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 ABSTRACT
Finite element modeling is being adopted in the design of ultrasonic transducers and imaging arrays.
Impetus is accelerated product design cycles and the need to push the technology.  Existing designs are
being optimized and new concepts are being explored.  This recent acceptance follows the convergence of
improvements on many fronts: necessary computer resources are more accessible, lean, specialized
algorithms replacing general-purpose approaches, and better material characterization

The basics of the finite element method (FEM) for the coupled piezoelectric-acoustic problem are
reviewed.  We contrast different FEM formulations and discuss the implications of each: time-domain
versus frequency domain, implicit versus explicit algorithms, linear versus nonlinear.  Beyond discussions
of the theoretical underpinnings of numerical methods, the paper also examines other modeling ingredients
such as discretization, material attenuation, boundary conditions, farfield extrapolation, and electric
circuits.

Particular emphasis is placed on material characterization, and this is discussed through an actual "model-
build-test" validation sequence, undertaken recently. Some applications are also discussed.
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 1. INTRODUCTION
Until recently, medical transducer designers relied almost exclusively on 1D analytical models and
experimental prototypes.  Now, many employ comprehensive finite element simulations for transient, 2D
and 3D analyses.  Effectiveness of their modeling is proportional to accuracy and completeness of material
measurements, fidelity of geometrical and manufacturing process details, and the modeler's skill with
numerical experiments and design strategies.  Modeling skills rely on an intuitive understanding of the
transducer's operational parameters and the overall design problem.  This requires either years of
experience or focused, practical training.  Without such skills, modeling is often used poorly and results
may be misinterpreted or erroneous, leading to wasted resources and market opportunities.  As personal
computers, modern finite element algorithms, and user interfaces make 2D/3D modeling more accessible,
the required skill set needs to be taught quickly and efficiently to an eclectic mix of users.

Therefore, in our role as code developers, users, and trainers, we have sought a simple yet practical basis
for teaching transducer fundamentals and the finite element modeling paradigm.  The most direct basis
would be closed-form solutions, but transducers generally have too many characteristic lengths for simple
mathematical analysis.  However, note that each segment of a typical medical transducer has a fairly short
extensional resonance length, e.g., | O/2 for the piezoceramic and | O/4 for the matching layer(s).  These
fractional-wave dimensions suggest that relatively low frequency coupled oscillators rather than
propagating waves can provide a simple, intuitive model of device physics.  Although oscillator models
cannot be quantitative, in general, they provide the simplest, complete representation of 1D
electromechanical transducer behavior.  This approach appears to have been passed over in the transducer
literature and as a teaching aid.  To this end, Section 2 examines simple spring-mass models that
demonstrate basic device behavior and as well as introduce finite element fundamentals, given that springs
and masses are the simplest "elements" of discrete numerical modeling.
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We then proceed in Section 3 to generalization of these electromechanical models, leading to the full 3D
finite element formalism. This was first developed by Allik and Hughes in 1970 [1]. Although in use since
then for analysis of low-frequency underwater projectors [2], its adoption in the medical ultrasound
community remained limited until the early 1990's. The investigation of the then new 1-3 piezocomposites
accentuated the need for such comprehensive modeling, as exemplified by the work of Hossack and
Hayward [3]. The work of Lerch [4] emphasized the need for transient response modeling and non-uniform
damping in realistic applications, features lacking in then available commercial software. It is the adoption
of explicit wave propagation algorithms in PZFlex [5-11] however that made realistic transducer
simulations practical. With demonstrated speed/size advantage factors of 100 over conventional implicit
algorithms, broadband imaging transducer models became tractable on desktop computers. The point is that
software used in a production capacity must rely on specialized algorithms rather than general-purpose
ones. To this end, we contrast different FEM formulations and discuss the implications of each: time-
domain versus frequency domain, implicit versus explicit algorithms, and linear versus nonlinear schemes.

Beyond discussions of the theoretical underpinnings of numerical methods, we examine in Section 4
modeling issues from the analyst's perspective: discretization, material dissipation, boundary conditions,
farfield extrapolation, and electric circuits. The "quality" and "cost effectiveness" of the model depends on
the proper use of these ingredients. We review their underlying assumptions and provide guidelines for
optimal use.

Accuracy of the finite element model also hinges on accuracy of the material constitutive properties, and
those provided in manufacturer specification sheets are often incomplete, if not inaccurate. Section 5
examines material characterization issues in the context of a recently undertaken validation exercise based
on an incremental "model-build-test" analysis of a nonproprietary 1D biomedical imaging array. This
sequence of component and device validations provides an excellent opportunity to identify
characterization procedures that work and those that require further refinement, all while displaying its
impact on the resultant finite element solution. Ultimately, validated and established characterization
protocols are critical if numerical modeling is to serve as a "virtual prototyping" tool.

Some recent applications and studies are briefly discussed in Section 6, mainly to highlight some of the
important points made earlier, to mention new ones that could not be discussed in detail in the body of the
paper, and to provide some references to a broader range of applications.

 2. COUPLED OSCILLATOR MODELS OF RESONANT TRANSDUCERS
Each segment of a typical medical transducer has a fairly short extensional resonance length, e.g., | O/2 for
the piezoceramic and | O/4 for the matching layer(s).  These fractional-wave dimensions suggest that
relatively low frequency coupled oscillators rather than propagating waves can provide a simple, intuitive
model of device physics.  Although oscillator models cannot be quantitative, in general, they provide the
simplest, complete representation of 1D electromechanical transducer behavior. As such, they are valuable
in illustrating the "fundamentals".

To this end we examine what amounts to spring-mass models of transducer stack elements.  These are the
most fundamental electromechanical analogs and can be developed intuitively, as follows, or from more
rigorous matrix structural analysis and finite element concepts.  In particular, piezoelectric constitutive
relations for the spring are derived from the continuum relations and applied to the simple harmonic
oscillator.  This is generalized to a coupled oscillator representing the lowest-order resonances in a
piezoelectric transducer stack, i.e., backing, piezoelectric, matching layer(s), and water load.

2.1. Equations of motion and constitutive relations
The basis for approximate dynamic models, in general, is (1) assumption of a specific strain function, e.g.,
constant or linear, and (2) mass distribution, i.e., consistent or lumped.  This is the foundation of matrix
structural analysis [12], the predecessor of finite element methods.  The strain function assumption yields
ordinary differential equations in time by reducing the infinite degrees of freedom to a finite number, while
the mass distribution assumption simplifies time integration.
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Consider a 1D piezoelectric bar with length L and area A, electroded on the ends and poled lengthwise.
Longitudinal displacement is u(x,t), governed by the partial differential equation
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where x is the space coordinate, t is time, U is material density, and T(x,t) is longitudinal stress.  Boundary
conditions are specified on u or T, along with initial conditions.  The piezoelectric constitutive relations
between stress T, strain S = wu/wx, electric field E, and electric displacement D are

eSEDeEScT SE
� � H, (2.2)

where Ec  is elastic stiffness under constant electric field, e is the piezoelectric stress constant, and SH  is
electric permittivity under constant strain, e.g., see [13].  Because 0 �� D  (divergence condition on
electric displacement) and the absence of free charge, D(t) is uniform over the bar.

