transfer across the test cutoff, allowing the model to better represent energy drain 
from the resolved scales for a wider variety of turbulent flows. Yet this desirable feature 
may turn into disadvantage in some situations. One such situation is turbulence with 
rotation. Traditional eddy viscosity models encounter a number of difficulties when ap- 
plied to rotating flows (Speziale (1989), Squires and Piomelli (1995)) because the energy 
transfer from the large scales to the small ones is reduced, and consequently the energy 
dissipation decreases with rotation rate (e.g., Morinishi et al. (2001), Yeung and Zhou 
(1998), Jacquin et al. (1990)), requiring lower values of the Smagorinsky constant than 
for non-rotating flows. The dynamic procedure accounts for this effect but it also makes 
the Smagorinsky coefficient a spatially variable quantity. As shown by Horiuti (2001) 
and Kobayashi and Shimomura (2001) because of the latter feature the model violates 
transformation properties between inertial and rotating frame of reference. Rather than 
using such specific arguments sometimes more general arguments are invoked against 
eddy viscosity models. For instance, one may note that LES attempts to simulate scales 
which, by virtue of being fax removed from the dissipation range, are essentially inviscid; 
simulating them as dissipative scales through the use of an eddy viscosity appears as the 
contradiction. Listing such few limitations and contradictions is not meant to disqualify 
the eddy viscosity models. Indeed, the experience accumulated over many decades in 
this field is that the single most important requirement in turbulence modeling is that a 
model is globally dissipative, and the eddy viscosity concept guarantees this by design. 
However, the recognition of the above listed difficulties serves to motivate research on 
other approaches to the SGS modeling that seek improvements in the fidelity of LES pre- 
dictions without constraints imposed by the eddy viscosity concept. The main subject 
of this paper is a review of a collection of approaches to the problem of SGS model- 
ing, which do not use explicit eddy viscosity expressions. While no single approach has 
emerged to displace the current eddy viscosity models, the continuing progress in this 
area offers hope that such approaches may eventually become successful in simplifying 
the task of LES and in improving its predictive capabilities. 

2.    Similarity Models 

In well resolved direct numerical simulations full velocity fields are available. For a pre- 
scribed filter the filtered velocity can be computed numerically from the filter definition, 
often represented as a convolution integral with a given smoothing kernel G, 

Ui(x) = j G(x - x'; A)ui(x')dx'. (4) 

Similarly, for a given m the exact SGS stress tensor can be computed from its defini- 
tion (3). Independently, the modeled SGS tensor can be found using the known Hi and 
parameters of the model and both stresses can be compared, constituting the so-called 
a priori comparison. It was realized early by Clark et al. (1979), and later confirmed in 
independent investigations (Piomelli et al. 1988, Domaradzki et al. 1993, Liu et al. 1994), 
that the eddy viscosity SGS stress expressions correlate poorly with the actual stresses. 
This conclusion provided an original impetus for the search for the models that would 
improve the quality of a priori comparisons. The first model that offered a considerable 
improvement in this area has been proposed by Bardina et al. (1983) and is known as 
the similarity model. While the original reasoning leading to the model was more com- 
plicated, the final result can be viewed as the result of approximating the full, unknown 
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in LES velocity Ui, by the filtered velocity Gj which is known in LES 

Ui % Ui, (5) 

and using it in the definition (3), i.e., 

UiUj — m Uj . (6) 

The similarity model proposed by Liu et al. (1994) and O'Neil and Meneveau (1997) 
also uses the known, resolved velocity u~i as an approximation to the full velocity but 
the modeled SGS stress tensor (3) is assumed to be proportional to the resolved stress 
tensor Lij computed using a different filter, denoted here by a hat 

Tij W CLLij = CL [Ui Uj - Ur Uj ) . (7) 

The hat filter is wider than the overbar filter, therefore the expression for Ly reflects 
qualitatively the property of the exact SGS stress (3) where the underlying velocity Uj 
contains smaller scales than those that are retained by the application of the filter. Both 
expressions, (6) and (7), show much improved correlations in numerical and experimental 
a priori tests. 

However, the practical experience is that when such models are implemented in actual 
LES the simulation results quickly deteriorate, with the main culprit identified as an 
insufficient SGS dissipation (Liu et al. 1994). Because of that a number of so-called 
mixed models have been proposed that simply combine similarity models (to guarantee 
a good performance in o priori tests) and eddy viscosity models (to provide a good 
performance in a posteriori tests, i.e., in actual LES). The solution proposed by the 
mixed models is not entirely satisfactory. It is obvious that it is the presence of the eddy 
viscosity expressions that makes the mixed models work in actual LES. Since comparable 
LES results can be obtained with only eddy viscosity models it is not clear that the 
similarity component plays any useful role in LES performed with the mixed models. 
The stronger statement is that the need for adding the eddy viscosity expression to a 
similarity expression signifies the failure of the similarity concept as a SGS modeling 
approach. The current LES practice implicitly endorses this view through a diminishing 
emphasis on similarity models and a priori tests. Nevertheless, the understanding of the 
failure of the similarity modeling is useful in developing non-eddy viscosity models, to 
avoid similar mistakes on the one hand, and on the other to decide if the similarity 
concept is fundamentally flawed or if only its specific implementations are at fault. 

