
INFORMATION INTEGRATION FOR CONCURRENT
ENGINEERING (IICE)

COMPENDIUM OF METHODS REPORT

Richard J. Mayer, Ph.D.
John W. Crump, IV

Ronald Fernandes, Ph.D.
Arthur Keen, Ph.D.
Michael K. Painter

Knowledge Based Systems, Inc.
One KBSI Place

1500 University Drive East
College Station, Texas 77840-2335

HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISION

2698 G Street
Wright-Patterson Air Force Base, Ohio 45433-7604

JUNE 1995

Interim Technical Paper for Period February 1991 to March 1995

Approved for public release; distribution is unlimited

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7604

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1995 2. REPORT TYPE

3. DATES COVERED
 00-00-1995 to 00-00-1995

4. TITLE AND SUBTITLE
Information Integration for Concurrent Engineering (IICE) Compendum
of Methods Report

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Knowledge Based Systems, Inc.,One KBSI Place,1500 University Drive
East,College Station,TX,77840-2335

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

149

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

INFORMATION INTEGRATION FOR CONCURRENT
ENGINEERING (IICE)
COMPENDIUM OF METHODS REPORT

Version 1.0

Richard J. Mayer, Ph.D.
John W. Crump, IV
Ronald Fernandes, Ph.D.
Arthur Keen, Ph.D.
Michael K. Painter

Knowledge Based Systems, Inc.
One KBSI Place
1500 University Drive East
College Station TX 77840-2335
(409) 260-5274

JUNE 1995

Contract No.: F33615-90-C-0012

Prepared for:
Armstrong Laboratory
Logistics Research Division
Wright-Patterson Air Force Base, Ohio 45433-7604
(513) 255-7775

i

Report Documentation Page

Abstract

For all the rapid advances in computer hardware and specific software technology, enterprise
engineering, reengineering, and enterprise integration efforts continue to lack effective,
widely understood methods for engineering large-scale information systems. Diverse
methods are needed to engineer systems that exhibit desirable life-cycle characteristics (e.g.,
flexibility, responsiveness, scalability, maintainability, ease of use, integration, performance)
and for engaging teams of people in critical life-cycle system development activities.
Integration Definition (IDEF) methods, a key product of the IICE program, provide easy-to-
use techniques and standard languages of communication that promote good engineering
discipline. This report summarizes new IDEF developments toward establishing reliable
methods for business constraint discovery (IDEF9), design rationale capture (IDEF6), human-
system interaction design (IDEF8), and network design (IDEF14). For each method, the
conceptual foundations, relevance, issues, and recommended follow-on development
activities are discussed.

Subject terms: Integration, Integration Definition, IDEF, method, methodology, modeling,
knowledge engineering, design rationale, constraint, network design, human-system
interaction, systems engineering

iii

TABLE OF CONTENTS
LIST OF FIGURES... v

LIST OF TABLES ..vii

PREFACE .. ix

FOREWORD ... xi

Method Anatomy.. xi

Family of Methods ...xiii

EXECUTIVE SUMMARY... 1

IDEF9 Business Constraint Discovery Method .. 3

IDEF6 Design Rationale Capture Method .. 4

IDEF14 Network Design Method ... 5

IDEF8 Human-System Interaction Design Method .. 5

Summary ... 6

OVERVIEW OF THE METHOD ENGINEERING PROCESS .. 7

TOWARD A BUSINESS CONSTRAINT DISCOVERY METHOD (IDEF9) 11

Introduction ... 11
What Is a Constraint? .. 11
Motivation for Collecting and Managing Business Constraints ... 14
Benefits of Constraint Identification ... 15
Motivation for a Method to Collect Constraints ... 17
Users and Key Beneficiaries of IDEF9 ... 17
Potential Applications for IDEF9.. 18

Summary of Developments and Research Findings.. 19
IDEF9 Basic Concepts .. 19
IDEF9 Procedure Developments... 23
IDEF9 Language Design Developments ... 39

Significant Accomplishments ... 53

Potential Areas for Future Work ... 54

Conclusions ... 56

IDEF9 Bibliography .. 57

Glossary of IDEF9 Terms ... 59

TOWARD A DESIGN RATIONALE CAPTURE METHOD (IDEF6) 61

Introduction ... 61
Motivation ... 61

iv

Benefits.. 62
Summary of Developments and Research Findings.. 63

IDEF6 Basic Concepts .. 63
IDEF6 Procedure Developments... 65
IDEF6 Language Design Developments ... 71

Conclusions ... 77

IDEF6 Bibliography .. 78

TOWARD A NETWORK DESIGN METHOD (IDEF14) .. 81

Introduction ... 81
What is Network Design? ... 81
What is IDEF14?... 82
Motivation for a Network Design Method.. 83
IDEF14 Products ... 84
Users and Key Beneficiaries of IDEF14 ... 84
Benefits.. 85

Summary of Developments and Research Findings.. 86
IDEF14 Basic Concepts .. 86
IDEF14 Procedure Developments... 91
IDEF14 Language Design Developments ... 102

Summary of Accomplishments ... 103

Potential Areas for Future Work ... 104

Conclusions ... 105

IDEF14 Bibliography .. 105

TOWARD A HUMAN-SYSTEM INTERACTION DESIGN METHOD (IDEF8) 107

Introduction ... 107
What is Human-System Interaction Design? .. 107
What is IDEF8?... 108
Motivation for a Human-System Interaction Design Method... 109
IDEF8 Products ... 110
Users and Key Beneficiaries of IDEF8 ... 111
Potential Benefits .. 111

Summary of Developments and Research Findings.. 112
IDEF8 Method Design Goals .. 113
Basic Concepts in IDEF8 .. 115
IDEF8 Procedure Developments... 123

Significant Accomplishments ... 130

Potential Areas for Future Work ... 131

IDEF8 Bibliography .. 132

v

LIST OF FIGURES

Figure 1. Anatomy of a Method ...xii

Figure 2. IDEF Methods: Part of the Systems Engineer’s Toolbox... 3

Figure 3. Process Description of the IDEF9 Development Approach 7

Figure 4. Typical Business Systems ... 12

Figure 5. Constraints Can Be Enabling or Limiting... 13

Figure 6. IDEF9 Project Summary Form ... 24

Figure 7 Evidence Log .. 32

Figure 8. Candidate Syntax for the Context Schematic ... 40

Figure 9. Example Context Schematic... 41

Figure 10. Candidate Syntax for the Constraint Resource Schematic.................................... 43

Figure 11. Example Constraint Resource Schematic ... 44

Figure 12. Candidate Syntax for the Constraint Relationship Schematic 45

Figure 13. Example Constraint Relationship Schematic.. 46

Figure 14. Candidate Syntax for the Constraint Effects Schematic 47

Figure 15. Example Constraint Effects Schematic... 48

Figure 16. Candidate Syntax for the Goal Schematic .. 49

Figure 17. Example Goal Schematic.. 50

Figure 18. Candidate Syntax for the Symptom Schematic... 52

Figure 19. Example Symptom Schematic .. 52

Figure 20. IDEF4 Design Activities... 66

Figure 21. Static, Dynamic, and Requirements Models for Sys Partition.............................. 68

Figure 22. Functions and Use Scenarios Mapping to Requirements and Goals 69

Figure 23. Observations and Actions Marking Design Transitions 75

vi

Figure 24. The Observation/Action View of Design Rationale ... 76

Figure 25. Models Generated Using the IDEF14 Method.. 86

Figure 26. IDEF14 Description Summary Form.. 94

Figure 27. Process Description of Mode Five of the IDEF14 Procedure............................. 100

Figure 28. Example of an Enterprise Network... 103

Figure 29. Common Metaphors ... 118

Figure 30. System View of Out of Paper Dialog Message... 119

Figure 31. User View of Out of Paper Dialog Message... 120

Figure 32. Interaction Diagram of Out of Paper Dialog Message.. 121

Figure 33. Interaction Diagram of Resize Box Example ... 121

Figure 34. Resize Box Example Process by Process Comparison to Screen 122

vii

LIST OF TABLES

Table 1. Some Typical Problems ... 15

Table 2. Some Benefits of Constraint Discovery ... 16

Table 3. Different Relations Illustrated by Constraint Statements... 34

Table 4. Design Configuration Specification ... 77

Table 5. Rationale Specification .. 77

Table 6. User Gestures and Interactions Table... 116

Table 7. I/O Devices... 117

ix

PREFACE

This document provides a summary of research toward the development of four
Integration Definition (IDEF) methods: the IDEF9 Business Constraint Discovery method,
the IDEF14 Network Design method, the IDEF6 Design Rationale Capture method, and the
IDEF8 Human-System Interaction Design method. This work was performed under the
Information Integration for Concurrent Engineering (IICE) project, contract # F33615-90-C-
0012, funded by the Armstrong Laboratory, Logistics Research Division, Wright-Patterson
Air Force Base, Ohio, under the technical direction of United States Air Force Captain JoAnn
Sartor and Mr. James McManus. The prime contractor for IICE was Knowledge Based
Systems, Inc. (KBSI), College Station, Texas. Dr. Paula S. deWitte was the IICE Project
Manager at KBSI. Dr. Richard J. Mayer was the Principal Investigator on this project. Mr.
Thomas Blinn was the IICE Technical Manager and also served as the Project Manager
during the final close out of this effort. Michael K. Painter was the Methods Engineering
thrust manager. The authors gratefully acknowledge the technical support of the Methods
Engineering Team whose names are listed below.

Perakath Benjamin, Ph.D.
Bruce E. Caraway

John W. Crump, IV
Ronald Fernandes, Ph.D.

Florence Fillion
Mike Graul, Ph.D.

Umesh Hari
Arthur Keen, Ph.D.
Madhavi Lingineni

Richard J. Mayer, Ph.D.
Christopher P. Menzel, Ph.D.

Michael K. Painter

xi

FOREWORD

Significant technological, economic, and strategic benefits can be attained through the
effective capture, control, and management of information and knowledge resources. Like
manpower, materials, and machines, information and knowledge assets are recognized as
vital resources that can be leveraged to achieve a competitive advantage. The Air Force
Information Integration for Concurrent Engineering (IICE) program, sponsored by the
Armstrong Laboratory’s Logistic Research Division, was established as part of a commitment
to further the development of technologies that will enable full use of these resources.

The IICE program was chartered with developing the theoretical foundations, methods,
and tools to successfully evolve toward an information-integrated enterprise. These
technologies are designed to leverage information and knowledge resources as the key
enablers for high quality systems that achieve better performance in terms of life cycle cost
and efficiency. The methods research described in this report reflects recent advancements in
technology for leveraging available information and knowledge assets.

The name IDEF originates from the Air Force program for Integrated Computer-Aided
Manufacturing (ICAM) which developed the first ICAM Definition, or IDEF, methods.
Continued development of IDEF technology supports an overall strategy to provide a family
of mutually-supportive methods for enterprise integration. More recently, with the expanded
focus and use of IDEF methods as part of Concurrent Engineering, Total Quality
Management (TQM), and business re-engineering initiatives, the IDEF acronym has been re-
cast as an integrated family of Integration Definition methods. Before discussing the
development strategy for providing an integrated family of IDEF methods, the components of
a method are described in the following paragraphs.

Method Anatomy

A method is an organized, single-purpose discipline or practice.1 A method may have a
formal theoretical foundation, although this is not a requirement. Generally, methods evolve
as a distillation of the best-practice experience in a particular domain of activity. The term
tool is used to refer to a software system that supports the application of a method.

Though a method may be thought of informally as a procedure for doing something plus
(perhaps) a representational notation, it may be described more formally as consisting of
three components (Figure 1). Each method has (1) a definition, (2) a discipline, and (3) many
uses. The method definition is established by characterizing the method’s basic motivations,
concepts, and theoretical foundations. The definition component is developed by method
developers familiar with methods engineering principles (e.g., formal language design,
method ontology definition). The discipline component includes the syntax of the method
and the procedure by which the method is applied. Many methods have multiple syntaxes

1 See Coleman, D.S. (1989). A Framework for Characterizing the Methods and Tools of an Integrated System
Engineering Methodology (ISEM), Draft 2, Rev. 0. Santa Monica, CA: Pacific Information Management, Inc.

xii

which have evolved over time or which emphasize different concepts within the scope of the
method.2 From a method engineer’s standpoint, the discipline component is the user
interface for the method. This component is often the only one presented to typical users.
The use component characterizes how to apply the method in different situations, such as
when the method is applied together with other methods versus in a stand-alone fashion.

Procedure

In the
System

Evolution
Process

Stand-alone
In an

Integrated
Suite of
Methods

Independent
of System

Development

Data
Assimilation

Validation
Formulation

Graphical
Syntax

Computer-
interpretable

Syntax

Lexicon Grammar

Concepts

Motivation

Theory

Informal

Formal
Language

Formal
Semantics

Di
sc

ip
lin

e

Definition

Use

Method

Figure 1.
Anatomy of a Method

Ultimately, methods are designed to facilitate a scientific approach to problem solving.
This goal is accomplished by first helping one understand the important objects, relations,
and constraints that must be discovered, considered, or decided on. Second, scientific
problem solving occurs by guiding the method practitioner through a disciplined approach

2 Enterprise engineering methods often include a graphical syntax that provides useful visualizations for the
information managed by the method. Graphical language facilities serve to document the analysis or design
process undertaken and highlight important decisions or relationships that must be considered during method
application. The uniformities to which an expert, through experience, has become attuned are thus formally
encoded in visualizations that emulate expert sensitivities.

xiii

that is consistent with good-practice experience and leads toward the desired result. Formal
methods, then, are specifically designed to raise the performance level (quality and
productivity) of the novice practitioner to a level comparable with that of an expert (Mayer,
1987).

Family of Methods

John Zachman, in his pioneering work on information systems architecture, observed:

[T]here is not an architecture, but a set of architectural representations. One is
not right and another wrong. The architectures are different. They are
additive, complementary. There are reasons for electing to expend the
resources for developing each architectural representation. And, there are
risks associated with not developing any one of the architectural
representations.

The consistent, reliable creation of correct architectural representations requires the use of a
guiding method. These observations underscore the need for many “architectural
representations,” and, correspondingly, many methods.

Methods, and their associated architectural representations, focus on a limited set of
system characteristics and ignore those that do not pertain to the task at hand. Methods are
not intended to evaluate and represent every possible state or characteristic of the system
under study. Hence, the search for a single method, or modeling language, supporting the
specification, analysis, design, and representation of all relevant system characteristics
continues to frustrate those making the attempt. If such a goal were achievable, the exercise
would itself build the actual system, negating the benefits of method application (e.g.,
problem simplification, low cost, rapid evaluation of anticipated performance, and so forth).

On the other hand, lack of integration among special-purpose methods can be equally
frustrating. The IDEF family of methods is intended to strike a balance between special-
purpose methods, which are limited to specific problem types, and “super methods” which
attempt to include everything. This balance is maintained by providing explicit mechanisms
for integrating the results of individual methods within the IDEF family.

Previous research identified critical needs for new methods3 and led to renewed effort in
IDEF method development, with a mandate for compatibility among the family of IDEF
methods. New method development has gone in directions where obvious voids existed
(rather than reinventing existing methods) with the mission to forge integration links among
existing IDEF methods. When applied in a stand-alone fashion, IDEF methods embody

3 Notably, the Knowledge-Based Integrated Information Systems Engineering Project was conducted at the
Massachusetts Institute of Technology (MIT) in 1987, where a collection of highly qualified experts from
academic and research organizations, government agencies, computer companies, and other corporations
identified method and tool needs for large-scale, heterogeneous, distributed systems integration. See Defense
Technical Information Center (DTIC) reports A195851 and A195857.

xiv

knowledge of good practice for the targeted activity. As with any good method, the IDEF
methods are designed to raise the performance level of novice practitioners by focusing
attention on important decisions while masking irrelevant information and unneeded
complexity. Viewed as a toolbox of complementary methods technology, the IDEF family is
designed to promote the integration of effort in an environment where effective results have
become increasingly dependent on effective use of enterprise information and knowledge
assets.

1

EXECUTIVE SUMMARY

For all the rapid advances in computer hardware and specific software technology, the
bane of enterprise engineering, reengineering, and enterprise integration efforts continue to be
the lack effective, widely understood methods for engineering integrated systems. Diverse
methods are needed to engineer systems that exhibit desirable life-cycle characteristics (e.g.,
flexibility, responsiveness, scalability, maintainability, ease of use, integration, performance)
and for engaging teams of people in critical life-cycle system development activities.

Methods provide a scientific approach to problem solving. Methods guide their
practitioners through a disciplined, reliable approach distilled from expert experience.
Methods also highlight important objects, relations, and constraints; and hide irrelevant
information and unnecessary detail. Methods are designed to improve performance (quality
and productivity) of both individuals and teams involved in systems development activities.
Integration Definition (IDEF) methods, a key product of the IICE effort, provide easy-to-use
techniques and standard languages of communication that promote good engineering
discipline. IDEF methods also improve responsiveness in an environment of rapid and
continuous change by helping users to:

• Correctly understand the current environment.

• Propose change.

• Test alternative solutions.

• Predict the impacts of change.

• Successfully implement changes.

IDEF methods facilitate reliable and effective completion of specific tasks in the
development process. Individual IDEF methods, when applied in stand-alone fashion,
promote consistently good performance of the task for which the method was designed (e.g.,
information requirements definition, process knowledge capture, object-oriented systems
design). The IDEF methods are also designed to work together as a conceptually integrated
suite of methods that can interlock like pieces of a puzzle to support the entire development
process. Each IDEF method addresses a unique aspect or perspective of enterprise
engineering. When individual IDEF methods are applied together, they help achieve one of
the key goals of Concurrent Engineering: considering more life-cycle factors early in the
design process. The achievement of this goal facilitates the downstream benefits of
increased enterprise integration, flexibility, and responsiveness.

The first generation of IDEF methods emerged from the Air Force’s Integrated Computer-
Aided Manufacturing (ICAM) program in the late seventies. The ICAM program developed
the IDEFØ Function Modeling Method, the IDEF1 Information Modeling Method, and the

2

IDEF2 Simulation Modeling Method (See Figure 2).4 A second ICAM project later
developed the IDEF1X Data Modeling Method. IDEF1X facilitates the movement of
information requirements, the product of IDEF1 analysis, toward actual systems
implementation by establishing a discipline for logical database design.5 A third generation
of IDEF methods emerged from the need for methods technology supporting the development
of evolving, information-integrated systems supporting Concurrent Engineering. This
development was sponsored by the Air Force Armstrong Laboratory through the Information
Integration for Concurrent Engineering (IICE) program and produced methods for process
description capture (IDEF3), object-oriented design (IDEF4 and IDEF4 C++), and ontology
description capture (IDEF5).6 Preliminary developments were also accomplished through the
IICE program toward methods for business constraint discovery (IDEF9), design rationale
capture (IDEF6), human-system interaction design (IDEF8), and network design (IDEF14).
These partially developed methods are the subject of this report.

4 See SofTech, Inc. (1981). Integrated Computer-Aided Manufacturing (ICAM): Function Modeling Manual
(IDEF0) (F33615-78-C-5158), Wright-Patterson Air Force Base, OH: Materials Laboratory, Air Force Wright
Aeronautical Laboratories.
5 See D. Appleton Co., Inc. (1985). Integrated Computer-Aided Manufacturing (ICAM): Information
Modeling Manual, IDEF 1—Extended (IDEF1X) (F33615-80-C-5155), Albany, New York: General Electric
Company.
6 See Mayer, R. J., et al. (1992, 1992, & 1994). IDEF3 process description capture method report, IDEF4
object-oriented design method report, and IDEF5 ontology capture method report. Wright-Patterson Air Force
Base, OH: AL/HRGA. Note: New IDEF3 and IDEF4 reports are pending publication.

3

First Generation IDEF Methods
 • Function Modeling (IDEFØ)
 • Information Modeling (IDEF1)
 • Simulation Modeling (IDEF2)

Second Generation IDEF Methods
 • Data Modeling (IDEF1X)

Third Generation IDEF Methods
 • Process Description Capture (IDEF3)
 • Object-Oriented Design (IDEF4)
 • C++ Object-Oriented Design (IDEF4/C++)
 • Ontology Description Capture (IDEF5)

Partially Developed IDEF Methods
 • Design Rationale Capture (IDEF6)
 • Human-System Interaction Design (IDEF8)
 • Business Constraint Discovery (IDEF9)
 • Network Design (IDEF14)

Additional Method Needs
 • Information System Auditing (IDEF7)
 • Information Artifact Modeling (IDEF10)
 • Organization Design (IDEF12)

•
•
•

Figure 2.
IDEF Methods: Part of the Systems Engineer’s Toolbox

This report describes the conceptual foundations, relevance, issues, and recommended
follow-on development activities for each of the methods that were only partially addressed
through the IICE program. An introductory description of each method is summarized below
in the Executive Summary. More detailed discussions of the research conducted toward the
development of each method are found in later sections of the report. The methods are
presented in order of relative maturity.

IDEF9 Business Constraint Discovery Method

Policies, rules, conventions, procedures, contracts, agreements, regulations, and societal
and physical laws are the defining structures for an enterprise. These items are the
mechanisms for forging relationships between people, information, material, and machines to
make a system. In this report, we refer collectively to these items as constraints. If you view
an enterprise as a machine, constraints form the architecture and the programming language

4

that define the behavior of that machine. If you view the enterprise as an organism, they form
the control structure of that organism, from the genetic code level through the autonomous
stimulus response level, to the cognitive behavior level.

The IDEF9 Business Constraint Discovery method described in this report was designed
to assist in the discovery and analysis of constraints in a business system. A primary
motivation driving the development of IDEF9 was an acknowledgment that the collection of
constraints that forge an enterprise system is generally poorly defined. The knowledge of
what constraints exist and how those constraints interact is incomplete, disjoint, distributed,
and often completely unknown. This situation is not necessarily alarming. Just as living
organisms do not need to be aware of the genetic or autonomous constraints that govern
certain behaviors, organizations can (and most do) perform well without explicit knowledge
of the glue that structures the system. However, if the desire exists to modify the business in
a predictable manner, the knowledge of these constraints is as critical as knowledge of
genetics is to the genetic engineer.

Constraints are the mechanisms by which humans and nature form systems. Constraints
initiate, enable, govern, and limit the behavior of objects and agents to accomplish the goals
or purposes of a system. If we want to change the behavior of a system(e.g., improve its
performance, efficiency, or effectiveness) we need to know the relevant constraints. The
IDEF9 method facilitates the discovery and mapping of the relevant constraints in an
organizational system. Once these constraints have been cataloged, they can be
systematically examined and, if necessary, tuned or replaced to improve the performance of
the system. Constraints often serve a dual role as the glue and the rationale for a system.
That is, the collection of relevant constraints often constitutes the description of why the
system behaves as it does. From this perspective, IDEF9 provides a reverse engineering tool
for the business engineer. It can assist him in discovery of the “logic” behind the design of an
existing system. It also provides a mechanism for specifying the logic of a “To-Be” system.

IDEF6 Design Rationale Capture Method

Advancing technology has led to the emergence of products whose expected usable
lifetimes extend over decades. Information systems have also evolved from stand alone
application-oriented systems with relatively short lifetimes and limited scopes to large scale,
distributed systems which must service their users over extended periods of time.
Maintenance of information systems whose expected lifetimes may extend over many career
periods requires explicit capture and storage of the rationale used in their design.

Design rationale typically exists as unstructured textual comments. In addition to making
it difficult to find relevant information on demand, lack of a structured method for organizing
and providing completeness criteria for design rationale capture make it unlikely that
important information will be documented.

Unlike design methods which serve to document WHAT a design is, new methods are
needed to capture WHY a design is the way it is, or WHY it is not manifested in some other
form, together with HOW the final design configuration was reached. For the purpose of this

5

discussion, Design Specification means capture of WHAT a design is; Design Rationale
indicates WHY, WHY NOT, and HOW a design arrived at its final configuration; and Design
History indicates the time-ordered sequence of steps used in the realization of the design.

IDEF6 is intended to be a method with the representational capability to capture
information system design rationale and associate that rationale with the design models and
documentation for the end system. Thus, IDEF6 attempts to capture the logic underlying the
decisions contributing to, or resulting in, the final design. The explicit capture of design
rationale serves to help avoid repeating past mistakes, provides a direct means for
determining the impact of proposed design changes, forces the explicit statement of goals and
assumptions, and aids in the communication of final system specifications. Explicit capture
of the motivations for why a designer selected or adopted a particular design strategy or
system feature for enterprise level information systems is essential to the maintenance of that
system over its life-cycle.

IDEF14 Network Design Method

IDEF14 is a method that supports the design of computer networks by helping network
designers capture requirements, specify network components, capture the existing network
configuration, and perform analyses on the design. It also supports managerial decision-
making and design to maximize engineering economy. Additionally, IDEF14 represents and
stores design rationale of network designs. IDEF14 supports these activities with a tailorable
procedure that produces models of network configuration, queuing, reliability, and cost. The
network configuration model graphically displays the topology, configuration, specification,
and attributes of network components. Using this model, the queuing, reliability, and cost
models are generated. These three models are analyzed and used as input to the decision
making process of network selection.

IDEF14 provides a reliable procedure that supports data collection, multiple design
creation and evaluation, and final design selection. The network design process includes
modeling the AS-IS network. Capturing the current and future workloads to assist with
formulating TO-BE network designs is also supported and formalized. For each alternative
design, multi-faceted analyses are performed, and design rationale is documented. The
method also provides for developing and extending libraries of network technology
descriptions representing state-of-the-art and future technologies of computer and
communication networks. IDEF14 is thus designed to be used together with network
simulation tools by assisting with the design of a network architecture that can then be tested
and analyzed using varying technology configurations.

IDEF8 Human-System Interaction Design Method

The IDEF8 Human-System Interaction Design Method is used to produce high quality
designs of the interactions that do, or should, occur between users and the systems they
operate. IDEF8 is not a graphical user interface design method, that is, it is not used to
describe screen placement or the size of buttons or windows. It is used to help the system
developer capture the interactions that must flow between the system and its users. Systems

6

are collections of objects which perform one or more functions to accomplish a particular
goal. The system is not necessarily a computer or a computer program.

Human-system interactions are designed at three levels of specification in the IDEF8
method. The first level defines the philosophy of system operation and produces a set of
models and textual descriptions of overall system processes. The second level of design
specifies role-centered scenarios of system use. The third level of IDEF8 design is for
detailing and refinement of the human-system design. At this level of design, IDEF8
provides a library of metaphors used to help users and designers specify the desired behavior
in terms of other objects whose behavior is more familiar. Metaphors provide a model of
abstract concepts in terms of familiar, concrete objects and experiences. For example, a light
switch metaphor might be used to specify users interactions involving two possible options.
Among the products of this level of design is a human-system interaction mock up with
which to test user requirements, formulate user interface strategies (e.g., selecting preferred
input and feedback devices), and so forth. Once validated, the products of IDEF8 application
are used by system developers (e.g., programmers) to build implementations.

Much of IDEF8’s language constructs come directly from the IDEF3 Process Description
Capture method because of IDEF8’s need for a mechanism to capture and organize process
information at multiple levels of abstraction and detail. Specialized language extensions
distinguish IDEF8 design models, which are prescriptive in nature, from IDEF3 descriptive
representations.

The fundamental goals of the IDEF8 method are to promote good design practice for
human-in-the-loop systems to realize higher quality implementations in less time and at a
reasonable cost. IDEF8 seeks to help users produce good human-system interaction designs
and consequently higher quality systems by (1) facilitating user-focused data collection, (2)
enabling direct user involvement in design activities, (3) focusing efforts on early validation
of designs using mock-ups and prototypes, and (4) promoting more productive iterations
through the design process.

Summary

IDEF methods provide individuals and teams with a disciplined, reliable approach to
problem solving in support of efforts such as enterprise engineering, reengineering, large-
scale information systems development, and enterprise integration. The need for multiple,
conceptually integrated methods continues to be a growing need that has been partially
addressed through the IICE program and earlier initiatives. From these efforts, mature,
reliable methods have emerged that are in widespread use throughout government and
industry. Additional method needs have been identified, some of which have been
investigated through the IICE program. Among these are methods for design rationale
capture (IDEF6), human-system interaction design (IDEF8), business constraint discovery
(IDEF9), and network design (IDEF14). Continued development is needed to produce
mature versions of these additional IDEF methods.

7

OVERVIEW OF THE METHOD ENGINEERING PROCESS

The approach taken by the IICE methods engineering team to initiate developments
toward methods for business constraint discovery (IDEF9), design rationale capture (IDEF6),
network design (IDEF14), and human-system interaction design (IDEF8) leveraged
knowledge from studying common method engineering practice and experience in
developing other analysis and design methods. The purpose of this section is to provide a
general overview of that approach.

Figure 3 provides a process-oriented view of the approach used to develop prototype
IDEF9 method concepts, a procedure, and candidate graphical and textual language elements.
Figure 3 uses the IDEF3 Process Description Capture method7 to describe this process where
boxes with verb phrases represent activities, arrows represent precedence relationships, and
“exclusive or” conditions among possible paths are represented by the junction boxes labeled
with an “X.”