The simplest approximation of the bar's dynamics follows from the constant strain assumption and mass
lumping.  This is equivalent to a linear spring separating equal end masses m = UAL/2, as shown in Fig. 1.
End displacements u1 and u2 are the degrees of freedom, whence governing equation (2.1) simplifies to the
ordinary differential equations
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where Fspr is the spring force and F1, F2 are external forces applied at each end.  Multiplying (2.2) by A
and defining spring force Fspr{-AT, electrode charge Q { AD, spring compression u { u1 – u2 { LS, and

voltage V { LE yields the piezoelectric spring constitutive relations

ueVCQVeudukF S
m

E
spr ˆ,ˆ � ��� � (2.4)

LACLAeeLAck SSEE /,/ˆ,/ H{{{ (2.5)

where kE, ˆ e , and CS are spring stiffness, piezoelectric force constant, and capacitance, respectively.  Note
that the spring equation is generalized above to include rate dependent mechanical damping through dm.
The sign convention on u is positive for compression and negative for extension. The spring idealization,
governing equations, and constitutive relations are illustrated in Figure 1.
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Fig. 1. Longitudinal piezoelectric oscillator (left) of length L and area A, and the
equivalent simple harmonic oscillator model (right), showing the corresponding
piezoelectric constitutive relations (above) and governing equations (below).

2.2. Simple harmonic oscillator solutions
Combining the spring-mass equations of motion and the spring constitutive relations yields two ordinary
differential equations governing the piezoelectric oscillator.  For example, consider the symmetric problem,
i.e., F1 = -F2 = Fext and u1 = -u2, whence (2.3) and (2.4) yield

1111 ˆ2,ˆ22 ueVCQFVeukudum S
ext

E
m � � �� ��� (2.6)

Two canonical cases of interest are the "send" problem defined by voltage input and displacement output,
and the "receive" problem defined by external force input and voltage output.



4

For the send problem, the differential equation and constitutive relation for current i = d Q� /dt are

1111 ˆ2,ˆ22 ueVCiVeukudum SE
m �

�

��� �  �� (2.7)

When the prescribed voltage is time harmonic, tjeVtV Z

0)(  , steady solutions are tjeutu Z
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Electromechanical response is given by the electrical impedance, i.e., voltage divided by current,
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For the receive problem assume that current vanishes, hence, Q = Q0 = 0 (without loss of generality, since
Q0 produces static compression and voltage that are removable by redefining equilibrium position and
ground potential).  The governing equation and constitutive relation for voltage become

0ˆ,22 1111  � �� ueVCFukudum S
ext

D
m ���

(2.10)

where kD is the stiffened spring constant
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and K is the piezoelectric coupling constant.  For time harmonic external force, tj
ext eFtF Z

0)(  , steady

solutions are tjeutu Z
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Output sensitivity is defined as voltage divided by force,
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These simple, closed-form solutions exhibit most of the piezoelectric resonator characteristics that are of
interest to the designer and modeler.  Of course they are crude approximations despite being complete
representations of 1D transducer physics.  In contrast, more comprehensive models of the type described in
this paper provide more complete, quantitative answers but without simple functional relations.

2.3. Coupled harmonic oscillator solutions
Generalizing the single piezoelectric oscillator described above to a coupled oscillator representing a
transducer stack is straightforward and illustrated in Figure 2.  The piezoelectric ceramic and matching
layer(s) are replaced by piezoelectric or elastic springs with half of the mass lumped at each end.  The
water and backing loads are represented by dashpots with coefficient d = ImA where Im is mechanical
impedance of the load medium and A is cross-sectional area of the stack.  This follows from 1D wave
theory, which states that pressure p and velocity x�  are related as p = -Imx�  where Im { Uc is the
mechanical impedance of the medium.

Consider the single matching layer case.  Coefficients and spring forces are
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where vLb and vLw are wave speeds (longitudinal) in the backing and water load.  For simplicity we ignore
intrinsic damping in the matching layer and piezoceramic.  Equations of motion for the three masses are
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The input is driving voltage tjeVV Z

0 , hence, we seek the time-harmonic solutions
tjtjtj euueuueuu ZZZ

033022011 ,,    (2.16)

Substituting yields the symmetric, tri-diagonal system of equations
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This system of equations representing the forced vibration problem is easily solved as
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Intrinsic material damping in the piezoelectric and matching layer is included by letting

222111 , mm
EE djkkdjkk ZZ �o�o (2.20)

in these equations, where dm1 and dm2 are the mechanical spring damping coefficients.
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Fig. 2. Coupled harmonic oscillators representing the basic transducer stack with a
single or double matching layer.
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On this basis, closed-form solutions of coupled piezoelectric oscillator models are easily studied.  They are
the manifest, low order limit of representations ranging from electrical analogs like Mason and KLM
models, to 1D wave propagation models, to broadband (transient) 2D and 3D finite element models.  In
terms of utility, such models have proven convenient as a "trivial" mathematical basis for demonstrating
generic device behavior, and more specifically, for teaching fundamentals, illustrating matching layer
design issues, and qualitative interpretations of transducer experiments and numerical simulations.  More to
the point, they are the archetype for 2D/3D finite element transducer models and an intuitive guide to
proper electromechanical device modeling, particularly if the engineer's background has focused on
electrical analog interpretations.

 3. ALGORITHMIC FORMULATION OF PIEZOELECTRIC FINITE ELEMENTS
The concepts illustrated by the simple oscillator models above are generalized to full 3D behavior next,
leading to the complete finite element formulation. This entails a dimensionality extension of course, but
mainly raises the issue of effective computer-based solution schemes.

3.1. Governing differential equations (strong form)
Conventional polarized ferroelectric ceramics used in the manufacture of ultrasonic transducers are
governed by the constitutive relations for linear piezoelectricity [13] and by the equations of mechanical
and electrical balance. The electric balance is assumed instantaneous and decoupled, i.e., the quasi-static
approximation of the electric field relative to the mechanical field. The governing equations are thus
expressed:

ESeDEeSCT ��� ��� 
sTE
HH, - constitutive equations- (3.1)

Tu �� ��U - momentum balance - (3.2)

0 �� D - electric balance - (3.3)

with I�� �� EuS ,s

where T, S, E, D are the mechanical stress, mechanical strain, electric field and electric displacement
vectors, respectively. CE, HHs, e are the matrices of stiffness constants at constant electric field, of dielectric
constants at constant strain, and of piezoelectric coupling constants, respectively. u is the mechanical

displacement vector and 22 tww uu�� is the acceleration, each superposed dot "." denoting one time

differentiation. I is the electric potential (voltage). To complete the description of the problem, equations
(3.1)-(3.3) are complemented by appropriate boundary conditions, such as prescribed displacements or
voltages, and applied forces or electric charge. These equations are the 3D counterparts to (2.1) and (2.2),
with scalar quantities now replaced by matrices.

