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The Autodiagnostic Adaptive Precision Trainer for Decision Making (ADAPT-DM) is a

framework for adaptive training of decision making skills. The training challenge is that

decision making behavior is mostly unobservable with traditional behavioral measures, which

generally only give access to outcome performance. This article describes the ADAPT-DM

framework, which utilizes physiological sensors, specifically electroencephalography and eye

tracking, to detect indicators of implicit cognitive processing relevant to decision making and

accomplish the granularity required to pinpoint and remediate process level issues. Using these

advanced measures, the trainee’s performance on these cognitive processes can be assessed in real

time and used to drive smart adaptations that individualize training. As a proof of concept, the

ADAPT-DM framework was conceptually applied to the contact evaluation task in submarine

navigation. Simulated data from 75 students, grouped into three levels of expertise (novice,

intermediate, and expert), were used for principal component analysis to identify skill

dimensions that reflect proficiency levels. Then ADAPT-DM’s composite diagnosis was

performed, which uses an expertise model that integrates automated expert modeling for

automated student evaluation machine learning models with eye tracking and electroenceph-

alography data to assess which proficiency level the simulated students actions were most similar

to. Based on additional assessments, the diagnostic engine is able to determine whether the

student (a) performs to criterion, in which case training could be accelerated, (b) is in an

optimal learning state, or (c) is in a nonoptimal learning state for which remediation or

mitigation are needed. Using root cause analysis techniques, the ADAPT-DM process level

measures then allow instructors to pinpoint where in the decision making process breakdowns

occur, so that optimal training adaptations can be implemented.
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I
n highly dynamic work situations, such as a
submarine crew environment, individuals are
required to function with high levels of
decision making (DM) skill proficiency while
in an environment marked by unforeseen

threats, complex data streams, and high levels of
uncertainty. The time typically available for training
such DM skills is limited; therefore, there is a need for
systems that can accelerate skill development, bringing
trainees up to speed more quickly. Yet, existing training
systems lack the capability to provide real-time adaptive

training that can ensure effective and efficient training.
An opportunity exists to precisely assess trainee
performance and adapt the training experience to
accelerate the learning process by (a) identifying and
mitigating times when a trainee is in a nonoptimal
learning state and time is being wasted, (b) identifying
the root cause of performance deficiencies to allow
feedback to be tailored to trainee-specific decrements,
and (c) adapting training with increasing levels of
trainee expertise to ensure efficient utilization of
training time. The challenge with respect to assessing
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the DM process during training, specifically, is that
much of DM behavior is unobservable and thus difficult
to measure with traditional behavioral measures, which
generally only give access to outcome performance
(Klein 1998). Outcome measures, such as decision
outcomes, do not give the granularity needed to
pinpoint and remediate process level issues. Implicit
indicators are needed, such as visual scan patterns (i.e.,
how a decision maker is collecting information and what
information is being considered), key cues entering into
the decision, sources of distraction or confusion, or
changes in cognitive processing that affect readiness to
learn (e.g., fatigue, disengagement) (Klein and Hoff-
man 1992; Macklin et al. 2002). To increase assessment
granularity for cognitive processes, we must (a) capture
and evaluate perceptual and cognitive processes relevant
to DM, (b) analyze the trainee’s performance on these
cognitive processes in real time, and (c) use these data to
drive smart adaptations that are grounded in training
science. As such there is a need for physiological-
sensor–based real-time adaptive training.

The Autodiagnostic Adaptive Precision Trainer for
Decision Making (ADAPT-DM) is a framework that
aims to address this training gap. The framework is
composed of three components necessary to ensure
precision training: measurement, diagnosis, and adap-
tation (Figure 1).

N The measurement component allows for the
incorporation of a broad range of data collection
tools, such as system collected, self-report,
instructor assessment, behavioral, physiological,

and neurophysiological measurement to gain a
comprehensive understanding of trainee perfor-
mance and state.

N By incorporating diagnosis methods, such as root
cause analysis, expert comparison, and error
pattern analysis, the diagnosis component ana-
lyzes these data to direct remediation and
facilitate real-time training.

N Based on the diagnosis, the adaptation compo-
nent triggers adaptations strategies designed to
address performance and state issues through
real-time adaptations, after-action feedback, and
selection of future training content.

ADAPT-DM theoretical foundation

‘‘Expertise is the key factor in decision making in
natural environments.’’ (Lipshitz et al. 2001)

Two key models serve as the theoretical foundation for
ADAPT-DM: the Stimulus- Hypothesis-Option-Re-
sponse (SHOR) model (Wohl 1981) and the Skills-
Rules-Knowledge (SRK) model (Rasmussen 1983).
Similar to other contemporary models relevant to tactical
DM, such as Endsley’s (1995) situation awareness model
and Klein’s recognition primed decision-making model
(Lipshitz et al. 2001), the SHOR model dissects the DM
process into four distinct steps.

N Stimulus: In this step a decision maker gathers,
recalls, filters, and aggregates information.

Figure 1. The Autodiagnostic Adaptive Precision Trainer for Decision Making (ADAPT-DM) framework.
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N Hypothesis: Here, the decision maker creates and
evaluates hypotheses about the environment
around them and selects the most plausible
hypothesis.