• Isolate basic intuitions and method concepts
• Identify potential users
• Survey existing constraint discovery practice
• Identify shortcomings, voids,

and/or improvement opportunities

• Develop Method Ontology
• Design Procedure as a Distillation of

Best Practice
• Design Method Language(s)

Document
Motivations

Search for
Existing

Method(s)

Adopt
Existing
Method

Tailor
Existing
Method

Develop
New

Method

Test
Candidate

Design
Elements

X X
1 2 4

3

5

Design
Method

Application
Techniques
6

7

J1 J2

Iteratively
Refine
Method
Design

8

Figure 3.
Process Description of the IDEF9 Development Approach

7 See Mayer, R. J., et al. (1992). IDEF3 process description capture method report. Wright-Patterson Air
Force Base, OH: AL/HRGA. Note: A new IDEF3 report is pending publication.

8

As is evidenced by Figure 3, one of the basic strategies of methods engineering is reuse.
Whenever possible, existing methods are adopted. The next option is to find methods that
can satisfy the identified needs with minor modification. This option is an attractive one if
the modification does not require a fundamental change in the basic concepts or design goals
of the method. Only when neither of these options is viable should method designers seek to
develop a new method.

A knowledge engineering approach is the predominant mechanism for method
enhancement and new method development. In other words, with very few exceptions,
method development involves isolating, documenting, and packaging existing practice for a
given task in a form that promotes reliable success among practitioners. Expert attunements
are first characterized in the form of basic intuitions and method concepts. These are often
initially identified through analysis of the techniques, diagrams, and expressions used by
experts. These discoveries aid in the search for existing methods that can be leveraged to
support novice practitioners in acquiring the same attunements and skills. New method
development is accomplished by establishing the scope of the method, refining
characterizations of the method concepts and intuitions, designing a procedure that provides
both task accomplishment and basic apprenticeship support to novice practitioners, and
developing a language(s) of expression. Method application techniques are then developed
outlining guidelines for use in a stand-alone mode and in concert with other methods. Each
element of the method then undergoes iterative refinement through both laboratory and field
testing.

The method language design process is highly iterative and experimental in nature.
Unlike procedure development, where a set of heuristics and techniques from existing
practice can be identified, merged, and refined, language designers rarely encounter well-
developed graphical display or textual information capture mechanisms. When potentially
reusable language structures can be found, they are often poorly defined or only partially
suited to the needs of the method.

A critical factor in the design of a method language is clearly establishing the purpose
and scope of the method. The purpose of the method establishes the needs the method must
address. This is used to determine the expressive power required of the supporting language.
The scope of the method establishes the range and depth of coverage which must also be
established before one can design an appropriate language design strategy. Scope
determination also involves deciding what cognitive activities will be supported through
method application. For example, language design can be confined to only display the final
results of method application (as in providing IDEF9 with graphical and textual language
facilities that capture the logic and structure of constraints). Alternatively, there may be a
need for in-process language support facilitating information collection and analysis. In
those situations, specific language constructs may be designed to help method practitioners
organize, classify, and represent information that will later be synthesized into additional
representation structures intended for display.

With this foundation, language designers begin the process of deciding what needs to be
expressed in the language and how it should be expressed. Language design can begin by

9

developing a textual language capable of representing the full range of information to be
addressed. Graphical language structures designed to display select portions of the textual
language can then be developed. Alternatively, graphical language structures may evolve
prior to, or in parallel with, the development of the textual language. The sequence of these
activities largely depends on the degree of understanding of the language requirements held
among language developers. These may become clear only after several iterations of both
graphical and textual language design.

Graphical language design begins by identifying a preliminary set of schematics and the
purpose or goals of each in terms of where and how they will support the method application
process. The central item of focus is determined for each schematic. For example, in
experimenting with alternative graphical language designs for IDEF9, a Context Schematic
was envisioned as a mechanism to classify the varying environmental contexts in which
constraints may apply. The central focus of this schematic was the context. After deciding
on the central focus for the schematic, additional information (concepts and relations) that
should be captured or conveyed is identified.

Up to this point in the language design process, the primary focus has been on the
information that should be displayed in a given schematic to achieve the goals of the
schematic. This is where the language designer must determine which items identified for
possible inclusion in the schematic are amenable to graphical representation and will serve to
keep the user focused on the desired information content. With this general understanding,
previously developed graphical language structures are explored to identify potential reuse
opportunities. While exploring candidate graphical language designs for emerging IDEF
methods, a wide range of diagrams were identified and explored.

Quite often, even some of the central concepts of a method will have no graphical
language element in the method. For example, the IDEF1 Information Modeling method
includes the notion of an entity but has no syntactic element for an entity in the graphical
language.8. When the language designer decides that a syntactic element should be included
for a method concept, candidate symbols are designed and evaluated.

Throughout the graphical language design process, the language designer applies a
number of guiding principles to assist in developing high quality designs. Among these, the
language designer avoids overlapping concept classes or poorly defined ones. They also
seek to establish intuitive mechanisms to convey the direction for reading the schematics.
For example, schematics may be designed to be read from left to right, in a bottom-up
fashion, or center-out. The potential for clutter or overwhelmingly large amounts of
information on a single schematic is also considered as either condition makes reading and
understanding the schematic extremely difficult.

8 The IDEF1X Semantic Data Modeling method uses ‘entity’ to describe a different concept than that used in
the IDEF1 Information Modeling method. In IDEF1X, an entity is represented explicitly in the method
language and represents a set of things that share the same set of attributes.

10

Each candidate design is then tested by developing a wide range of examples to explore
the utility of the designs relative to the purpose for each schematic. Initial attempts at method
development, and the development of supporting language structures in particular, are
usually complicated. With successive iterations on the design, unnecessary and complex
language structures are eliminated.9

As the graphical language design approaches a level of maturity, attention turns to the
textual language. The purposes served by textual languages range from providing a
mechanism for expressing information that has explicitly been left out of the graphical
language to providing a mechanism for standard data exchange and automated model
interpretation. Thus, the textual language supporting the method may be simple and
unstructured (in terms of computer interpretability), or it may emerge as a highly structured,
and complex language. The purpose of the method largely determines what level of structure
will be required of the textual language.

As the method language begins to approach maturity, mathematical formalization
techniques are employed so the emerging language has clear syntax and semantics. The
method formalization process often helps uncover ambiguities, identify awkward language
structures, and streamline the language.

These general activities culminate in a language that helps focus user attention on the
information that needs to be discovered, analyzed, transformed, or communicated in the
course of accomplishing the task for which the method was designed. Both the procedure
and language components of the method also help users develop the necessary skills and
attunements required to achieve consistently high quality results for the targeted task.

Once the method has been developed, application techniques will be designed to
successfully apply the method in stand-alone mode as well as together with other methods.
Application techniques constitute the “use” component of the method which continues to
evolve and grow throughout the life of the method. The method procedure, language
constructs, and application techniques are reviewed and tested to iteratively refine the
method.

Although much progress was made toward defining the IDEF methods described in this
report, additional design, testing, analysis, and refinement is needed for each method to
achieve full maturity. A summary of the research conducted toward the development of these
methods is provided below.

9 Language development activity for an IDEF9 method reached the initial levels of this stage of development
during the IICE project. Some of the language designs explored during this process are presented later in the
report.

11

TOWARD A BUSINESS CONSTRAINT DISCOVERY METHOD
(IDEF9)

Introduction

It is easy to think of instances of policies, rules, laws, or methods that govern the behavior
of the components of an enterprise. But, in order to define a method for discovery and
analysis of such phenomena, we need to step back and form a perspective for understanding
the nature of how these and other constraint forming mechanisms work.

What Is a Constraint?

A constraint is a relationship that is maintained or enforced in a given context. The term
relationship refers to an abstract, general association or connection that holds between two or
more conceptual or physical objects. A constraint is simply a special kind of relationship—
one that is checked, restricted, or compelled to exist under a given set of conditions. The
term context refers to such a distinguished set of conditions. A constraint is said to hold in a
given context when a relationship is maintained or enforced in that context. Conversely, a
constraint does not hold in a given context if the constraint is not maintained or enforced for
that set of conditions.

Examples are found between objects; between objects and processes: between processes;
and between objects and object properties, and the value of those properties. Constraints are
expressed in constraint statements. For example, a constraint statement expressing a
constraint between objects might be “Only project managers are authorized to sign pre-trip
requests.” An example of a constraint between objects and processes might be: “All travel
requires an approved pre-trip request.” “Drilling precedes reaming,” or “Leasing requires
making monthly payments,” are statements that “The maximum occupancy of the building
complex is two hundred people,” or “Product A requires 3600 hours of machining time” are
examples of constraint statements involving objects, object properties, and their values.

In this framework, a system is characterized as: a collection of objects standing in
particular relations and exhibiting particular behavior prescribed by a collection of
constraints. In manmade systems, this characterization is usually extended to include the
achievement of some goal. It is the behavior and relationship influencing role of the
collection of constraints that distinguishes the notion of a system from the more general
notion of a situation or state of affairs. Specifically, not all of the properties of, or
relationships among, objects in a system are relevant to the system. In fact, particularly in
manmade systems, the constraints may specify that particular properties and relations (e.g.,
equal opportunity constraints) cannot influence the behavior of the system.

Because of their behavior-determining role, constraints have long been the focus of
studies directed at understanding and controlling our natural environment. In ecology, for
example, constraints between living organisms are studied to understand and maintain the
delicate balance of nature. In chemistry, much of the discipline comes from discovering

12

constraints among basic elements and reactive processes. Similar examples could be
considered in physics, thermodynamics, medical physiology, and so forth. The study of
constraints, however, is not confined to the natural sciences. Similar examples can be found
in the study of man-made objects and systems. Constraints manifest in the design process,
for example, relations among properties or variables of the proposed artifact and its
environment or context [Maher 89]. Design constraints establish the rules, requirements,
relations, conventions, and principles that designers must use to synthesize design solutions
[Gross 87].

 Business systems can be viewed as a collection of objects behaving to perform one or
more business functions to accomplish a particular goal under the influence of constraints.
Figure 4 illustrates the variety of business systems found in typical manufacturing enterprises.
In the analysis of the collection of constraints relevant to a particular business system, it is
useful to characterize where a constraint is enforced and controlled relative to a system.

We characterize constraints as: in (enforced internal to the system), on (enforced
externally on or controlled externally to the system), of (possessed by and hence controllable
within the system) and between (among) (constraints which link business systems as objects
together to form larger systems). The performance of a business system, whether operating
independently or in concert with other business systems, is governed by constraints.

Maintenance Planning
 Preventive Maintenance
 Unscheduled (Breakdown or
 Emergency) Maintenance

Strategic Planning
 Business Forecasting
 Market Analysis
 Market Research
 Miss ion Planning
 Resource Allocation
 Cost Planning and Control
 Total Quality Management

Tactical Plann ing
 Operational Policy Release
 Manpower P lanning
 Manpower Allocation
 Material Planning
 Quality Planning
 Manufacturing Planning
 Manufacturing Cost Es timation
 Concurrent Engineering Planning
 Information Sys tems Planning
 Business Re-engineering Planning

Order Process ing and Control
 Order Analysis and Entry
 Order Control
 Order Cancellation
 Order Release
 Order His tory Maintanance
 Customer Order Servicing
 Accounts Receivable
 Credit Control
 Rapid Response/Emergency Order

Customer Support
 Inquiry Processing
 Warranty Management
 Product Support
 Liability Control
 Customer Information

Packaging
Sh ipping

Personnel Management
 Certification and Training
 Payroll
 Attendance and Labor Reporting
 Security
 Job Performance Tracking
 Job Ass ignment
 Reporting
 Overtime Authorization
 Quality of Life
 Pension Planning and Investment

Master Production Schedule Planning
 Stock Replenishment Planning
 Capacity Requirements Planning
 Resource Requirements Planning
 Material Requisitioning
 Order and Delivery Scheduling
 Facilities Modernization P lanning
 Facilities Planning
 Fabrication Process Planning
 Assembly Process P lanning
 Inspection Planning

Manufacturing Activity Management and Control
 Manufacturing Activity Planning
 Work-In-Process Control
 Manufacturing Activity Reporting
 Production Process Monitoring and Control
 Statistical Process Control
 Material Handling Planning, Scheduling, and Control
 Manufacturing Quality Control
 Production Data Management and Control
 End-of-Shift Reporting
 Error Reporting

Purchasing
 Purchase Planning
 Supplier Identification
 Supplier Evaluation
 Supplier Selection
 Receiving and Inspection

Scrap Recovery/Reclamation

New Business Generation
 Bid, Quote, and P roposal Preparation
 Bid and Proposal Tracking
 Contact Management

Engineering Data Management & Control
 Bills of Material
 Engineering Drawings
 Manufacturing Process Planning
 Engineering Change Planning
 Engineering Change History
 Configuration Control
 Requirements Tracking

Inventory Management and Control
 Inventory Planning
 Inventory Accounting
 Inventory Control
 Kit P reparation & Tracking

Tool Management and Control
 Tool Requirements Planning
 Tool Identification
 Tool Checkout

Safety
 Safety Inspection
 Safety Reporting
 Standards Compliance
 Hazardous Material Notices

Product Research and Development

Conformance Testing

Design support (CAD)
Engineering support (CAE)

Figure 4.
Typical Business Systems

13

Constraints can be broadly classified as either enabling or limiting within a given context
(See Figure 5). Although the term “constraint” often evokes images of negative influence or
control, constraints serve the vital enabling role of establishing the system. Tolerances
between mating parts, for example, establish the constraints required to ensure correct fit.
Fiscal management policies and accounting procedures maintained within a company not
only keep a pulse on the health of the business but facilitate the prevention of unmanageable
debt, fraud, and waste. Both the limiting and enabling aspects or constraints are evidenced in
alternative definitions for a constraint in the literature. For example, Eliyahu Goldratt defines
a constraint as “anything that limits a system from achieving higher performance versus its
goal” [Goldratt]. Other definitions state that constraints are “the rules, requirements,
relations, conventions, and principles that define the context of designing [Gross, Ervin, &
Anderson, Fleisher],” “specifications, requirements, needs, performance measures, and
objectives” [Ullman, Diettrich, and Stauffer], and “a characteristic of the environment, or of
the artifact as currently conceived, [that] rules out or against potential settings of design
variables” [Smith & Browne]. In other words, whenever the term is used there is an implicit
thought that a constraint can be an enabling or limiting factor in design or on performance.

Business
Performance

Enabling
Constraints

Limiting
Constraints
Figure 5.

Constraints Can Be Enabling or Limiting

14

Limiting constraints are, of course, the most obvious since they tend to manifest
themselves through problematic symptoms. Bottlenecks, excessive costs, low quality, long
development lead times, waste, and inefficiency are symptoms of limiting constraints.
Symptoms are one form of evidence that constraints exist within the system. Enabling
constraints, such as a constraint for all employees to begin work no later than 8:00 AM,
constitute relationships maintained to promote good business system performance. Evidence
supporting the existence of these constraints may also be found.

We define evidence as an indication, sign, or manifestation that supports or proves the
existence of a constraint in a given context. Evidence of constraints can take many forms.
Some of these include symptoms (observable evidence of a system failing to meet goals),
operating instructions, procedure manuals, employee handbooks, regulations, specifications,
policy manuals, project files, design models, and so forth. These are not the constraints
themselves but an indication, sign, or manifestation of possible constraints. Policy
statements written in a policy manual, for example, would support the proposition that there
are constraints whose description is found in the policy manual. If the policies are not
maintained or enforced, however, no constraint exists.

The existence of a constraint implies the existence of a system that maintains or enforces
the relationship. One should be cautious, however, not to confuse a constraint with the
system that maintains the constraint. A constraint is simply a special kind of association
between a relationship that is maintained and the system that maintains that relationship.

However, it should be obvious that because constraints involve the use of a system in
their maintenance or enforcement, constraints come at a cost. The maintenance of natural
constraints is reflected in terms of energy expended or transformed. Business constraints are
maintained by business systems, and operating business systems costs time and money.

Motivation for Collecting and Managing Business Constraints

Given the influence constraints have on business performance, one would expect
organizations to spend as much time and effort on managing constraints as on managing the
objects that comprise business systems. Evidence of constraint management activity is
abundant, although it may not be recognized. Authority is given or denied, policies are
changed and assignments made, standards are developed and enforced, and so forth.
However, decision-makers and system developers often have limited support to identify and
manage constraints effectively.

Effective constraint visibility and management enables decision-makers to recognize and
respond appropriately to constraint problems typical of many businesses, as illustrated in
Table 1.

15

Table 1. Some Typical Problems

Type I problem The cost of maintaining a constraint exceeds the value of the
constraint.

Type II problem Constraints exist that no longer support the organization’s
goals.

Type III problem The constraint causes unintended or undesirable effects.

Type IV problem The agent or system (mechanism) responsible for
maintaining the constraint fails to consistently or correctly
enforce the constraint.

Type V problem What was believed or intended to be a constraint lacks any
explicit maintenance or enforcement mechanism.

Without visibility of constraints and support for constraint management, business
owners, strategic and tactical planners, and process owners fall prey to constraints that limit
performance and frustrate attempts to seize opportunity. Systems overburdened with
outdated or inappropriate constraints unnecessarily levy costs in overall business performance
and consume resources that could be used elsewhere. According to Eliyahu Goldratt, a
widely recognized proponent of constraint-driven change, outdated rules, policies, and
procedures are the main cause of limited organizational performance [Goldratt & Cox 86]. In
such an environment, decisions-take a reactive stance toward constraints. Problematic
symptoms and limiting constraints take center stage, demanding most, if not all, of the
decision-maker’s attention. Lacking visibility on the current constraints of the enterprise,
decisions are made without the benefit of tools to anticipate downstream effects.
Increasingly, decisions made to solve problems at a local level create unanticipated negative
effects on the overall enterprise. Opportunities also take a back row seat as resources and
time become increasingly scarce.

Interestingly, while many negative symptoms are most effectively dealt with by changing
or eliminating existing constraints, many decision-makers instead add new business
constraints. This tendency may actually exacerbate the challenge of business constraint
identification and management. Informal mechanisms of business constraint management
thus tend to grow increasingly inadequate as the organization adapts to changes in the
business environment, as the number and scope of business systems increase, and as the
corporate memory of constraint development history fades with time.

Benefits of Constraint Identification

Constraints initiate, enable, govern, and limit the behavior of objects and agents to
accomplish the goals of a system. If we want to change the behavior of a system for what
ever reason (e.g., improve its performance, efficiency, or effectiveness) we need to know the

16

relevant constraints. Business constraint identification and management provide decision-
makers with increased visibility of the business constraints that govern achievable
performance. Discovering, cataloging, and maintaining business constraints thus enables
decision-makers to deal more effectively with constraint-related problems (See Table 2).

The ability to catalog business constraints can assist decision-makers in designing and
prioritizing constraints relative to organizational goals. Knowledge of interrelationships
among constraints also enables more reliable performance predictions and change impact
assessments. By identifying and eliminating unnecessary constraints, costs are eliminated,
performance improvements (e.g., schedule and quality gains) can be realized, and freed
resources can be used to leverage new opportunities. Often these benefits can be realized
without any additional investment in automation or information systems.

Table 2. Some Benefits of Constraint Discovery

Constraint-related problem Benefit of constraint discovery

The cost of maintaining a constraint exceeds
the value of the constraint.

Enable decision-makers to identify and
eliminate constraints that exceed the value
they provide.

Constraints exist that no longer support
organizational goals.

Enable decision-makers to identify and
eliminate outdated or unnecessary
constraints.

The constraint causes unintended or
undesirable effects.

Enable decision makers to reengineer or
eliminate constraints that produce
unintended or undesirable effects.

The agent or system (mechanism)
responsible for maintaining the constraint
fails to consistently or correctly enforce the
constraint.

Enable systems developers to identify and
remedy system designs that fail to
appropriately enforce constraints.

What was believed or intended to be a
constraint lacks any explicit maintenance or
enforcement mechanism.

Enable decision-makers to identify missing
systems needed to maintain both
precautionary and enabling constraints.

Somewhat less obvious, perhaps, is the fact that knowledge of constraints can yield new
sources of information and expose misinformation. For example, knowledge of the
constraint that trees add one ring each year to their circumference, when coupled with
knowledge of the number of rings in a given tree, yields new information—the age of the
tree. Similarly, knowledge of business constraints can be used to yield otherwise inaccessible
information about the health and productivity of the business, to determine how quickly
products can be produced, to estimate what it takes competitors to produce their products,
and to identify where changes can be made to achieve competitive advantage.

17

Motivation for a Method to Collect Constraints

While it is easy to see the value of managing business constraints, it is not so easy to
discover and catalog them. For one thing, it is common for people to confuse constraints
with policy statements, symptoms, or the objects that maintain a constraint. Furthermore,
like a river flowing over a riverbed filled with rocks of various shapes and sizes, constraints
often are not apparent until they become a visible obstacle in the path of workflow.
Recognizing obvious obstacles in the path is only part of the constraint discovery
undertaking. Less obvious obstacles, such as those beneath the surface of a river, must also
be identified if safe passage is to be achieved. Knowledge of constraints can be used as an
extension of power. They also provide a framework that bolsters a sense of security within
the workplace. These factors can result in reluctance or even animosity for any initiative to
surface and eliminate unnecessary constraints.

The IDEF9 method for constraint discovery provides a systematic approach for business
owners, strategic and tactical planners, systems developers, project leaders, and decision-
makers to identify and document business constraints. A number of methods provide partial
support for constraint discovery. Goldratt’s theory of constraints, Quality Function
Deployment (QFD), Taguchi’s influence diagrams, the IDEF1 Information Modeling method,
and others address different aspects of constraint discovery and documentation. There are
few methods, however, that explicitly distinguish between simple relations and constraints.
Often, when constraints are captured in a given method the range of constraints captured is
confined to a restricted set of constraint types (e.g., precedence constraints in IDEF3).
Additionally, there are no methods that provide a systematic approach to discover, document,
validate, and refine both enabling and limiting business constraints.

Once constraints in an organization have been cataloged they can be systematically
examined adjusted, eliminated to improve the performance of the system. Constraints often
serve a dual role as both the glue and the rationale for a system. That is, the collection of
relevant constraints often constitutes the description of why the system behaves as it does.
From this perspective, IDEF9 provides a reverse engineering tool for the business engineer.
It can assist him in discovering the “logic” behind the design of an existing system or for
specifying the logic of a “To-Be” system.

The IDEF9 method is intended to guide practitioners in rapidly and reliably discovering,
displaying, characterizing, and validating business constraints. Given the wide range of
anticipated users, we have designed the prototype IDEF9 method to be easily used by
personnel who represent all segments of the business.

Users and Key Beneficiaries of IDEF9

Two broad categories of users for an IDEF9 Business Constraint Discovery method can
be considered. First, direct users will apply the method to identify, document, validate, and
refine the corporate library of constraints. These users range from those who manage
constraint discovery efforts to those who perform the detailed evidence collection and
analysis. The direct users of IDEF9 include managers of enterprise improvement initiatives

18

(e.g., Total Quality Management, Business Reengineering), strategic and tactical planners,
knowledge workers, and systems developers (both internal and external to the organization).
Strategic and tactical planners will gain tremendous leverage through the use of IDEF9 as
critical assumptions are questioned, external and internal forces are identified and analyzed,
future challenges and opportunities are predicted, and requirements for supporting business
systems are developed. System developers are supported with a mechanism to discover and
refine constraints through specification and design. The second class of users, such as
business owners and managers, do not necessarily make direct use of the method, but use the
products of an IDEF9 application effort. For them, the most visible element of an IDEF9
Business Constraint Discovery method is not the set of techniques used to extract, validate,
and refine constraints from the domain but the graphical language facilities used to display
constraints. These users will apply the knowledge captured in constraint libraries to identify
patterns, perform change impact assessments, and identify new avenues of potential
improvement.

Potential Applications for IDEF9

The IDEF9 Business Constraint Discovery method was designed to assist in the discovery
and analysis of constraints in an enterprise. The collection of constraints that forges an
enterprise system is generally poorly defined. That is to say, the knowledge of what
constraints exists and how those constraints interact is at best incomplete, disjoint,
distributed, and often times completely unknown. This situation is not necessarily alarming,
just as a living organism need not be aware of the genetic or autonomous constraints that
govern certain behaviors, an organization can (and most do) perform well without explicit
knowledge of the glue that structures the system. However, if the desire exists to improve
business performance or adapt to changes in a predictable manner, then knowledge of these
constraints is critical.

Knowledge of business constraints can benefit efforts like Business Process
Reengineering (BPR), Total Quality Management (TQM), strategic planning, constraint-
driven information systems design, Activity Based Costing (ABC), and so forth. Each of
these efforts aims to improve organization performance by breaking away from outdated
rules governing how we organize and conduct business. Recognizing the constraints of the
business is the first step to finding imaginative new ways to conduct business. Once those
constraints have been recognized, outdated constraints can be eliminated. An on-line library
of constraints, indexed to display the constraints relevant to a given business context (e.g.,
doing business with DoD, doing business in the semiconductor manufacturing industry)
could provide additional support for leveraging new opportunities. Using the knowledge
contained in an on-line library of constraints, business owners and system developers could
explore opportunities to expand into new areas of business and rapidly determine the costs of
maintaining the constraints necessary to operate in those environments.

19

Summary of Developments and Research Findings

IDEF9 Basic Concepts

A thorough understanding of IDEF9’s basic concepts is needed to effectively apply the
procedural and language components of the prototype method. Among these are the
following concepts:

Constraint Context

Evidence Effect(s) of a constraint

Symptom System

Rationale for the constraint Goal

This section describes these concepts and provides examples of each.

Constraint

In the IDEF9 method, a constraint is defined as a relationship that is maintained or
enforced in a given context. Policies, rules, conventions, procedures, contracts, agreements,
regulations, and societal and physical laws maintained within the enterprise establish the
defining structure for the enterprise. These items are the mechanisms for forging
relationships between people, information, material, and machines to make a system. If you
view an enterprise as a machine, constraints form the architecture and the programming
language that define the behavior of that machine. If you view the enterprise as an organism,
they form the control structure of that organism, from the genetic code level through the
autonomous stimulus response level, to the cognitive behavior level.

Constraints are expressed in constraint statements. Examples of constraint statements
include:

1. Protect against liability.

2. Minimize in-process inventory.

3. Maximize cost recovery.

4. Load first-class passengers, families with small children, and disabled
passengers before all others.

5. Load the aircraft beginning with passengers seated in rear.

6. All projects produce a final report.

20

7. Projects whose contract value exceeds $10M require an additional cost
report.

8. An individual must maintain a current license to operate a vehicle.

9. Only cleared personnel may enter the secure area.

10. A group leader must be a member of the management team.

Notice that use of the imperative form is not necessarily the only form that a constraint
statement might take. Furthermore, finding a statement that uses the imperative form does
not necessarily ensure that one has found a constraint. For example, constraint #9 above may
have appeared as the command “Challenge all unidentified personnel within the secure area.”

Throughout the process of constraint discovery, analysts identify candidate constraints,
or relations suspected to be ones that are maintained or enforced in a given context.
Candidate constraints are first substantiated by the analyst, who examines the data.
Candidate constraints are then challenged by domain experts. This process eventually leads
to a refined collection of validated constraints and context characterizations establishing the
conditions in which the constraints hold.

Context

The term context refers to a distinguished set of conditions. Each context in a constraint
model must be unique. A context label is a short descriptive phrase (e.g., when removing
asbestos, procuring computer hardware, [being] at the construction site) used to convey a
general understanding of the context boundaries. A more in-depth look at the context is
generally needed to distinguish one context from another. In other words, a label alone may
not suffice in distinguishing one context from another. For this reason, those applying IDEF9
should catalog the minimal set of essential facts or conditions that uniquely distinguish one
context from another. Accidental facts and conditions may also be noted. However, those
facts or conditions that must hold (i.e., essential facts or conditions) define the minimal set
needed to bind the context.

Evidence

We define evidence as an indication, sign, or manifestation that supports or proves the
existence of a constraint in a given context. Just as chemical reactions are manifested by the
resultant by-products, the existence of a constraint will manifest itself through some form of
evidence. For example, a candidate constraint statement such as “All purchase requests
require project manager approval and senior company official authorization” might be
hypothesized from the presence of one signature block for the project manager and another
for an authorization official on the company’s Purchase Request form. The Purchase Request
form is said to be evidence supporting the proposition that there is a constraint requiring
project manager approval and senior company official authorization on all purchase requests.
Evidence must be grounded in the appropriate context and validated before the existence of

21

the constraint can be established. For example, an authorization signature may only be
required for purchases made using government contract funds (e.g., computer hardware
hardware and software purchases). Overhead projects, on the other hand, may require only
project manager approval to purchase the necessary material.