3.2. Semidiscrete finite element equations
The finite element method (FEM) is an approximation of the governing equations that is particularly well
suited to computation. Whereas the differential form of the governing equations requires the solution to be
exact at every point in space, the FEM is based on an equivalent variational or "weak" statement that
enforces the "exactness" of the solution in a weighted average sense over small sub-regions of the space
(the finite elements). For the class of formulations considered here, convergence and uniqueness of the
solution can be established mathematically. In other words, error bounds on the approximation can always
be determined and the approximation can always be improved such that the weighted error tends to zero at
the limit, or equivalently, the finite element solution tends to the exact solution. In practice though, one
does not require a zero error, but an error small enough to be insignificant compared to other sources of
uncertainty (e.g., experimental errors in determining material properties, geometric dimensions,
manufacturing tolerances), commonly lumped under the "umbrella" of noise.

The FEM requires the domain of the problem to be subdivided into small discrete finite elements: 4-node
quadrilateral in 2D or 8-node hexahedron in 3D, for example. The solution sought is expressed in
polynomial expansions with the coefficients of the polynomial being the value of the solution field at the
finite element nodes. In other words, the FEM solution vector consists of the displacement values ui and
electric potential values Ii at nodes i; the displacement and voltage fields at arbitrary locations within
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elements are determined by a linear combination of polynomial interpolation (or shape) functions Nu and
NI, respectively, and the nodal values of these fields as coefficients:

)().,,()().,,(),,,( tzyxtzyxtzyxu ee
uu uNuN   (3.4a)

)().,,()().,,(),,,( tzyxtzyxtzyx e HH

)))) III NN   (3.4b)

where superscript "e" denotes quantities associated with a given element. Equations (3.4) highlight key
characteristics of the FEM as opposed to Rayleigh-Ritz methods, namely:
1) The nodal "unknowns" of the problem have physical significance (e.g., displacement) and are not just

expansion coefficients.
2) FEM interpolation functions are local or element-based, implying the solution within an element is

entirely determined by the solution at that element's nodes. It is this localization that permits element-
by-element operations, and therefore allows the FEM to solve large-scale complex problems as an
assembly of tractable, elemental contributions.

When the shape functions are taken to be linear, the strain distribution within the element is constant, just
like the spring in Section 2. In that spirit, the quadrilateral/hexahedron continuum elements can be viewed
as 2D/3D spring and mass combinations.

Incorporation of the spatial discretization (3.4) into the above mentioned variational statement results in a
semidiscrete finite element system of linear algebraic equations, expressed in matrix form as follows:

FKuKuCuM  ��� ))Iuuuuuuu ��� (3.5a)

QKuK  � ))III

T
u (3.5b)
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- piezoelectric coupling matrix - (3.6c)
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HH - dielectric stiffness matrix - (3.6d)

Cuu is the mechanical damping matrix, F and Q are the nodal mechanical force and electric charge vectors,
respectively, and u and )) are the nodal displacement and potential vectors, respectively. The scheme by
which elemental contributions are assembled to form the global system matrices is represented by the

element assembly operator 
nel

e 1 
A . This element assembly process is akin to the simple one shown in (2.14),

leading to (3.5) which is the 3D time-domain counterpart of (2.17).

Equation (3.5a) governs the mechanical or elastic portion of the problem, while equation (3.5b) describes
the electrical field, and both are coupled through the piezoelectric coupling matrix. For passive materials,
the coupling is null and equation (3.5a) fully describes the behavior of elastic materials. We note that
inviscid and irrotational fluid (acoustic) media are sometimes more conveniently described by potential-
based formulations [4,5], which we shall not describe here for the sake of brevity. Equations (3.5) are
referred to as the semidiscrete FE equations in that space has been discretized whereas time is still
represented as a continuous function. To solve such a system, assumptions and/or approximations on the
time dimension must be made.

3.3. The time dimension and associated solution algorithms
Frequency-domain analysis: When the dynamic phenomenon is steady-state, with periodic forcing function
and response at circular frequency Z = 2Sf, time dependence can be eliminated from the problem and the
system unknowns convert to harmonic complex variables:

(.)(.),(.)(.),ˆ,ˆ 222
ZZZZ
� ww ww  tjtee tjtj

))))uu (3.7)
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The FE equations (3.5) then reduce to a complex symmetric non-hermitian matrix system requiring an
implicit solver. Direct implicit solution by Gaussian elimination is only practical in 2D because 3D leads to
prohibitively large system bandwidth and memory needs. For larger problems, iterative solvers are
indicated. For problems free of material and radiation damping, the system is positive definite and the
conjugate gradient (CG) method is appropriate. In realistic situations though, various attenuation
mechanisms (e.g., water loading) result in a typically indefinite system requiring more general iterative
solvers such as GMRES [14] and QMR [15]. In practice, the utility of frequency-domain formulations
diminishes as the phenomenon of interest involves multi-modal behavior, especially at higher frequencies.
Even in transducers intended for steady-state operation, one typically analyses the spectrum around the
narrow operational band to insure modal "purity", and that requires resolving the response over several
discrete frequencies, with one full system solution for each. That is not to say that the utility of examining
the data in the frequency-domain is diminished, since it is a concise and convenient visualization of
complex behavior, but rather argues to the inefficiency of the algorithmic approach in such instances. In
others words, the solution domain should be dictated by computational efficiency since the data can always
be viewed in any desired domain through relatively speedy post-processing conversion by FFT. Many of
the early FE implementations for piezoelectric dynamics were formulated in the frequency domain, most
likely because of the early concentration on low-frequency sonar applications and the relative simplicity of
extending real arithmetic elastostatic FEM to complex arithmetic harmonic elastodynamics FEM.

Eigenvalue/Eigenmode extraction: Classical eigenanalysis for extraction of natural frequencies and
associated modal shapes also requires matrix factorization, whether direct or iterative, and these can be
found in many textbooks. It should be noted though that eigenanalysis becomes computationally difficult as
modal separation diminishes at higher resonances, and that the eigensolution only pertains to energy
conserving (i.e., undamped) systems. Attenuation effects due to water loading or material damping are not
accounted for. When damped modes are of interest, one needs to analyze the forced vibration problem (in
either the frequency or time domain) for a range of the spectrum, identify resonances, and then extract the
displacement field (i.e., mode shape) at these resonant frequencies.