N Option: The decision maker creates and evaluates
decision options for how he or she should
respond based on the hypothesis selected and
potential positive and negative outcomes.

N Response: The decision maker plans, organizes,
and executes the response selected.

This DM process becomes abridged as a decision
maker develops expertise. According to Rasmussen’s
(1983) SRK model (Table 1), as expertise develops a
performer can successfully complete the decision task
with greater levels of automaticity and hence lower
levels of cognitive control.

Taken together, these models (Rasmussen 1983;
Wohl 1981) suggest that as performers build expertise,
they move from purely knowledge-based performance
to skill-based performance (Figure 2). For novices,
situations are generally novel, and they have to perform
the entire DM process, analyzing the environment and
creating a hypothesis of what the pattern of cues means
for the situation, then generating and evaluating
potential responses. As expertise develops with expe-
rience base, the trainee starts to develop the ability to

recognize patterns of cues, which can be successfully
associated with existing mental models of a situation,
so that known response rules associated with these
familiar situations can be triggered. Thus, the DM
process becomes abbreviated as the trainee quickly
recognizes a situation and applies a preprogrammed
rule. With high levels of expertise, the DM process
becomes almost automated, wherein an expert reacts to
familiar cues with an almost ‘‘wired response’’ based on
almost immediate (and possibly parallel) recognition
and evaluation of the situation.

These models provide a framework for evaluating at
a very granular level where in the DM process
breakdowns are occurring and at what level of expertise
the decision maker is operating. Expertise is the key
factor in DM in natural environments (Lipshitz et al.
2001), and the ability to identify level of expertise will
allow a more comprehensive understanding of DM
performance, including why performance breakdowns
occur and what kind of scenario adaptations are most
useful to address performance problems.

ADAPT-DM measurement component
For the first component of the ADAPT-DM

framework—the measurement component—the essen-
tial question is what to measure. Within the natural-

Table 1. SRK types of performance.

Type of
performance Level of cognitive control Description of performance

Expertise typically
associated

Skill-based No conscious, cognitive control,

highly automated

Routine activities conducted automatically

that do not require conscious allocation

of attention

High level of expertise

Rule-based Low level conscious cognitive

control

Activities controlled by a set of stored rules

or procedures

Medium level of expertise

Knowledge-based High level of conscious cognitive

control

Novel situations are presented for which a

plan must be developed to solve a problem

Low level of expertise

Figure 2. Adaptive DM model.
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istic decision making (Lipshitz et al. 2001) literature,
some researchers have attempted to identify more
granular measures of DM skills than performance time
and accuracy by considering such measures as number
of options considered (Klein and Peio 1989); however,
few have considered how to operationalize real-time
DM performance measurement and diagnosis. For
example, Elliot et al. (2007) presented four metric
categories linked to perceptual and cognitive skills
associated with natural decision making, including
speed (e.g., reaction time, response time), accuracy
(e.g., accuracy of response), efficiency (e.g., shortest
path to success), and planning (e.g., proactive actions
taken). Although these measures provide some level of
assessment of the DM process, they are not sufficiently
granular to pinpoint where breakdowns in DM
performance occur to provide real-time adaptations to
target these deficiencies. This is the goal of the
ADAPT-DM framework. One specific limitation of
behavioral measures is that they are limited in their
ability to discriminate performance within the ‘‘good’’
or ‘‘bad’’ performance categories for decision making.
For example, an expert and a journeyman may both
reach a good decision; however, the amount of effort
(e.g., speed and flexibility) required for this level of
achievement might differ significantly (Klein and
Hoffman 1992). Time measures can typically capture
a portion of this; however, they do not gauge internal
states, such as workload, that might be critical factors
when performing in novel or stressful situations. An
expert who is not only performing well but has reached
a certain level of ease and automaticity will be more
prepared than a journeyman who is performing well
but is using every available cognitive resource to
achieve this level of performance. The journeyman
may need more practice to maintain high performance
under high stress levels in the field. It is thus necessary
to understand the underlying cognitive states of the
trainee, which both affect learning and are indicators of
learning effectiveness, to comprehensively diagnose
DM expertise and performance.

With the emergence of neurophysiological and
physiological measurement technology that allows for
real-time assessment of perceptual and cognitive
processing, these unobservable processes become ac-
cessible. Specifically, some cognitive states that are
measurable via electroencephalography (EEG), includ-
ing workload and engagement, can provide neurophys-
iological measures of the unobservable aspects of DM
skill development (Dorneich et al. 2007; Levonian
1972). Table 2 outlines specific cognitive states that
generally negatively affect the readiness for training by
reducing attentional resources that facilitate learning
and retention. Thus, it may be possible to utilize
certain neurophysiological cognitive state metrics to
detect issues with readiness to learn during DM
performance:

N Workload: High cognitive workload is expected
when performing in a knowledge-based control
mode because no automaticity guides the process
(Berka et al. 2007; Klein and Hoffman 1992). In
rule-based control mode, rules are consciously
retrieved from memory and applied to gathered
information, also causing increased cognitive
processing demands. Experts using skill-based
DM, however, employ automated routines that
require fewer cognitive resources. Thus, it is
expected that the assessment of cognitive work-
load can contribute to the identification of the
trainee’s control mode.