The reasons for the failure of the similarity models can be qualitatively understood 
if the general formula (7) is considered for sharp spectral filters with two wavenumber 
cutoffs k > k, where k is also the numerical mesh cutoff. This way all active LES modes 
are split into two bands: band 1 for 0 < k < k and band 2 for A; < k < k. The physical 

effect of the expression (u~i Tij - Ui Uj J has been elucidated in investigations dealing with 

the energy transfer in turbulent flows (Domaradzki et al. 1993, Kerr and Domaradzki 
1996). The first term in the difference describes the effect of nonlinear interactions among 
all resolved LES modes (band 1 and 2) on modes in the band 1 (the widehat filter). The 
second term describes the effect of nonlinear interactions among modes from the band 1 
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on modes in band 1 and 2. Sometimes it is convenient to use the notation T'*,m to indicate 
the energy transfer to band m caused by the nonlinear interactions between bands p and 
q (Domaradzki and Rogallo 1990, Domaradzki et al. 1994). With this notation the effect 
of the similarity expression on the energetics of the flow is represented symbolically as 

(rlll + r121 + j.221) _ (TUI + r112) (g) 

In the above expression the effects of energy redistribution within band 1 (term T111) 
cancel. The remaining terms describe the energy transfer from the band 1 due to inter- 
actions between band 1 and 2 (T121) and interactions of modes in band 2 (T221); they 
result in the energy loss by the band 1. The last term T112 is normally the energy gain 
in band 2 due to interactions among modes in band 1; but because of the negative sign 
it is an effective loss term for the band 2. The interscale energy transfer caused by the 
complete nonlinear term in LES equations, —d/dxj(ui Tij), accounts for all combinations 
of interacting bands and can be represented as follows 

(j.111   ,   jil21   ,   j.221\    ,   /J-112   ,   2^122   ,   rp222\ /g\ 

Based on observed magnitudes and signs of all terms in that expression (Domaradzki 
et al. 1994) it has an interpretation consistent with the classical picture of the turbulent 
energy cascade: the energy is removed from band 1 (terms T121 and T221) and deposited 
into band 2 (terms T112 and T122) while T111 and T222 have redistributive character. 
The principal role of a SGS model is to counteract the accumulation of the energy in the 
band 2 caused by this energy transfer process, i.e., to counteract the effect of terms T112 

and T122. However, the similarity expression (8) counteracts only one of the two active 
terms, T112, and also removes the energy from band 1 through the action of T121 and 
T221, essentially doubling the energy transfer from band 1 caused by the nonlinear term 
in LES equations. The result is that the model is deficient in removing the energy from 
the vicinity of the LES cutoff and unnecessarily increases the energy loss by the large 
scales in band 1 beyond what is already provided by the resolved nonlinear interactions. 
The quantitative analysis can be more complicated for different similarity expressions 
and because of the presence of the viscous and non-stationarity effects. Nevertheless, 
the above energy transfer analysis provides the qualitative explanation of the failure 
of the similarity concept in SGS modeling. Such a qualitative understanding may offer 
suggestions for improvements in this category of SGS models. 

3.    Deconvolution and Nonlinear Models 

The deconvolution models are based on the observation that, under certain conditions, 
the filtering operation can be inverted, thus providing the unfiltered quantity u, from 
the filtered one tZj. The convolution operation (4) in the Fourier space is 

Ui{k) = G(k)ui(k), (10) 

where for simplicity we assume a 1-D filter and the Fourier transform is indicated by the 
dependence on the wavenumber A;. The inverse operation can be formally defined as 
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m(k) = vi(k)/G(k), (n) 

and is possible if the division can be performed and the result is an integrable function. 
In the context of SGS modeling the inversion of filtering has been proposed first by 

Leonard (1974) and later by Germano (1986), though not in the form described above. 
Leonard (1974) showed that the SGS stress tensor can be reconstructed as an infinite 
series in the filtered velocity and its derivatives, with the lowest order term in the form 
known as the nonlinear model 

lJ     dxk dxk 

Germano (1986) introduced an exponential filter which has an inverse in a form of a 
differential operator. The inverse allows to compute the SGS stress tensor from the 
definition (3) and is also consistent with the nonlinear model in the first approximation. 
The expression (12) was first investigated as a SGS model by Clark et al. (1979) and 
subsequently also, among others, by Liu et al. (1994), Borue and Orszag (1998), Leonard 
(1997), Winckelmans et al. (2001), and Iliescu et al. (2003). In particular, Iliescu et al. 
(2003) clarified that the form of the model is a direct consequence of approximating the 
Fourier transform of a Gaussian filter by its Taylor polynomial expansion in filter width 
A and keeping terms up to the order A2 in the expression for the SGS stress. 

The modern approach to deconvolution methods in SGS modeling, including the 'de- 
convolution' terminology, has been introduced by Stolz and Adams (1999) (detailed 
review of that work is also provided by Domaradzki and Adams (2002)). These authors 
recognized that the conditions for the exact inverse of filtering operations are gener- 
ally not satisfied, but it is possible to use an approximate or regularized deconvolution. 
Specifically, Stolz and Adams (1999), and Stolz et al. (2001a) employ a power series 
expansion of van Cittert (1931), which assumes that the inverse filtering operator, if 
it existed, could be written as G_1 = J2•=o(I ~ ^0"' wnere I IS tne identity operator. 
Regularized inversion is obtained if this series is truncated at a certain N which becomes 
the regularization parameter, giving an approximate inversion as 

N 

ui^QN*ui = J2{I-G)n*ul, (13) 
n=0 

where the asterisk symbolizes the convolution. For a given filter the approximate in- 
verse is easy to implement because it is obtained by a multiple application of the filter 
operation to the filtered function. When used in SGS modeling the inverse (13) leads 
to Approximate Deconvolution Model (ADM) of Stolz and Adams (1999). A similar 
expansion was used by  Horiuti (2001), leading to a multi-level filtered model. 