The most easily identified evidence of a constraint is the existence of a problematic
symptom. Such a condition may indicate the existence of a limiting constraint, the lack of an
enabling constraint, or both. For example, excess in-process inventory and bottlenecks at
various points in the production line may indicate constraints that maximize the efficiency of
individual processes or the lack of constraints on raw material ordering. Limiting capacity
constraints might be identified by finding the places in the production line where bottlenecks
occur. An enabling constraint may be identified by noting that rates in a production line are
set to match that of the slowest process. Sources of evidence also include documents
outlining policies, procedures, requirements, designs, and so forth. Forms with signature
blocks, operating instructions, procedure manuals, handbooks, regulations, standards,
specifications, policy manuals, project files, and design models also represent possible
evidence.

Effects of a Constraint

The term effect is used to describe something that inevitably follows an antecedent (as a
cause or agent). Constraints initiate, enable, govern, and limit the behavior of objects and
agents in the system. These behaviors are generally referred to as effects. Constraints also
establish cause-effect chains that propagate effects through the system. Thus, effects are
often considered either direct or indirect. Effects may also be intended or unintended, and
desirable or undesirable in a given context. For example, a manufacturing company may
have a constraint to collect metrics reflecting the productivity of individual shops.
Presumably, this constraint would provide decision-makers with the visibility needed to
identify where excess capacity exists and where additional resources are needed. This
constraint may give rise to an unintended, direct effect wherein shop foremen create work for
their people to keep them busy, which inflates the data reviewed by decision-makers. An
indirect effect is the creation of excess in-process inventory and downstream bottlenecks.

Symptom

Symptoms indicate a condition which impairs correct functioning of a system.
Symptoms provide subjective evidence of a condition that is used to aid in correctly
diagnosing the condition. That is, the same symptoms may indicate one or more conditions
impairing normal functioning. A fever, for example, may indicate the presence of an
infection or the flu. In business systems, the lack of some core competency may give rise to
poor quality products, late delivery, and so forth. While symptoms are observed failings of a
system, they are often confused with concerns which are “possible” failings of a system.

Although symptoms are not the condition themselves, they are often problematic. Domain
experts often refer to symptoms as problems. Problem, however, often connotes the source
of distress or difficulty and may therefore lead to the wrong conclusions. The IDEF9

22

constraint discovery process leverages domain expert attunements to symptoms, probable
causes, and effects to assist users in identifying candidate constraints or the lack of needed
constraints. Symptoms are used to hypothesize cause-effect constraints relative to other
symptoms. For example, a production supervisor may describe frequent failures of Integrated
Circuits among the key problems that they are attempting to address. The production
workforce, however, may view those failures as a symptom of high turnover rates,
contamination, improper handling, insufficient training, and so forth. Manufacturing
engineers may attribute the failures to poor moisture control, cracked dies, or broken and bent
leads. Design engineers may attribute failures to oxide or silicon defects. Each of these
observations reflects knowledge of constraining relations which may also be symptoms of
other conditions.

System

A system is a collection of objects standing in particular relations and exhibiting
particular behavior prescribed by a collection of constraints. In manmade systems, this
characterization usually includes the notion of the achievement of a goal. Business systems
can be viewed as a collection of objects behaving to perform one or more business functions
under the influence of constraints to accomplish a particular goal. Several examples of
business systems comprised of multiple objects are provided in Figure 4 above.

The systems of primary interest for IDEF9 are systems that maintain or enforce a given
constraint or set of constraints. Examples of a system that maintains or enforces a constraint
might include individual objects (e.g., particularly an active object or agent such as an
account manager or an authorization official) or collections of objects (e.g., an accounting
system or a prime contractor).

Rationale for the Constraint

The rationale of a constraint is the set of beliefs motivating the establishment and
maintenance of a constraining relationship. This set of beliefs includes those held to be true
when the constraint exists as well as those held to be true in situations where the constraint
does not exist. The rationale of a constraint is documented to assist with periodic review of
the currency and relevance of the constraint.

Goal

A goal is defined as an object or end that one strives to achieve. Business systems exist
to accomplish a particular goal or set of goals. Goals may stand in a number of relationships
with other goals. Among these are depends-on-existentially, implies, is-part-of, and so forth.
Ideally, each goal in the business will be oriented to contribute to an overall set of goals.
Goals, however, are highly dependent on the environment and are subject to frequent changes
and reprioritization. Changes in the organization’s goals motivate changes to the constraint
set used to direct the organization toward achieving those goals.

23

IDEF9 Procedure Developments10

This section presents a prototype procedure for constraint discovery, validation, and
refinement. The procedure presented in this section assumes a large constraint discovery
effort involving a team approach. Projects that are narrower in scope may not require all
these activities. As with all methods, the application procedure depends largely on the
purpose for which the method is being used. Those undertaking a constraint discovery
project are therefore encouraged to prepare a detailed method application guide at the
beginning of the project.

Constraint discovery is an evolutionary process through which candidate constraints are
identified, validated, and refined. In general, when using IDEF9 to discover and document
constraints, the following six steps are applied recursively:

1. Collect - Acquire observations and sources of evidence for constraints.

2. Classify - Individuate contexts, objects, object types, properties, and relations.

3. Hypothesize - Postulate candidate constraints from the data and evidence
acquired.

4. Substantiate - Generate or collect examples to determine which candidate
constraints should be promoted to the status of a constraint.

5. Challenge - Involve domain experts in testing the validity of analysts’
conclusions.

6. Refine - Filtering, improving, adjusting, and adding detail to constraint
characterizations.

These steps are embodied in the prototype IDEF9 procedure presented below. The
activities comprising IDEF9’s procedure should be considered “modes of thought” rather
than sequential steps. Users should not expect to apply these activities in a strictly sequential
manner, or that organizing activities by project phases necessarily defines when those
activities start or stop. Rather, phases reflect which modes should or do predominate during
a given interval of time. Thus, modes of activity may be organized into phases to assist with
management of the project. The following section provides a functional description of the
modes of activity constituting IDEF9’s procedure, thus establishing a basic framework for
constraint discovery.

10 Significant reuse of the procedural components from the IDEF3 Process Description Capture and IDEF5
Ontology Description Capture methods facilitated the development of the prototype procedure description that
follows.

24

Mode Zero: Define the Project

The constraint discovery team must establish the purpose and scope11 of the constraint
discovery effort as early as possible in the project. The purpose statement provides a
“completion criteria” for the constraint discovery effort. The purpose is usually established
by prioritizing objective statements for the effort, stating the requirements of the constraint
discovery effort and examining questions or findings that the client wants answered. The
scope of the project is established by a set of statements that bound or delimit the area of the
domain addressed by the project. Scope statements identify the specifically targeted areas of
constraint discovery activity and identify those areas that are explicitly ignored.

The purpose and scope can rarely be determined completely and accurately in advance.
The client often revises their list of needed findings or questions as the data is compiled. The
area an analyst thinks will lead to the answer often leads to areas that were not considered
within the scope. The purpose and scope generally evolve during the initial part of the
project. The purpose and scope of an IDEF9 effort are captured on an IDEF9 Project
Summary Form similar to the one shown in Figure 6.

IDEF9 Project Summary Form
Project Title:

Purpose:

Context:

Major in-scope situations: Major out-of-scope situations:

Project Leader:

Figure 6.
IDEF9 Project Summary Form

11 One of the central concepts in constraint discovery is the notion of a context in which a constraint holds. A
different meaning for context is generally applied among IDEF method practitioners using other IDEF methods.
Context is used with other IDEF methods to describe the scope or boundary of the project. To avoid
unnecessary confusion, scope has been adopted for IDEF9 when describing the boundaries of the project.

25

Define the Purpose

Defining the purpose is an important initial step in the constraint discovery effort. If the
purpose is taken for granted or ignored, project personnel are likely to find the results of their
efforts ignored by or of little use to the client. Without a purpose statement, the only
completion criteria are budget and time. Conversely, with a regularly reviewed and clearly
defined purpose, the project can often be completed within budget. Defining the purpose
involves listing the stated objectives of the client and the specific source(s) of each (e.g.,
person, project, or organization), defining the information goals of the project in terms of
how the constraint information will be used, and establishing priorities among the stated
objectives and information goals of the effort. The process of developing a purpose
statement can be facilitated by involving the client in answering questions like the following:

1. What problematic symptoms, concerns, or opportunities are of the greatest interest
to the client?

2. Who will use the constraint information once it is available?

3. What question(s) does the client need answered?

4. What issues are behind the need for constraint discovery?

5. What decisions are behind the need to identify constraints?

Establish the Scope

Once the purpose of the effort has been characterized, it is possible to define the scope of
the project. Defining the scope of the project begins with setting the boundaries of the
constraint discovery effort and documenting those boundaries in a set of scope statements.
Ideally, scope definition should identify only areas that are relevant to the needs of the client.

An effective mechanism for defining the scope of the project is identifying the situation
types or contexts to be considered and identifying those that fall outside the project
boundaries. Characterizing the situation types of interest may begin at a course-grained level
by developing a descriptive phrase (such as with an adverb phrase like working for
government agencies, disposing of hazardous materials) and a brief description for the
contexts of interest. Characterizing the contexts of interest involves achieving a consensus
among constraint discovery team members on the title and paragraph description for the
contexts. It is common for differently named contexts to be nearly identical. Conversely, it
is also common for different contexts to be named the same. The similarity or dissimilarity
among contexts will initially become evident through the development of paragraph
descriptions. Consensus among team members may require more fine-grained definition of
the contexts, particularly as the team members review the purpose and scope statements
periodically through the project. When necessary, more detailed characterizations of the
contexts of interest can be developed by identifying the participating objects, relations, and
facts that must hold in the contexts. Additionally, those contexts that impact or are directly
related to the in-scope contexts, but which are outside the scope of the project, should be

26

identified. Those intimately familiar with the domain must be relied upon to actually identify
the contexts.

Scope and level of detail decisions are tentative at this stage of the project and should be
updated as the constraint data becomes available. An astute project leader will regularly
assess the adequacy of the constraint data captured with respect to the specified needs and
information goals of the client.

Mode One: Organize for Data Collection

Once the initial project purpose and context have been determined, the task of organizing
for data collection can begin in earnest. At this point, the makeup of the project team will be
solidified, team member roles will be established, and scenario development responsibilities
will be assigned to team members.

The following roles are normally assumed by personnel involved in a constraint discovery
effort.

1. Analyst: The IDEF9 expert who will be the primary developer of the IDEF9
constraint models.

2. Client: The person or organization requesting the constraint discovery effort
development.

3. Domain expert: The person possessing direct knowledge about the domain of
interest.

4. Primary contact: The individual who acts as the interface between the analyst and
the domain expert.

5. Project leader: The person ultimately responsible for the entire constraint
discovery effort.

6. Reviewers: Persons knowledgeable in the domain and/or the IDEF9 method
responsible for reviewing and approving draft models and documents. Reviewers
authorized to make written critiques of IDEF9 schematics are commentors. The
remainder are readers. Both team members and domain experts can be reviewers.

7. Librarian: A person assigned the responsibility of maintaining source material
logs and files of documents, making copies, distributing kits, and keeping records.

8. Team members: All personnel involved with the IDEF9 constraint discovery
effort.

For large projects, the role of the librarian is essential. In smaller efforts, that role may be
assumed by the analyst. In establishing the librarian function, the project leader assigns an
individual to be responsible for collecting, cataloging, controlling, and distributing source

27

material, kits, glossaries, files, and so forth throughout the project. Additionally, the librarian
is responsible for assembling reference models and materials from external sources that can
be used to accelerate team efforts. The librarian may also maintain a glossary of terms as a
reference to be used during interviews to ensure that analysts understand terminology that is
unique to a discipline, industry sector, company, or company segment. Whether maintained
by the librarian, or informally shared among analysts, the glossary of terms will grow and
undergo incremental refinement throughout the project.

A pivotal task in organizing the data collection effort is identifying the key sources of
knowledge and information about the domain. Working with the primary contact, the project
leader or analyst compiles a list of experts to be interviewed. In compiling this list, it is
helpful to obtain background information about each expert. This includes information about
the responsibilities, current assignments, and other areas within or related to the domain in
which the expert has experience. The name, location, and telephone number of the experts
should also be recorded.

Throughout the data collection effort, other valuable sources of information will be
sought and identified. Some of these include operating instructions, procedure manuals,
employee handbooks, regulations, policy manuals, project files, reusable IDEF models, and
models derived through the use of other methods and techniques. These items often
constitute evidence of constraints themselves or provide references to evidence in the
domain.

In addition to organizing the structure of the team, the project leader also needs to
organize the activities of the team. Organizing the constraint discovery activity may begin by
casting the general IDEF9 procedure into a more formalized method application guide
tailored to the specific needs of the project. A method application guide outlines a project-
specific application of the IDEF9 procedure tailored to meet the needs of the effort. Among
the items that may be included in the method application guide are modeling conventions to
be used, standard outlines for interviewing domain experts, method and tool interface
specifications, project library use procedures, and a standard glossary of terms. This guide
may be accompanied by a project plan. A typical project plan will delineate phases of effort
with clearly established tasks and milestones, intermediate and final deliverables, individual
team member assignments, informal and formal reporting structures, and so forth.

Mode Two: Collect and Analyze Evidence

Having organized the team and outlined the approach, the team will begin constraint
discovery by engaging in evidence collection. Constraint discovery team members document
expert observations and collect evidence of constraints by direct interaction with domain
experts. This data is later analyzed to form the basis for hypothesizing constraints.

Prepare for Interviews

The most valuable mechanism of evidence collection is the interview. Interviews with
domain experts afford the interviewer an opportunity to collect special insights, both into

28

normal situations and the exceptions to the normal situations within the domain. Direct
observation techniques allow the interviewer to observe normal situations and are often used
to augment interviews with the domain expert.

While the specific interviewing approach and format are likely to vary across projects,
some guidelines are recommended. Before the interview, the analyst should prepare a
tentative agenda and some specific questions. Analysts are encouraged to prepare a brief
outline of the purpose of the interview, the topics to be covered in the interview, the types of
information being sought, the authority for requesting the interview, and probing questions
that can be used to motivate discussion. On large projects, project leaders may wish to
include more formalized interview preparation guidelines and standards in a method
application guide—including standard interview planning sheets, question templates,
glossaries of terms, and so forth.

The ultimate success of the interview depends largely on the preparation made by the
analyst. A number of activities contribute to successful preparation:

1. Schedule the interview and make necessary logistics preparations.

2. Establish the goal(s) of the interview.

3. Prepare candidate questions.

4. Anticipate the probable questions and concerns of the person being interviewed
and be prepared to resolve concerns.

Once a list of experts to be interviewed has been compiled, an interview schedule can be
developed. Interviews are normally scheduled with domain experts through the primary
contact. The analyst should make sure that the scheduled time and duration of the interview
is coordinated with the person being interviewed and his or her supervisor. Additional
logistics considerations are also important to the success of the interview, such as reserving a
suitable location to conduct the interview and arranging for the necessary supplies. Analysts
also generally find it useful to plan the attire they wear to the interview in order to convey a
professional appearance and still set the interviewee at ease.

The goal(s) of the interview should also be established up front. In establishing the
interview goals, analysts establish why the interview is being scheduled and what information
is needed from the domain expert. Preparing a succinct goal statement often helps to provide
a general direction for the interview line of questioning.

Once the goal(s) of the interview has been established, candidate questions can be
formulated. Candidate questions should be written down and organized into a logical
sequence. Candidate questions should be clear, use words and phrases appropriate to the
background of the person being interviewed, and invite rather than lead answers. In
preparing candidate questions, it is often useful to explore the following topics:

1. What are the organization’s goals and objectives?

29

2. What are the organization’s Critical Success Factors (CSFs) and performance
measures?

3. What are the organization’s problematic symptoms?

The answers to these questions often provide valuable guidance in identifying business
constraints. Statements of goals and objectives give strong indications of perceived
environmental constraints and, with appropriate follow-through, can lead to the discovery of
deeply-rooted belief systems and undocumented constraints. Quite often, constraints
discovered through lines of questioning centered around organization goals will reveal
enabling constraints and constraints that no longer support current goals. When this line of
questioning is applied across different organization levels, hidden transformations between
strategic and tactical goal structures may be revealed that can be used to identify missing
and/or inappropriate constraints. In a similar fashion, exploration of the organization’s CSFs
and performance measures yields important constraint information. In fact, there is not likely
to be any more obvious evidence of existing constraints than artifacts of performance
measurement (e.g., graphs, charts, reports). Constraints arising from performance measures,
while generally intended to be enabling, often drive unintended and undesirable behavior.
Finally, valuable guidance in discovering constraints may be obtained through listing
problematic symptoms and the influencing factors believed to be the underlying cause(s) of
those symptoms. Symptoms of problems may be manifest in business systems as
bottlenecks, excessively long cycle times, poor quality, high cost, and so forth.

In preparing candidate questions for the interview, analysts should be cautious not to over
prepare. The exercise of writing down questions and analyzing the way they are formed
serves to build good interviewing skills. The time invested to this activity must be weighed
against the possibility that the questions may not be used. Questions may be eliminated
through the discovery of new information or to follow a line of discussion that was not
previously anticipated.

An element of preparation often overlooked by inexperienced analysts is the need to
explain why the domain experts are being interviewed, what will be done with the
information they provide, and what they can expect in return. Each interview should
establish a mutual understanding of these items before attempting to satisfy the information
needs of the analyst. The following list is representative of the topics and concerns that the
analyst should be prepared to address [Harrington 91].

1. Why the interview is being conducted.

2. Who authorized the interview

3. Who else is being interviewed.

4. How the interviewee was selected and by whom.

5. How the information will be used.

30

6. Whether the person will be anonymous.

7. Whether the person will be quoted in summary findings.

8. What feedback the person will receive.

9. How the person might participate in the outcome of the process.

10. What is in it for the interviewee.

11. Why highly detailed, accurate information is important to the success of the
interview and the project.

12. How the person plays a key role in an important process.

Interview Domain Experts

Interviews may be conducted at any time throughout the project with one or more of the
following goals in mind:

1. To collect additional information.

2. To confirm and/or clarify previously collected information.

3. To validate candidate constraints with the domain expert.

4. To obtain leads for acquiring additional information.

Interviews with domain experts are critical. The analyst (interviewer) should create a
positive and friendly atmosphere during the interview. The interviewer should attempt to
convey to the domain expert the feeling that they are working together to discover constraints
and solve some problem for the organization. A novice interviewer should constantly remind
himself that the expert is the one with the knowledge of how a organization works.
Generally, the expert is interested in helping and will often provide questions and lines of
investigation that the interviewer had not thought of pursuing. In constraint discovery, this is
the bonus for good preparation.

Domain experts often begin by describing rules, policies, procedures, and relations that
should be maintained and those that actually are. Questions that help to distinguish desired
operating conditions from the norm, and normal operating conditions from work-arounds or
special cases can help guide the interview. The main focus of the interview should be on
rules, policies, procedures, and relations that are currently maintained or enforced (i.e.,
constraints), rather than “Should-Be” conditions that may not be maintained. When focused
on constraints, analysts should also be cautious to avoid talking about “To-Be” constraints to
avoid introducing bias in the domain expert’s answers. Throughout the interview, constraint
information provided by the domain expert needs to be faithfully recorded in a form that can
be shared among all team members. Analysts should pay particular attention to the use of the

31

imperative form in the description or in documents provided by the domain expert (e.g.,
Complete the attached job application form). Words like must, will, shall, always, and never
are often included in imperative phrases (e.g., Applicants must complete the attached job
application form before they can become eligible for an interview). However, neither the
absence nor presence of these terms necessarily indicates a constraint. Logical quantifiers
like all, every, some, and none also provide clues for discovering candidate constraints.

Collect and Catalog Evidence

As appropriate, analysts should request copies of artifacts that constitute forms of
evidence of constraints. Evidence of business constraints can take many forms including
procedure manuals, instruction sheets, forms with fields for approval signatures, handbooks,
policy manuals, regulations, specification documents, standards documents, strategic and
tactical plans, organization charters, mission statements, efficiency reports, and so forth.

Other sources of evidence include analysis models (e.g., IDEFØ function models, IDEF1
information models, IDEF3 process descriptions, IDEF5 ontology descriptions) and design
models (e.g., IDEF1X semantic data models, IDEF4 object-oriented design models) that are
relevant to the project.

The IDEFØ function modeling method captures some constraint-related information,
although at a relatively course-grained level. For example, objects modeled as controls on a
particular activity often list artifacts describing how the activity is or should be performed
(e.g., documents containing information about rules, policies, and procedures). Objects
classified as mechanisms represent the means by which the activity is accomplished, thus
providing valuable assistance in cataloging and validating constraints. IDEFØ controls below
the artifact level must be validated to determine whether they represent constraints, since
IDEFØ does not explicitly capture which mechanisms enforce which controls.

IDEF1 information models capture and display a specialized class of constraints; specifically,
those constraints that are maintained in the domain through the information system. In other
words, IDEF1 is used to model constraints for which some information objects have been
designed and implemented. Similarly, IDEF3 process descriptions explicitly capture another
specialized class of constraints. IDEF3 captures precedence and causality relations among
processes and events within the environment. IDEF3 also captures constraints relative to the
state change behavior among objects participating in a process. Ontologies developed using
IDEF5 include characterizations of objects, object properties, and relations, thus providing a
solid foundation for constraint discovery. IDEF5 ontologies also distinguish between
defining versus non-defining and essential versus accidental properties and relations.
Accessibility to IDEF5 descriptions can therefore greatly accelerate the process of constraint
discovery. Design models (e.g., IDEF1X and IDEF4 models) also capture reusable constraint
information. IDEF1X models capture the design constraints to which information system
developers must conform. These constraints reflect business rules and policies to be
implemented through the information system. IDEF4 models capture similar information
with a specific target toward implementation in an object-oriented language.

32

All data that is collected during the course of the project should be logged on an IDEF9
Evidence Log as illustrated in Figure 7.

I.M. Modeler
IICE

28 Feb 93USED AT: ANALYST:

PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER: CONTEXT:

TITLE:
Evidence Log

NUMBER:

Evidence Name/Description Received From Comments

EL#1

EL#2

EL#3

EL#4

EL

EL

EL

EL

EL

EL

EL

Evidence
Log

#

Purchase Requisition/Form PI-R6 4-72 U.R. Buyer

U.R. Buyer

Procedure #101-506
“Purchasing Codes”

/Rev. 00 Procedure #079-003
“Preparation of the Requisition”
Procedure #079-001/ Rev. 00
“Preparation of the Purchase Order”

Policy and Procedures
Manual
Policy and Procedures
Manual

X

DATE:

Figure 7
Evidence Log

Analyze Collected Data

Following data collection, interview notes are compiled, the Evidence Log is updated to
reflect newly collected evidence, and the initial findings are cataloged into lists called pools.
Among the pools found to be potentially useful in organizing and analyzing constraint-related
information are the following:

1. Business goals pool

2. Performance measure pool

3. Symptom pool

4. Source statement pool

5. Context or situation type pool

33

6. System or object pool

7. System or object property pool

8. Relation pool.

In analyzing the collected data, analysts may also perform the following activities:

• Further refine and individuate contexts (e.g., working for the Air Force, [being] at
the construction site, acquiring replacement parts, [conducting] Programmed Depot
Maintenance [PDM]).

• Associate existing business goals with context(s).

• Associate existing performance measures with context(s).

• Associate existing symptoms with context(s).

• Catalog the objects involved with context(s).

• Catalog object properties.

• Identify relations.

A focus on relations can be of great assistance in uncovering candidate constraints during
analysis. Relations may be found between contexts, between objects and contexts, between
object types and object instances, between object types and property values, and so forth.
Table 3 below illustrates candidate constraint statements illustrating different kinds of
relations.

34

Table 3. Different Relations Illustrated by Constraint Statements

Context System Property

Context • Working
government contracts
involves maintaining
an auditable
accounting system.

• Drilling precedes
reaming.

• Carry a current
driver’s license while
operating a motor
vehicle.

• People are not
allowed on the
construction site
without a hard hat.

• Children under
thirteen are to be
accompanied by a
parent when
attending PG-13
rated movies.

System • People own cars.

• John owns the Le
Baron.

• The tensile
strength of steel is
greater than that of
iron.

• Birds have
feathers.

• Bill’s hourly wage
is $7.25.

• First-line
supervisors sign off
all flight safety-
critical maintenance
operations.

Property • The number of
rings in a living tree
corresponds directly
to its age in years.

It is also often useful to classify constraints to assist in discovery and downstream reuse
of constraint information. Two criteria should be considered when developing a
classification or taxonomy of constraints. First, the taxonomy should express orthogonality
among categories, i.e., each category of the taxonomy should be disjoint such that every
element in the taxonomy’s domain can be uniquely assigned. Second, the taxonomy should
be exhaustive over the specific domain.

Constraint granularity and coupling among constraints should also be considered when
developing a taxonomy. Granularity is the level of abstraction used to represent the
constraint. The more abstract the representation, the more difficult it is to assign a constraint
to a unique category. For example, one of the constraints used in production management is
“in-process inventory between stations should be kept balanced.” The level of granularity
represented by this constraint statement is very high. There are many factors that contribute
to a balanced production line, e.g., machine capabilities, down-time, set-up time, material
routing strategies, and so forth. More fine-grained constraint statements such as “the work in

35

process (WIP) for station A is 4 units or less” and “WIP for station B is under 10 units”
permit unique classification to a subcategory of balanced production constraints called “WIP
limits.” Coupling among constraints may also need to be considered. That is, constraints
often stand in relationships that make it difficult to divide them into separate categories.
Again, refining the granularity of the constraint representation often helps one to effectively
categorize constraints.

Several possible classifications for constraints may be considered to systematically
analyze candidate constraints and validated constraints. For example one might find it useful
to classify constraints in terms of the measure of control that the organization has over the
constraint’s structure or very existence. Constraints could then be divided between those that
are volitional (imposed by choice) and those that are non-volitional (no choice) in a given
context. Constraints may also be classified as enabling or limiting relative to some goal in a
given context. Constraints dealing with resources may broadly be categorized as resource
constraints; those dealing with the capacity properties of systems as capacity constraints;
those arising from the selection of one design strategy versus another as design constraints;
those for which the rationale is largely unknown or poorly justified as status quo constraints;
and so on.

The IDEF9 method does not prescribe one classification scheme or set of classification
schemes over any others. The most appropriate classification scheme(s) will be determined
by how the constraint information needs to be used. It is generally useful, however, to adopt
several classifications to permit analysis of the constraints within and across those
classifications. This analysis often leads to the discovery of new constraints and to
previously unrecognized opportunities for improvement.

Mode Three: Hypothesize Candidate Constraints

Using source statements and the evidence collected, members of the constraint discovery
team hypothesize candidate constraints. A candidate constraint can be thought of as a “first
pass” at a constraint. A candidate constraint that can be supported by data collected is said to
be substantiated. A candidate constraint is said to mature into a constraint upon successfully
passing further validation testing.

Common ways in which candidate constraints emerge are as follows:

1. Candidate constraints are obvious to the modeler can be substantiated based on
the evidence collected.

2. Constraints that emerge due to personal belief systems of the domain experts can
be substantiated based on interview notes or the evidence collected.

3. Constraints that emerge from characteristic functions (e.g., height of a table) and
can be substantiated by the data collected.

36

4. Candidate constraints that are suspected by the modeler but which cannot be
supported by the evidence collected so far can be hypothesized and later substantiated
(or unsubstantiated) through additional evidence collection.

For each candidate constraint identified, the following information will be recorded on a
candidate constraint specification form:

1. Candidate Constraint ID#

2. Constraint statement

3. Constraint description.

4. Context ID#(s) (Context(s) in which the constraint holds)

5. Arguments of the candidate constraint

6. System or object(s) that maintain(s) the constraint

7. Constraint violation consequences

8. List of supporting evidence.

Mode Four: Validate and Refine Constraints

Candidate constraints must undergo a validation process to ensure that they are in fact
constraints. The validation process can be divided into two parts, both of which are
necessary. The first element of validation is characterized by analysts attempting to
substantiate candidate constraints using evidence, interview notes, and direct observations
collected by the team. The second element of validation involves engaging domain experts in
challenging the candidate constraints that remain. Throughout the validation process,
candidate constraints and constraints undergo a refinement process wherein derivative
versions of constraint statements are proposed and tested, pool data is extended, and more in-
depth characterizations are developed.

Substantiate Candidate Constraints

Once candidate constraints have been hypothesized, analysts attempt to substantiate their
hypotheses. In effect, analysts set out to prove that they have actually discovered constraints.
Substantiating candidate constraints involves testing them against example instances of
contexts to determine whether the relations thought to be constraining are in fact maintained.
Any one of the following situations may arise while attempting to substantiate candidate
constraints:

1. The candidate constraint is substantiated.

37

2. The candidate constraint is accepted after refining the proposed characterization
of the context(s) in which the constraint holds.