Time-domain analysis: When transient or broadband signals are of principal interest, the temporal evolution
of the system is best resolved through step-by-step time integration schemes. It is also the only solution
approach if nonlinear phenomena are involved. There are many ways to determine the current solution at
time tn+1 from known solutions at the previous time step tn (algorithms involving higher order time
approximations will involves several past time levels, but these tend to be reserved for special situations in
view of the associated computational burden). The Newmark family of time integrators is widely used in
mechanical dynamics. It assumes a constant acceleration a = w2u/wt2 over a small time interval (time-step)
't and insures 2nd order accuracy in the temporal approximation. It takes on the following form when
applied to the mechanical FE equation (3.5a):
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Different choices of the Newmark parameter E result in temporal integrators optimized for different classes
of problems:

Implicit methods (e.g., E = 1/4) couple current solution vectors, hence, the global system of equations must
be solved at each time step. The LHS in (3.8) involves a matrix factorization (e.g., by Gaussian
elimination) that is an expensive operation requiring a computational effort of order 2(n2

node) ~ 2(n3
node)

and storage of order 2(n2
node). The advantage of implicit schemes is unconditional stability with respect to

the time step. Implicit methods are typically indicated for statics (e.g., electrostatics (3.5b)), low-frequency
mechanical or inertial dynamics, and diffusive processes (e.g., thermal diffusion) described by parabolic
PDEs, where temporal gradients are substantially smaller than spatial ones.
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Explicit methods decouple the current solution vectors and eliminate the global system solve, but they are
only conditionally stable, i.e., there is a time step limit (CFL condition [16]) beyond which the algorithm
becomes unstable. In elastodynamics, the CFL time step limit corresponds to the shortest transit time across
any element in the mesh ('tstab=min(h/c), h is the element size or nodal distance, and c is the wavespeed).
In wave phenomena, the desired resolution and accuracy require a time step smaller than one-tenth the
period of the highest frequency of interest, a requirement no less stringent than that imposed by the CFL
condition, and thus removing the principal advantage of implicit methods. It is this limit on the time step,
and therefore on the distance traveled during each interval, that allows the nodal fields to decouple
momentarily during a time step. Although not usually implemented in this fashion and for the purpose of
this discussion, consider an explicit scheme as a Newmark integrator with E = 0 and M uu, Cuu diagonalized
by nodal lumping. In this case, each equation in system (3.8) can be integrated independently, i.e., in a
decoupled fashion. The coupling is then effectively accounted for through the forces on the right hand side
of the equation, and these are vector operations that are much less demanding in computer resources than
the matrix factorization required by implicit schemes. In actual implementation, the matrices shown in (3.8)
are not assembled and stored, since an explicit scheme naturally structures itself into a series of element-by-
element operations involving global vectors only. As such, storage and solution requirements scale linearly
with the number of nodes in explicit schemes, which is still a requirement for useful 3D modeling.
Element-by-element operations also offer a major advantage in code parallelization, which is gaining
mainstream interest with the availability of multiple processor PCs.

The piezoelectric problem couples a mechanical dynamics process (3.5a) and an electrostatic one (3.5b).
Computational efficiency would suggest that a mixed explicit/implicit scheme is optimal for the
mechanical/electrical problem. This mixed scheme has been demonstrated to achieve a 2 orders of
magnitude efficiency gain (computational speedup for a given model, or model size for a given
computational time) with PZFlex [5] compared to conventional, fully implicit FEM implementations. This
advantage is expected to be maintained as long as the electromechanical problem maintains a wave
propagation characteristic, and increases markedly in large-scale applications. To illustrate the point,
consider the naval flextensional transducer depicted in Fig. 3. This high power PMN-driven flextensional is
one of 12 sources constituting a towed array, and the corresponding model requires about 10 million finite
elements. An analysis of such large-scale and involving material nonlinearities (PMN) could only be
undertaken today with an explicit scheme. Similar large-scale problems exist in the biomedical arena [10].

Fig. 3. Behavior of a single flextensional model driven in water, showing radiating wave
pattern (left). View of mode shape in the single flextensional model driven at 4.5
kHz (right). A detailed description is available in [9]
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 4. FINITE ELEMENT MODELING ISSUES IN TRANSDUCERS AND ARRAYS
As in any analysis effort, the "quality" of the answers obtained depends not only on a good choice of
methods but also on the input parameters used to define the model. Chief among these is material
constitutive properties, which we discuss in detail in Section 5. Other parameters control the level of model
fidelity to the physical behavior, typically optimized against computational cost. It is often argued that
finite element simulation could be turned into a "black box" if computational resources were infinite. While
this statement does point out a legitimate constraint, it ignores that one often has to analyze preliminary
designs with tentative data and that different levels of approximations are appropriate for different
questions. In what follows, we discuss some of the basic modeling issues underlying finite element
simulation of transducers and arrays, and provide guidelines for the best use of these representations.

4.1. Spatial and temporal discretization
Meshing a finite element model defines the solution's resolution. For wave propagation problems, the
discretization must resolve the shortest wavelength (i.e., highest frequency) of interest. This is analogous to
crystal lattice theory [17] where the periodic discrete structure defines a low-pass filter with the highest
frequency propagated (cutoff frequency) having a wavelength equal to 2h (h= finite element size or nodal
distance); this is also known as the Nyquist limit or saw-tooth pattern. Obviously, one desires adequate
rather than borderline resolution of the frequencies of interest, and this ranges from O/h = 8 to 20 finite
elements per wavelength. Discretization, by virtue of being on approximation process, introduces a
numerical error that displays a non-physical frequency and direction dependent dispersive character. A
wave pattern is well resolved with O/h = 10 elements per wavelength (Fig. 4) and this produces a numerical
dispersion error of about 3%. When long propagation distances are involved and wavefront or pulse
distortions must be limited, gridding with 20 elements per wavelength limits the numerical error to less
than 1% [18-20]. Because these frequencies propagate throughout the model, the same degree of
discretization should be maintained throughout the mesh to avoid directionality and spurious internal
reflectors. In practice, the finite element aspect ratio should remain close to one, but can safely reach 2 or 3
to accommodate geometric constraints. In contrast, a diffusive process such as heating tends to display
localized spatial gradients and the degree of mesh refinement may vary from region to region accordingly
(Fig. 4).
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Fig. 4. Spatial discretization for wave propagation (left) vs. diffusion (right) problems.
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Fig. 5. Comparison of wavelet time histories after propagating 300 wavelengths [10].
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Furthermore, because of the duality of space and time in the wave equation, the same criterion used for
spatial discretization applies to time discretization, and means that the optimal time-step should be at the
CFL stability limit. In practice though, only 90-95% of CFL in linear cases and 80% of CFL in nonlinear
cases are achievable, which is sufficient for transducer analysis. However, when long-range wave
propagation must be accurately described, in bioacoustic models for example, standard linear finite
elements are no longer effective because of the accumulation of dispersion errors. Then, schemes such as
the pseudospectral method using higher-order approximations must be used [10], as shown in Fig. 5.