Other approaches to the problem of deconvolution in SGS modeling have been utilized 
though often without introducing explicitly an inversion operation (what may be called 
an 'implicit deconvolution'). Shah and Ferziger (1995) expand the unfiltered quantity 
in the integral (4) in the Taylor series around an LES mesh point, which leads to an 
expansion for the filtered quantity in terms of the derivatives of the exact quantity. 
These derivatives can be subsequently approximated using finite difference formulas on 
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the chosen discretization stencil, leading to a tridiagonal system of equations for the 
unfiltered quantity. The solution of the system provides the deconvolved velocity which is 
then used in the definition of the SGS stress (3). Geurts (1997) constructs an approximate 
inverse operator by requiring that polynomials up to a certain order are recovered exactly 
from their filtered counterparts. Domaradzki and Saiki (1997) and Kuerten et al. (1999) 
work with a Fourier representation of a grid function, i.e., with discretized version of (10). 
For a number of simple filters, such as the top-hat or the Gaussian, the inverse for a single 
Fourier mode can be easily obtained, and from this the numerical inverse for the entire 
filtered quantity. 

The deconvolution offers a deceptively simple solution to the SGS modeling problem 
because it relies only on the definitions of the filter (4) and the SGS stress tensor (3) 
without any reference to the physics of turbulence. Since the need for the physical models 
is obviated this approach appears to be more promising than the classical models. The 
key word, however, is 'deceptively' because the closer inspection of the deconvolution 
concept reveals that its simplicity is only illusory. This is because the formal inversion 
formalism implicitly assumes infinite spectral support for both the unfiltered and filtered 
quantities. In such a case, if an inverse filter exists, the velocity Ui can be recovered exactly 
from the filtered velocity u, and Eq. (1) can be viewed as a result of a simple change of 
dependent variables in the full Navier-Stokes equation from U{ to Hi and both equations 
are formally equivalent. This fact has long been recognized, e.g. by Zhou et al. (1989), 
Domaradzki and Loh (1999), Langford and Moser (2001), Winckelmans et al. (2001), and 
Domaradzki and Adams (2002), who provided critiques of such exact inversion procedures 
as a SGS modeling tool. The essence of the criticism is that the formal approach does 
not account for the fact that in an actual LES Eq. (1) is solved in a discretized form with 
the numerical resolution much less than required to represent full Navier-Stokes solution 
U{. This is because, by design, the filter attenuates scales smaller than the filter width A 
and consequently the filtered velocity Ttj can be accurately represented on a mesh with 
the mesh size ALES ~ O(A), which can be much larger than the mesh size ADNS needed 
to represent the full Navier-Stokes field Uj in a direct numerical simulation. Therefore, 
in practical LES in addition to the explicit filter (4) an implicit projection of the field 
Hi is present that makes it possible to represent it on a finite mesh with the mesh size 
^LES ~2> &DNS- In Fourier methods the LES projection is equivalent to an implicit sharp 
spectral filter with the cutoff wavenumber kc = K/ALES- Because of the implicit filter 
the spectral support for the LES velocity TZj is much less than for the full velocity U{ and 
the formal inversion of the filtering operation can only recover the full velocity only up 
to the same truncation wavenumber kc as the original LES field Uj. 

The traditional notation in LES usually combines the effects of the explicit spatial 
filtering and of the implicit projection onto a grid into one symbol, the overbar, creating 
a potential for misunderstanding of the deconvolution formalism in the SGS modeling. 
In discussing the deconvolution approaches it is thus beneficial to separate both opera- 
tions using an explicit notation as proposed, for instance, by Winckelmans et al. (2001), 
Carati et al. (2001), and Domaradzki and Adams (2002). The latter reference reserves 
the overbar for the explicit, spatial filtering and the spectral LES truncation is denoted 
by the superscript '£' and its complement by '«S', i.e., the full velocity field is decomposed 
as 

ut = uf + uf. (14) 

Assuming that the spatial filtering and the spectral truncation commute, both opera- 



October      20,      2010 
maradzki'review'ijcfd'R2 

15:1 International      Journal      of      Computational      Fluid      Dynamics Do- 

tions are applied to the Navier-Stokes equation giving 

0 0 
*;"* +^riu'uj) 

1 d -rX o- 
dt dx< 

m*. 
pdxi dxjdxj 

(15) 

The filtered and truncated product of velocities in (15) can be rewritten as follows 

 =rC 

(UiUj)     = (u,£ UjC)     + (ufuf)   -(TH
C

U]
C
) TT-C ^-C\C + uf-uf + ufuf + ufuf (16) 

giving the following form of the LES equation 

_UI +__(ui w.) = 
i d T,C d2 

pdxi dxjdxj 
TTC       —— (-rrep 4- Tnrp\ (17) 

where 

T•P=(ufuf)     -(ufujC) (18) 

and 

r^=(uf«f + ufuf + ufuf) (19) 

The above form of the LES equations shows that the SGS stress tensor consists of two 
parts: r^ep, which results from the nonlinear interactions among scales represented on a 
numerical grid and T-"rp, which accounts for the the nonlinear interactions that involve 
scales that are not represented on a grid. 