3. The candidate constraint can be substantiated with slight modification.

4. Both candidate constraint and the context(s) in which it holds undergo slight
modification to support substantiation.

5. The hypothesis of a candidate constraint is found to be unsubstantiated.

When discrepancies surface, analysts may need to refine their characterization of the
holding contexts to establish the validity of the constraint based on currently available
evidence. Alternatively, they may need to refine their characterization of the candidate
constraint. Either situation generally requires additional data. A number of approaches are
available for collecting additional information. These include:

1. Conducting follow-up interviews to answer questions and/or identify additional
evidence.

2. Arranging for direct observation of the situation(s) included in the scope of the
effort.

3. Revisiting source material with a new focus of analysis.

4. Conducting facilitated workshops.

The approach or combination of approaches will be determined by both the nature of the
information needed and the purpose for which IDEF9 is being used. Any additional data
collection activity will involve making appropriate updates to previously collected data (e.g.,
updating the evidence log).

Candidate constraints having undergone this step in the analysis are migrated to an
intermediate classification as either substantiated and unsubstantiated.

Challenge Candidate Constraints

Both substantiated and unsubstantiated candidate constraints are subject to domain expert
review and validation. Thus, domain experts challenge the analyst’s conclusions. If the
constraint discovery team has a strong body of evidence to justify its hypothesis, there is high
probability that substantiated candidate constraints will be promoted to the status of a
constraint. On occasion, unsubstantiated constraints will also be supported by new evidence
provided by the domain expert at this stage of the process. The various steps involved in the
validation of a constraint are:

1. The constraint discovery team provides domain experts with a list of substantiated
and unsubstantiated candidate constraints and the supporting evidence for their
hypothesis.

38

2. The constraint discovery team interacts with domain experts to obtain and record
feedback.

3. The constraint discovery team analyzes feedback obtained from the domain
experts.

4. The constraint discovery team refines validated constraints and their associated
context descriptions based on the acquired feedback.

Refine Constraints

Refinement is a process of filtering, improving, and adding value to a product. The
process of constraint discovery is itself a refinement process. Hence, refining constraints is
an ongoing activity that occurs throughout the constraint discovery effort. More precisely,
the constraints themselves are not refined. Rather, the characterization of those constraints is
refined. The extent of refinement is largely determined by the purpose of the project,
although companies interested in maintaining libraries of constraints will want to adopt
standards for the information to be managed about business constraints. The following
guidelines aid in a full characterization of the discovered constraints:

1. Identify correlations between contexts and business constraints that hold in those
contexts. Contexts can be classified using any number of classification schemes. It is
often most useful, however, to classify contexts based on the degree to which they
share constraints.

2. Identify correlations between business constraints and the system(s) or object(s)
responsible for maintaining the constraints. Because business constraints are defined
as relations that are maintained or enforced in a given context, it is important to
identify the object(s) responsible for maintaining business constraints. Knowledge of
the object(s) that maintain constraints is useful in helping identify and resolve
resource contention problems; determining the impact of absent individuals, systems,
and processes; and exploring alternative mechanisms to maintain a desired constraint.

3. Document the motivation(s) for the business constraint. The motivation of a
constraint characterizes the justifications, intuitions, assumptions, and judgments
giving rise to its existence. Among the assumptions that should be captured are the
presumed consequences of the constraint not being in place. This will help to identify
those constraints that no longer need to be maintained.

4. Identify correlations between business constraints and organization goals. Both
positive and negative correlations can be established between business constraints and
the goals of the organization for a given context. When analyzing constraints across
contexts, analysts may find constraints that support one organization goal while
conflicting with others. Correlations between constraints and goals enable
downstream analysis of the impact of constraints on organization goals, as well as

39

providing support for sensitivity, cause-effect, and influence analyses. Prioritization
of constraints can also be performed for a given business situation.

5. Document correlations between constraints, performance measures, and effects.
Performance measures are among the most obvious evidence of candidate business
constraints. Performance measures often serve to drive behavior patterns within the
company, at times in ways that were not previously anticipated or desired. When
undesirable effects surface, it is often valuable to revisit both the performance
measures and the constraints which provide management visibility on those
performance measures.

6. Correlate observed effects (intended and unintended) and symptoms with business
constraints. Cause-effect chains can be established by linking constraint
interrelationships across contexts. Documenting the effects of a constraint helps
establish these correlations.

7. Further classify constraints using classification schemes that are likely to provide
the greatest downstream value to the organization. Several potentially useful
classification schemes are presented in the Basic Concepts section.

IDEF9 Language Design Developments

A number of candidate schematic types were explored to support the constraint discovery
process. The general questions used to guide the development of candidate schematics are as
follows:

1. What step(s) of the procedure is a schematic needed or desired?

2. What information (type, amount, etc.) should the schematic convey?

3. How is the information to be conveyed? What will be the view (perspective)
adopted? What graphical metaphor will be used (hierarchical, spider’s web, network,
sequential, etc.)

4. What is the syntax for the graphical language? List the different elements to be
represented and the graphical symbol used for each element.

5. What is the semantics of each graphical construct?

In answer to these questions, six candidate schematics have been identified, subject to further
testing and analysis. Among these were the following:

1. Context schematic

2. Constraint resource schematic

3. Constraint-relationship schematic

40

4. Constraint effects schematic

5. Goal schematic

6. Goal-relationship schematic

7. Symptom schematic

Each of the candidate schematics explored is described in the following sections.

Context Schematic

Purpose: The purpose for this schematic is to help users (1) establish and incrementally
refine the scope of a constraint discovery effort, (2) display the constraints that hold in a
given situation, and (3) rapidly identify shared constraints among distinguished contexts.

Viewpoint: Context-centered

Procedure component(s) supported:
• Mode Zero, Establish project context

• Mode Two, Collect and analyze evidence

• Mode Three, Hypothesize candidate constraints

• Mode Four, Validate and refine constraints

Graphical metaphor: Hierarchical

Candidate syntax:

<Context_ID>

<Context Label>

<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>

subsumes

Context box

Link

Figure 8.
Candidate Syntax for the Context Schematic

41

Example:

X

<Context Label>

C1
C2

Z

<Context Label>

C3

Y

<Context Label>

C4
C5

W

<Context Label>

C6

V

<Context Label>

C7

Figure 9.
Example Context Schematic

Candidate Semantics:

• A double-line box denotes a context. The box is divided into top and bottom
halves by a separator line with the upper half containing a smaller rectangle anchored
to the top left inside corner of the box.

42

• A single-headed arrow denotes that the context attached to the tail of the arrow
subsumes the context attached to the head of the arrow. That is, all constraints that
hold in the context attached to the tail of the arrow also hold in the context attached to
the head of the arrow.

Discussion:

The example (Figure 9) illustrates five contexts (V, W, X, Y, and Z). Each context is
uniquely distinguished by a context identifier and provided with a descriptive label. A more
detailed description of the context would be included in an elaboration form supporting the
schematic. Although the central focus of this schematic is the context, graphical depiction of
the anatomy of the context (i.e., the facts, objects, and relations that collectively define the
context) was found to be unnecessary and possibly burdensome. The primary purpose for the
schematic is to organize constraints in terms of the situations in which they hold. Thus, the
only information necessary to display about the context was that information needed to
distinguish one context from another. As indicated by the example above, constraints C1 and
C2 are listed in the context box identified as X. The arrow leading from context X to context
Y is to show that context Y is a subcontext of context X. That is, all that was true in X is
also true in Y plus possibly more constraints. Contexts can be merged to form new contexts
as is shown by context W, a combination of context X and context Z. Note that this process
is strictly additive. That is, new constraints are always added to the contexts as you move
down the schematic. You cannot remove constraints as you move down the schematic.

Issues:

Is there one way of expressing the label for a context that is somehow better than others?
Adverbial phrases (e.g., [being] at the construction site, working on government contracts?)

When the list of constraint identifiers grows long, is this an indication that one needs to
further refine the context and thus break things up into more manageable pieces?

What pieces of information do we want to record (and/or display) about the contexts and
their relationships? What are the types of relationships that we can expect between the
concepts? What are the ones that we want to display in the diagram?

Constraint Resource Schematic

Purpose: The purpose of this schematic is to display the systems or objects that maintain or
enforce the constraint.

Viewpoint: Constraint-centered

Procedure Components Supported:

• Mode Two, Collect and analyze evidence

• Mode Three, Hypothesize candidate constraints

43

• Mode Four, Validate and refine constraints

Graphical Metaphor: Hierarchical

Candidate Syntax:

<Context_ID>

<Context Label>

Context referentSystem

<System Name>

Instance name

Instance markers

Links

enforcesis valid in/context for

<label> <label>

O & X

Junctions

<Constraint name>

<Constraint _ID>

Constraint box

Figure 10.
Candidate Syntax for the Constraint Resource Schematic

Example: Constraint C15: The Board of Directors is responsible for representing the
shareholders in ensuring that the allocation of end-of-year profits toward stock value and
dividends maintain an acceptable level of Return on Investment (ROI). Acting on a majority
vote of the Board of Directors, the Comptroller invests profits and/or distributes dividends to
stockholders.

44

&

Dividends
Distribution

C15

Board of Directors

X

Comptroller

Harriet Smith

C-corporation End-of-
Year Close-Out

Figure 11.
Example Constraint Resource Schematic

Candidate Semantics:

• A double-lined box denotes a reference to a context.

• A round-cornered box denotes a particular constraint whose unique identifier is
located in the lower left-hand corner and whose label is in the upper left hand corner.
The label is a meaningful name given to the constraint.

• A rectangle denotes a system (object or collection of objects). Instance markers
may be included in the lower left-hand corner of the system rectangle. When no
instance marker is present, the system rectangle represents the object kind indicated
by the system label. An open instance marker indicates that all instances of the object
kind are involved. A filled instance marker without a name indicates that any one
instance of the object kind is involved. A filled instance marker with a name
represents the specific named instance that is involved.

• As a convenience, the logic symbols could be omitted when the semantics is
equivalent to an &-junction.

Note: All links have a label and should have an associated elaboration form that describes,
for example, how a constraint is enforced by a system, object, or instance.

45

Constraint-Relationship Schematic

Purpose: The purpose of this diagram is to display existential dependency, part-of, and user-
defined relationships among constraints.

Viewpoint: Relationship-centered

Procedure Component(s) Supported:

• Mode Two, Collect and analyze evidence

• Mode Four, Validate and refine constraints

Graphical Metaphor: Hierarchical

Candidate Syntax:

is valid in/context for

<label>

user-defined

<label>

depends-on-existentially

<label>

is-part-of

<label>

implies

<Context_ID>

<Context Label>

Context referent

Links

<Constraint name>

<Constraint _ID>

Constraint box

Figure 12.
Candidate Syntax for the Constraint Relationship Schematic

46

Example:

Y

State University MS program

Students in the MS
program must turn in a
thesis.

C1

Student must pay
binding fee.

C3

Student must submit
three copies of thesis
to thesis clerk.

C2

Student must file a
thesis proposal to the
graduate office.

C4

Thesis must be printed
on blue line paper.

C5

Thesis format must
follow guidelines.

C6

L1 L3L2

L4 L5 L6

Figure 13.
Example Constraint Relationship Schematic

Candidate semantics:
• A double-lined box denotes a reference to a context.

47

• A round-cornered box denotes a particular constraint whose unique identifier is
located in the lower left-hand corner and whose label is in the upper left hand
corner. The label is a meaningful name given to the constraint.

Discussion: The idea for the diagram is to use the high level relation (depends-on) as the
main focus. The analyst can specialize these relations using different symbols. Finally, other
relations (user-defined) are marked with another symbol.

Issues: All links should have labels and elaboration forms associated with them. The
elaboration forms define the nature of the relationship in detail. An important
characterization of the relation may be the essential/non-essential property.

Constraint Effects Schematic

Purpose: To display the objects and systems affected by a constraint.

Viewpoint: Constraint-centered

Procedure Component(s) Supported:
• Mode Two, Collect and analyze evidence

• Mode Three, Hypothesize candidate constraints

• Mode Four, Validate and refine constraints

Graphical Metaphor: Spider web

Candidate Syntax:

produces an
unintended effect on

Links

produces an
intended effect on

is valid in/context for

<label> <label>

<Context_ID>

<Context Label>

Context referentSystem

<System Name>

Instance name

Instance markers

<Constraint name>

<Constraint _ID>

Constraint box

<label>

Figure 14.
Candidate Syntax for the Constraint Effects Schematic

48

Example:

MechanicMaterial Center (MC)

Purchasing Department

V

Purchasing material

Maintenance department

Economic order
quantity purchasing

C12

L2 L3

L4 L6

L1

L5

Figure 15.
Example Constraint Effects Schematic

Candidate Semantics:

• A double-lined box denotes a reference to a context.

• A round-cornered box denotes a particular constraint whose unique identifier is
located in the lower left-hand corner and whose label is in the upper left hand corner.
The label is a meaningful name given to the constraint.

• A rectangle denotes a system (object or collection of objects). Instance markers
may be included in the lower left-hand corner of the system rectangle. When no
instance marker is present, the system rectangle represents the object kind indicated
by the system label. An open instance marker indicates that all instances of the object
kind are involved. A filled instance marker without a name indicates that any one
instance of the object kind is involved. A filled instance marker with a name
represents the specific named instance that is involved.

49

Goal Schematic

Purpose: The purpose of this diagram is to show the relationship between constraints and
individual goals. It may also be used to display the relative impact of each constraint with
respect to the goal of interest and in particular the “prioritization” of constraints with respect
to the system’s goals. The constraints are ordered from top to bottom in “priority” (the
highest priority being at the top). The constraints having a negative effect on the goal are
displayed on the left of the goal, while the constraints having a positive effect on the goal are
displayed on the right.

Viewpoint: Goal-centered

Procedure Component(s) Supported:

• Mode Two, Collect and analyze evidence

• Mode Three, Hypothesize candidate constraints

• Mode Four, Validate and refine constraints

Graphical Metaphor: Spider/Hierarchical

Candidate Syntax:

Links

negatively affects

Goal

<Constraint name>

<Constraint _ID>

Constraint box

<Goal name>

-
positively affects

+

Figure 16.
Candidate Syntax for the Goal Schematic

50

Example:

<Constraint Name>

<Constraint Name>

<Constraint Name>

<Constraint Name>

<Constraint Name>

<Constraint Name>

+Maximize
Throughput-

C7

C9

C3

C2

C25

C4

or

<Constraint_ID>

+Maximize
throughput

<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>

<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>
<Constraint_ID>

-

Figure 17.
Example Goal Schematic

Candidate Semantics:

• An oval denotes a goal where the goal is identified by the goal name.

• A rectangle denotes a system (object or collection of objects). Instance markers
may be included in the lower left-hand corner of the system rectangle. When no
instance marker is present, the system rectangle represents the object kind indicated
by the system label. An open instance marker indicates that all instances of the object
kind are involved. A filled instance marker without a name indicates that any one
instance of the object kind is involved. A filled instance marker with a name
represents the specific named instance that is involved.

• For any given pair of constraints on a link, the constraint positioned above the
other has a stronger affect.

Discussion: An alternative mechanism for correlating constraints with goals is through the
use of a matrix-based metaphor, such as used in Quality Function Deployment diagrams.

51

Both strong and weak positive and negative correlations could be displayed between all goals
and constraints, as opposed to centering on a single goal, as with the schematic above.

Goal Relationship Schematic

Purpose: The purpose of this diagram is to show the relationships (subsumption, conflicts,
etc.) between goals.

Viewpoint: Goal-centered

Procedure Component(s) Supported:

• Mode Two, Collect and analyze evidence

• Mode Four, Validate and refine constraints

Graphical Metaphor: Hierarchical

Candidate Syntax: To be developed.

Example: None.

Candidate Semantics: Not applicable.

Discussion: A number of relationships between goals can be considered. Among these are
is valid in/context for, depends-on-existentially, implies, is-part-of, and so forth. The concept
of a performance measure may also be needed in the schematic (perhaps as a list of metric
names in the goal object).

Issues: To be determined.

Symptom schematic

Purpose: Assist with tracing the underlying cause of symptoms to the lack of an enabling
constraint or to the existence of a limiting constraint.

Viewpoint: Symptom-centered

Procedure Component(s) Supported:

• Mode Two, Collect and analyze evidence

• Mode Three, Hypothesize candidate constraints

• Mode Four, Validate and refine constraints

Graphical Metaphor: Spider

52

Candidate Syntax:

Links

causes

Symptom (undesirable effect)

<Symptom name>

Figure 18.
Candidate Syntax for the Symptom Schematic

Example:

Lack of Inventory
Control

Frequent Schedule
Changes

Lack of Capacity
Planning

Customer Changes
Order

Reactive Inventory
Management

Work Priorities to Attain
Shop Efficiencies

Excess In-Process
Inventory

Long Cycle Time

Too Many Jobs
Not Listed

Figure 19.
Example Symptom Schematic

Candidate Semantics:

• A half-oval denotes a symptom or negative effect that is distinguished by its label.

• An “inclusive or” condition is implied at any point where arrow heads or tails
converge. In other words, either one, a combination, or all of the symptoms stand in
the relation “causes/is caused by” when multiple arrows originate from, or terminate
at, a symptom symbol.

53

Discussion: A symptom is defined as an indication or sign (e.g., change in normal function,
sensation, or appearance) indicating a problem. A problem is defined as a source of trouble
or annoyance. To one domain expert, one problem is the cause of another problem; while
to another individual the same problem will be recognized as merely a symptom of another
problem. Thus, the way negative effects are described (i.e., as the cause, problem, or effect)
depends on individual viewpoints. The actual root cause(s) of negative effects (or positive
effects) can be very elusive. Symptoms and causality relationships among symptoms, on the
other hand, are relatively easy for domain experts to recognize. For this reason, the
schematic above has been named the symptom schematic.

Issues:

• Given an inclusive-or semantics on the relation causes/is caused by in the above
schematic, additional information will need to be captured on a supporting elaboration
form. This would help make the relations explicit, provided that information was
available. An alternative might be to explore the introduction of new graphical
symbols to display additional logic on the schematic.

• It may be useful to provide a mechanism to classify sets of like symptoms.

• An alternative schematic that merits further investigation is the Ishikawa diagram,
also called a fishbone or cause-effect diagram, to assist in discovering the relationship
between undesirable effects. Ishikawa diagrams are single problem-centered (i.e., one
problem, symptom, or effect is isolated in the diagram as the center of focus). The
central problem displayed on Ishikawa diagrams is represented by a “backbone”
arrow from which one or more branches and sub-branches are created to illustrate
cause-effect chains terminating at the backbone. The schematic above allows for
either single effect-centered analysis and data collection or multi-effect analysis.

Significant Accomplishments

Among the most significant contributions of the Armstrong Laboratory’s IICE program is
a characterization of the nature and role of constraints in governing and predicting behavior
among objects and agents in a system. This contribution is underscored by the observation
that many domain experts need to “unlearn” an association between constraint and something
negative. The majority of constraints, in fact, are necessary and enabling. The IDEF9
method helps to promote awareness of both the enabling and limiting aspects of constraints in
an organizational context.

Building upon this foundation, the need for a method promoting a systematic approach to
business constraint discovery was established. The work that followed has produced a
prototype procedure and graphical language uniquely suited to the task. Together, these
components establish an explicit process for recognizing, collecting, documenting, and
validating business constraints.

54

Among the central features of the procedure is the provision for identifying type problems
typical of business systems (See Table 1). The procedure itself was also designed to help
avoid analogous problems in IDEF9 method application. A validation procedure was
developed wherein analysts first hypothesize candidate constraints and then attempt to
substantiate them with supporting data. This is followed by domain experts challenging the
conclusions of the analyst. The challenge step helps to ensure that candidate constraints
promoted to the status of constraint become so through a participative and consensus-
building activity with domain experts.

Explorations into alternative language designs uncovered a number of promising
schematics, each with a unique focus supporting constraint discovery and downstream reuse
of constraint information. One of the most interesting of these is the Context Schematic.
The simplicity of this schematic in representing the context in which a constraint holds
illustrates the point that a language is often best judged not by what can be expressed but by
what is explicitly not expressed. The structure of a context in terms of the objects, facts, and
relations comprising the context could have easily overwhelmed the design of this schematic.
The context schematic permits successive levels of detailing that allow one to describe the
context at an appropriate level of granularity. This design also permits focus on the
relationship between the constraints and the context(s) in which it holds rather than placing
an inordinate emphasis on the context itself.

The Constraint Effects Schematic illustrates the relationship between constraints and affected
objects in terms of intended and unintended effects. Existential dependency relations among
constraints are displayed in the Constraint Relationship Schematic permitting rapid
identification of outdated or unnecessary constraints. The Goal Schematic provides a
mechanism to establish the relationship between constraints and organization goals and for
prioritizing their relative impact. The Symptom Schematic assists in identifying cause-effect
chains among problematic symptoms that can ultimately lead to the discovery of constraints.

Collectively, these developments provide a foundation for future development.
Additional development, testing, and refinement will be needed, however. The following
section outlines some potential areas for future development, both within the IDEF9 method
and in terms of spin-off work that can provide additional capabilities to leverage constraint
information.

Potential Areas for Future Work

A number of promising areas for additional work were identified during the development of
the IDEF9 method. Several of these are listed below together with a brief description of the
benefits to be gained by pursuing further development along these lines.

1. Method refinement. A number of areas within the prototype method merit further
development and testing. Among these are expansions to the techniques supporting
the IDEF9 method procedure, further development of graphical language elements,
the incorporation of elaboration forms and data collection sheets, and the
development of a computational language of expression (elaboration language).

55

Specific provisions were made to ensure ease of integration with other methods
(particularly with the IDEF5 method); however, a more in-depth treatment of this
aspect of IDEF9 merits consideration. Each of IDEF9’s design elements also needs to
be tested, in a highly controlled setting and in a production environment where
unanticipated misuse or other problems can be detected and resolved. A wide range
of test situations is recommended to maximize the robustness of the method.

2. Application framework development. Methods are, by design, highly task or skill
oriented. Their true value is demonstrated mainly through their application in projects
involving many skills and tasks coordinated to satisfy some goal or objective.
Constraint discovery is an implicit first step for strategic planning, BPR, TQM, and a
number of similar improvement strategies. There is a need, however, to establish
exactly how constraint discovery activity and the constraint information collected can
be integrated into the process.

3. Argument validity checking. Most decision-making is based on qualitative
judgments, not on quantitative data (e.g., bottom-line cost). Arguments for or against
a proposed decision establish a case for action, one of whose supporting elements
may be a business case. The relative merits of one decision over another is largely
determined by the validity of the argument posed to support the decision. Arguments
are themselves composed of a chain of premises and conclusions that eventually lead
to the final conclusion. Further investigation could be made to provide the IDEF9
method with techniques specifically enabling decision-makers to assess the validity of
a proposed argument.

4. Mechanisms to allocate costs for enforcing constraints. Activity Based Costing
(ABC) has been successfully applied as a mechanism for allocating costs to
organization functions and for determining the appropriate cost of doing business
[Kaplan 88]. The basic mechanism underlying the ABC approach is to identify how
resources are used by activities to accumulate costs. The activity costs are then traced
to the products and services generated by the activities. It would be useful to explore
using a similar approach to allocate costs to constraints since constraints use resources
in their maintenance or enforcement. Such mechanisms would provide additional
decision support for determining when the cost of a constraint exceeds its value and
when it merits additional emphasis.

5. Methods and tools to design constraints. The design or redesign of constraints is a
potential research topic in which a number of promising areas can be explored. The
purpose of such efforts would be to assist with change management through more
effective, proactive constraint management. Methods and tools are needed to support
the design of constraints such that intended effects are maximized, unintended effects
are minimized, systems designed to enforce constraints are appropriately configured,
constraints are “flagged” whenever changes in the environment precipitate the need to
reevaluate the need for a constraint, and so on.

56

6. Constraint categorization schemes. The mental exercise of classifying constraints
has been shown to assist in constraint discovery and downstream reuse of constraint
information. Further research is needed, however, to explore alternative constraint
taxonomies and their use in analyzing candidate constraints, checking for appropriate
coverage in constraint discovery effort, and in identifying opportunities for
improvement. The product of such effort would be a set of constraint taxonomies and
techniques for using the taxonomies to support varied analyses.

7. Tools to capture, display, and maintain constraint information. The success of any
method depends heavily on the existence of automated tools. This has always been
true and is likely to continue in the foreseeable future. Automated tools not only
assist practitioners in the application of a method but provide a rapid and reliable
means for sharing, storing, and reusing information.

8. Libraries of constraints. On-line repositories of business constraints made
available through the information superhighway would provide business owners,
strategic and tactical planners, and systems developers with a mechanism for
exploring new ways of doing business and for expanding into new areas of business.
The goals of dual-use conversion, agility, and similar initiatives depend on the ability
to expose the current constraints under which the business operates and the
constraints under which world-class systems in a given industry sector operate. With
this visibility, a clear path to leveraging new areas of opportunity can be established.

9. Tools and environments for constraint-driven change management. One of the
key problems facing organizations today is not having the ability to understand the
effect of local change on the global enterprise. Many times a small change in policy,
procedure, or product in one area has adverse effects in other areas. Decision-makers
must then reverse the initial change or live with the ripple effects. Either of these
situations results in an inefficient use of resources. In organizations today, significant
effort is expended on managing the effects of change, not the management of change
itself. To reverse this situation, there is a need for more visibility of constraining
relationships giving rise to organization behaviors, predictive tools enabling
assessment of the impacts of change, and design tools assisting in the development of
the system of constraints needed to proactively manage change.

Conclusions

Effective change management is greatly facilitated through the discovery and
documentation of business constraints. The change management process begins with
identifying business constraints. The knowledge of what constraints exists and how those
constraints interact is generally incomplete. Yet business constraints initiate, enable, govern,
and limit the behavior of objects and agents to accomplish the goals of the business. The
IDEF9 method was designed to assist in the discovery and analysis of these constraints.

Considerable progress has been made toward the development of IDEF9. In its current
form, IDEF9 provides a systematic approach for business owners, strategic and tactical

57

planners, systems developers, project leaders, and decision-makers to identify and document
business constraints. These developments provide the foundation for future endeavors to
refine the IDEF9 method and to leverage the products of IDEF9 application.

IDEF9 Bibliography

[Demmy & Petrini] Demmy, S. W., & Petrini, A. B. (1993). The Theory of Constraints:
A New Weapon for Depot Maintenance Planning and Control. Air Force Journal of
Logistics.

[Goldratt & Cox 86] Goldratt, E. M., & Cox, J. (1986). The Goal. Croton-On-Hudson,
NY: North River Press.

[Goldratt & Fox 86] Goldratt, E. M., & Fox, R. E. (1986). The Race. Croton-On-
Hudson, NY: North River Press.

[Goldratt 90] Goldratt, E. M. (1990). Theory of Constraints. Croton-On-Hudson, NY:
North River Press.

[Goldratt 90] Goldratt, E. M. (1990). The Haystack Syndrome. Croton-On-Hudson,
NY: North River Press.

[Goldratt 92a] Goldratt, E. M. (1992, July). An Introduction to Theory of Constraints:
The Production Approach--Workshop Description.

[Goldratt 92b] Goldratt, E. M. (1992, July). An Introduction to Theory of Constraints:
The Production Approach--Two-Day Workshop Course Materials.

[Coleman 91] Coleman, S. (1991). Information Engineering Practitioner’s Guide
Volume IV Business Area Analysis Culver City, CA: Pacific Information Management, Inc.

[Coleman 92] Coleman, S. (1992). Corporate Information Management Process
Improvement Methodology for DoD Functional Managers, Unpublished report by D.
Appleton Company, Inc.

[Gross 87] Gross, M., Ervin, S., Anderson, J., & Fleisher, A. (1987) Designing with
constraints. In Y.E. Kalay (Ed.), Computability of Design. New York: Wiley.

[Martin 82] Martin, J. (1982). An Information Systems Manifesto. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

[Maher 89] Maher, M. L. (1989). Synthesis and evaluation of preliminary designs. In J.
S. Gero (Ed.), Artificial Intelligence in Design. New York: Springer-Verlag.

[Mayer, R. J., et al. 87] Mayer, R. J., et al. (1987). Knowledge-based integrated
information systems development methodologies plan (Vol. 2), (DTIC-A195851).

58

[Olle, T. W., et al. 88] Olle, T. W., et al. (1988). Information Systems Methodologies: A
Framework for Understanding. Reading, MA: Addison-Wesley Publishing Company.

[Pressman 87] Pressman, R. S. (1987). Software Engineering: A Practitioner’s
Approach. New York: McGraw-Hill, 1987.

[Ramey 83] Ramey, T. L. (1983). Guidebook to System Development. Hughes Aircraft
Company.

[Silver & Silver 89] Silver, G. A., & Silver, M. L. (1989). Systems Analysis and Design.
Reading, MA: Addison-Wesley.

[Smith & Browne 93] Smith, G. F., & Browne, G. J. (1993). Conceptual Foundations of
Design Problem Solving. IEEE Transactions on Systems, Man, and Cybernatics, 23(5).