Frequency content is not always the controlling factor in vibration problems. Geometric features and
boundaries sometimes impose more stringent requirements on discretization. A prime example of this
occurs in the case of the PZT half wavelength thickness resonator in a medical transducer stack. If
discretization is set by wavelength considerations alone, the bar width would be divided into one or two
finite elements across, which misses the lateral stress gradients due to Poisson effects. That lateral
distribution influences coupling with an adjacent polymer matrix, for example, and gridding the width with
6 nodes is suggested if such effects need to be resolved.

4.2. Material Damping
Frequency-dependent material damping is an important issue in transducer modeling because of the many
polymers involved including backing, matching layers, composite matrix, and lenses.  Damping not only
affects the acoustic signals but also generates heat. In the frequency-domain, the damping level can be
specified at each discrete frequency, without concern as to overall frequency power laws and wide
spectrum characterization. Classical time-domain finite element damping models are chosen for their
operational and algorithmic properties rather than their phenomenological behavior. These models are
restricted in their frequency dependence, but can vary from one element to another:

[a] Mass proportional damping yields an attenuation per unit distance that is constant with frequency,
D = D(f0). The equivalent critical damping, which is a measure of attenuation per wavelength expressed
as a percent of critical (level required for full attenuation over 1 wavelength), follows an inverse
frequency dependence [ v 1/f,

[b] Stiffness-proportional damping yields a quadratic dependence of attenuation D = D(f2) on frequency
(critical damping [ v f),

[c] Rayleigh damping allows for a linear combination of the mass and stiffness proportional models.
[d] Three-parameter viscoelastic models provide a slightly more complex behavior, with the attenuation

exponent varying from 2 to 0 with increasing frequency, but are still amenable to FEM treatment.

These models provide an adequate fit, in general, over a range of frequencies as shown in Fig. 6. The
Rayleigh damping model is versatile in that it provides a 2 parameter fit. Substantial improvement in
matching experimental results is obtained when damping properties are specified independently for the
volumetric (or longitudinal) and deviatoric (or shear) components, for most materials. Polymers and
rubbers for example exhibit much greater attenuation of their shear components.
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Fig. 6.  Frequency dependence of various damping/attenuation models used in time
domain wave propagation calculations (left), and Rayleigh damping fits to
frequency power laws. All models are made to match a prescribed value at 5
MHz.
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Viscoelastic models with more general frequency power laws can be formulated [21], but carry a high
computational overhead because of the retarded integrals involved. Research into alternative forms
amenable to explicit time-domain calculations [22] is ongoing and warrants further attention, but urgency
on that front is tempered by the current limitations of experimental characterization of polymers.

4.3. Boundary conditions
It is often impractical to model the full extent of the transduction device and the surrounding acoustic
media. In fact, considering that typical ultrasonic wavelengths are in the millimeter range at best, high
resolution finite element simulations would be computationally exorbitant unless the domain was restricted
to the area of interest. Truncation by an artificial boundary is required for domains large compared to the
characteristic wavelength. Appropriate boundary conditions need to be imposed on the truncation boundary
to simulate the behavior of a "continuing" medium. Waves incidents on the boundary need to exit the
computational domain with no spurious reflections, consistent with the fact that the boundary is a
mathematical construct and not an impedance mismatch zone (Fig. 7). Such boundary conditions have been
termed radiation, transmitting, absorbing, non-reflecting or silent conditions. Reviews, extended reference
lists, or comparative studies on this subject can be found in [23-25].

Water

Absorbing BC

Matching Layer

Backing Layer

nc

c
c  =

Wave incident on boundary

n cosθ

Absorbing BC

Fig. 7. Finite computational domain bounded by an artificial truncation boundary
(dashed line) at which an absorbing boundary condition is applied.

There are no exact absorbing conditions applicable to all situations: frequency-domain, time-domain,
nonlinear wave propagation. In the linear case, retarded potential integral formulations define an exact
boundary condition, but one which is spatially and temporally non-local. Non-local schemes couple all
degrees-of-freedom at the truncation boundary and all past time steps, which is impractical in realistic finite
element studies because of their expense. Computationally attractive local schemes are based on varying
degrees of approximation, with assumptions on the spatial decay rate of the radiating wave, its angle of
incidence on the truncation boundary, and its wave speed. The common feature to all local radiation
conditions is that they are asymptotically exact at high frequency, i.e., the wavelength is shorter than the
scale of the boundary. The simplest and least accurate of these is the water load impedance condition, p = -
Imx�  where Im { Uc used in (2.14), which is exact in 1D but only asymptotically exact in the high-
frequency/farfield limit in 2D/3D. The only currently available boundary treatment that is equally
applicable to linear and nonlinear wave propagation is one recently proposed by Sandler [26] and
implemented in PZFlex, for which we coin the acronym MINT (Material Independent Non-reflecting
Treatment) condition. A brief derivation of the MINT condition is given below.

The normally propagating part on a wave traveling towards the truncation boundary is given by the
Hadamard identity for outgoing waves w/wn= (-1/cn)w/wt, where cn is the unknown wave phase velocity in
the direction of the outward normal n to the boundary. The Hadamard identity applies to the traction vector
WW   T.n at the boundary, 'nWW/'n = - (1/cn)('tWW/'t), so that the equation of motion or momentum balance
yields a change in boundary nodal velocity:
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The Hadamard identity also applies to the boundary velocity field such that:
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Combining (4.1) and (4.2) by eliminating the unknown wavespeed cn yields the MINT condition:
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This absorbing boundary condition makes no assumptions regarding material constitutive properties (i.e.,
nonlinearities can be accommodated), the boundary geometry, or angle of incidence of the scattered wave.
The MINT condition has been shown to perform as well as a 4th order paraxial absorber [27], with lower
computational overhead and less impact on stability.

Because of its unusual accuracy and its natural fit within a finite element approach, we should note the
radiation boundary condition recently developed by Berenger, and coined the Perfectly Matched Layer or
PML [28]. Although originally developed for electromagnetics, it has been shown to be applicable and
particularly effective in acoustic wave propagation [10,29]. The PML construct is not universally
applicable (e.g., nonlinear acoustics cannot be accommodated and the elastodynamic case has not been
formulated to date), but it fills a crucial niche in the feasibility of large-scale bioacoustic models.

In practice, one needs to exercise some care in the placement of absorbing boundary conditions. They
should be placed at some distance away from active sources where wave patterns are complex and
gradients severe. This also avoids near grazing incidence on the boundary, where accuracy generally
degrades. When cross-talk and coupling effects are of interest, the wave path must be kept in the
computational domain, since a wave absorbed by the non-reflecting boundary condition cannot be
reintroduced at another point. Finally, and when in doubt, a useful sanity check consists of plotting the
pressure or stress waves patterns in the entire mesh and verifying that spurious reflections from the
boundary are at second order error levels and not physically meaningful levels. In such circumstances,
animations serve not only to explain complex interaction phenomena but also to validate the model.