If the spatial filtering operation is invertible, uf can be obtained from u7£, and r^ep 

can be evaluated without any SGS modeling. However, in such a case the term r"rp 

vanishes because defiltering does not recover subgrid scales 5 lost due to the projection 
of all quantities onto a coarse LES grid. Therefore, T\^

V
 would be the total SGS stress 

that can be obtained from a known LES velocity using the exact deconvolution. If T•J
V 

is neglected in the LES equation (15), the entire equation can be deconvolved giving 

Or Or     r.r 

M dxj 

1   d    r 
-—Z-P

L
 + V 

pOXi dxjdxj  ' ' 
(20) 

which is the Navier-Stokes equation for the resolved velocity ?tf. Therefore the application 
of such an exact deconvolution in LES is no different from solving the equivalent, Navier- 
Stokes equation for the de-filtered velocity on a domain truncated to the LES cutoff. In 
terms of numerical simulations it means that LES is equivalent to DNS performed on 
the coarse LES mesh and the LES results can be simply obtained from the coarse-mesh 
DNS data by the spatial filtering. At higher Reynolds numbers such DNS are generally 
under-resolved. In the case of isotropic turbulence at very high Reynolds numbers the 
dynamics of the resolved modes in such simulations will be essentially inviscid, leading 
to the cquipartition of energy. In such a state the energy flux between different modes 
vanishes on average and so does the associated SGS dissipation in the equivalent LES. 
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Therefore, the pure deconvolution formalism, when implemented on a coarse LES mesh 
will fail as a subgrid scale modeling tool for high Reynolds number flows. 

The main reason why the deconvolution models in actual numerical implementations 
seem to work is because they do not evaluate r"p exactly but rather approximate it, in 
the process generating an implicit expression of the similar form as (19). For instance, 
the approximate deconvolution model (ADM) of Stolz and Adams (1099) in its first 
formulation did not provide an explicit model for the term r"rp and yet excellent results 
were obtained for decaying compressible isotropic turbulence. In ADM an approximation 
for Ui is obtained from (13) 

N 
-r 

n=0 
wfif = J2(I-G)n*uf- = QN*U? , (21) 

where tilde in u~ indicates the approximation to the actual large scale component of 
the velocity uf that would be obtained from the exact deconvolution. The leading-order 
term of the deconvolution error is 

Svf = flf - u? = C,(-l)ti»+DA^«)^^£ (22) 
OXj 

where Cj depends on the filter kernel which is of order r, and a tensorial extension of (4) 
to multiple dimensions is assumed (Domaradzki and Adams 2002). Inserting uf for uf 
into (18) results in 

r[/P = (Ufuf)   - (uf ujc)C + (ufSuf + Sufuf + SufSuf) (23) 

with the last term, which is due to the regularized deconvolution, providing a model 
for r"rp. Clearly, such a model will depend on the primary filter and details of the 
deconvolution, e.g., parameter N, and thus lacks a physical basis. In high Reynolds 
number flows ADM suffers from insufficient dissipation and must be supplemented by 
a dissipative model for the term T*rp in (17), a problem similar to that faced by the 
classical similarity models. ADM with the relaxation term designed to provide additional 
dissipation has been proposed and evaluated by Stolz et al. (2001a,b). 

Thus the primary conclusion concerning defiltering procedures in LES is that such 
LES are fundamentally equivalent to under-resolved DNS because they neglect the term 
r"rp in Eq. (17) which is the only term that provides a physically realistic mechanism 
for the SGS dissipation. This term accounts for interactions with the subgrid scales 
with sizes below those that can be represented on the LES mesh and which cannot 
be recovered by the deconvolution procedures. In practical LES this equivalence may 
be obscured by additional numerical effects, e.g., an approximate deconvolution may 
provide a dissipation mechanism absent for the exact deconvolution. Nevertheless the 
subgrid scales not represented on the numerical grid cannot be produced by the formal 
inversion of a filter, either exact or approximate and, in general, there is no substitute 
for modeling their effects. In that respect the deconvolution models are no different from 
the similarity models: both do not contain information about actual subgrid scales and 
because of that require extraneous dissipation mechanisms, provided by eddy viscosity 
or relaxation expressions. 
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A different application of an explicit, convolution filter and its approximate inversion 
is regularization of the Navier-Stokes equations obtained by filtering not the full equa- 
tions but only the advective velocity, known as the alpha-model (Foias et al. (2001)). 
Holm and Domaradzki (2001) and Geurts and Holm (2003) showed that the regularized 
Navier-Stokes equations can be transformed into the usual LES form with the specific 
expressions for the SGS stress tensor. These expression are reminiscent of the generalized 
similarity/deconvolution models and thus both types of models are expected to behave 
in the same manner in actual LES. 

4.     Subgrid Scale Estimation Models 

In order to obtain nonvanishing r"rp the estimation procedures provide expressions for 
the the subgrid velocity u^ in terms of the large scale velocity uf. Such a modeled velocity 
is sometimes called the estimated subgrid scale velocity or the synthetic velocity. The 
total modeled velocity is then simply a sum of the known uf and the estimated SGS 
velocity u^ and is used to compute the SGS stress tensor from its definition (3). 