[Smith 93] Smith, G. F. (1993). Defining Real World Problems: A Conceptual
Language. IEEE Transactions on Systems, Man, and Cybernatics, 23(5).

[Wallace 87] Wallace, R. H., Stockenberg, J. E., & Charette, R. N. (1987). A Unified
Methodology for Developing Systems. New York: McGraw-Hill, Inc.

[Zachman 87] Zachman, J. (1987). A framework for information systems architecture.
IBM Systems Journal, 26(3), 276-292.

59

Glossary of IDEF9 Terms
Constraint A relationship that is maintained or enforced in a given

context.

Context A distinguished set of conditions.

Project scope A delineated set of boundaries for constraint discovery
effort documented in the form of scope statements.

Project purpose The aim, object, or desired ends for the constraint
discovery effort. The purpose is usually established by
prioritized objective statements for the effort, statements
of needs that the constraint discovery effort must satisfy,
and questions or findings the client wants answered.

Evidence An indication, sign, or manifestation that supports the
existence of a constraint in a given context.

Relation, relationship An abstract, general association or connection that holds
between two or more conceptual or physical objects.

Effect(s) of a constraint Something that inevitably follows an antecedent (as a
cause or agent). Effects are classified as direct or indirect,
intended or unintended, and desirable or undesirable.

Symptom Something characteristic or indicative of a condition
impairing normal functioning.

Process An ordered sequence of events. In human-designed
systems, the events that constitute a process are designed
and ordered to achieve some desired outcome. A
business process, in particular, is an ordered sequence of
events involving people, materials, energy, and
equipment, that is designed to achieve a defined business
outcome.

System A collection of objects standing in particular relations and
exhibiting particular behavior prescribed by a collection
of constraints.

System, business A collection of objects behaving to perform one or more
business functions under the influence of constraints to
accomplish a particular goal.

Goal An object or end that the business or system strives to
achieve.

Constraint, rationale of the The set of beliefs motivating the establishment and
maintenance of a constraining relationship.

Constraint statement A textual description of the constraining relationship.

61

TOWARD A DESIGN RATIONALE CAPTURE METHOD (IDEF6)

Introduction

The purpose of the IDEF6 Design Rationale Capture method is to facilitate the
acquisition, representation, and manipulation of the design rationale used in the development
of enterprise systems. Rationale is the reason, justification, underlying motivation, or excuse
that moved the designer to select a particular strategy or design feature. More simply,
rationale is interpreted as the answer to the question, “Why is this design being done in this
manner?” Most design methods focus on the what the design is (i.e., on the final product,
rather than why the design is the way it is).

Design rationale becomes important when a design decision is not completely determined
by the constraints of the situation. Thus, decision points must be identified, the situations
and constraints associated with those decision points must be defined, and if options exist,
the rationale for the chosen option and for discarding other options (i.e., those design options
not chosen) must be recorded.

The task of capturing design rationale serves the following purposes:

1. Enables evolutionary integration of enterprise information systems.

2. Enables the use of concurrent engineering methods in information systems
development.

3. Supports better integration among life-cycle artifacts.

4. Facilitates business reengineering by capturing the rationale behind business case
decisions.

5. Enables efficient traceability of decisions.

Rationale capture is applicable to all phases of the system development process. The
intended users of IDEF6 include business system engineers, information systems designers,
software designers, systems development project managers, and programmers.

Motivation

Supporting the evolution of integrated information systems whose conceptualization,
construction, operation, maintenance, and retirement may span careers, or even lifetimes,
requires the explicit capture and storage of design rationale. Personnel turnovers and
manpower shifts create similar needs for design rationale capture. In addition, capturing
design rationale is important during the development phase of large scale systems. In these
situations, the logic (i.e., the chain of arguments or reasons) behind the design is invaluable
to the down-stream developers, testers, and integrators.

62

Computer-aided software engineering (CASE) environments attempt to bring automated
support to the design stage. Existing CASE tools are inherently limited in at least two
important respects. CASE tools are intended to document various aspects of what a design
is, but they do not document why a design exists. Secondly, even when design rationale
comments exist, they are captured as unstructured textual comments. Often, the only record
of the design rationale for a software system is distributed across many people, and at any one
time, parts of it will have been forgotten or made unavailable.

The loss of design rationale can result in repeating past mistakes or making decisions
contrary to earlier design decisions. Furthermore, when one does not understand the rationale
for why the system is the way it is, actions taken to correct one problem may cause more
problems elsewhere in the system.

One benefit of maintaining design rationale is to force a statement of goals, as well as
assumptions. Goals, like assumptions, are frequently not stated. Forcing their statement for
the purpose of rationale capture leads to a more focus2ed, disciplined approach to design.
Much of design thinking appears to be abductive in nature, with experience-directed insights
being fashioned and rationalized in the context of the current task. This rationalization may
be the only basis for understanding why a system is the way it is. Without the capture of this
chain of reasoning, communication of the design becomes difficult and prone to error.

Another motivation for rationale capture is that the definition of subsystems and
subsystem boundaries is an experimentation process in which each designer discovers the
boundaries he or she finally imposes. If the organization is to avoid costly errors, it must
have knowledge of the paths of inquiry that failed, the path to the final success, and the final
result.

Benefits

Potential applications of IDEF6 Design Rationale Capture include software design
support, software implementation and maintenance support, simulation design, decision
support, diagnostics support, and reverse engineering environments.

The potential benefits of a method for design rationale capture include:

1. New data for information system design theory development.

2. Improved reusability of information systems models and designs.

3. Reusability of rationale.

4. Easier system maintenance.

5. Improved collaboration support.

6. More effective decision making.

63

7. Improved support for evolutionary systems integration.

Summary of Developments and Research Findings

This section describes the nature of design rationale and associated issues that were
investigated in the development of IDEF6. The most important factor in the development of
IDEF6 was to make the rationale capture as easy and unobtrusive as possible so that it will
not disrupt the natural flow of the design process. We also discuss procedure and language
design developments.

The basic strategy used to explore IDEF6 method design involved two activities. The
first focused on defining the characteristics and the nature of design rationale by analytic
means. This involved characterizing the types of information that are used to rationalize a
design. This required building an ontology of design rationale. The second activity focused
on defining the characteristics and nature of design rationale through direct experimentation.
This activity also involved experimenting with language structures designed around the
concepts identified in the first activity. Specifically, we experimented with an initial IDEF6
annotation format for the IDEF4 Object-Oriented Design Method. IDEF4 models were
extended to include IDEF6 annotations describing assumptions, constraints, or usage
categories underlying IDEF4 entities. These investigations were expanded to explore explicit
language support for different kinds of justifications, different kinds of constraints, and for
individual design artifacts produced using other IDEF methods.

IDEF6 Basic Concepts

Design rationale (why and how), can be contrasted with the related notions of design
specification (what), and design history (steps taken). Design specifications describe what
intent should be realized in the final physical artifact. Design rationale describes why the
design specification is the way it is. This includes such information as principles and
philosophy of operation, models of correct behavior, and models of how the artifact behaves
as it fails. The design process history records the steps that were taken, the plans and
expectations that led up to these steps, and the results of each step.

Design Rationale Phenomena

A general characterization of design rationale can be given as: “The beliefs and facts as
well as their organization that the human uses to make (or justify) design commitments and
to propagate those commitments.”

In our investigation into the nature of design rationale, we have characterized “types” of
design rationale and “mechanisms” for representation of these types. Types of design
rationale include arguments based on:

(1) The philosophy of a design, including:

(a) Process descriptions of intended system operation, and

64

(b) Design themes expressed in terms of particular object types
standing in some specific relation or exhibiting some specific
behavior.

(2) Design limitations expressed as range restrictions on system parameters,
and environmental factors.

(3) Factors considered in tradeoff decisions, including budget
constraints, timing constraints, organization policies and
procedures, and available technology.

(4) Design goals:

(a) Use or lack of use of particular components,

(b) Achievement of particular structural arrangements,

(c) Priorities on problems requirements,

(d) Product life cycle characteristics (e.g., disposable versus
maintainable, robustness, flexibility), and

(e) Design rules followed in problem or solution space
partitioning, test/model data interpretation, or system
structuring.

(5) Precedence or historical proof of viability.

(6) Legislative, social, professional society, business, or personal evaluation
factors or constraints.

Possibly due to the commonness of routine design or the complexity of design rationale
expression, the most common rationale given for a design is that a similar design worked in a
previous situation. A minimum requirement for a design knowledge management capability
is that it must be able to record historical precedence, as well as statements of beliefs and
rationalizations for why a current design situation is identical to a previous one.. This
phenomena may be less common in software design rationale. The malleability of design
gives rise to the belief that designers can be creative each time. In contrast with hardware
design, software design based on previous designs means that reused parts are literally copied
whole, not rebuilt from the same plans. Hence, the opportunity to fix small design flaws is
lost, and the interaction of the new parts with the old is likely to be much less well
understood. Another important rationale given for a design is that “it feels better,” or “it
seems more balanced, symmetric.” In other words, there is an important aesthetic side to
software design.

Finally, software design rationale includes expectations about how the design will evolve
through the development process. For example, there may be expectations about how the

65

program structure will change. These expectations do not appear to be as well defined as
similar expectations we have seen in mechanical hardware design.

One general conclusion made about the nature of design rationale is that it traces the
reasoning process. This trace starts with the element of the design that is being justified and
provides a set of supporting arguments that ultimately terminate with proven elements of the
problem space or the design space. This chain of arguments may also terminate in previously
rationalized design elements.

Design Rationale Capture Issues

One reason for the loss of rationale is rooted in the long time lag between specification of
the software artifact and completion of the artifact.

There are also problems with developing a general understanding of what should
constitute explicitly captured Design Rationale. That is, a notable difficulty with expressing
design rationale is that the concept itself is not uniformly understood. It shares this
characteristic with all other forms of “explanation” that Artificial Intelligence (AI)
researchers continue to struggle with.

One of the problems with capturing design rationale is that it requires stating
characteristics beyond the minimum specifications required to produce the product. The
major goal of design has traditionally been to construct specifications for artifacts so
complete that any realization of them will satisfy the requirements (and thereby solve the
problems). The logic behind the decisions leading to, resulting in, or contributing to the
design are not the main focus of design and are generally left unrecorded. After all, it has
been thought that their inclusion into the traditional document structures may cause confusion
or complicate the acquisition/interpretation of critical information communicated through the
documents. In addition, , a designer may make hundreds of focused component decisions
and thousands of configuration decisions in a very short period of time [Friel 88, Goel 90].
Lack of efficient methods to capture and represent these decision alternatives and
considerations are a primary impediment to the design rationale capture.

IDEF6 Procedure Developments

In IDEF6, the rationale capture procedure involves partitioning, classification/
specification, assembly, simulation/execution, and re-partitioning activities. The rationale
capture procedure normally applied in the simulation/execution activity of the evolving
design uses two phases: Phase I describes the problem and Phase II develops a solution
strategy . Initial IDEF6 developments involved experimenting with an IDEF6 annotation
format for the IDEF4 Object-Oriented Design Method. IDEF4 models were thus extended to
include IDEF6 annotations describing assumptions, constraints, or usage categories
underlying IDEF4 entities. We therefore use IDEF4’s design rationale component in this
report to represent the state of IDEF6 development.

66

Design is an iterative procedure involving partitioning, classification/specification,
assembly, simulation, and re-partitioning activities (see Figure 21). First, the design is
partitioned into design artifacts. Each artifact is either classified against existing design
artifacts or an external specification is developed for it. The external specification enables
the internal specification of the design artifact to be delegated and performed concurrently.
After classification/specification, the interfaces between the design artifacts are specified in
the assembly activity (i.e., static, dynamic, and behavioral models detailing different aspects
of the interaction between design artifacts are developed). While the models are developed,
it is important to simulate use scenarios or cases [Jacobsen 94] between design artifacts to
uncover design flaws. By analyzing these flaws, the designer can re-arrange the existing
models and simulate them until the designer is satisfied. The observed design flaws and the
actions contemplated and taken for each are the basis of the design rationale capture
procedure.

Partition

Classify/
Specify Assemble

Simulate

Re-Arrange

Figure 20.
IDEF4 Design Activities

Phase I: Describe Problem

Problems with the current state of the design are normally identified during the simulation
activity of the design cycle. In the simulation activity, use scenarios are used to validate and
verify the design or implementation. In Phase I, the designer describes problems that exist in
the current design state by: identifying problems, identifying violated constraints
(requirements, physical laws, norms, etc.), identifying needs for problem solution, and
formulating goals and requirements for the subsequent design iteration.

67

Identify Problems

The designer identifies problems in the current design state by stepping through the use
cases in the requirements model to validate that the design satisfies requirements and to
verify that the design will function as intended. The designer records symptoms or concerns
about the current design state. A symptom is an observation of an operational failure or
undesirable condition in the existing design. A concern is an observation of an anticipated
failure or undesirable condition in the existing design.

The requirements model consists of a function12 model and several process13 models that
describe intended system usage. The function model constrains both the scope of the design
partition and the activities supported by the partition. The process models describe use
scenarios of how the activities occur. The activities in the function models may call out14

process models. These models map to requirements and goals. The function use model is
used for validating and verifying interfaces and activities, and the process use model is used
for validating and verifying process flow and logic.

Figure 21 depicts a design for a design partition called Sys, showing its constituent static
and dynamic models, as well as its associated requirements model. The requirements model
contains an IDEFØ function model whose activities call out IDEF3 process scenarios. The
designer walks the design through these use cases to detect situations that have not been
adequately supported.

12 Function models may be expressed in IDEFØ, but should not contain decompositions by type (of activity).
13 Process models may be expressed in IDEF3.
14 IDEFØ activities call IDEF3 process scenarios using call mechanism arrows.

68

Sys

1

2

3

Design Model

Requirements Model

Use

1

2

3

Function
Model

Use ScenariosValidate &
 Verify

Validate & Verify

Validate & Verify

Figure 21.
Static, Dynamic, and Requirements Models for Sys Partition

Identify Constraints

The designer then identifies the constraints that the problems violate or potentially
violate. These constraints include requirements, goals, physical laws, conventions,
assumptions, models, and resources. Because the activities and processes in the use case
scenarios map to requirements and goals, the failure of the design in any use case activity or
process can be traced directly to requirements statements and goal statements.

Figure 22 illustrates the mapping between the analysis model’s function and use scenarios
and the requirements and goal statements. When the design fails to adequately support
activities and use scenarios, the requirements model allows the designer to easily identify the
requirements constraints or goal statements that have been violated.

69

Use

1

2

3

1

2

3

Requirements Model

Function
Model

Use Scenarios

Requirements

Goals

Requirements

Requirements

Goals

Requirements

Figure 22.
Functions and Use Scenarios Mapping to Requirements and Goals

Identify Needs

The designer then identifies the necessary conditions or needs for solving the problems.
A need is a necessary condition that must be met if a particular problem or set of problems is
to be solved. It is possible that the needs statement will have to describe the essentiality for
relaxing requirements and goal constraints governing the design.

Formulate Goals and Requirements

Once the needs for the design transition have been identified, the designer formulates (1)
requirements that the solution must satisfy and (2) goals that the solution should attempt to
satisfy. A requirement is a constraint on either the functional, behavioral, physical, or

70

method of development aspects of a solution. A design goal is a stated aim that the design
structure and specifications must support.

Phase II: Formulate Solution Strategies

Once the requirements and goals have been established, the design team formulates
alternative strategies for exploration in the next major transition in the design.

One important aspect that distinguishes good designers is the ability to choose between
making strategic design decisions and tactical design decisions. Strategic design decisions
have sweeping architectural implications (i.e., the decision to use an OODBMS, the
separation of responsibilities in client server architecture, the choice of mechanism for inter-
process communication). Tactical decisions represent essential details that complete
architectural decisions (i.e., the schema of a database, the protocol of a class, and the
signature of a member function).

Design strategies can be considered as “meta-plans” for dealing with frequently occurring
design situations. They can be viewed as methodizations or organizations of the primitive
design activities identified above (i.e., partitioning, classification/specification, assembly,
simulation, and re-partitioning). The three types of design strategies considered in the IDEF4
rationale component include:

1. External-constraint-driven design—Design carried out under
situations where the goals, intentions, and requirements are not
characterized well, much less defined. These situations often result
when the designer is brought into the product development process too
early.

2. Characteristic-driven design—Design in a closely controlled situation
where strict accountability and proof of adequacy are rigidly enforced.
These design situations often involve potentially life threatening
situations.

3. Carry-over-driven design—Sometimes referred to as “routine” design.

The following classes of knowledge are evident in typical system design practice:

1. Knowledge of basic principles.

2. Knowledge of the general design process in a domain.

3. Knowledge of available components.

4. Knowledge of previous solution approaches.

5. Knowledge of available engineering performance models and workable
modeling approaches.

71

6. Knowledge of test capabilities and results (e.g., what sorts of
experimental results and data can be affordably, reliably, or physically
acquired).

7. Knowledge of the human network (i.e., where is the knowledge and
information in the organization or in professional associations).

8. Knowledge of the requirements, design goals, design decision/evaluation
process, and design environment of the current problem.

9. Knowledge of political or governmental constraints.

In summary, design as a cognitive endeavor shares many characteristics with other
activities such as planning and diagnosis. But, design is distinguished by the context in
which it is performed, the generic activities involved, the strategies employed, and the types
of knowledge applied. A major distinguishing characteristic is the focus of the design
process on the creation (refinement, analysis, etc.) of a specification of the end product.

IDEF6 Language Design Developments

The investigation into language support for IDEF6 included the development of a
grammar for describing the rationale for individual design artifacts.

The language is based on the notion that design rationale can be characterized as chains of
rationale elements, where each rationale element is expressed in terms of a design artifact and
its relation to supporting evidence.

RATIONALE_ELEMENT ---> DESIGN_ITEM, RELATION, SUPPORT

Supporting evidence is expressed in terms of associations between rationale elements and
substantiating items.

SUPPORT ----> RATIONALE_ELEMENT, SUBSTANTIATING_ITEM

The kinds of substantiating items that have been identified are as follows:

Elements of a business plan.

Development or operational resources.

. Requirements.

Design goals.

Solution technology.

Solution features.

72

Business policies.

Natural laws.

Best practice conventions.

Standards.

Laws, regulations, or other social constraints.

Substantiating items are constraints on the design, for example standards and requirements.

SUBSTANTIATING_ITEM ----> SOURCE_MATERIAL_ITEM |
REQUIREMENTS_ITEM |
NOTE | ASSUMPTION |
CORRELATION |
PRACTICE |
STANDARDS |
EXPERIMENTAL_RESULTS |
SYSTEM_CAPABILITIES |
DESIGN_GOAL |
NOMIC CONSTRAINT |
METHOD CONSTRAINT

RELATION ----> satisfies | supported_by

DESIGN_ITEM ----> ARTIFACT | DESIGN_ITEM, S-REL, DESIGN_ITEM

Each artifact may come from IDEFØ, IDEF1, IDEF1X, IDEF3, IDEF4, and IDEF5, as shown
in the following grammar production.

ARTIFACT ----> IDEFØ_ARTIFACT |
IDEF1_ARTIFACT |
IDEF1X_ARTIFACT |
IDEF3_ARTIFACT |
IDEF4_ARTIFACT |
IDEF5_ARTIFACT

The following lists the productions for IDEFØ artifacts:

IDEFØ_ARTIFACT ---> CONCEPT |
ACTIVITY |
DECOMPOSITION |
BUNDLE |

CONCEPT ---> INPUT |
OUTPUT |
CONTROL |
MECHANISM

The following lists the productions for IDEF1 artifacts:

73

IDEF1_ARTIFACT ---> ENTITY_CLASS |
ATTRIBUTE_CLASS |
LINK_CLASS |
CARDINALITY

The following lists the productions for IDEF1X artifacts:
IDEF1X_ARTIFACT ---> ENTITY |

ATTRIBUTE |
RELATION

IDEF1X relation is defined as follows:

RELATION ---> idef1x_relation: RELATION_NAME,
RELATION_TYPE,
CARDINALITY,
ROLE_NAME,

RELATION_TYPE ---> {identifying, nonidentifying}

CARDINALITY ---> {MIN MAX} | NUMBER

ATTRIBUTE ---> ATTRIBUTE_NAME, ATTRIBUTE_TYPE, DOMAIN

ATTRIBUTE_TYPE ---> {descriptive, alternate_key, primary_key, foreign_key}

ENTITY --> ENTITY_ID, ENTITY_NAME, ENTITY_TYPE

ENTITY_TYPE ---> {independent, dependent}

The following lists the productions for IDEF3 artifacts:
IDEF3_ARTIFACT ---> UOB |

JUNCTION |
I3_RELATION
I3_OBJECT |
I3_STATE |
I3_TRANSITION |
REFERENT |

UOB ---> UOB_NAME, UOB_Identifier

JUNCTION ---> JUNCTION_TYPE, JUNCTION_ID, JUNCTION_LOGIC, TIMING

JUNCTION_TYPE ---> {fan_in, fan_out}

JUNCTION_LOGIC ---> {and, or, xor}

TIMING ---> {asynchronous, synchronous}

IDEF1X relations are defined as follows:

I3_RELATION ---> I3_RELATION_TYPE, I3_RELATION_ID

74

I3_RELATION_TYPE ---> {precedence, object_flow link, relational}

I3_OBJECT ---> I3_OBJECT_NAME

I3_STATE ---> I3_STATE_NAME, I3_OBJECT

I3_TRANSITION ---> I3_STATE, I3_STATE

REFERENT ---> REFERENT_TYPE, IDEF3_ARTIFACT

REFERENT_TYPE ---> {goto, informational, call_and_continue, call_and_wait}

IDEF4 artifacts are defined as follows:

IDEF4_ARTIFACT ---> FEATURE |

FEATURE ---> OBJECT |
EVENT |
MESSAGE,
METHOD,
ATTRIBUTE,
STATE,
RELATION,
INHERITANCE,
LINK,
TRANSITION,
COMMUNICATIONS_LINK

OBJECT ---> CLASS |
PARTITION |
INSTANCE

CLASS ---> class: CLASS_NAME, (SUPERCLASS)* [FEATURE]*

Using detailed language support would be obtrusive and complicated for the designer.
The rationale capture method will need to be better integrated into the natural design process
in order to be useable. The development of the language has proved to be extremely useful in
understanding the rationale capture problem, and has led to simplifications that resulted in the
IDEF6 rationale capture method.

Design rationale should be integrated into the natural design process in which the
designer cycles the activities of partitioning, specifying, assembly, simulation, and re-
arrangement. During simulation, the designer ‘walks’ the design through scenarios of use,
making note of situations in which the design fails to satisfy constraints and then chooses
strategies for satisfying the constraints that have been violated. In this way, the rationale for
an artifact in a design can be traced as a series of observations and actions.

These observations were applied to develop a Design Rationale Model for the IDEF4
Object-Oriented Design Method. The Design Rationale Model contains diagrams that
describe milestone transformations to design artifacts. Each design situation is represented
by a round cornered box with the design state name on the top and a list of diagrams defining

75

the model situation. This strategy allows the designer to choose the level of detail for
recording design rationale. The diagrams referenced in a design situation box range from a
single diagram illustrating a narrow aspect of the model to all of the diagrams in a design
model. If, for example, the designer is making a decision that impacts most of the elements
in a partition, then the design situation box could contain all diagrams in that partition. The
partition may be used in place of the diagrams if the situation contains all of the models in the
partition. Typically, the fewer diagrams contained in a design situation, the more detailed the
rationale.

For example, consider the following situation in which a designer captures rationale at a
high level of detail. The designer captures the design rationale for the evolution of an
employs/employed by relation between person class and company class to a link from
employee to company. In this case, the “starting” design situation has a reference to a
diagram containing the employs/employed by relation; and the “ending” design situation has
a reference to the link diagram containing the employed by link.

Transitions from one design situation to another are represented by an arc with an arrow
pointing in the direction of the transformation (see Figure 23). The transition arc lists the
observations that necessitated the design change and the changes to be made. For example,
in the transition from the design situation containing the employs/employed by relation to the
situation containing the employed by link, the observation will state that the
employs/employed by relation is not directly implementable, and the action will state that the
relation will be replaced by the employed by link which can be implemented.

Design State 1

Diagram1
Diagram2

Design State 2

Diagram1'
Diagram2'

Design State 2a

Diagram1'
Diagram2'

Observations
Actions

Actions

Figure 23.
Observations and Actions Marking Design Transitions

Figure 24 illustrates the concepts of design situation, transition and rationale. In this
example, an initial design situation (Design State 1) contains the objects person and company
and the employs/employed by relation between person and company. The use cases show that
the access rights of employees and non-employees are different. The designer also notes that
the relationship between person and company is conditional because not all people are
employed, and that it would be desirable to define this relationship between employee and
company. The designer partitions the object class person into employees and non-employees.

76

This is defined on an inheritance diagram using the subclass/superclass relationship. The
designer then redefines the employs/employed by relation to be between employee and
company and changes its cardinality. These changes result in Design State 2.

In Design State 2, the designer observes that the employs/employed by relation is not
directly implementable. There are several options for implementing a relation, including
links, arrays, and relation objects. The designer decides to refine the relation to a link. In
order to create the link, the designer embeds referential attributes to each class. The link
name is written as L1(R1) which denotes that link L1 was derived from relation R1.

Design State 1 Design State 2 Design State 3

PC1 I1
EC1

EC2

O1: Reqmt 5.3.1

A1:Partition

Design Rationale DS1 -> DS2

Observations

Actions

Design Rationale DS2 -> DS3

Observations

Actions

Relation between Employee and
Company in EC1 not
implementable.

Create referential attributes:
employees on company and
employer on employee; also
create methods to enforce
constraint. Change is shown in
EC2.

O2: Implement

A2:Refine

Failure to satisfy requirement
5.3.1 employees and non-
employee access rights. Non-
specific Link between Person
and Company in PC1.

Partition Person into Employee
and NonEmployee Classes.
Redefine cardinality constraint
on R1 to 1 to 1 or more. Change
shows up in Employee/Company
Object Structure Diagram EC1 and
Inheritance Diagram I1.

Employee²

Company²

{A} Emp loyer :Company ©

{A} Emp loyees :[Empl oyee] ©

L1(R1)

Emp Company Diagram (EC2)

R1:Emp loyed
by/
Wo rks for

Person®

Company®

Em ploy er

em plo yee

Person Company Diagram (PC1)

Employee²

Person®

Inheritance Diagram (I1)

NonEmployee²

Employee²

Company®
Employ er

emplo yee

R1:Emp loyed
by/
Wo rks for

Emp Company Diagram (EC1)

Design Rationale Trace

Figure 24.
The Observation/Action View of Design Rationale

Design situations are defined on Design Configuration Forms (Table 4). The
configuration form allows the designer to name the situation, give a brief description of the
design situation, and list all of the diagrams that are important to that situation. The designer

77

can also identify the design situations from which (Entry Rationale) this design situation
evolved as well as the one to which it has led.

Table 4. Design Configuration Specification

Author J. Smithe Project IICE Date 6/1/94 Revision 3
Design Situation Situation Name Situation Name ID ID

Description Description of design situation
Diagrams Entry Rationale Exit Rationale

List of
diagrams
inactive in
this in
situation

List of design entry points in
terms of Rationale
Specifications

List of design exit points in terms of
Rationale Specifications

Rationale forms record information on design transition, such as why a change was
needed and which actions are to be taken. Table 5 shows a sample Rationale Specification
Form. The form allows the designer to identify the current design situation, name the goal
design situation, record a list of observations that prompted the need for a design revision,
and state the actions to be taken. The forms also record the name of the designer, project for
which the design is being built, and the date.

Table 5. Rationale Specification

Author J. Smithe Project IICE Date 6/1/94 Revision 3
Rationale From Design To Design

Observation Action

List of observations made on design
configuration.

List of corresponding actions taken in
response to observations made on design
configuration.

Conclusions

Advancement in technology, manufacturing methods, and materials has brought about the
emergence of products whose expected usable lifetimes extend over decades and even
centuries. Information systems have also evolved from stand alone application-oriented
systems with relatively short lifetimes and limited scope toward large scale, distributed
systems which must service their users over extended periods of time. Not unlike traditional
products, maintenance of information systems whose expected lifetimes may extend over
many career periods required explicit capture and storage of the rationale used in their design.

When explicitly captured, design rationale typically exists in the form of unstructured textual
comments. In addition to making it difficult to find relevant information on demand, lack of

78

a structured method for organizing and providing completeness criteria for design rationale
capture makes it unlikely that important information will be documented.

IDEF6 is designed to capture WHY a design is the way it is, or WHY it is not manifested in
some other form, together with HOW the final design configuration was reached. That is,
IDEF6 captures WHY, WHY NOT, and HOW a design arrived at its final configuration
together with the time-ordered sequence of steps used in the realization of the design. IDEF6
is intended to be a method with the representational capability to capture information system
design rationale and associate that rationale with the design models and documentation for
the end system. Thus, IDEF6 attempts to capture the logic underlying the decisions
contributing to, or resulting in, the final design. The explicit capture of design rationale
serves to help avoid repeating past mistakes, provides a direct means for determining the
impact of proposed design changes, forces the explicit statement of goals and assumptions,
and aids in the communication of final system specifications. Explicit capture of the
motivations for why a designer selected or adopted a particular design strategy or system
feature for enterprise level information systems is essential to the maintenance of that system
over its life-cycle.