Absorbing treatments are not the only boundary conditions that afford model reduction. Symmetry and
periodicity concepts are equally crucial in effective solution approaches. Approximating finite spatial
periodicity by an infinite periodicity is often used with the caveat that edge effects are filtered out.
Similarly, reduction of a 3D structure with a "long" dimension to a 2D plane-strain model is also a routine
modeling approach. Even when the aspect ratio does not justify such a reduction, a 2D analysis still serves
the purpose of a "first cut" that can guide more exhaustive and expensive 3D studies. Examples in Section 6
and the listed references make evident the extensive and effective use of such reductions.

4.4. Farfield and nearfield extrapolation
Results at some distance away from the transducer are often of interest, such as beam patterns, at pulse-
echo reflectors or focal points. Solution by finite elements would require field calculations in the
intervening region between the source and the distant output points, which is of impractical. A better
alternative is offered by exterior integral formulations that only require the discretization of a surface
bounding the "source" region and only calculate the solution at specified output points. As such, they can
be viewed as extrapolation methods. Integral formulations exist for propagation through homogeneous
elastic media and even for multi-layered elastic media. In practice though, the simplest and probably most
useful integral equations describe the radiation through homogeneous acoustic media (dilatational waves
only), and we limit the discussion here to these instances.

Time-domain Kirchhoff integral equation: the exact expression for the time-dependent pressure at any point
x0 in the exterior infinite fluid surrounding the vibrating body (transducer), enclosed by a surface S, is given
by the Kirchhoff integral equation:
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with the Green's function G given by:
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where R denotes the distance between the surface sampling points xs and x0, c is the fluid medium
wavespeed. The pressure in the field is obtained from this convolution integral of pressure and normal
acceleration wvn/wt time histories at the "sampling" surface. Since the Kirchhoff equation makes no
approximations beyond the homogeneity of the surrounding unbounded acoustic medium, the solution is
valid whether the field point is in the nearfield or farfield.

Although the integral theorem requires S to be a closed surface, often in practice we take it to be a plane
surface on the front face of the model ignoring contributions from the other sides. This modeling
approximation is reasonable to the extent that an effective aperture can be defined, but caution needs to be
exercised when the model only represents a portion of the actual radiating device. The more substantial the
sideway energy leakage (e.g., shear waves in matching layers) resulting in a larger aperture, the less valid is
such a truncation. Another useful simplification in analysing medical arrays is to model the lens and
surrounding water as one homogenous acoustic medium. Tthe surface data is then sampled at an
intermediary level between the top of the matching layer and the absorbing boundary.

Frequency-domain farfield beam patterns: Beam patterns are by definition regarded as frequency-domain
angular pressure distributions on a circle in the farfield. Although the Kirchhoff equation, or its frequency-
domain counterpart known as the Helmholtz integral equation, could be used to calculate beam profiles,
computational expense can be reduced by making use of the fact that R o f. The governing integral
equation reduces then to the Rayleigh-Sommerfeld diffraction equation
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which can be further simplified with assumptions of ray acoustics and calculated efficiently using a spatial
FFT [30]. Expressions similar to (4.5) also exist for the 3D case. Because of assumptions inherent in this
formulation, the sampling surface is taken to be a plane, and concerns similar to those in the Kirchhoff
case, regarding the definition and extent of the sampling surface, must be taken into account. Finally, it
should be noted that the definition of a beam pattern, based on unimodal single frequency assumptions,
does not always coincide with the beam experimentally obtained by sensing pulse (as opposed to CW)
maxima along a circle in the farfield. They do coincide usually when the transducer response is dominated
by a single well separated resonance.

4.5. Electric circuits
Ultrasonic transducers are invariably connected to some supporting electronics, frequently through a
coaxial cable. During the design process, it is typically necessary to model the drive circuitry, the reception
electronics and the intervening cable. When designing the electronics, it is most efficient to compute the
impulse response of the transducer and use this in a circuit design code. When looking at the transducer
details, it is more efficient to model the electronics directly. Fortunately, a few lumped parameter circuit
elements (resistors, inductors, capacitors, and ideal transformers) usually suffice. Figure 8 shows generic
drive (send) and receive circuits.

In the time domain approach, electrical boundary conditions on the electrodes are replaced by a coupled set
of equations relating the voltage and charge (or their time derivatives) on the electrodes to the voltage and
charge (or their time derivatives) throughout the circuit. The electrical boundary conditions (open, ground,
applied voltage or current) then apply to the circuit rather than to the electrode. We note that the charges
and potentials at each of the circuit elements are fully coupled to the nodal values throughout the FE model
at each timestep. Careful algorithmic design is required to solve this system accurately and efficiently.

Electrodes themselves are typically modeled as voltage constraints, i.e., the voltage on each electrode node
is constrained to be equipotential. This is almost always an accurate approximation, though windowing
could be accounted for if need be and so can unusual electrical resistance. The mechanical effects of
electrodes are typically neglected too. The electrode mass and stiffness could be accounted for, but they are
usually negligible when compared to those of the ceramic.
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(a) Generic drive circuit similar to Panametrics pulser. (c) Generic receive circuit.
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(b) Equivalent circuit representation.

Fig. 8. Typical (a) send circuit, (b) its equivalent series circuit representation appropriate
for incorporation in a finite element model, and (c) typical receive circuit.

 5. MATERIAL CHARACTERIZATION AND INCREMENTAL VALIDATION
Before large-scale finite element models can be effectively utilized for the design of ultrasonic imaging
systems, it is essential that these modeling tools be fully validated and key implementation issues
identified. Furthermore, there is a need for a well-documented, nonproprietary "primer", that transducer
designers can use to establish confidence in, and expertise with, the time-domain finite-element-modeling
paradigm. The complete primer will consider issues such as material characterization, model configuration
and model implementation (e.g. introduction of bondlines and electrodes).

The following sections describe a recent PZFlex validation exercise based around the incremental
“model-build-test” analysis of a nonproprietary, 5MHz, 1D biomedical imaging array (Fig. 9). This type of
incremental analysis permits transducer models to be developed that describe the transducer at each distinct
stage of the manufacturing process. Consequently, deviations between experimental results and finite
element predictions can be more readily analyzed and the transducer models refined as appropriate, i.e.,
sources of accumulative error are minimized.

5.1. Material Characterization
Accuracy of finite-element analysis is ultimately dependent upon the accuracy of the dielectric,
piezoelectric and elastic properties used to represent the model’s constituent materials. Consequently, in the
course of this work, particular emphasis is placed on material characterization issues.
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Fig. 9. Diagram of validation array assembly (2 PZT slivers per physical array element)

Piezoceramic properties are obtained via the application of curve-fitting techniques to IEEE standard
resonator measurements [31]. The material properties are then cross-checked by comparing the
experimental impedance responses for the IEEE standard resonators with the corresponding PZFlex
predictions. In the work described here, matching layer and backing properties were obtained via a
combination of through-transmission water tank measurements [32] and measurements made with a pair of
contact shear-wave probes. Unfortunately, these measurement methods have several distinct drawbacks and
hence, more comprehensive and accurate measurement schemes are currently being developed [33].