Scotti and Meneveau (1999) construct the subgrid scales from the known resolved scales 
using the fractal interpolation technique. The simplest application of the procedure gives 
the model that does not produce enough SGS dissipation. This deficiency can be corrected 
by tuning model parameters to get the best alignment of the computed SGS stress with 
the resolved rate-of-strain. Enforcing the best alignment is similar to the assumption 
underlying the eddy viscosity models. Another example of using synthetic fields is the 
so-called additive turbulent decomposition proposed by Hylin and McDonough (1999). 
Separate equations are written for large and small scales in the decomposition and the 
equations for the large scales depend explicitly on the small scales. The small, synthetic 
scales are constructed as stochastic variables determined from one-dimensional chaotic 
maps, substituted into equations for the large scales, and the equations are advanced in 
time. Kerstein (1999) developed the one-dimensional turbulence (ODT) model which has 
been evaluated in LES of free shear flows and wall bounded flows (Kerstein et al. 2001, 
Kemenov and Menon 2002). The essence of ODT is to represent a three-dimensional 
turbulent field through a one dimensional line of data, which in LES extends across a 
volume determined by the neighboring LES mesh points. The flow variables are defined 
along the line with the numerical resolution sufficient to explicitly account for viscous 
effects and provide a model for SGS quantities. The modeled SGS quantities are then 
used to calculate SGS fluxes needed to advance in time the LES equations. 

Rather than using one dimensional procedures, other approaches work with three di- 
mensional models of subgrid scales. Pullin and Saffman (1994) proposed that subgrid 
scales are a collection of vortical structures with prescribed properties. Stretching of these 
vortices by the resolved field provides the mechanism for the energy transfer from the 
resolved to subgrid scales, i.e., the mechanism for the SGS dissipation. With additional 
assumptions the analytical formulas for the SGS vortices allow to derive an expression 
for the SGS stress tensor which can be used in the LES equations. The model has been 
implemented in the spectral space by Misra and Pullin (1997) and in the physical space 
representation by Voelkl et al. (2000), and also applied to a passive scalar mixing by 
Pullin (2000). Modeling of subgrid-scale vorticity has been also explored by Kerr and 
Domaradzki (1996). In that work the subgrid-scale vorticity is confined to a range of 
wavenumbers outside the resolved range, used for de-aliasing of pseudo-spectral simu- 
lations. The model is based on the vorticity production in that range by the resolved 
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scales. The modeled subgrid-scale vorticity was used to compute the SGS quantities 
which compared favorably with the exact quantities in a priori tests. 

The subgrid-scale estimation model introduced by Domaradzki and Saiki (1997) at- 
tempts to model, or estimate, the unfiltered velocity field appearing in the definition of 
the subgrid-scale stress tensor. It consists of two steps. In the kinematic step an approx- 
imate inversion of the filtering operation is performed producing dcfiltered field uf. The 
next, dynamic, or nonlinear, step, generates the subgrid scales twice smaller than the 
smallest scales resolved on the LES mesh, producing a perturbation velocity uf. In order 
to be able to represent these subgrid scales a mesh finer than the LES mesh is explicitly 
introduced by halving the coarse LES mesh in each Cartesian direction. The full velocity 
Ui is approximated by the estimated velocity M* 

Ui « Ui = uf + uf. (24) 

The estimated velocity on the fine mesh is used to compute the SGS stress directly 
from the definition on the coarser LES mesh. The SGS estimation model was applied to 
LES of low Reynolds number incompressible turbulence in channel flow by Domaradzki 
and Saiki (1997), Domaradzki and Loh (1999), Loh and Domaradzki (1999), to spatially 
evolving compressible turbulence by Domaradzki et al. (1998), Dubois et al. (2002), and 
to Rayleigh-Benard convection by  Kimmel and Domaradzki (2000). 

The models described above share frequently with the similarity and deconvolution 
models the same problem of the insufficient SGS dissipation. The reason for that can be 
understood by noting that the SGS dissipation reflects coupling between resolved and 
subgrid scales which is induced by the Navier-Stokes dynamics. For instance, it is known 
that velocity fields obtained in spectral DNS lose the ability to sustain the energy flux 
characteristic of turbulence if phases of the complex velocity modes are randomized, even 
if their amplitudes are preserved. Only the dynamics through Navier-Stokes equations, 
acting over sufficiently long time, will induce the proper phase relationships between re- 
solved and subgrid scales that are required for the turbulent energy cascade. Therefore, 
the insufficient SGS dissipation in the estimation models implies that the estimated sub- 
grid scale quantities are deficient in modeling the phase relationships that are consistent 
with the Navier-Stokes dynamics. In the next section we describe models that address 
this deficiency. 

5.    Explicit Filtering, Implicit Dissipation, and Constrained SGS 
Models 

Domaradzki and Yee (2000) proposed an approach that addresses the insufficient SGS 
dissipation in the original estimation model at high Reynolds numbers without intro- 
ducing eddy viscosity expressions. The method is based on the observation that in the 
original estimation procedure a single act of nonlinear interactions among large scale, 
obtained through a single time step computation of the nonlinear term, determines the 
modeled perturbation velocity uf. However, the actual process of generation of sub- 
grid scales involves much larger number of nonlinear interactions, i.e. involving multiple 
computations of nonlinear term over many time steps, covering approximately one large 
eddy turnover time. This suggests that the realism of the modeled velocity field can be 
improved by allowing additional nonlinear interactions in its generation. This goal is 
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accomplished by allowing the total estimated velocity Hi, Eq. (24) to evolve according to 
the truncated Navier-Stokes (TNS) equations on the fine mesh 

d.     d . .      is.       d2   . 
TT.Ui + a—Ui Uj = —— p + v-—— m (25 
at        oxj poxi oxjOXj 

