Armor Considerations for Ground Platforms

Author(s): Dr. Douglas Templeton

Performing Organization: US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Security Classification of:
- a. REPORT: unclassified
- b. ABSTRACT: unclassified
- c. THIS PAGE: unclassified

Limitation of Abstract: SAR

Number of PAGES: 11

Form Approved OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Goal:

To develop advanced armor technologies that provide ground combat and tactical wheeled vehicles capability to provide enhanced protection (multiple threats), weight reduction, and adaptability to threat evolution.
Motivation

DRIVERS

• Lightweight/Mobile
• Threat
• Designable/Repairability
• Armor: Multifunctional Ballistic/Structural

The 3 Ps!

NEED TO BALANCE

PERFORMANCE

PROTECTION

PAYLOAD

UNCLASSIFIED
Armor Design

- Optimal use of mechanics and materials
 - Understand/use mechanics to obtain desired effect
 - Use materials that will amplify the performance of the mechanics
 - Demand “ultimate” performance from materials

Numerical simulations are an integral portion, providing understanding and direction
Vehicle Armor Damage Concerns

• Fabrication issues ("Was that supposed to go in there?")

• Logistical issues ("Did you drop that?")

• Non-combat impact ("Where did that [tree, ditch, wall, (fill in your own)] come from?")

• Combat impacts (penetrating AND non-penetrating ballistic events, blast)
Materials for Ground Platforms

- Ideal situation: materials readily available and fully developed.
 - RHA
 - High hard steel
 - Aluminum
- Reality: Research projects are ongoing to further develop advanced lightweight armors.
 - Composites
 - Ceramics
 - Titanium
 - Magnesium
 - Composite and metal matrix
 - ?????????
- Silicon Carbide Armor Tile Comparison at Equivalent Ballistic Protection

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness</th>
<th>Cost</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC</td>
<td>20 psf</td>
<td>$80/lb*</td>
<td>20-23 psf</td>
</tr>
<tr>
<td>Titanium</td>
<td>1.0-1.5”</td>
<td>$80/lb*</td>
<td></td>
</tr>
<tr>
<td>Spall Liner</td>
<td>1.65”</td>
<td>$80/lb*</td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td>20 psf</td>
<td>$80/lb*</td>
<td>20 psf</td>
</tr>
<tr>
<td>Titanium</td>
<td>1.25”</td>
<td>$30/lb*</td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td>40 psf</td>
<td>$50/lb*</td>
<td>40 psf</td>
</tr>
<tr>
<td>Titanium</td>
<td>1.75”</td>
<td>$50/lb*</td>
<td></td>
</tr>
<tr>
<td>Ti Alumina</td>
<td>30-33 psf</td>
<td>$35/lb*</td>
<td>30-33 psf</td>
</tr>
<tr>
<td>Spall Liner</td>
<td>1.5-2.0”</td>
<td>$35/lb*</td>
<td></td>
</tr>
<tr>
<td>Ti Alumina</td>
<td>1.5-2.0”</td>
<td>$35/lb*</td>
<td>1.5-2.0”</td>
</tr>
<tr>
<td>Ti Composite</td>
<td>2.15”</td>
<td>$35/lb*</td>
<td>2.15”</td>
</tr>
</tbody>
</table>

*Production cost

- Titanium & Aluminum/Lithium Alloy Raw Material Cost

\[\sim$12/lb \text{ vs. } \sim$4/lb \text{ for Conventional Aluminum}\]
Transportability Assessment

DOD - Rail

C17

GIC - Rail

-2.5” B1 + 18” RA

The graphic displays RA outline minus the 2.5” B1 armor.

Note: the ICV has storage on the outside of the side armor.
Combat Vehicles

Current

- Thick, heavy armor
- Structure as by-product of armor
- Inherently damage tolerant
- Arrive on ships
- Well understood materials and manufacturing practices
- Designed for force-on-force engagement
- Cumbersome logistics tail
- Basic situational awareness

Future

- Lightweight armor
- Structure plus armor (A + B)
- Relatively damage intolerant
- Air transportable (C-130)
- Advanced ceramic armors, use of polymer composites and associated mfg. practices
- Designed for noncontiguous, non-linear, reorganizing battlefield
- Common components, reduction of logistics footprint
- Network centric, highly interdependent
Tactical Vehicles

Current
- Tired and aging fleet
- Corrosion prone
- Cabs typically unarmored. Armoring via add-on-armor kits
- Reduced vehicle payload, maneuverability, reliability, safety, maintainability, and life expectancy
 - Increased wear and tear on vehicle components, fuel consumption, and life cycle costs
- Multiple original equipment manufacturers, little commonality
 - Designed for traditional role of logistics support

Future
- Recapitalization with appliqué armor (A-kit/B-kit)
- Be more survivable in mine blast events
- Component commonality (hardware, transparent armor, B-kit panels
- Gun turret and advanced countermeasures
- Crew installable B-kit, with minimal tools
- Enhanced crew survivability to meet threat
- Increased system reliability
- Taking on more of an assault role

UNCLASSIFIED
SUMMARY

- Significant challenges remain in areas of material development and mechanisms
- Modeling and simulation is a critical enabler