Piezoceramic Characterization: The IEEE standard on piezoelectricity [34] identifies certain geometrical
shapes that may be used to facilitate the measurement of a material’s elastic, dielectric and piezoelectric
properties. For piezoelectric materials, there are 5 standard resonator geometries (Fig. 10). These resonator
samples are specifically designed so as to isolate certain types of resonant behavior. Consequently, it is
possible to measure those material properties that are strongly coupled to a particular resonant mode. The
equations used to determine the material properties (as given in the IEEE piezoelectric standard [34]) have
idealized derivations, and assume that the material is lossless. In practice, all real materials possess certain
loss mechanisms, and hence the calculated properties will be subject to certain inaccuracies. A refinement
to this method has been developed by researchers at the Royal Military College of Canada and employs
curve-fitting techniques to more accurately determine a material’s properties. The software package, PRAP
[31], was used to perform this analysis and the extracted material properties for Motorola 3203HD PLZT
are given in reference [35].

The IEEE resonators shown in Figure 10 were modeled in PZFlex using the measured properties given in
[35].  Figures 11a-11d show the correlation between the experimental electrical impedance response and
the corresponding PZFlex predictions for a selection of these resonator samples. In all cases, PZFlex is seen

(a) Thickness extensional mode (TE) (b) Length extensional mode (LE) (c) Radial mode (RAD)

(d) Length thickness mode (LTE) (e) Thickness shear mode (TS)

Fig. 10. IEEE standard piezoelectric resonators:(a) TE, (b) LE, (c) RAD, (d) LTE, (e) TS.
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Fig. 11. Impedance magnitude response for resonators: (a) TE (upper left), (b) LE (upper
right), (c) RAD (lower left), and (d) LTE (lower right).

to demonstrate excellent correlation with experimental results.  The simulated in-air impedance response
for the thickness extensional mode resonator (TE) correctly predicts the spurious modal activity lying
between the electrical resonance at 4.1MHz and the mechanical resonance at 4.7MHz (Fig. 11a). These
spurious resonances are due to lateral modes that are supported by the resonator’s physical geometry. If
these parasitic modes are too strongly coupled to the particular resonance of interest, the extracted material
properties will be inaccurate. The TE resonator used in the current work effort was specifically chosen such
that its dimensions fully satisfy the guidelines laid down in the IEEE piezoelectric standard. Since the other
resonators have greater modal separation, their impedance response curves appear cleaner and more
unimodal.

It is important to note that a given set of IEEE standard resonators will provide material properties that

were measured over a range of different frequencies. For example, the TE resonator provides Dc33 at

4.7MHz whereas the LTE resonator yields d13 at 200kHz. Typically, all material properties will exhibit
some degree of frequency dependence, however, with care, it is possible to select a set of properties that
give consistent results over a wide range of frequencies.

Matching Layer and Backing Block Characterization: The validation array considered in this paper has a
double matching layer and light acoustic backing attached to its upper and lower surfaces respectively (see
Figure 9). Accurate characterization of these passive materials is just as important as for the piezoceramic.
The material properties that need to be measured are longitudinal-wave velocity & attenuation, and shear-
wave velocity & attenuation. Longitudinal velocity and attenuation measurements are relatively
straightforward and may be accomplished via a simple through-transmission experiment. Unfortunately,
measurement of the shear properties is typically much more difficult and potentially less accurate. Shear
properties are normally obtained by attaching a pair of shear wave transducers to opposite sides of a test
specimen and propagating a shear wave through the sample. Unfortunately, it often proves difficult to get
good coupling of energy between the transducers and the sample. Consequently, the measured values are
subject to considerable inaccuracies. Furthermore, these measurements are typically narrowband so results
are only valid over a narrow range of frequencies. Wu at the University of Vermont is currently refining a
wide-band, through-transmission, water tank characterization technique [33] for passive isotropic materials.
It provides both velocity and attenuation data over a wide range of frequencies. Until material properties
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obtained via this method become available, the characterization techniques described in [32] will be used to
characterize the array’s matching layer and backing block materials (see reference [35] for measured
material properties).

5.2. PZFlex Validation – Incremental Array Samples
Once all the active and passive materials have been accurately characterized, it is feasible to proceed with
PZFlex analysis of the transducer array assembly shown in Figure 9. This array is constructed from
Motorola 3203HD PLZT and has 48 individual elements, each comprising two sub-elements as shown in
Figure 9. A double layered, sub-diced matching layer was adopted and a “light” acoustic backing
(Z|2.5Mrayl) was bonded to the bottom of the device to help improve bandwidth characteristics while
maintaining reasonable transmit sensitivity. For validation purposes, rather than attempting to model the
entire array assembly, the analysis is currently restricted to the set of incremental array components shown
in Figure 12(a). Each sample corresponds to half an individual array element, and was fabricated using the
same techniques used to construct the complete array. Consequently, any process dependent effects should
also be observed in the incremental samples.

The first step of the validation exercise is to confirm that the PZFlex prediction for each of these sub-units
agrees with experimental values. Figure 12(b) shows both the experimental (——) and simulated (o·····o)
electrical impedance response curves for Sample-1. At various stages throughout the fabrication process the
piezoceramic slivers are subject to elevated temperatures and other process effects. These conditions cause
the piezoceramic to partially depole, i.e. its piezoelectric coupling constants will be reduced. Consequently,
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Fig. 12. (a) Diagram of incremental array components with sample numbers shown, and
electrical impedance response for (b) Sample-1, (c) Sample-2, and (d) Sample-3.
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5% depoling was assumed.  From the cross-plotted results shown in Figure 12(b), excellent correlation
between experiment and simulation are seen. Figure 12(c) shows the response for Sample-2 (single 320µm
sliver of 3203HD with a 160µm inner matching layer). In this figure, the curve denoted (——) shows the
experimental result, however, there are 2 simulated responses. The first curve, (-----), was obtained using
the nominal matching layer properties given in reference [35], whereas the second simulated curve (o·····o)
used velocities in the matching layer which were reduced by 10%. Furthermore, a 10µm bondline was also
included in the calculation. Modified properties give much better correlation with experiment than the
original nominal values. It was mentioned earlier that the matching layer properties are often difficult to
measure accurately and that more accurate measurement methods are currently being developed. We expect
to have more accurate material properties in the near future and anticipate that they will further improve the
correlation with experiment. Sample-3 adds a 70µm outer matching layer to the Sample-2 configuration.
The impedance characteristics for this device are shown in Figure 12(d) and the simulated result with
bondlines and modified material properties is seen to compare well with the experimental result. It is
interesting to observe that small changes in matching layer properties (longitudinal or shear) and the
thickness of the bondline can have considerable impact on overall device response. This once again
emphasizes the requirement for rigorous material characterization and accurate experimental
measurements. Samples 4 & 5 correspond to the addition of the backing block to Samples 2 & 3
respectively (for impedance results refer to reference [35]).