±ul=0. (26) 

The term 'truncated' applied to equations (25)-(26) refers not to the form of the equa- 
tions, which is no different from the form of the full Navier-Stokes equations, but to 
the limited numerical resolution used to solve these equations. The procedure consists of 
several steps, symbolically represented as follows 

Ui(t) dec•v- fif (i)-> [fif (i) + fif (*)] ^ fii(* + T) -» [«<(t +D - flf (*)] 'nf Hi(* + T). 
(27) 

The LES velocity Uj at time t is given on a coarse mesh and is first defiltered through an 
exact or approximate deconvolution, giving uf. This field is interpolated to a finer mesh, 
obtained normally by halving a mesh size for the coarse mesh, and the SGS velocity uf is 
generated using the velocity estimation model. The combined field is then advanced over 
time T using truncated Navier-Stokes equations (25)-(26), which results in enhancing 
nonlinear couplings between large and small scales. The purpose of the remaining two 
steps is to obtain the filtered LES velocity after the time period T. Note that rather than 
simply filtering the Navier-Stokes solution Ui(t + T), the original perturbation velocity 
at time t, uf(t), is first subtracted, followed by filtering and sampling of the result 
on the coarse mesh. The subtraction is introduced to avoid spurious dynamics by the 
combination of the estimation step and the reduction step. This way if the procedure is 
applied without the Navier-Stokes evolution the initial field u, is recovered exactly at the 
end of the reduction step, i.e., modifications of the filtered field Wj are caused only by the 
truncated Navier-Stokes dynamics of the estimated velocity Uj. For flows at high Reynolds 
numbers the fine mesh used is still far too coarse to resolve all relevant scales and the 
truncated Navier-Stokes equations would eventually lead to the unphysical equipartition 
of energy at large wavenumbers. The filtering and sampling to a coarse LES mesh, applied 
every period T, prevents the accumulation of the energy in the small scales. Therefore, 
the time T must be short enough to prevent equipartition but long enough to allow the 
sufficient nonlinear couplings between large and small scales to develop. It was found 
that the time T can be chosen as the eddy turnover time for the smallest resolved scales. 
Because the Navier-Stokes equations are used to induce nonlinear couplings between 
the large and small scales and thus the corresponding energy flux, the method is less 
dependent on the accuracy of the prediction for the initial estimated velocity uf (t). 
Even setting uf (t) simply to zero and allowing the truncated Navier-Stokes equations to 
generate subgrid scales over time T can often be sufficient to obtain accurate LES results 
as shown by Domaradzki and Horiuti (2001) and Yang and Domaradzki (2004). 

Operationally, the LES procedure (27) consists of a number of Navier-Stokes runs 
performed on the fine mesh without any explicit model and re-initialization, involving 
filtering and sampling to the coarser LES mesh, every time period T. Since all quantities 
between defiltering and filtering steps are represented on the fine mesh, and the Navier- 
Stokes equations are solved on the same mesh, the method can be further simplified by 
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removing the deconvolution part of the procedure entirely as suggested by Domaradzki 
et al. (2002). This modification uses only the large scale velocity uf obtained from the 
TNS solution by the appropriate filtering, symbolically 

«f (*)~>[«f (*) + Sf (*)] N^S Sf(* + T) f*-+   uf (< + T). (28) 

In simulations using (28) only a single, fine mesh is employed. For high Reynolds number 
flows the TNS method is thus equivalent to a sequence of under-resolved Navier Stokes 
simulations with periodic filtering of the numerical solution. There are several advan- 
tages of such an approach: since only a solution is periodically modified, an underlying 
Navier-Stokes solver can be used in the same form for DNS and LES; the method is 
easily generalized to model other nonlinear phenomena, e.g., convective or compressible 
turbulent flows, by periodically filtering corresponding flow variables; the difficulties with 
transformation properties for the modeled SGS stresses (Horiuti 2001) are avoided. The 
obvious problem with this approach is that the periodic filtering generates a discontinu- 
ous in time solution Uj. This problem is less serious than it appears because in LES one 
is interested only in the large scale component uf, while the small scale component uf 
is considered to be a model; by design, typical filters used affect only the small scales in 
the method and discontinuity in the large scales is minimized. The discontinuity can be 
entirely removed if the procedure is formulated in the framework of the LES equations 
coupled with the TNS (Domaradzki et al. 2002)). The TNS equations are advanced in 
time and at each time step a SGS stress tensor is calculated using the velocity iii 

(LES) r  I {.LbS) 
UuiUj) - m uA , (29) 

where the notation indicates that the SGS stress is computed from the estimated velocity 
Ui given on the fine mosh, using the overbar filter and sampling on a coarser LES mesh. 
The SGS stress computed this way is used as the approximation to the actual SGS stress 
to advance in time the LES equations (1) discretized on the LES mesh. The discontinuity 
in Ui, introduced by the periodic in time filtering, is considerably reduced by the overbar 
filtering and sampling involved in computing (29). This results in a smooth evolution of 
the LES velocity iij, more so that the SGS term in LES equations is much smaller than 
the resolved nonlinear term. Such considerations imply that the implementation of TNS 
described above is preferred; however, it is quite cumbersome and costly because two 
sets of equations on two different meshes must be solved numerically. Because of that, 
in practice the implementation (28) on a single, fine mesh is used and the discontinuity 
in the numerical solution is tolerated. 