Additional work is still needed, however, to realize a fully mature IDEF6 method. The
developments achieved to date provide the foundation for future endeavors both to refine and
mature the IDEF6 method and to leverage the products of IDEF6 application.

IDEF6 Bibliography

[Dyer 83] Dyer, M. (1983). In-depth Understanding, A Computer Model of Integrated
Processing for Narrative Comprehension. Cambridge, MA: MIT Press.

[Friel 88] Friel, P. G. (1988). Modeling Design Reasoning in Automotive Engineering.
Unpublished doctoral dissertation, Texas A&M University, College Station, TX.

[Goel & Pirolli 89] Goel, V., & Pirolli, P. (1989). Motivating the Notion of Generic
Design with Information Processing Theory: The Design Problem Space. AI Magazine,
10(1).

[Hobbs 86] Hobbs, J. (1986). On the Coherence and Structure of Discourse. In L.
Polanyi (Ed.), The Structure of Discourse. Norwood, NJ: Ablex Publishing Corporation.

[Kuipers 84] Kuipers, B. (1984). Commonsense Reasoning About Causality: Deriving
Behavior from Structure. Artificial Intelligence, 24, 169-123.

[Laughton 85] Laughton, J. (1985). Qualitative Reasoning in Mechanical Design.
Technical Report # XXXX, Department of Computer Science, University of Texas, Austin,
TX, 1985.

[Mayer 89] Mayer, R. J., Keen, A. A., & Su, C.J. (1989). Design Knowledge
Management System. SBIR Phase I Final Report.

79

[Ramey 83] Ramey, T. L. (1983). Guidebook to Systems Development. Internal
Research Report, Hughes AirCraft Co., El Segundo, CA.

[Wilensky 83] Wilensky, R. (1983). Planning and Understanding, A Computational
Approach to Human Reasoning. Reading, MA: Addison-Wesley.

81

TOWARD A NETWORK DESIGN METHOD (IDEF14)

Introduction

This report provides an overview of the research conducted toward developing the
IDEF14 Network Design Method, a method targeted at modeling and designing computer
and communication networks.

IDEF14 can be used to model existing (AS-IS) computer networks or envisioned (TO-
BE) computer networks. It helps the network designer play WHAT-IF games with network
designs and to document design rationale. The fundamental goals of the IDEF14 method
research project have developed from a perceived need for good network designs that can be
implemented quickly and accurately.

What is Network Design?

Digital computer networks provide the technology for the transportation of information
across geographical areas. Today, computer networks have permeated industry, government,
and education, and have created new communities in which people from geographically
diverse regions interact frequently. Computer networks have started the information
revolution of this century.

In an enterprise, the role of computer networks cannot be overstated. The computer
network links ‘islands of information,’ and allows information to be readily accessible at
different points of the enterprise’s presence. Computer networks are part and parcel of the
information infrastructure of an enterprise. They form the enabling technology for new
paradigms of enterprise computing such as client-server, workflow, information
warehousing, and electronic commerce. As enterprise information and its integration become
more important to a modern enterprise, its computer network must support the quality,
accuracy, effectiveness, and timeliness of the distribution of the information.

Like any other component of an enterprise, the computer network undergoes continuous
changes. These changes are brought about by two broad factors.

1. The requirements of the services that are supported by computer networks change.

2. Rapid progress in network technologies allow for more efficient, more reliable,
and cheaper solutions for networking requirements. This, in turn, has led to the
availability of new communication services.

An optimal solution to a network design problem for an enterprise is governed by the
following objectives [Minoli 93a]:

1. Minimize the cost (i.e., build the cheapest network possible).

2. Maximize the cost-performance ratio (maximize Return on Investment).

82

3. Maximize the Quality of Service (QOS). For example, lower the turnaround time
for a network service.

4. Minimize risk of loss (maximize reliability).

5. Maximize the enterprise’s profits (e.g., reach new markets through national and
global networking).

6. Maximize the growth opportunity (i.e., the flexibility) of the network.

7. Maximize the prestige of the firm.

8. Maximize work force productivity.

The above objectives are not orthogonal to each other. However, a well designed
network must support most of the objectives. Also, different enterprises place a different
importance on each objective. For example, maximizing the reliability is a key objective in
the design of a military network.

The following are the inputs or constraints to a network design process:

1. Locations of demands for services.

2. Functionality or services to be considered.

3. Choice of network architecture; this includes service availability for a specified
area.

4. Cost and tariff information for network components and services.

There is a need for a formal method for capturing the above inputs in order to carry out
network design. The method must support both the creation of alternative designs and the
ability to obtain various figures of merit of the design.

What is IDEF14?

IDEF14 is a method that supports the design of computer networks by allowing the
designer to capture requirements, specify network components, capture the existing network
configuration, and perform analyses on the design. It also provides support for managerial
decision-making and engineering economy. Finally, IDEF14 provides the ability to represent
and store design rationale of network designs.

In Zachman’s pioneering work on information systems architecture [Zachman 87], he
states that the network model is an independent, yet complementary, perspective in the
Framework for Information Systems Architecture. A network can be modeled at different
levels of abstraction. These levels of abstraction correspond to the rows of the Framework.

83

Motivation for a Network Design Method

Most enterprises have a network which is enhanced and modified over time. Enterprises
rarely replace their entire computer networks; more often, an existing network is enhanced, or
part of the network is replaced. Hence, it is important to capture the ‘AS-IS’ computer
network. This involves the ability to represent the existing layout of the network and the
specifications of existing network components.

To support the TO-BE network, the method must have the capability of representing
service requirements. It must also be able to represent the different technologies available for
each component or communication service of a network. This includes representing the
technical specifications that are required to obtain the analyses of the overall design. This
also demands representation of the costs and tariffs of the component or communication
service. IDEF14 addresses the following problems and needs associated with network
design.

Layout Specification, Decomposition, and Topology of a Network

A network can be modeled at any level of detail. At the coarsest level of detail, a network
is simply a single node. That node can then be decomposed according to a level of detail, say
according to geographical distribution across cities. Each node of the detail can be further
decomposed until one reaches a point where further decomposition yields nothing useful.

Computer networks are generally classified as Local Area Networks (LANs),
Metropolitan Area Networks (MANs), and Wide Area Networks (WANs).

IDEF14 must be able to represent the topology of the network at various levels of
decomposition. For example, IDEF14 must be able to represent the topology of the network
of an enterprise that is geographically distributed. At the same time, it must represent the
part of the network within a city, building, even a room.

IDEF14 must be able to represent both regular and irregular topologies at any level of
decomposition. Regular topologies are usually used in LANs and MANs; these include star,
bus, and ring topologies. A non-regular topology is constructed by using many point-to-point
links to join the nodes of the network.

Workload and Quality of Service Specification

The workload represents the characteristics of the burden contributed by a request center
on the network. Quality of Service (QOS) represents the minimum requirements of a request
center. Examples of QOS are as follows:

1. Average response time must be not more than 2 seconds.

2. End-to-end blocking probability must be not more than 0.005.

84

Behavior of Network Elements

These are the qualitative characteristics of a network component. The following are
examples of behaviors of a network element.

1. Routing traffic on alternate routes.

2. Queuing disciplines at various nodes.

3. Access protocols for multiple-access channels.

Characteristics of Network Elements

Examples of quantitative characteristics of a network component include:

1. Failure rate of a bridge.

2. Maximum bandwidth of a bus or a point-to-point link.

3. Number of ports in a hub or bridge.

Cost and Tariffs

The IDEF14 method must be able to represent cost information, including fixed and
variable cost of each component of the network. Since an enterprise network is a combination
of private elements and public (switched) services, the tariffs of potential services must also
be represented.

Languages for IDEF14

Computer networks traditionally have been modeled as graphs. Most aspects of computer
networks related to topology and reliability possess a graph theoretic basis. While it is clear
that the network design methods have a graphical language, there is a need for representing
and manipulating constraints that exist in computer networks. IDEF14 must address this
issue.

IDEF14 Products

The product of an IDEF14 application is a network design expressed as a configuration of
network components and their specification (protocols, bandwidth, etc.), along with other
models of the design (i.e., queuing model, reliability model, cost model) and a design
rationale document of the design.

Users and Key Beneficiaries of IDEF14

There are several types of individuals who will be involved with the IDEF14 method.
These classes are listed below:

85

1. Managers are ultimately responsible for sanctioning the changes to the network.
The method will help managers understand the requirements, and evaluate alternative
solutions and their estimated performances and costs. Also, the design rationale
component of IDEF14 method will help managers understand the rationale behind a
recommended network design.

2. Modelers are responsible for generating the IDEF14 AS-IS computer model of the
enterprise. Modelers are generally individuals of the network management division of
the enterprise. Modelers are experts in the use of the IDEF14 method, and are
responsible for generating the necessary models and for performing existing network
analyses.

3. Designers are responsible for identifying and evaluating solution alternatives for
the design of the new computer network. They are members of the development team
who create a plan for implementing the new computer network. Network designers
are experts in the use of the IDEF14 method. They must analyze requirements,
develop alternate solutions, evaluate alternate solutions in terms of performance and
cost, document design rationale, and finally select/recommend the most appropriate
design for implementation.

4. Reviewers are responsible for examining the AS-IS network model generated by
the modeler. This function is designed to help modelers maintain consistency
between the existing network and the model of the network. The reviewers are also
responsible for validating new designs.

5. Implementors are responsible for taking the IDEF14 network design and
implementing it. These are members of the design team who are involved in the
physical realization of the system from the abstract descriptions and models. They
must prepare the design for implementation, participate in the purchase and
installation of the various components and services, test the new network, and verify
that the requirements have been met.

Benefits

IDEF14 involved the creation and generation of the models shown in Figure 25. The
Network Configuration model is a graphical model that captures the topology, configuration,
specification, and attributes of network components. Using this model, the Queuing,
Reliability, and Cost models are generated. These three models are analyzed and used as
input to the decision making process of network selection.

86

Network
Configuration
M odel

Queueing M odel Reliability M odel Cost M odel

Decision Support

Figure 25.
Models Generated Using the IDEF14 Method

The following are some benefits that IDEF14 provides for modeling and designing
computer networks.

1. The IDEF14 method helps a modeler build useful network configuration models of
AS-IS networks. The network configuration model also yields other models for
analyzing the AS-IS network.

2. The method provides support for obtaining Queuing, Reliability, and Cost models
of alternative network designs (see Figure 25). Analyses performed on these models
are used in the decision support activity of the IDEF14 method. The IDEF14 method
will help those who possess a fairly strong understanding of computer and
communication networks make good network designs. Thus, network engineers who
are not necessarily expert network designers can design networks using a tool based
on the IDEF14 method.

Summary of Developments and Research Findings

IDEF14 Basic Concepts

A complete understanding of IDEF14’s basic concepts is needed to effectively apply the
procedural and language components of the prototype method. Fourteen basic concepts serve
as the foundation of the IDEF14 method:

87

Node Subnetwork

Link Topology

Workload Protocol

Queuing Theory Reliability Analysis

Quality of Service Cost Analysis

Decision Support Design Rationale

Network Constraints Component Libraries

The purpose of this section is to describe these concepts and provide examples of each.

Node

A node in the IDEF14 method represents a piece of hardware that is part of the network.
Examples of nodes include personal computers, file servers, workstations, mainframes,
terminals, routers, bridges, repeaters, gateways, switches, Very Small Aperture Terminals
(VSATs), or any other hardware unit that is connected to the network. All node types share
common attributes. For example, a name must be allocated to each node, irrespective of its
node type. However, there are attributes that differ among node types. For example, a switch
has number of ports, as would a parameter.

Subnetwork

A network can be decomposed into one or more subnetworks. There are two types of
subnetworks that must be modeled by IDEF14:

1. Networks or subnetworks of the enterprise that have decompositions. For
example, a global enterprise may have networks in each of the countries where they
have a business presence. At the highest level of modeling, the networks
corresponding to each country form a subnetwork.

2. Networks or parts of networks that are public or are part of a service (e.g., the
Internet and value-added networks). These are subnetworks that the modeler may not
want to model in detail; hence, this subnetwork is not decomposed further. Since
there is ultimately a connection between nodes of the enterprise network and a node
of the subnetwork, the subnetwork node making the connection is represented in
IDEF14.

88

Topology

Most modern LANs and MANs have a fixed topology around which the computers are
configured. The topology concept in IDEF14 is intended to represent standard topologies for
LANs and MANs. Examples of topologies include star, bus, ring, dual bus, dual ring, etc.
Attributes of topology are the access medium (whether twisted pair or coaxial cable or fiber
optic cable) and the maximum bandwidth of the medium.

Link

In IDEF14, a link represents a point-to-point communication medium over which data
and voice transmission takes place. Examples of links are twisted pair, wireless link, satellite
channel, T1 and fractional T1 lines, coaxial cable, fiber optic line etc. As an example,
common attributes of all links are maximum bandwidth.

Protocol

This concept corresponds to the Link Level (Level 2 of the OSI Reference model)
protocol. This is a is a feature of the link or the LAN. Examples of protocol include Serial
Link Level Protocol (SLIP) and Point to Point Protocol (PPP) for links. Examples of
protocols for LANs include the IEEE 802.3 CSMA/CD protocol and the IEEE 802.4 Token
Bus protocol both of which run on a bus topology. In the case of a point-to-point link, both
the nodes adjacent on the link must run the protocol of the link. In the case of a LAN, all the
nodes connected to the LAN must run the protocol of the LAN.

Workload

For data networks, the workload attributes typically are the number of packets generated
or transmitted per second and the arrival distribution. Workload can be further decomposed
into classes. As an example, the IP packets generated by a computer can be further classified
as TCP, UDP, IGMP, etc. As another example, traffic generated by a computer on a Fiber
Distributed Data Interface (FDDI) LAN must be classified as synchronous or asynchronous.
The workload attributes (arrival rate and distribution) must be specified for each of the
classes that comprise the entire workload. Because workload varies during the course of a
day, it is necessary to specify workload as a function of the time of day. This can be specified
as the average workload during the first hour (12:00 a. m. - 1:00 a. m.), the second hour, etc.
Often, workload must be specified within a time interval. In this case, the interval of time
becomes part of the workload specification.

Queuing Model

Queuing theory [Klein 75] is used to analyze the performance of computer networks.
Typical performance measures are:

1. End-to-end delay. This measure, in turn, is used to obtain the average turnaround
time of a service request.

89

2. End-to-end throughput.

3. Blocking. This is a measure of the unavailability of a required resource or service.

4. Data Loss. This is especially true of broadband networks. Examples of data loss
include cell loss in ATM networks, frame loss in frame relay, and protocol data units
(PDUs) loss in Switched Multimegabit Data Service (SMDS) networks.

Analysis obtained by queuing analysis helps in selecting the most feasible design among
various alternatives. Analysis of queuing models for computer and communication networks
is well founded [Klein 76, Schwartz 88]. Queuing theory is used to capture the qualitative
and quantitative aspects of each component of the network that are needed in the queuing
analyses. This includes the following:

1. Specification of the different classes of packets. For example, in an ATM
network, there are four different classes of services. A cell arriving at an ATM switch
belongs to one of the four classes.

2. For each service class, the packet/cell/frame arrival rate. This is part of the
workload characterization of the nodes that generate traffic.

3. For each service class, the packet/cell/frame arrival distribution. This is part of
the workload characterization of the nodes that generate traffic.

4. The queuing discipline (prioritized, first come—first served, etc.) at each queuing
center.

5. The service distribution at each queuing center of the network.

6. Maximum length of each queue. This is related to the maximum buffer space and
the average length of the packets.

Reliability Model

Reliability analysis is done on a network to analyze the performance of computer
networks. Typical performance measures are [Colb 87]:

1. 2-terminal reliability. This is the probability that a path exists between any two
specified nodes of a network.

2. All terminal reliability. This is the probability that for every pair of nodes in the
network, a path exists between the pair.

3. k-terminal reliability. This is the probability that for k>2 specified nodes of the
network, a path exists between any two of the k specified nodes.

90

In general, the reliability of a network is enhanced by using superior components and by
having redundancy of components along the critical paths of the network. Because both of
these solutions involve a higher cost, reliability analysis is necessary in the decision support
of the design selection. The scope of IDEF14 method in supporting the reliability analysis of
a network is to capture qualitative and quantitative attributes of various components of the
network that are needed for the reliability analysis. Examples of these attributes are
probability of failure and mean time between failure (MTBF) for each component of the
network.

All three types of reliability measures mentioned above are hard problems for general
graphs. Algorithms relating to exact and approximate reliability analysis can be found in
[Colb 87].

Quality of Service

IDEF14 provides support for specifying the quality of service (QOS). The QOS can be
specifiable at component, subnetwork or the entire network level. It can be related to
performance (e. g., end-to-end-delay must not exceed 10 seconds) or to reliability (2-terminal
reliability between point A and point B must be at least 0.995).

Cost Model

The cost model is used as part of the decision making process for network design
selection. The scope of the IDEF14 method in supporting the cost analysis of a network is to
capture qualitative and quantitative attributes of various components of the network that are
needed for the cost model. Examples of these include fixed costs, cost of maintenance,
expected life of equipment, and so forth. Cost models for economic decision-making can be
found in [Riggs 82, Newnan 80].

Decision Support

IDEF14 is intended to allow network designers to arrive at different network design
alternatives, each with different characteristics. There is a need to support the process of
selecting a design for implementation. Decision support must include at least a mechanism
to display the results of the analysis performed on the Queuing, Reliability, and Cost models
of each design, and the rationale behind each design.

The designer must be able to assign weights to the Performance, Reliability, and Cost
measures in order to select a design for implementation.

Design Rationale

The design rationale component of the IDEF14 method facilitates the acquisition,
representation, and manipulation of the design rationale used to develop IDEF14 designs.
Rationale is the reason, justification, or motivation that moved the designer to select a

91

particular design feature. Simply put, design rationale focuses on why the design is the way it
is, from the designer’s point of view.

The scope of the rationale component must cover all phases of the IDEF14 development
process, from initial conceptualization through detailed design and evaluation activities, to
final selection of a design for implementation.

Network Constraints

A network design must obey constraints that exists in computer networks. As an
example, a frame relay service provider at a location may provide services only on T1 links
(and not on fiber optic). Other examples include the fact that both adjacent nodes on a link
must run the protocol of the link.

Network constraints must not be confused with design constraints. Design constraints are
basically the constraints that the network design must satisfy. Design constraints are
expressed in terms of quality of services, maximum costs, and so forth.

Component Libraries

With computer and communication technologies advancing so rapidly, there is a need for
the IDEF14 method to accommodate new technologies. It is important to have libraries for
various concepts of the IDEF14 method. There will be a library for each concept. Each
concept library will contain instances of the concept that are well understood and prevalent.
In addition, relevant technical information pertaining to an instance of a concept will also be
stored in the library. As an example, a router will be an instance of the node library.
Technical specification of routers such as rejection and pass-through rate are part of the
attribute list of the node type router.

Users can add new instances to each concept library. For example, a user can add a new
topology to the topology library, should a new LAN have a topology that is not part of the
topology library.

IDEF14 Procedure Developments

This section presents a prototype procedure for network design, validation, and
refinement.

There are three scenarios of use where the IDEF14 network design method is useful.
They are:

1. Upgrading an existing enterprise network (most general case).

2. Modeling the AS-IS network of the enterprise.

3. Designing a network from scratch.

92

In this section, we present a prototype procedure for network design, validation, and
refinement. We focus on the most general case (i.e., upgrading an existing enterprise
network). For this case, the general IDEF14 procedure comprises the following three broad
tasks.

1. Capture the existing network.

2. Capturing the workload of the TO-BE network.

3. Designing the TO-BE network.

The second and the third scenarios are subsets of the first. For the second scenario of use,
modeling the AS-IS network, only the first broad task is required. On the other hand, the
third scenario of use requires that the second and third broad tasks be performed.

The procedure presented in this section assumes a large network design effort involving a
team approach. Projects that are narrower in scope may not require all the activities
described below. As with all methods, the application procedure depends largely on the
purpose for which the method is being used.

Network design is an evolutionary process through which existing networks are modeled,
requirements are gathered, and designs are created, evaluated, validated, documented and
refined. In general, when IDEF14 is used to design networks, the following activities or steps
are applied recursively:

1. Collect - Acquire knowledge for existing network components, for requirements,
and for existing technologies.

2. Classify - Individuate network concepts (meta types) such as node types, link
types, topology types, as well as elements of types.

3. Hypothesize - Postulate candidate network designs from the data and evidence
acquired.

4. Validate - Ensure that AS-IS network model is correct and the network
constraints in designs have been met.

5. Analyze - Generate queuing, reliability, and cost models of the network design,
validate the models, and analyze the models.

5. Challenge - Involve domain experts in testing the conclusions of designers as to
the validity of their conclusions.

6. Refine - Filter, improve, adjust, and add detail to the network design.

These steps are embodied in the prototype IDEF14 procedure presented later in this
chapter. The IDEF14 activities should be considered “modes of thought” rather than

93

sequential steps. Designers should not expect to apply these activities in a strictly sequential
manner. Nor should they expect that organizing activities by project phases necessarily
defines when those activities start or stop. Rather, phases reflect which modes predominate
during a given interval of time. Thus, modes of activity may be organized into phases to
assist with management of the project. The following section describes the modes of activity
constituting the procedure for IDEF14, thus establishing a basic framework for the network
design effort.

Mode Zero: Define the Project

The network design team must establish the purpose and scope of the network design
effort as early as possible in the project. The purpose statement provides a “completion
criteria” for the network design effort. The purpose is usually established by (1) prioritized
objective statements for the effort, (2) statements of needs that the network design effort must
satisfy, and (3) questions that the client wants answered. The scope of the project is
established by a set of statements that bound the area addressed by the project. For example,
the network design may involve upgrading a subnetwork of the enterprise network without
modifying the rest of the network. Thus, scope statements identify the specifically targeted
areas of network design activity and identify those that are explicitly ignored.

The purpose and scope can rarely be determined completely in advance. The client often
revises his list of questions as the data starts being compiled. The area that an analyst thinks
will lead to the answer often leads in other areas that were not originally considered. The
purpose and scope generally evolve during the initial part of the project. The purpose and
scope of an IDEF14 effort are captured on an IDEF14 Project Summary Form similar to the
one shown in Figure 26.

94

IDEF14 Project Summary Form
Project Title:

Purpose:

Major in-scope subnetworks: Major out-of-scope subnetworks:

Project Leader:

Figure 26.
IDEF14 Description Summary Form

Define the Purpose

Defining the purpose is an important initial step in the network design effort. If the
purpose is taken for granted or ignored, project personnel are likely to find their efforts
ignored by the client. Without a purpose statement, the only completion criteria are budget
and time. Conversely, with a regularly reviewed and clearly defined purpose, the project can
often be completed under-budget. Defining the purpose involves listing the stated objectives
of the client and the specific source(s) of each (e.g., person, project, or organization), defining
the information goals of the project in terms of how the network design will be used, and
establishing priorities among the stated objectives and information goals of the effort. The
process of developing a purpose statement can be facilitated by involving the client in
answering questions like the following:

1. What problematic symptoms, concerns, or opportunities are of the greatest interest
to the client?

2. Who will be the beneficiaries of the newly implemented network?

3. What questions does the client need answered?

4. What issues are behind the need for network design?

5. What decisions are involved in the selection of a network design?

95

Establish the Scope

Once the purpose of the effort has been characterized, it is possible to define the scope of
the project. Defining the scope begins with delineating the subnetworks of the enterprise on
which the network design effort is to be performed and documenting them in a set of scope
statements. Ideally, scope definition should identify only those areas that are relevant to the
needs of the client. However, in a network, changes to one subnetwork often affect other
subnetworks of the enterprise network. Hence, out-of-scope subnetworks must also be
defined.

Mode One: Develop Team and Organize for Data Collection

Once the initial project purpose and context have been determined, it is necessary to
organize for data collection. There are three activities in this phase of network design:
solidifying the makeup of the project team, assigning roles to team members, and assigning
scenario development responsibilities to team members.

The following roles are normally assumed by personnel involved in a network design
effort.

1. Designer: The IDEF14 expert who will be the primary developer of the IDEF14
network design models.

2. Client: The person or organization requesting the network design effort
development.

3. Domain expert: The knowledge source person in the network department of the
client.

4. Primary contact: The individual who acts as the interface between the analyst and
the domain expert.

5. Project leader: The person ultimately responsible for the entire network design
effort.

6. Reviewers: Persons knowledgeable in the domain and/or the IDEF14 method
responsible for reviewing and approving draft models and documents. Reviewers
authorized to make written critiques of IDEF14 designs are commentators. The
remainder are readers. Both team members and domain experts can be reviewers.

7. Librarian: A person assigned the responsibility of maintaining source material
logs and files of documents, making copies, distributing kits, and keeping records.

8. Team members: All personnel involved with the IDEF14 network design effort.

For large projects, the role of project librarian is essential. In smaller efforts, that role
may be assumed by the analyst. In establishing the librarian function, the project leader

96

assigns an individual to be responsible for collecting, cataloging, controlling, and distributing
source material, kits, glossaries, files, and so forth throughout the project. Additionally, the
librarian is responsible for assembling reference models and materials from external sources
that can be used to accelerate team efforts. The librarian may also maintain a glossary of
terms as a reference to ensure that analysts understand terminology. Whether maintained by
the librarian, or informally shared among analysts, the glossary of terms will grow and
undergo incremental refinement throughout the project.

A pivotal task in organizing the data collection effort is identifying the key sources of
domain knowledge and information. Working with the primary contact, the project leader or
analyst compiles a list of experts to be interviewed. In compiling this list, it is helpful to
obtain background information about each expert. This includes information about the
responsibilities, current assignments, and other areas within or related to the domain in which
the expert has experience. The name, location, and telephone number of the experts should
also be recorded.

Throughout the data collection effort, other valuable sources of information will be
identified. Some of these include operating instructions, procedure manuals, employee
handbooks, regulations, policy manuals, project files, reusable IDEF models, and models
derived with other methods and techniques. These items often constitute evidence of
constraints or provide references to evidence in the domain. As an example, network failure
reports help establish requirements related to the reliability of the TO-BE network.

In addition to organizing the structure of the team, the project leader also organizes the
activities of the team. Organizing network design activity may begin by casting the general
IDEF14 procedure into a method application guide tailored to the specific needs of the
project. A method application guide outlines a project-specific application of the IDEF14
procedure and is used by the analysts on the network design team. The method application
guide includes standard outlines for interviewing domain experts, method and tool interface
specifications, project library use procedures, and a standard glossary of terms. This guide
may be accompanied by a project plan. A typical project plan will delineate phases of effort
with clearly established tasks and milestones, intermediate and final deliverables, individual
team member assignments, informal and formal reporting structures, and so forth.

Mode Two: Collect and Analyze Information

With the team organized and the approach for network design outlined, the team begins
collecting evidence. By direct interaction with personnel of the network and EDP
departments, network design team members document observations and collect information
relating to the existing networks and requirements of the new network; this information will
later be analyzed and used as the basis for arriving at network design.

Prepare for Interviews

The most valuable mechanism of evidence collection is the interview. Interviews with
corporate communication/network personnel provide an opportunity to collect information

97

relating to the configuration and specification of the existing network and problems relating
to existing network. Interviews with network personnel and network users provide an
opportunity to collect requirements of new services and quality of services (QOS) for the TO-
BE network.

While the specific interviewing approach and format are likely to vary across projects,
some guidelines are recommended. Before the interview, the analyst should prepare a
tentative agenda and some specific questions. Analysts are encouraged to prepare a brief
outline of: the purpose of the interview, the topics to be covered, the types of information
being sought, the authority for requesting the interview, and probing questions that can be
used to motivate discussion. On large projects, project leaders may wish to include more
formalized interview preparation guidelines and standards in a method application guide,
including standard interview planning sheets, question templates, glossaries of terms, and so
forth.

The ultimate success of the interview depends largely on the preparation made by the
analyst. A number of activities contribute to successful preparation:

1. Schedule the interview and make necessary logistics preparations.

2. Establish the goal(s) of the interview.

3. Prepare candidate questions.

4. Anticipate the probable questions and concerns of the person being interviewed
and be prepared to resolve concerns.

Once a list of experts to be interviewed has been compiled, an interview schedule can be
developed. Interviews are normally scheduled with domain experts through the primary
contact. The analyst should make sure that the scheduled time and duration of the interview
is coordinated with the person being interviewed and his or her supervisor. Additional
logistics considerations are also important to the success of the interview, such as reserving a
suitable location to conduct the interview and arranging for the necessary supplies.