 6. APPLICATIONS: VISUALIZATION AND VIRTUAL PROTOTYPING
A picture is worth a thousand words, and a movie or animation of deformed shapes, pressure fields, electric
fields, etc. is often worth much more.  Practically speaking, model visualization is the ability to “see” the
operation of a “virtual” device at convenient scales and speeds.  It provides one of the most compelling
reasons for numerical modeling.  In addition to its technical merits, visualization, provide the best means of
communicating concepts and designs to other engineers, customers, and management.  This section
describes some scenarios and applications illustrating the process.

6.1. Composites
Typically, preliminary transducer design is based on experience with similar devices, rules-of-thumb, and
simplified 1D models.  Once a preliminary design has been decided on, it is appropriate to build and run a
finite element model.  The computed impedance versus frequency curve will often reveal some
unanticipated resonances that may affect device performance adversely.  In this case, the next logical step
is to compute and display or animate the deformation shapes at these resonances.  Based on shape
information and parameter studies, the designer is usually able to modify the design in order to minimize or
eliminate the spurious modes.

A 1-3 composite transducer example from a matching layer study [8] is presented in Figures 13-15.  The
transducer is from an undersea imaging array designed by Ultrex Corp, built by Materials Systems Inc. and
described in [36].  Fig. 13 shows measured and calculated impedance curves for the case of a water-loaded
diced matching layer with filled and unfilled kerfs, while Fig. 14 shows deformation shapes at peaks on the
beam pressure versus frequency plot for the filled case.  The design frequency is 350 kHz.  An unexpected
mode is seen in Fig. 13 at 500 kHz for the case of air kerfs (left side).  The extremes of deformation at this
frequency are pictured in Fig. 15, showing a highly localized, matching layer mode.  This is a lateral mode
that couples strongly to bending modes of the PZT pillars in the 1-3 composite.  Computer studies show
that this mode disappears for a water load but if there is any shear stiffness in the load medium, as assumed
in the calculation, e.g., an RTV lens, then this type of spurious mode can be supported.

Several finite element studies of composite transducers have appeared in the literature in the recent past,
and good examples of 1-3 connectivity can be found in [3,37,38], and 2-2 connectivity in [39].
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Fig. 13. Measured and simulated electrical impedance for the water-loaded MSI coupon,
with and without matching layer kerf filler.
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kerfs; calculated by a 3D model.

6.2. Therapeutics
Therapeutic ultrasound is another application where finite element modeling and visualization can be used
to great advantage, both in transducer design and studies of ultrasound fields within the body.  Here, the
goal is to deliver a high intensity ultrasonic field to the target region while minimizing its effects on
surrounding tissue.  As an example, Figure 16 from [7] compares pressure fields from uniformly driven and
phased transducer designs.  In the latter case, phasing was used to move the focal region.  Results were
poor due to strong cross-talk between the continuous transducer rings.
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Fig. 16. Calculated field and on-axis pressure
from a radially poled, 2 mm thick, PZT-
5H spherical cap with 10 cm aperture
and radius (f/1).  Ten equal-area annular
electrodes are driven by 1.0 volt at 1.0
MHz, uniformly (left) or phased (right).

Fig. 17. Axisymmetric model of an ocular
tumor, showing focused ultrasound beam
(above) and temperature distribution at 3
sec (below).  Note focal temperature in
excess of 100 °C.  The transducer has a 4
cm aperture and 9 cm focal length.

Because of high intensities at the focus, material nonlinearities in tissue become an issue.  These include
both compressive nonlinearity that is commonly described by the first nonlinear term (B/A) in an expansion
of the pressure density relation, and cavitation under tensile stresses.  Both of these are readily modeled in
the time domain [7].  We note that material nonlinearity causes the generation of higher harmonics.
Damping in tissue increases with increasing frequency, so these in turn induce greater losses and
consequently higher heat generation.  At extremely high intensities such as those found in lithotripsy, or at
very long propagation distances, shock phenomena must also be modeled.

Transducer and wave field calculations are sometimes the means rather than the end of a simulation [7].
Figure 17 shows the computed pressure field (upper half) near the focus of a therapeutic ultrasound
transducer. From this we calculate the thermal heat generation per unit time at each point in the model and
then solve the bioheat equations for evolution of temperature with time. Temperature at 3 seconds is shown
in the lower half of the figure. High temperatures can be used to destroy diseased tissue, but collateral
damage to healthy tissue by thermal or cavitation mechanisms should be minimized. Simulations provide a
convenient method to refine treatment strategies prior to in vivo validations on laboratory animals.

6.3 Prototyping
A last example is used to illustrate virtual prototyping of transducers.  Fig. 18 shows a 3D model of a
Tonpilz device for low frequency sensing in air.  This classical design is usually used for water-loaded
applications.  The model consists of a tail-mass, a stack of four PZT rings, and a conical head-mass, all held
together by a tension bolt through the axis.  A thick matching layer with stiffening ring is bonded to the
head mass.

One issue of interest for nominally axisymmetric devices is bending modes caused by nonsymmetric
influences.  One common influence is nonuniform driving by the piezoelectric rings.  This was studied by
introducing pseudorandom variation in the coupling constant around each ring.  Both impedance and
velocity spectra were examined to identify nonsymmetric modes.  The principal bending mode was found
at 7 kHz and shown on the left side of Fig. 18.  The principal longitudinal mode was around 14 kHz, shown
on the right side of Fig. 18.  Higher harmonics of the bending mode were not apparent.  Effects of mount
locations and nonsymmetric mounting fixtures were also studied.  Such analyses are readily done with
numerical models and tend to reduce the need for an exhaustive set of prototype devices.  Nonetheless,
validation against experiment is mandatory.
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Fig. 18. Examples of bending (left) and longitudinal (right) modes of an air-coupled
Tonpilz transducer.  A thick, flexible matching layer is bonded to the face of the
conical head-mass.

 7. CONCLUSIONS
This paper was intended as a primer on various issues pertinent to finite element modeling of ultrasonic
transducers. The breadth of the topic is vast and multi-disciplinary in nature, and this overview is perforce
selective. We have attempted to review the basic algorithmic background and practical modeling issues to
the extent they affect simulation strategies and capabilities. We have also tried to convey the idea that
modeling is not an exercise independent of experimentation, whether to determine the requisite material
properties or to develop intuitive understanding of the transducer's operational parameters. Much can be
done to improve the accessibility of advanced simulation techniques, through intuitive graphical interfaces,
standardized design "templates", and robust algorithms that require less interaction between the end-user
and the "numerics". We do not foresee however that increased accessibility renders obsolete efforts to
develop modeling skills and basic understanding of the underlying analytical methods. From our current
perspective at least, these often effectively complement design skills: a good model reflects a good
understanding of the physics.
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