The TNS method depends formally on the filter used and the filtering interval T. The 
filter dependence has not been investigated in detail but the dependence appears weak 
for filters that affect only the small scales, determined by wavenumbers between l/2fcc 

and fcc, where kc is the mesh cutoff. The filtering interval is a free parameter, normally 
chosen by trial and error, using the physical guideline that it is determined by the eddy 
turnover time of the subgrid scales. Once the optimal selection is made, the results of 
LES are only weakly dependent on the filtering interval; the variation within a factor 
of two gives acceptable results. Recently, Tantikul and Domaradzki (2010) have shown 
that for a prescribed filter, the filtering interval T can be determined automatically in 
the course of the simulations using a criterion based on the energetics of the modeled 
subgrid scales. This way, for a given filter, the method becomes parameter-free. 
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Another way of modifying the estimation concept to produce sufficient SGS dissipa- 
tion was used by Park and Mahesh (2008). They proposed the resolved subgrid scale 
estimation model (RSEM) which constraints the SGS stress to match, in the mean or 
least squares sense, the SGS dissipation of the dynamic Smagorinsky model for the same 
velocity field. The model does not have the eddy viscosity form, but the extraneous con- 
straint guarantees that the total SGS dissipation is comparable to that produced by a 
selected eddy viscosity model. 

The fact that TNS solves Navier-Stokes equations without any modeling terms is su- 
perficially similar to the so-called implicit LES, the approach that was originally proposed 
by Boris et al. (1992) and reviewed recently in the monograph edited by Grinstein et al. 
(2007). In ILES the Navier-Stokes equations, also without any SGS models, are solved 
numerically on a coarse LES mesh using higher-order nonoscillatory methods, such as 
total variation diminishing (TVD), flux-corrected-transport (FCT) and flux-limited and 
sign-preserving schemes (Sweby 1984, Zalesak 1979, Harten et al. 1987)), originally de- 
veloped to control numerical oscillations in problems involving steep gradients and/or 
discontinuities such as shocks. The ILES methodology was initially justified on the basis 
of a practical observation that truncation errors in such discretizations of Navier-Stokes 
equations introduce numerical dissipation and its effect is qualitatively similar to the 
effects of the explicit SGS models. For instance, Porter and Woodward (1994) report the 
development of the fc~5'3 energy spectrum in numerical simulations of decaying isotropic 
turbulence performed using piecewise parabolic method (PPM) implemented in an Euler 
solver, i.e., for equations without any explicit viscous terms. While such results can be 
used to support the ILES methodology, it is also possible to find counterexamples. For 
instance, Gamier et al. (1999) analyzed several different shock-capturing Euler schemes 
applied to decaying isotropic turbulence and the conclusions were less favorable. While 
it was possible to obtain the inertial subrange, the other results, e.g, pdfs of the velocity 
derivatives and pressure showed a behavior typical of low Reynolds number flows rather 
than expected from high Reynolds number LES. This behavior was attributed to the 
fact that the numerical dissipation was often much greater than the SGS dissipation 
computed for the same field using the Smagorinsky model. Based on these results ILES 
may provide substantially more numerical dissipation than expected based on the physics 
of turbulent cascade. Similar conclusions were reached by Domaradzki and Radhakrish- 
nan (2005) who showed that the ILES results for rotating and non-rotating turbulence 
were sensitive to the time step and the method failed to produce theoretically expected 
results for certain initial conditions and for rotating turbulence. Therefore, while ILES 
offers the ease of implementation because only Navier-Stokes equations are being solved, 
the uncertainty regarding the numerical dissipation may negate potential advantages. 

Recently, Hickel et al. (2006) demonstrated that the ILES methodology can be made 
viable by developing a specific method that respects the physical requirements for the 
energy transfer in turbulence. The method is based on a new nonlinear discretization 
scheme, the adaptive local deconvolution method (ALDM), which contains several free 
deconvolution parameters that allow to control the truncation error of the scheme. The 
free parameters are constrained such that the numerical viscosity optimally matches the 
theoretical eddy viscosity predicted by the analytical theories of turbulence. While the 
optimization was performed for isotropic turbulence, the parameters of the scheme can 
be used to simulate other turbulent flows without explicit SGS models. 

ILES and TNS are related to other procedures for underresolved simulations of tur- 
bulence that rely on purely numerical techniques to achieve stable simulations. In the 
so-called stabilized spectral LES (Minguez et al. 2009) the numerical stability is not pro- 
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vided by the truncation error of the numerical discretization (which is exponentially small 
for a spectral method (Boyd 2001)) but by the spectral filter applied at each time step 
that strongly attenuates the small resolved scales. In the same spirit Bogey and Bailly 
(2006) use an explicit filter applied every few time steps as a substitute for a SGS model 
in LES of a turbulent jet flow. However, one must be aware that simply guaranteeing 
numerical stability does not guarantee physically correct dynamics of the resolved scales. 
Therefore, the results from such LES have to be always compared with experiments and 
simulations, either fully resolved DNS, or LES performed with other models, to gain 
confidence that the method is not only numerically stable but also physically correct. 

In this section we have focused on procedures that use either explicit filters or im- 
plicit dissipation and/or constraints that result in the SGS dissipation of a model to be 
consistent with the turbulence dynamics. It appears that such approaches offer great- 
est promise in developing viable methods that are sufficiently dissipative and do not 
incorporate explicit eddy viscosity expressions in the governing LES equations. 