The goal(s) of the interview should also be established up front. In establishing the
interview goals, analysts establish why the interview is being scheduled and what information
is needed from the domain expert. Preparing a succinct goal statement is often helpful to
provide a general direction for the interview line of questioning.

Once the goal(s) of the interview has been established, candidate questions can be
formulated. Candidate questions should be written down and organized into a logical
sequence. Candidate questions should be clear, use words and phrases appropriate to the
background of the person being interviewed, and invite rather than lead answers. In
preparing candidate questions, it is often useful to explore the following broad topics:

1. What are the configuration and specification of the existing network?

98

2. What are the problems associated with the existing network?

3. What are the pressing problems that the person being interviewed would like
eliminated or minimized in the new network design?

4. What are additional features that the person being interviewed would like in the
new network design?

An element of preparation often overlooked by inexperienced analysts is the need to
explain why the domain experts are being interviewed, what will be done with the
information they provide, and what they can expect in return. Each interview should
establish a mutual understanding of these items before attempting to satisfy the information
needs of the analyst.

Interview Domain Experts

Interviews may be conducted throughout the project with one or more of the following
goals in mind:

1. To collect additional information.

2. To confirm and/or clarify previously collected information.

3. To validate IDEF14 descriptions with the domain expert.

4. To obtain leads for acquiring additional information.

Collect and Catalog Valuable Sources of Information

When appropriate, designers should request copies of existing documents, operating
instructions, manuals, network models, designs that are part of the existing network, network
failure reports, logs of problems, etc. These sources could be either in electronic or paper
form. If information sources are in electronic form, the design team must obtain (read)
permission to access the information.

Analyze Collected Data

Following data collection, interview notes are compiled and the initial findings are
cataloged into lists called pools. Node and Link and Topology are meta network component
types because they contain different network component/topology types, with each type
having distinct attributes. Pools will exist for each type. The following two processes are
enacted iteratively.

1. Create node (computer, terminal, bridge, switch, etc.), link (twisted pair, coaxial
cable, microwave link, etc.), and topology (bus, ring, dual bus, etc.) types.

99

2. Populate the pools corresponding to the existing types with the data collected. In
some cases (especially for nodes and links) the populated pools will include product
data and specifications of commercially installed equipment and commercially
available services.

Mode Three: Model AS-IS Network and Workload Characterization

At this point, a pool of elements that are needed for modeling the AS-IS network has
already been created. The designer should use the graphical language to model the AS-IS
network, using elements from the pools. Also, the workload characterization of each service
center must be modeled.

The model of the existing network must be validated. The validation should first be done
by the team members and then by the design experts. Once the AS-IS network model has
been validated, the elements and their attributes must be marked in order to distinguish them
from new elements that will be in the TO-BE models.

Mode Four: Update Pools with Existing Technology

The network designers enhance the pools with components and services that will
potentially be used in the TO-BE designs. Sources for updating the pools are diverse.
Primarily, new components and services that are added to the pools are reflections of the
experiences and expertise of the design team. In general, information relating to new
components comes from product catalogs, magazines related to network and information
systems, relevant news groups, and by word of mouth. Information relating to new and
unused services comes from local and long-distance telephone carriers and from data
networks that service various locations in which the enterprise has a presence.

It is necessary to store as much information (in terms of attributes of pool elements) about
technologies that are being used or have potential for the enterprise network. This is
necessary to generate the queuing, reliability, and cost models of the various designs.

Mode Five: Design the TO-BE Network

This mode includes the steps taken to arrive at different network designs and the selection
of the most appropriate design. The first step in this mode is the creation of a new design or
the modification of an existing design. Based on the outcome of some later steps, it may be
necessary to go back to the first step. The processes involved in this mode are shown in
Figure 27.

100

Generate
Queuing,

Reliability
Cost Models

2

Create or
Modify
Design

1

Validate
Queuing,

Reliability
Cost Models

3

Goto /
Create or
Modify
Design

Analyze
Design

4

X

Choose
Design and

Receive
Approval
6

Goto /
Create or
Modify
Design

XX

Prepare for
Implemen-

tation

7

J3

J1

J2

Document
Design

Rationale

5

Goto /
Create or
Modify
Design

Figure 27.
Process Description of Mode Five of the IDEF14 Procedure

Create First Cut Design or Modify Existing Design

The designers use their expertise to create a first cut design, or modify an existing design.
As part of this step, new components or services are added from the pools or are used to
replace existing components or services. It is necessary that the additions or changes meet
the network constraints. Also, all attributes of the components/services in the design must be
specified in order to arrive at proper Queuing, Reliability, and Cost models.

Generate Queuing, Reliability, and Cost Models

The Queuing, Reliability, and Cost models must be generated from the network design
under consideration.

Validate Network Design and Queuing, Reliability, and Cost Models

As a first step to validation, the designers must ensure that network constraints have been
met by the design. The Queuing, Reliability, and Cost models that were generated must then
be validated. An invalid Queuing, Reliability, or Cost model could result from incomplete or

101

missing attributes of one or more component/services that are part of the design. A network
design yielding an invalid queuing, reliability, or cost model needs to be modified.

Analyze Designs and Verify Analysis

The Queuing, Reliability, and Cost models must be analyzed to obtain the performance,
reliability, and cost characteristics of the design. The analysis must be verified by members
of the design team who are not the analyzers of the design. In the case when the analysis
indicates that the design is a potential design, the design team must proceed with
documenting the rationale behind freezing the design. If the analysis does not satisfy most of
the design constraints, then the design needs to be scrapped or modified.

Document Design Rationale

It is necessary to document the design so it can be referenced, particularly by members of
the design team and by implementors.

Select Design

It is assumed that a number of alternative designs will be available for selection. The
selection is a non-trivial task. This is because the network must satisfy various design
constraints pertaining to performance, reliability, and cost. If it is found that none of the
network designs are suitable for implementation, then a new design needs to be created. This
could result in either starting a design that is radically different from the others or could result
in a modification of one or more existing designs.

Get Approval for Implementation

A selected design has to be approved by the manager of the financial department of the
enterprise. In making a case for the approval of the design, the project manager has to
present the design, the results of its analysis, and the rationale behind the design. If it is
found that none of the network designs is suitable for implementation, then a new design
needs to be created.

Prepare for Implementation

Once a design has been selected and approved, it must be prepared for implementation.
This step involves describing the design and its rationale to the implementors of the design.

Mode Six: Implement the Design

Once a network design is selected and approved, it has to be implemented. Although the
actual implementation of the network design is beyond the scope of the IDEF14 procedure,
new problems or requirements not previously detected may occur during implementation. In
such cases, the design must be modified to account for the new problems or requirements.

102

IDEF14 Language Design Developments

Computer networks traditionally have been represented as graphs, where a node of the
graph represents a piece of hardware such as a computer, and edges of the graph represent
communication links. It is necessary that IDEF14 have a graphical language, based on graph
layout. In this section, we describe the graphical language of IDEF14, and justify a need for a
textual language.

Graphical Language Design Developments

In order to distinguish among different types of nodes, each type of node is represented by
a different artifact. Standard node types must have predefined icons for representation. In
the case of user-defined type, the user must specify a different icon to represent the new type.
The graphical representation must allow for annotating various attributes of the node close to
the node.

In IDEF14, a subnetwork is represented by a cloud. For subnetworks of the enterprise,
the corresponding cloud representation has a decomposition. For example, a global
enterprise may have networks in each of the countries in which it has a business presence.
The network of each country is represented by a cloud that has decompositions corresponding
to more detailed model of the subnetwork. In the case where networks or parts of networks
are public or are part of a service, the cloud is not decomposed further. Because there is
ultimately a connection between nodes of the enterprise network and a node of the ‘cloud,’
the node of the cloud is represented as a node artifact within the cloud.

In the case of links, each link type is represented by a different artifact. Like in the case
of new user-defined node types, the user must specify a different icon to represent a new link
type. Attributes of a link must be annotated on the diagram itself, close to the link.

Topologies are represented by figures that closely represent the physical topologies of the
network. For example, a ring topology is represented by an oval and a bus topology is
represented by a line segment.

Workload is represented by a circle. A workload generated by a node is drawn close to
the icon corresponding to that node.

An example of the graphical language used to model an enterprise network is shown in
Figure 28. The enterprise is located in two cities: Houston and New York. The Houston
location has a LAN called LAN_4 which is an Ethernet LAN. A computer called Egret has
its workload specified. The New York location has three LANs. LAN_1 is a 16 port, 10BT
Ethernet LAN with Simple Network Management Protocol (SNMP) capability. LAN_2 is a
Token Ring LAN connecting three computers. LAN_3 is a dual loop FDDI LAN that has
connections to both LAN_1 and LAN_2 via Router3 and Router4, respectively. The Houston
and New York subnetworks are connected by a Frame Relay service. The Houston
subnetwork connects to the Frame Relay cloud via Router1 and a 256 kilo-bits per second
(kbps) leased line, whereas the New York subnetwork connects to the Frame Relay cloud via

103

router Router2 and a full T1 leased line. At a coarser level of detail, the Houston and the
New York subnetworks could each be represented as a cloud.

Frame Relay

LAN_1
LAN_2

LAN_3 LAN_4

R

R

R R

AlphaBetaDelta

Lion

Egret

Heron Swan Gull

Bear Tiger
GoldSilver

Router1

Router2

Router3 Router4

Bronze

Peak: 5 Mbps
9-5: 100 Kbps
Daily: 40 kbps

256kbps

16 Port 10BT,
SNMP

T1

New York

Houston

Crane Pi

Puma

Figure 28.
Example of an Enterprise Network

Textual Language Design Developments

A graphical language is not expressive enough to represent network constraints. In
addition to network constraints, there is a need to express characteristics (of network
components) that are inherently mathematical in nature. For example, the average service
time for an ATM switch to route an ATM cell is likely to be a complex set of mathematical
equations. There is a need for a textual language to support this. We anticipate that the
IDEF14 textual language will be similar to the textual language of the IDEF5 Ontology
Capture method [KBSI 94].

Summary of Accomplishments

In this report, we have demonstrated the need for the IDEF14 design method. We
identified the various components that should (and should not) go into the IDEF14 method.
We outlined the broad steps and models that are part of a network design effort. We
provided the basic concepts that are needed for the IDEF14 method, developed the processes
involved in a network design effort, and provided insights into the languages that are required
to support the IDEF14 procedures.

104

Potential Areas for Future Work

A number of promising areas for additional work were identified during the development
of the IDEF14 method. Several of these are listed below, along with a brief description of the
benefits to be gained by pursuing further development along these lines.

1. Method refinement. A number of areas within the prototype method merit further
development and testing. Among these are expansions to the techniques supporting
the IDEF14 method procedure, further development of graphical language elements,
the development of a computational language of expression (elaboration language),
and so forth.

2. Research on the specific Queuing, Reliability, and Cost models that would best
reflect the figures of merit for a design. Specification of the attributes of network
components required to generate the models.

3. Mechanisms for generating the Queuing, Reliability, and Cost models from the
network design.

4. Mechanisms to perform the queuing, reliability, and cost analyses on the models
that are generated from a network design. Although the actual analyses are beyond
the scope of the IDEF14 method, it is useful to identify algorithms, techniques, and
best practices for carrying out such analyses.

5. Details on network design rational capture. The design rationale capture of the
IDEF4 method and the IDEF6 design rational capture method could be modified and
tailored for the IDEF14 method.

6. Details on decision support to be provided by the IDEF14 method for selection of
design for implementation.

7. Validation of the IDEF14 network design method. The method must be validated
by using it under various scenarios (modeling an AS-IS network, upgrading an
existing network, and designing a network from scratch). A wide range of test
situations covering these scenarios is recommended to maximize the robustness of the
method.

8. Tools to help a network designer use the IDEF14 method. The success of any
method depends heavily on automated tools. This has always been true and is likely
to continue to be so in the foreseeable future. Automated tools assist practitioners in
the application of a method, and provide a rapid and reliable means for sharing,
storing, and reusing information.

9. Libraries of network components. On-line libraries of network components made
available through the information superhighway would provide network designers
with a mechanism for updating the component pools with libraries that are updated

105

with state-of-the-art technologies. New alternatives to a network design problem
could be made possible through such libraries.

Conclusions

Effective network design requires a formal method that allows for the collection of data,
the creation and evaluation of multiple designs, and the selection of the final design. The
network design process includes the modeling of the AS-IS network. Capturing the current
and future workloads of the TO-BE network is an important step in the network design
process. For each alternative design, a thorough analysis must be performed, and design
rationale must be documented. The method must be versatile to incorporate use of state-of-
the-art and future technologies of computer and communication networks. The IDEF14
method was designed to assist in the network design process.

Considerable progress has been made toward developing the foundations of the IDEF14
Network Design Method. In its envisioned form, IDEF14 provides a systematic and reliable
approach for network designers to capture the AS-IS network, characterize workloads, create
multiple design alternatives and select the best design for implementation. The current
developments provide the foundation for future endeavors to refine and develop the IDEF14
method and effectively leverage the products of IDEF14 application.

IDEF14 Bibliography

[Colb 87] Colbourn, J. (1987). The Combinatorics of Network Reliability. The
International Series of Monographs in Computer Science. New York: Oxford University
Press.

[Klein 75] Kleinrock, L. (1975). Queuing Systems — Volume 1: Theory. New York:
John Wiley & Sons.

[Klein 76] Kleinrock, L. (1976). Queuing Systems — Volume 2: Computer
Applications. New York: John Wiley & Sons.

[KBSI 94] Knowledge Based Systems Inc. (1994). IDEF5 Method Report. Wright-
Patterson Air Force Base, OH: AL/HRGA.

[Mayer 87] Mayer, R. J., et al. (1987). Knowledge-based integrated information
systems development methodologies plan (Vol. 2) (DTIC-A195851).

[Mayer 92] Mayer, R. J., et al. (1992). The IDEF3 Process Description Capture Method
Report. Wright-Patterson Air Force Base, OH: AL/HRGA.

[Minoli 91] Minoli, D. (1991). Telecommunications Technology Handbook. Norwood,
MA: Artech House.

106

[Minoli 93a] Minoli, D. (1993). Broadband Network Analysis and Design. Norwood,
MA: Artech House.

[Minoli 93b] Minoli, D., & Keinath, R. (1993). Distributed Multimedia Through
Broadband Communication Services. Norwood, MA: Artech House.

[Minoli 93c] Minoli, D. (1993). 1st, 2nd, & Next Generation LANs. McGraw-Hill
Series on Computer Communications. New York: McGraw Hill, Inc.

[Newnan 80] Newnan, D. G. (1980). Engineering Economics Analysis. San Jose, CA:
Engineering Press, Inc.

[Riggs 82] Riggs, J. L. (1982). Engineering Economics. New York: McGraw-Hill, Inc.

[Schwartz 88] Schwartz, M. (1988). Telecommunication Networks: Protocols,
Modeling and Analysis. Addison-Wesley Publishing Company.

[Zachman 87] Zachman, J. (1987). A framework for information systems architecture,
IBM Systems Journal, 26(3), 276-292.

107

TOWARD A HUMAN-SYSTEM INTERACTION DESIGN METHOD
(IDEF8)

Introduction

This section provides an overview for the IDEF8 Human-System Interaction Design
Method. IDEF8 is a method for producing high-quality designs of the interactions that occur
between users and the systems they operate. Systems are characterized as a collection of
objects which perform functions to accomplish a particular goal. The system with which the
user interacts can be any system, not necessarily a computer program.

Human-system interactions are designed at three levels of specification within the IDEF8
method. The first level defines the philosophy of system operation and produces a set of
models and textual descriptions of overall system processes. The second level of design
specifies role-centered scenarios of system use. The third level of IDEF8 design is for
human-system design detailing. At this level of design, IDEF8 provides a library of
metaphors to help users and designers specify the desired behavior in terms of other objects
whose behavior is more familiar. Metaphors provide a model of abstract concepts in terms of
familiar, concrete objects and experiences. For example, a light switch metaphor might be
used to specify interactions involving two possible options. Among the products of this level
of design is a human-system interaction mock up with which to test user requirements,
formulate user interface strategies (e.g., selecting preferred input and feedback devices), and
so forth. Once validated, the products of IDEF8 application are used by system developers
(e.g., programmers) to build implementations.

Much of IDEF8’s language constructs are borrowed directly from the IDEF3 Process
Description Capture method because IDEF8 needs a mechanism to capture and organize
process information at multiple levels of abstraction and detail. Specialized language
extensions distinguish IDEF8 design models, which are prescriptive in nature, from IDEF3
descriptive representations.

This section covers the basic concepts and elements of the IDEF8 method. The
fundamental goals of IDEF8 come from the need to promote good design practice for human-
in-the-loop systems to realize higher quality implementations in less time and at a reasonable
cost. IDEF8 seeks to help users produce good human-system interaction designs and
consequently higher quality systems by facilitating user-focused data collection, enabling
direct user involvement in design activities, focusing efforts on early validation of designs
using mock-ups and prototypes, and promoting more productive iterations through the design
process.

What is Human-System Interaction Design?

User effect on the behavior of a system and system response to requests is the human-
system interaction element of any system (e.g., a software/hardware system). Human-System
Interaction Design (HSID) is the process of creating systems exhibiting interaction behavior

108

that makes the system effective, easy to use, and more comfortable for the user. Often, these
qualities are conflicting and hard to define. Most of us have experienced systems that have
poor interaction characteristics (e.g., poor responses, less than intuitive user interfaces). Even
systems that regarded as having very good user interface qualities have blemishes or illogical
actions the user community would like corrected. While it is unlikely that any system will
meet everyone’s expectations, users generally share a common sense of what constitutes a
‘good’ or ‘bad’ interaction design. Explicit methods for HSID promote the development of
systems that exhibit the ‘good’ qualities that users prefer. HSID tries to use proven
techniques to develop designs quickly and effectively that will produce systems exhibiting
desirable qualities.

The human-system interaction component captures how a human will command the
system and how the system will respond. Design decisions directly affect the people who use
the final system. An individual’s emotions and mental perceptions may be positively or
negatively affected by the way the system interacts with the user. The effect can be wide
reaching in that organizational behavior (i.e., corporate culture) may need to adapt to new
systems that do not conform.. Analysts study people in order to get the context and content
right during analysis. Designers need to study people to design the interaction specifics,
using the interaction technologies available for a particular system.

What is IDEF8?

The IDEF8 method supports the modeling and design of interactions between human
operators and the systems they use. Current human-system interaction development tools
concentrate largely on the appearance of an interface. IDEF8 concentrates on specifying
desired interaction behavior at three levels of design: the concept of operations level, at a
role-specific level detailing scenarios of use, and at a detailed design level.

IDEF8 method is not a Graphical User Interface (GUI) development method. It can be
used in conjunction with GUI development systems, but it is not strictly for GUI
development. The method is not used to define the actual interface, but it is used to describe
the interactions between the user and the system. The user knows what the tasks or actions
should be, and IDEF8 is used to capture this information. Further, IDEF8 is not an interface
standard like X Windows. It is designed to be used at a more abstract level. The method can
be employed independently of the implementation choice for the GUI. While an IDEF8
model could specify how the interface should interact with the user, the method does not
require that screen layouts, interface object types, or other specific interface information be
collected. The main purpose of IDEF8 is to define interactions without defining interface
details. Later, the interface will be built, user acceptance testing will be performed, and the
results will be used to fine tune the interface. Thus, the IDEF8 method is used to design
interactions between the system and users of the system at multiple levels of abstraction; and,
the results of IDEF8 application are used in implementation and documentation situations.
The following list summarizes the kinds of situations in which the IDEF8 products will be
created and used.

109

1. Analyzing—The IDEF8 models are used as a way of understanding and modeling
the interactions between humans and systems. The interactions with the system are
captured in the IDEF8 models. Modeling current systems helps to identify
weaknesses in the design or implementation.

2. Designing—IDEF8 may be used to design interactions between users and the
system under development at multiple levels of abstraction.

3. Implementing—The IDEF8 models can be used to provide specifications to
system implementors.

4. Documenting—The IDEF8 method may be used to document an existing system
or to describe the design of a new system.

Depending on the needs of the project, the IDEF8 method may be used to support one or
more stages of the development process.

Motivation for a Human-System Interaction Design Method

While there is a vast body of research in the cognitive sciences and human factors arenas
for developing good user interfaces and a host of application building tools with Graphical
User Interface (GUI) ‘parts’ or ‘components,’ little assistance has been provided to the
developer in defining the context for user interface design. That is, human-system interaction
designs often remain implicit, forcing users to rely on system developers to produce user
interface strategies consistent with an implied concept of operations, role-specific use case
scenarios, and interaction concepts. Applied use of knowledge and technology for
developing computer interface designs follows the definition of what interaction is to be
supported. It also follows the definition of how the interaction should be supported. Only
after these elements have been defined can system developers effectively leverage application
building tools to put the system together in a way that ‘looks’ and ‘feels’ right. The IDEF8
method formalizes this process to speed overall development time with better quality results
and fewer iterations.

Rapid changes in technology prompt the need for a method to explicitly document
intended human-system interaction. New interface paradigms and supporting technology are
rapidly coming into common use. With this new technology comes the need to easily
integrate these devices into existing and emerging systems. Using IDEF8, logical user
interactions with the system can be documented and organized while leaving implementation
decisions (e.g., which input/output device) to the developer. IDEF8 provides an extensible
set of interaction metaphors with supporting implementation templates to support such ‘plug-
and-play’ development strategies.

There is a growing need to develop systems that can operate on multiple platforms while
still exhibiting the same ‘look and feel.’ While actual implementation on different platforms
will require platform-specific adjustments, the definition of the user interactions and system
responses can be modeled in a general way using IDEF8. IDEF8 captures the intended

110

interactions between the user and the system. The manner in which these interactions
manifest themselves in the system can be left to the implementor or they may be completely
specified. By providing designs at the human system interaction level, the IDEF8 method
produces models of the system that can be reused and directly ported to other platforms.

Perhaps most importantly, users often find it difficult to articulate exactly how they want
a system to operate. Yet, generally, users are able to describe how they envision the general
concept of operation and isolated elements of the system in operation. In providing these
descriptions, users often reference features or operational characteristics of other objects or
systems. That is, users often express how they want the system to behave or interact by
comparing desired behavior with the behavior of objects that are mutually familiar. For
example, a user may specify the desire to control air temperature for an automobile cabin
heating and cooling system using a single control knob that operates like a volume control
knob on the radio. This metaphor would indicate that designs using multi-position switches
(offering a far more limited range of temperature options) and separate controls for heating
and air conditioning could be unacceptable. IDEF8 leverages this tendency to specify design
goals in terms of metaphors to help articulate and narrow the design space. While
accomplishing this goal, IDEF8 helps development teams resolve contending objectives,
goals, priorities, and measures of success by promoting effective multidisciplinary activity
with mechanisms to support communication among development team members.

IDEF8 Products

Application of the IDEF8 method will produce:

1. Descriptions of “AS-IS” Human-System interactions. IDEF8 can be used to
collect and model current system interactions with the user, including both normal
and abnormal interaction situations.

2. An implementation-independent definition of the “TO-BE” design for a system
enabling cross platform development. IDEF8 captures multiple levels of design
specification including human-system interaction at a concept of system operation
level, a role-centered scenario of use level, and at the detailed gesture-response level.

3. A mock-up of the designed human-system interaction and a user-validated
human-system design. IDEF8 provides a robust library of implementation templates
for selected design metaphors and a discipline for involving the user in validating
human-system interaction design correctness.

Although the primary use of IDEF8 is to define the “TO-BE” requirements by identifying
the human-system interactions that should be supported in the implementation of the system,
the use of IDEF8 for “AS-IS” models is also important.

111

Users and Key Beneficiaries of IDEF8

Two broad categories of users for an IDEF8 method can be considered. The first category
of users are those who would directly apply the method to design human-system interaction.
This class of users ranges from those who manage HSID efforts to those who perform the
detailed implementation of target systems. The individuals targeted as direct users of IDEF8
include managers and practitioners of enterprise improvement initiatives (e.g., Total Quality
Management, Business Reengineering), strategic systems planners, systems developers, and
end users. The second category of users are those individuals who use the products of an
IDEF8 application effort. Business owners and managers are among this set of users. For
them, the most visible element of an IDEF8 method is not the set of techniques used to define
system operational scenarios or metaphors of human-system interaction, but the system
operational scenarios themselves. System implementors are also among this class of users.
These individuals use the products of IDEF8 to guide user interface design and overall
system implementation activities.

Potential Benefits

This section describes some benefits of the IDEF8 method.

Higher quality systems produced in less time at lower cost. User interface development
requires a major portion of the software system development budget [Boies 89]. This along
with the fact that the interface is a determining factor in market appeal makes lowering the
cost a primary concern. Explicit definition of human-system interaction helps avoid costly
iterations in user interface design while ensuring correct operation; i.e., operation that is
consistent with the intended scenarios of use. Even small changes to the user interface can
cause major problems with budget and schedules. The challenge is to identify weaknesses in
design early, to prevent this situation. The IDEF8 method, by formalizing and organizing the
HSID process, helps to reduce time and errors, thus lowering the cost.

User-friendly user involvement in the design process. The more ill-defined a system’s
concept of operation, scenarios of use, and ‘look and feel’ are, the more likely the system will
not meet user quality expectations. Traditional methods focus largely on interface design
accomplished in an ad hoc fashion without an explicit definition or design for human-system
interaction. User acceptance of the resulting interface is left to chance, relying on the
experience and knowledge of system developers of the application domain. The IDEF8
method provides an explicit mechanism to involve users productively in the earliest stages of
the design process in participative, team-based design activity. IDEF8 also provides a
mechanism for working directly with users to refine human-system interaction designs
incrementally. This leads to the development of actual implementations without requiring an
understanding of potentially applicable implementation technologies.

Methodization of Human-System Interaction Design practices. Most designers find that
HSID is an ad hoc process at best. It is difficult for the various designers of different
disciplines (i.e., engineers, programmers, psychologists, artists, etc.) to prioritize factors that
are the most important to the success of the system. HSID is complex. Having a formalized

112

method for handling this complexity replaces the ad hoc processes with a more concrete and
manageable process.

Common language for cross-platform design, system documentation, and interface
description. Currently, there are not any common languages for describing interactions at the
abstract level. The IDEF8 method provides a means to describe interactions in generic terms
for use in documenting and designing cross platform systems.

Systems that look, feel, and operate as intended. What does the user want to do? This is
the central problem that the system should solve. It is odd that systems often are cluttered
with features, but unable to provide the user with a simple means of performing tasks.
IDEF8 focuses on the tasks that are to be performed and the interaction that is required.

Provide a model for analysis. By documenting interaction designs using IDEF8, many
problems can be identified that otherwise would not be easily found. The IDEF8 method
forces system designers to examine desired interactions closely, and thus uncover problems
that may only be found later by users.

Enforce a formulation and commitment to an interaction philosophy. The use of IDEF8
in the design forces the designers to carefully select and commit to an interaction philosophy.
This lends a consistency and “look and feel” to the system that probably would not occur
otherwise.

Summary of Developments and Research Findings

IDEF8 is still in the developmental stage and does not possess stringent rules and
procedures or well defined syntax and semantics. But, as it draws on other IDEF methods for
basic techniques and graphical languages, it is still usable. The following section describes
the current state of the research and the preliminary ideas about IDEF8.

In the design of any method, there is a set of design goals that the method should attempt
to meet. While many compromises and tradeoffs must be made during the evolution of the
method, the design goals and principles are always the primary objectives of the method
design. In the design of IDEF8, these principles were identified as design objectives. They
represent ideals that the method should promote to aid users in the development of good
models of the system. The method should also promote the creation of models that result in
user friendly human-system interaction. That is, the models must do more than just capture
the interaction between systems and users; they must also help promote sound user friendly
interactions in the design of systems. The main theme that runs through these principles and
goals is reducing the cognitive load on the end user. In the past, HSID has been largely an ad
hoc discipline;, this can be changed by paying close attention to vital HSID concepts. The
following lists describe the design goals and principles embodied in an IDEF8 systems
development strategy.

113

IDEF8 Method Design Goals

The design goals and principles that are important to human-system interaction design are
listed below. The IDEF8 procedure includes a step in which the design team must identify
the pertinent principles for the design of the system and then prioritize and develop success
criteria for meeting them. The list is not all encompassing, all items are not equal, and every
item is not necessary for every system. Each system and each user community is different,
and the design goals and principles should reflect these differences.

Compatibility—Minimize the amount of information processing that will be
necessary in general with human perception, memory, problem solving,
action, communication, and in particular with the class of users that will
be using the system.

Consistency—Minimize the difference in dialogue within and across various
human-system interfaces.

Memory—Minimize the amount of information that the user must maintain in
short-term memory. The goal is to reduce the amount of information
needed in short term memory, especially, if other information processing
tasks are required simultaneously.

Structure—Assist the users in developing a conceptual representation of the
structure of the system so that they can navigate through the interface.

Feedback—Provide the user with feedback and error-correction capabilities.

History—Provide users with a history of past user actions possibly allowing
them to ‘redo’ the same or similar commands.