6.     Conclusions 

The traditional models of subgrid scale terms such as a stress tensor or a heat flux usually 
employ eddy viscosity concepts. The primary contribution of the eddy viscosity models 
is to provide the mean SGS dissipation, which can represent accurately the global energy 
flux if the model constants are properly chosen. However, many other features of SGS 
terms are poorly represented by the eddy viscosity models, providing a motivation for 
research on alternative approaches. In this paper we have focused on those modeling 
approaches that specifically exclude any use of the explicit eddy viscosity expressions in 
the LES equations, either in the main or in the supporting role. Such an exclusion allows 
to evaluate merits of each approach in its own right. We have discussed the similarity 
models, the deconvolution and nonlinear models, the estimation models, the implicit (nu- 
merical) models, and the explicit filtering of a numerical solution. There are a number of 
advantages offered by such methods. For instance, most of these models naturally provide 
both the dissipative forward transfer and the anti-dissipative backscatter of energy, con- 
trary to the eddy viscosity models that are purely dissipative. Such modeling procedures 
are good candidates for modeling strongly anisotropic flows because often their deriva- 
tions do not require assumptions of local isotropy and of the inertial range. Moreover, 
the modeling principles can be extended without difficulty to model additional physi- 
cal effects, e.g. the density variations in convective, stably stratified, and compressible 
turbulence. Finally, such methods also avoid difficulties associated with the transforma- 
tion properties between different frames of reference encountered by the classical eddy 
viscosity models. 

Despite the potential advantages listed above, many non-eddy viscosity approaches suf- 
fer from the insufficient subgrid scale dissipation, often leading to their failure in actual 
LES. When faced with the insufficient SGS dissipation the temptation is to add an eddy 
viscosity model. This, of course, largely defeats the idea of developing new SGS models 
because it is clear that it is the presence of the eddy viscosity expressions that makes the 
combined models work in actual LES. A better approach might be to try to understand 
the fundamental reasons for observed failures in the hope that they can be corrected. 
However, the reasons for the observed failures are not always clear in the literature on the 
subject. One of the goals of this paper was to provide heuristic explanations. The similar- 
ity model was shown to be deficient in removing the energy from the vicinity of the LES 
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cutoff and compounding the problem by increasing the energy loss by the large scales. In 
a particular case of an exact deconvolution the insufficient SGS dissiption was shown to 
be a result of the fundamental equivalence between the model and under resolved direct 
numerical simulations. The estimation model includes scales beyond the resolution of 
an LES mesh which, in principle, should provide a physically viable mechanism for the 
SGS energy transfer. However, even in this case the estimation models were found not to 
provide enough SGS dissipation for flows at high Reynolds numbers. In the algorithmic 
estimation procedures the source of insufficient SGS dissipation usually is attributed to 
an inability of the models to predict the proper phase relationship between known, re- 
solved scales and unknown subgrid scales. This relationship is a result of a complicated 
process, involving multiple nonlinear interactions between resolved and subgrid scales, 
acting over at least one large eddy turnover time, as well as of the pressure effects. These 
effects can only be captured using the dynamic equations for the subgrid scales as is 
done in the TNS approach. It is also possible to design an estimation-like model with the 
sufficiently high SGS dissipation if an extraneous condition is used that constrains the 
SGS dissipation of the model by the SGS dissipation of the eddy viscosity model for the 
same velocity field. ILES is another class of models that do not use explicit eddy viscosity 
expressions. In ILES only Navier-Stokes equations are being solved, thus offering a rela- 
tive ease of the implementation, but this advantage is largely negated by the uncertainty 
how the numerical dissipation is related to the actual SGS energy flux. The promising 
way around this problem is to constrain the numerical dissipation to be consistent with 
the eddy viscosity predicted by the analytical theories of turbulence. Finally, we have 
reviewed approaches that rely on the explicit filtering of a numerical solution. They fall 
into two classes. One uses explicit filtering to simply stabilize the numerics and counts on 
the correct energy removal rate from the system as a byproduct, making such approaches 
similar to ILES. Another, employs filtering coupled with the physical considerations of 
the energy transfer in turbulence to determine the filter strength and/or frequency of its 
application. The example of such an approach is TNS. 

In this review we have focused on general concepts of non-eddy viscosity approaches to 
subgrid-scale modeling without discussing results of specific LES performed with these 
SGS models. Such results are available in the quoted references and mostly deal with 
fully turbulent flows though transition to turbulence is sometimes addressed (Schlatter 
et al. (2004)). The non-eddy viscosity models are tested as any turbulence models 
using comparisons with available experimental and DNS data. Additionally, since the 
motivation is to replace eddy viscosity models, comparisons against benchmark LES 
results obtained with eddy viscosity models are common. The latter dictates that the 
numerical resolution and the time step are the same or comparable for both types 
of models. For instance, tests of TNS reported recently by Tantikul and Domaradzki 
(2010) for turbulent channel flow for ReT varying from around 200 to 2000 use a grid 
that is appropriate for LES performed with the dynamic Smagorinsky model (Piomelli 
(1993)) and consistent with the requirements for wall resolved LES (Sagaut (2002)). 
The total number of mesh points used in such LES can be as low as a few tenths of one 
percent of a DNS resolution, giving significant savings in terms of computational effort. 
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