Guidance—Guide users through the task or activity to completion.

Identification—Provide the user with a way to identify interface objects.

Transition—Provide users with a mechanism to orient themselves within the
system (e.g., one which helps to establish where you are and where
you’ve been).

Choice—Provide a clear and complete set of actions that can be selected by
the user.

Demonstration—If users do not know what is possible, they should have a
way of getting assistance.(What is possible with what? Who will assist?
Unclear)

Explanation—On-line help systems are being viewed more and more as a
requirement rather than a option.

114

Workload—Keep user mental workload within acceptable limits.

Individualization—Accommodate individual differences among users through
automatic adaptation or by user-tailoring the interface.

Direct manipulation—Favor object-like paradigms.

See-and-point—As opposed to remember-and-type.

Stress What You See Is What You Get.

Forgiveness—Provide undo and cancel functions; minimize irrevocable user
actions.

Constraints—Allow only correct choices instead of backing out from error
state.

Aesthetic integrity—Ensure a consistent “look and feel.”

User control—Allow for user preference and changeable options.

Transparency—Provide intuitive user control; the interface should not get in
the way of the user’s tasks.

The objective is to optimize human-system interaction in terms of these design goals and
principles. These objectives helped to guide IDEF8 method developments.

The previous list illustrates some of the qualities that are desirable in the target system.
The following list illustrates some of the qualities required of the IDEF8 method to achieve
these goals.

Early focus on users—Direct contact with potential users prior to overall
system design. The user interface should be the first component
developed in the system design.

Interactive design—Inclusion of typical users into the design team, at least at
the beginning of the design.

Empirical measurement—Evaluation of the learnability and usability of the
interface as well as conducting empirical and experimental studies
throughout the development process.

Iterative design—Incorporation of the results of behavioral testing into the
next version of the system.

Reduction of design time and design errors—Gives the designers and
developers a consistent language to use during design process.

115

Design documentation—Provides traceability and consistency checking for
the developers.

Focus design process on user requirements—Reduces the chance of ad hoc
user interface development.

Provide the user with a model of the system—Resulting models can be used
for system documentation and user help systems.

Use metaphors from the real world—Such as buttons, menus, etc.

These lists are not meant to be complete, and one can see that many of the goals are
conflicting and interdependent. The best thing to do is to strike a balance that best suits the
current application and perform user acceptance testing to fine tune the human system
interactions. The challenge is to create a well behaved interface that helps the users access
and complete their required tasks without getting in the way. The best interfaces do not
appear to be interfaces at all.

Basic Concepts in IDEF8

This section describes some of the basic concepts for the method.

Process

A process is an ordered sequence of events. In human-designed systems, the events that
constitute a process are designed and ordered to achieve some desired outcome.

Input/Output Item (IOI)

An Input/Output Item is any item which conveys information from the user or to the user.
IOIs include, but are not limited to, graphics, text, icons, sound, and tactile feedback. Future
versions of IDEF8 should include an IOI dictionary, which is a repository of the information
known about a piece of information. This dictionary will include the information about the
IOI, for example: (1) Name, (2) Type, (3) Display Method (defaulted by type), (4) Color, (5)
Font(s), (6) Icons, (7) Graphics, and (8) Description. The dictionary will also include
information about the types or kinds of input items.

Metaphor

Metaphors are models of abstract concepts given in terms of familiar, concrete objects
and experiences. This is true if we are using metaphors from our language or metaphors from
an interface. Because metaphors are used as models, users have difficulty when a metaphor
suggests an incorrect model. Some metaphors are like real world objects (e.g., buttons),
while some are unlike the real world but provide a usable model for users (e.g., grabbing a
drawing object on the screen is not like grabbing a real world object). IDEF8 includes
metaphors in the method and models them as templates to be reused during the HSID.

116

The tables in this section are initial attempts to identify possible objects, operations,
gestures, and devices that will occur in the design and use of metaphors. The tables are not
complete—new devices and new metaphors are created as new technology becomes
available.

Table 6. User Gestures and Interactions Table

Objects Operations Gestures Primitive Gestures
Button Select Drag & Drop Point, Click, Hold, Point,

Release
Form Choose Type Type
Window Stretch Point Move, Stop
Screen Shrink Drag Point, Click, Hold, Move
Text Field Rotate Grab Point, Click, Hold
Menu Zoom Grab & Pan Point, Click, Hold, Move
Selection List Pan Click Press, Release
Combo Box Scroll Press Press
Grip Move Hold Hold
Handle Create Release Release
Thumb
button

Open Stop Stop

Scrollbar Close Move Move
Check Box Save
Various Icons Edit
Desktop Insert
Pointer Delete
Cursor Clear
Spinner Find
Scroll Text Replace
Radio
Buttons

Undo

Repeat
Cut
Copy
Paste
Toggle
Help
Describe
Abort
Redo

The following is an attempt to categorize the various ways the user can interact with the
system, both physically and logically. For example, users may want to specify either a
physical button on an actual device (e.g., a mouse) or a logical button (e.g., an OK button on
the screen).

117

Table 7. I/O Devices

Physical Input Devices Physical Output
Devices

Logical Input

Keyboard Printer Text Entry
3-D Mouse CRT Movement
Track Ball Light Keypress
Light Pen Gauge Buttonpress
Joystick Dial
Glove Speaker
Digitizer Virtual Reality Glasses
Graphics Tablet Pressure Glove
Button Head Up/Down

Displays
Dial
Knob
Touch Screen
Touchpad
Microphone

To support the metaphor design goal, IDEF8 contains a catalog and library of metaphor
templates that can be used in the interaction models. These templates are derived from the
various metaphors and devices given in the tables.

The use of metaphors is a natural way to convey the model on which the interface
operates. Figure 29 illustrates some of the common metaphors used in many systems. The
decision to choose one metaphor over another depends on what the behavior of the system
should be.

118

0 100

ON

00

II

ON

OFF

ON

OFF

O
I

One
Two
Three
Four
Five

Type it out
Select 1
Select 2
Select 3

76%

1
2

3
4 5 6

7
8
9

10
11

121314
15

16

Figure 29.
Common Metaphors

For example, suppose the situation requires the user to respond to a yes or no query.
There are various interaction metaphors that could be used such as a toggle switch, a check
box, a list box with ‘yes’ or ‘no’ listed, or even a text entry field requiring the user to type
‘y’,’e’,’s’ or ‘n’,’o’ and press return. The same user interaction scenario can be effected by
different metaphorical constructs. All of the examples will support the same user interaction,
however some are more appropriate than others.

119

IDEF8 uses metaphors to help select the best model of interaction and then instantiate a
template that represents the metaphor in detail. The blank template is filled in with the
specific requirements of the particular user interaction and added to the detailed HSID model.
To illustrate, take the following figures showing an interrupt message box with a message,
and two buttons for the two options that the user may take. The system view is described by
two process boxes, display dialog and perform actions. These processes are shown to
decompose into more detailed processes. The user view is described from the user
perspective and a similar structure is shown in the Figure 31.

Display
Message

Display Cancel
Button

Display
Continue
Button

Perform
Cancel
Operation

Perform
Continue
Operation

Handle Other
Actions

& & X X

The Printer is out of Paper

Cancel Continue

Display
Dialog

Perform
Actions

Figure 30.
System View of Out of Paper Dialog Message

120

Read
Message

Read Cancel
Button

Read Continue
Button

Select Cancel

Select
Continue

Other Actions

& & X X

Read
Dialog

Select
Actions

The Printer is out of Paper

Cancel Continue

Figure 31.
User View of Out of Paper Dialog Message

To see how the interactions are modeled, Figure 32 contains an interaction diagram that
shows how these processes are instantiated over time. The user/system dichotomy is shown
in this diagram. The information is conveyed across the interface by the precedence arrow
showing the ordering of the processes.

121

Display
Dialog

Read
Dialog

Select
Actions

Perform
Actions

System User

Figure 32.
Interaction Diagram of Out of Paper Dialog Message

A more detailed example involves the resize box scenario. Anyone who has used a
drawing program has had the opportunity to draw a rectangle and resize it. This example
breaks down the metaphor into component steps and describes the user and system
interactions involved.

System User
Select
Box

Display
Handles

Grab
Handle

Move
Pointer

Display
Rubber
Band Box

Release Box
Handle

Redraw Box
New Size

Figure 33.
Interaction Diagram of Resize Box Example

122

Select Box Display
Handles

Grab Handle Move Pointer
User Action User ActionUser ActionSystem Action

Display
Rubber Bank
Box

Release Box
Handle

Redraw Box
New Size

System ActionUser ActionSystem Action

Figure 34.
Resize Box Example Process by Process Comparison to Screen

Interaction Templates

As mentioned previously, IDEF8 has templates of the various metaphors that can be
incorporated into an interaction description. There are templates for buttons, lists, combo
boxes and so forth. The concept is to have a standard template for each metaphor that can be
filled with information peculiar to the system being designed. The IDEF3 process description
capture language appears to be suitable as a mechanism to represent these templates, although
some tailoring may prove helpful. For example, experimentation revealed that it may be
useful to provide some way of marking activities that are accomplished by the user and
activities that are accomplished by the system.

123

Template Catalog and Library

The template catalog and library contains the various templates of metaphors with an
annotated catalog of descriptions that may be reused by the modeler. They are used to help
the modeler find the kinds of metaphors that most closely characterize the desired interaction
behavior. As the library grows to include new metaphors, the catalog is updated and
annotated to characterize how the new metaphor templates are best applied. How this catalog
will be structured and implemented has not yet been fully developed.

IDEF8 Procedure Developments

This section presents a prototype procedure for human-system interaction design. The
procedure assumes a team approach with the primary roles in design being filled by targeted
end users and designers. The following list describes the various user roles that may be
involved in an IDEF8 project.

1. Managers are ultimately responsible for the project in which the IDEF8
method is used. These members of the development team are involved
in the administrative activities of the system development. The manager
is responsible for providing project and technical systems direction,
ensuring project coordination, and managing each process of the system
development activities. They are responsible for all of the formal project
documentation, ensuring that materials are completed and comply with
standards. The manager advises the customer on decisions about design,
coordinates review cycles and related problems, and interacts with the
customer on project direction type questions. Strategic decision making
is the main function of the manager.

2. Modelers are responsible for generating the IDEF8 model of human-
system interaction. The modeler retrieves the necessary information
from the user. Modelers are responsible for the technical activities of
system development. The modeler is an expert in the use of the IDEF8
method and is responsible for generating the necessary models and
documentation required for the success of the system development.
Close contact with the customer and the end users is necessary.

3. End Users will use the system that is being modeled. The system may be
one in use at the present time (“AS-IS” model) or it may be a system that
is being developed (“TO-BE” model). In either case, the user is the one
whose interactions are described as they pertain to the system. It is the
end users who will benefit from the development effort. The end users
are the source from which most of the data is collected for the IDEF8
models. They are responsible for providing feedback regarding the
accuracy of the models that are created.

124

4. Reviewers are responsible for examining the model generated by the
Modeler. This function is designed to help the Modeler maintain
consistency between the system and the model of the system. The
reviewer is responsible for validating the models against the existing or
proposed system.

5. Designers are responsible for identifying and evaluating solution
alternatives for the design of the system. They are members of the
development team who create a plan for implementing the system. They
must analyze the system and its environment, develop solutions, evaluate
alternatives, and select the appropriate design for implementation.

6. Implementors are responsible for taking the IDEF8 models and creating
the system and its interface. These members of the design team are
involved in the physical realization of the system from abstract
descriptions and models. They must prepare the design for
implementation, fabricate the various components, assemble the system
components, and ensure the quality of the components.

IDEF8 HSID is an interactive process with three primary modes of activity, each
representing more detailed levels of design. These modes include:

Mode 1 - Define Philosophy of System Operation

Mode 2 - Design Scenarios of Use

Mode 3 - Detail Human-System Interaction Design

Iteration between modes is encouraged to increase usability and user satisfaction with the
system. The procedure is not necessarily sequential. IDEF8 is meant to be used in parallel
with other design activities (e.g., database design). Other activities can occur in parallel with
IDEF8 application. IDEF8 is designed to support and draw from related design activities.
Thus, to apply IDEF8 at the expense of other design methods is not advisable.

The first mode sets the scope of the system and specifies the design objectives which
include making strategic decisions and determining success criteria. Critical system
functions are identified, high-level allocations are made and overriding system constraints are
identified. The product of this mode is an explicit definition of the critical system functions
and processes characterizing the system’s Concept of Operations. A prioritized list of critical
functions and constraints is also produced. This mode of design, and those that follow, is
accompanied by iterative kit reviews and structured demonstrations to provide a validated
baseline for Mode Two design activities.

The second mode of IDEF8 design centers on role-specific scenarios of use. This mode
begins by identifying and classifying the various user roles involved in the system. Once the
roles have been specified, role-specific scenarios of use can be described using specialized
conventions for an IDEF3-based HSID language. Next, task/function analysis is performed.

125

Detailed examinations are performed to ensure that the required attributes and services—the
required content—are specified. Required modifications revealed through kit reviews and
structured demonstrations are also accomplished. The products of the second mode are
models of the various scenarios and the results of the task/function analysis.

Mode three begins with more detailed requirements and specifications collected in the
dialog guideline definition process. Based on the guidelines, metaphors are selected and
models of detailed human-system interaction are created. As with the other modes, mode
three includes kit reviews and demonstrations. When a consensus is reached, human-system
interaction mock-ups are constructed to evaluate how well the tradeoffs and compromises
work in a real world setting. Mock-up development and testing are used to validate design
concepts and to elicit additional requirements. Details of actual interaction are specified
during this mode. This may include designing the format of windows and reports.
Prototyping is used to help develop and select the interaction mechanism. This activity is
distinguished from mock-up development by constructing working pieces of the designed
system whereas mock-ups merely support mental validation of design specifications. Finally,
users test and evaluate the prototype. Prototype test results are used to iteratively improve the
design.

Mode One: Define Philosophy of System Operation

A philosophy of system operation must be defined to establish the context for team
design activity. High-level IDEF3 process descriptions, IDEFØ function models, and
structured text are used together to define the philosophy of operation. These may be
packaged in a concept of operations document as one of the key products of the Mode One
activity.

Scope System

Defining the scope of the system involves specifying what functions and processes are
included in the system and which are explicitly excluded.

Specify Design Objectives

The IDEF8 procedure is an iterative process wherein the first step is to specify the criteria
to measure progress and determine when it is time to stop. The design objectives determined
during this step should be reviewed periodically throughout the IDEF8 project to determine
whether project cost, quality, and schedule goals are being met.

Determining design criteria for evaluation requires the method user to specify
measurable usability objectives. Objectives define the usability to which the system must
adhere. These objectives drive the iterative design and help to manage the design. They also
focus on the users and what the users will be doing. Objectives should include user input
(measured subjective criteria about how users liked the prototype), and user performance
measures (objective observations about how well users performed using the interface).

126

Before the design of the interface can start, usability objectives must be defined. There
are four steps to setting these objectives: identify users and tasks, choose and prioritize design
goals and principles, define usability criteria, and set levels of success for criteria.

Identify users and tasks. User identification, classification, and task identification are
best accomplished by interviewing and observing users who will support or be supported by
the system. Classification of the users identified through this step is often useful. Users may
be classified by:

1. Skill level (e.g., Novice, Occasional, Intermediate, Advanced)

2. Organizational level (e.g., Executive, Officer, Staff, Supervisor, Clerk)

3. Membership in different groups (e.g., staff, customer)

For each category of user defined in the previous step, we must consider and tabulate the
following: Who, Purpose, Characteristics (age, education level , limitations, etc.), and
Critical success factors (needs or wants and likes, dislikes, or biases).

Choose and prioritize design goals and principles. It is necessary to define which design
goals and principles are most relevant to effectively manage and measure usability for the
system. Because usability involves a broad range of categories with respect to human-system
interaction and human factors engineering, designers must select and prioritize those
principles and design goals that are most important for the given system.

Define usability criteria. After the design goals and principles have been selected, the
next step is to define the criteria for measuring the system’s success. Metrics must be defined
and should include the context in which they will be collected. Measures may be user
opinion such as satisfaction ratings or user performance such as task completion time and
number of errors.

Set levels of success for design goals and principles. Each of the usability criteria should
have three attainment levels: minimum level, planned level, and best case level. Each
criteria is stated in terms of previously defined metrics for each of the three levels. The
minimum level is the cut-off between success and failure. Any measurements below
minimum should be corrected through repeated iterations of the design. The planned level is
the goal that is currently being sought for this iteration of the process. Lastly, the best case
level represents a level that might be reached with more effort and/or resources.

Identify Critical Functions

The key functions to be supported by the system are listed previously as part of the scope
definition activity. These should be prioritized in terms of their criticality by surveying the
targeted users of the system. A critical functions list will be produced from this step to guide
design activity.

127

High Level Allocation of Critical Functions

At the most abstract level, critical functions will be allocated to human operators or to the
system. This activity attempts to balance the strengths of the human and technology with
economic, cultural, organization, cost, and risk factors.

Identify Constraints

Constraint identification and management is central to all design activity. At this stage in
design, constraint identification is largely isolated to constraints on possible design
alternatives rather than among them.

Perform Kit Reviews and Structured Walk-Throughs

The goal of this step is to involve targeted users in a structured review approach. Two
mechanisms for user review are provided in IDEF8: kits and walk-throughs. Both are
patterned after the kit review and walk-through processes of previous IDEF methods. Users
examine the IDEF8 models and identify voids, problems, and potentially useful modifications
that are used to revise design artifacts.

Mode Two: Design Scenarios of Use

Identify User Roles

Examine the intended users and identify the various user roles that will make up the user
community for the system.

Design Role Specific Scenarios of Use

For this step, use the IDEF3 method with IDEF8 extensions to model the human-system
interactions based on the roles that were determined in the previous step.

Task/Function Analysis

Specify Interface Input/Output Representations

Study the existing user interaction metaphors and guidelines, as well as any established
interaction metaphors and guidelines. Then, specify the interface representation that meet the
requirements for the system being designed.

Specify the Control Structure for Interfaces, Dialogs, and Computations

Establish an initial command hierarchy. These may be presented to the users as a series
of menu screens, a menu bar, or a series of icons that take actions when something is dropped
on them. A command hierarchy is a presentation of available services, organized using

128

procedural abstraction. Next, refine the command hierarchy. To refine the hierarchy,
consider ordering, whole-part chunking, breadth versus depth, and minimal steps.

Ordering: Select distinct Service names, and order the Service names
according to frequency of use and in a customary work-step order.

Whole-Part Chunking: Group related Services together.

Breadth and depth chunking: Stay within human short-term memory
limitations. One guideline is to limit the maximum number of items
presented to the user to between 5 and 9. Another guideline is to limit
breadth to 3 chunks (i.e., pieces of information) of 3 and depth to 3
levels.

Minimal Steps: Minimize the number of clicks, drags, and key combinations
to get the job done and provide shortcuts for advanced users.

Perform Kit Reviews and Structured Walk-Throughs

Once again, as in mode one, iteratively review Mode Two designs with the team
members, reach consensus, and incorporate necessary changes into the design.

Mode Three: Detail Human-System Interaction Design

Define Dialog Guidelines

Determine and resolve tradeoffs. This is one of the more difficult steps. Use the design
goals and principles to determine compromises for the system. Future iterations may change
these decisions as new situations require.

Identify Failure Modes/Exceptions/Interrupts. This step concentrates on finding the
abnormal interactions between human and system. Determine severity of each failure mode
and specify what the response should be. Once again, repetitive iteration of this step will turn
up new situations and old situation may disappear.

Create Input/Output Item Dictionary. The IOI Dictionary should contain the IOIs that are
used in the model along with their descriptive information.

Design the human interaction component classes. Begin by organizing the human
interaction design by windows and components.

Select Metaphors

User-centered scenario descriptions of desired human-system interactions establish the
framework for selecting appropriate interaction metaphors. Direct user involvement in
metaphor selection is critical to this task.

129

Perform Kit Reviews and Structured Walk-Throughs

As in modes one and two, review the design with the team members, reach consensus,
and incorporate the necessary changes into the design.

Construct and Test HSID Mock-Up

In this task, role-specific system interaction process definitions and their accompanying
metaphors, dialog guidelines, and templates are assembled to produce an integrated model of
human-system interaction. This comprehensive model constitutes a system ‘mock-up.’ The
mock-up is used primarily to validate system process designs and the general philosophy of
human-system interaction. This task may be followed by, or merged with, prototype
development.

Prototype and Test the System

Prototype User Interface. Prototyping the human-computer interaction is essential for the
human-system interaction component. It should occur in both analysis and design.
Human/system interaction design is more than look-and-feel. Observe the human as they use
the prototype.

Use Interface Design Tools. Take maximum advantage of the many interface design
tools available to get the prototype looking similar to the real system.

User Defined Interfaces. Use a facade to let the user design an interface to his or her
satisfaction. By this step, the interactions have all been defined, so the information
exchanged between the user and system is given in the IDEF8 models. Letting users design
their own interface for some applications may be the best way to obtain the greatest user
satisfaction.

User Acceptance Testing

It would be virtually impossible to design human system interactions without a rigorous
set of experimentation and user acceptance testing. In this step, all previous design work will
be tested. The metrics and measures defined in the first step will be used in the user
acceptance testing phase. In addition to evaluating metrics against the design goals selected
in the first step, the following metrics should be used to provide empirical information about
user performance and the users’ opinions of the system:

Time on Task. The amount of time it takes the user to successfully complete the given
task using the system. There are three criteria for task completion: task is completed
correctly, performed within specified time limit, and performed without intervention or
direct instruction.

Completion Rate. The completion rate is the percentage of users that successfully
complete the task being measured.

130

Error Free Rate. The error free rate is the percentage of users completing the task with
zero errors. This is a stringent indicator.

Problem Classification. Problem classification provides information about the nature and
severity of the problems and provides diagnostic information for future revisions of the
system.

User Opinion. User opinion provides data about the usability of the system.

Iterate as Required

The activities comprising IDEF8’s procedure should be considered “modes of thought”
rather than sequential steps. Users should not expect to apply these activities in a strictly
sequential manner. These modes of activity may be organized into phases to assist with
management of the project. Iteration across modes may be required to satisfy established
design goals.

Significant Accomplishments

A number of significant contributions of the IDEF8 method development are given in this
section. Although IDEF8 is not a mature method, its initial development has produced
several useful results.

1. Identified HSID principles and design goals. The preliminary work on IDEF8
identified the useful design principles and goals for the IDEF8 method and the target
systems being modeled. These principles and goals were taken from various human
factors sources. They help guide the development of the system so that it embodies
the qualities that its users find pleasant and easy to use. These goals are not a
complete list and some of them clash with one another which is why building the
interfaces between humans and machines is so challenging.

2. Developed innovative metaphor and gestures concept. The IDEF8 method
includes support for user friendly involvement in the definition of design concepts by
introducing the concept of metaphors to characterize desired system interaction. The
IDEF8 method uses metaphors to record and catalog the templates that can be used in
the design of system interactions.

3. Developed the concept of templates, catalogs, and template libraries. Metaphor
templates allow the modeler to develop IDEF8 interaction descriptions quickly by
selecting appropriate blank templates from the library and filling in the specific data
for the given interaction. Having these templates available greatly enhances the speed
and accuracy with which the models are constructed. The catalog and library
paradigm helps the modeler select the best metaphors to put into use in the interaction
model.

131

4. Developed a preliminary method procedure supporting iterative design. A
simplified procedure for HSID has been developed for the IDEF8 method. The
procedure is also designed to promote maximized flexibility toward integrating
IDEF8 application with other design methods.

Potential Areas for Future Work

IDEF8 is a promising method which supports HSID. However, there is still much work
before IDEF8 reaches full maturity as an IDEF method. This section summarizes some of the
areas where future work should be concentrated.

1. Continue method development and refinement. IDEF8 is still in a preliminary
stage of development. There are more areas that must be investigated to further the
development of the method. The current version a starting point but to achieve the
kind of leverage that is envisioned, more development should be done.

2. Incorporate storyboarding techniques. Can a formalized storyboard paradigm be
included in the method? Storyboarding is a powerful graphical description of a
scenario. IDEF3 is a “box and arrow” version of storyboarding, but the actual
storyboard technique may be more useful in certain cases.

3. Develop/populate template library. The template library is one of the keys to
quick and efficient use of the IDEF3 method in IDEF8. Currently, only some of the
templates have been created for some of the common metaphors. The library should
be as comprehensive as possible, as well as open for extension as new metaphors are
applied to interaction scenarios.

4. Create better notation to support events, interrupts, and exception handling. A
great deal of user interface interaction is event driven. New notations for representing
certain kinds of events and interrupts need to be investigated further. The use of
IDEF3 in its current form is usable; however, better notation and extensions could be
found to make it easier to represent interactions. What about what the system
response back to the user? IDEF8 uses gestures and template metaphors to represent
how to do things to the system, but the system conversely does things back (i.e. Clear
Screen, Display Message). It may be necessary to have a list of prompts or actions by
the system. Some of this behavior is encapsulated in templates that have been created
so far, but more investigation may produce a more facile technique for this
representation.

5. Visual techniques for user views. IDEF8 may need to describe what the user will
see—not the exact layout, but a complete list of what is viewable. This can be
inferred from the IDEF3 description, however it might be better to have a separate
list.

132

IDEF8 Bibliography

[Boies & Henry 89] Boies, S. J., & Henry, S. C. (1989). Managing the Development of
Effective User Interface. Proceedings of the Thirteenth Annual International Computer
Software and Applications Conference. Orlando, Florida. 2.1–2.25.

[Bourbaki 92] Bourbaki, N. (1992). Building A Class Browser Using CLIM. AI Expert,
17–23.

[Brown 89] Brown, G. R. (1989). Control System Design:Part 4—The Man/Machine
Interface:Designing Interactive Graphics. Intech, 34–39.

[Carroll 92] Carroll, J. M., Rosson, M. B., & Singley, M. K. (1992). The Task-Artifact
Framework: Representing Psychological Design Rationale with Claims and Scenarios, IBM
Watson Research Center, AAAI ‘92 Workshop on Design Rationale Capture and Use, San
Jose, California, July 15, 47–55.

[Coad & Yourdon 91] Coad, P. & Yourdon, E. (1991). Object-Oriented Design.
Yourdon Press Computing Series. Englewood Cliffs, NJ.

[Cockrel & Sander 92] Cockrel, L. & Sander, T.M. (1992). Selecting a Man/Machine
Interface for a PLC-Based Process Control System. IEEE Transactions on Industry
Applications, 28(4), 945–953.

 [DeAntonellis & Bruna 90] DeAntonellis, V., & Bruna, Z. (1990). A Disciplined
Approach to Office Analysis. IEEE Transactions on Software Engineering, 16(8), 822–827.

[Deignan 92] Deignan, P. (1992, June). Designing for a Complex World. Apple Direct,
8.

[Downton 87] Downton, A. C. (1987). Engineering the Man-Machine Interface.
Electronics and Power, 691–694.

[Fujiwara & Kohno 85] Fujiwara, R., & Kohno, Y. (1985, June). User-Friendly
Workstation for Power Systems Analysis. IEEE Transactions on Power Apparatus and
Systems, PAS-104(6), 1370–1376.

[Halter 85] Halter, Richard. (1985). Man-Machine Interface Design Challenges. Design
News, August 19, 63–70.

[Hammer 90] Hammer, Michael. (1990). Reengineering Work: Don’t Automate,
Obliterate, 18–26.

[Hopkin 89] Hopkin, V. D. (1989, November). Man-Machine Interface Problems in
Designing Air Traffic Control Systems. Proceedings of the IEEE, 77(11), 1634–1642.

[Kettelhut 91] Kettelhut, M. C. (1991). Don’t Let Users Develop Applications Without
Systems Analysis. Journal of Systems Management, July, 23–26.

133

[Kloster & Zellweger 87] Kloster, G. V., & Zellweger, A. (1987). Engineering the Man-
Machine Interface for Air Traffic Control. IEEE Computer, February, 47–62.

[Laurel 90] Laurel, B. (Ed.) (1990). The Art of Human-Computer Interface Design.
Reading, MA: Addison-Wesley.

[Lehner 87] Lehner, Paul E. (1987). Cognitive Factors in User/Expert-System
Interaction. Human Factors, February, 29(1), 97–109.

[Mayer, et al. 87] Mayer, R. J., et al. (1987). Knowledge-based integrated information
systems development methodologies plan (Vol. 2) (DTIC-A195851).

[More 88] More, Roger A. (1988). Supplier/User Interfacing in the Development and
Adoption of New Hardware/Software Systems:A Framework for Research. IEEE
Transactions on Engineering Management, 35(3), August, 190–196.

 [Visner 88] Visner, Robert J. (1988). Console Systems: The Man-Machine Interface.
Control Engineering, September, 18–19.

[Zachman 87] Zachman, J. (1987). A Framework for Information Systems Architecture.
IBM Systems Journal, 26(3), 276-292.