N Engagement: Because of high task demands,
novice and journeyman trainees are expected to
exhibit higher levels of engagement than expert
trainees because studies have shown a trend for
decreasing EEG engagement with increasing task
proficiency (Berka et al. 2007; Stevens, Galloway,
and Berka 2007).

N Distraction: Distraction is a state characterized by
a lack of clear and orderly thought and behavior,
where a trainee becomes involved somewhere
other than the cognitive tasks of interest

Table 2. Cognitive readiness problem states.

Problem state Rationale/literature support

Workload When workload is low and trainees are bored, they pay less attention, resulting in lower retention and decreased ability to

apply information (Small, Dodge, and Jiang 1996).

When workload is high, divided attention results, which is associated with large reductions in memory performance and

small increases in reaction time during encoding, and small or no reductions in memory during recall, but

comparatively larger increases in reaction time (Craik et al. 1996).

Engagement Low levels of engagement indicate that a trainee is not actively engaged with some aspect of the training environment

(Dorneich et al. 2004).

Distraction Even if distraction does not decrease the overall level of learning, it can result in the acquisition of knowledge that can be

applied less flexibly in new situations (Foerde, Knowlton, and Poldrack 2006).

Drowsiness Drowsiness can causes lapses in attention and performance, as well as microsleeps (Neri et al. 2007).

Carroll et al.
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(Poythress et al. 2006). Expert performers have
an exhaustive mental model of the task or
situation so that very few situations cause
distraction. Confusion is one element of distrac-
tion. In rule-based decision makers, confusion
may stem from the conscious selection of rules
and difficulties in applying them to the situation
at hand. Naı̈ve trainees are expected to show
relatively high levels of confusion because their
mental models are more likely to be incorrect or
insufficient so that new situations may cause a
mismatch.

N Drowsiness: Sleep disorders are common and can
have deleterious effects on performance (Berka et
al. 2004, 2005; Neri et al. 2007). In fact, loss of
sleep can accumulate over time and result in a
‘‘sleep debt,’’ which can lead to impairments in
alertness, memory, and decision making. Individ-
uals with chronic accumulation of fatigue are often
unaware of the impact on their performance.

Eye tracking metrics provide a physiological measure
with the granularity necessary to understand why DM-
related performance failures occur to effectively adapt
training. In particular, eye tracking offers an additional
set of behavioral-based metrics to aid in assessing the
information processing of individuals as it relates to
perception. Toward this level of assessment, the
following eye tracking metrics have been validated as
providing information on perceptual processes (Hyönä,
Radach, and Deubel 2003):

N Number of overall fixations: Inversely correlated
with search efficiency.

N Gaze percent on Areas of Interests (AOIs): Longer
gazes are equated with importance or difficulty of
information extraction.

N Mean fixation duration: Longer fixations are
equated with difficulty of extracting information.

N Number of fixations on AOIs: Reflects the
importance of each area.

Thus, beyond traditional DM performance-based
metrics, neurophysiological and physiological metrics
can be used to provide an assessment of the
unobservable aspects of DM skills development.

ADAPT-DM diagnosis component
The next component of the ADAPT-DM frame-

work is the diagnosis component. ADAPT-DM
diagnoses root causes in performance deficiencies and
inefficiencies based on three important factors associ-
ated with DM skill development:

1. DM performance: The diagnosis component can
use performance outcome (e.g., speed, accuracy,

efficiency, and planning; Elliot et al. 2007) and
eye tracking (e.g., number of overall fixations,
gaze percentage on AOIs, mean fixation dura-
tion, number of fixations on AOIs; Hyona,
Radach, and Deubel 2003) data to assess whether
a trainee is collecting appropriate information,
considering and understanding information ap-
propriately, selecting good decision options, and
appropriately executing these options.

2. Learning state: To ensure feedback and facilitate
effective performance improvements, it is essen-
tial to ensure that trainees are operating in an
effective learning state. The diagnosis component
can use EEG-based metrics (e.g., workload,
engagement, distraction, drowsiness; Dorneich
et al. 2007; Levonian 1972) to ensure that the
trainee’s learning state remains at adequate levels
to promote learning.

3. Expertise: Performance may not provide sufficient
granularity to drive precise adaptations. A trainee
can perform well but be using every spare
resource, have inefficient performance, and sub-
stantial room for improvement in terms of
strategies used. Additionally, performers operat-
ing at different expertise levels commit errors for
different reasons. Thus, the diagnosis component
assesses expertise to allow for more precise
adaptations to be made.

Expertise is the most challenging of these skills to
diagnose. To truly understand why trainees are
performing as they are, one must take into account
expertise level. Reason (1990) identified typical
performance characteristics and failure modes related
to the SRK levels (Rasmussen 1983) of cognitive
control associated with varying expertise. These
characteristics and failure modes (Table 3) can be used
to diagnose deficiencies with respect to expertise level
and select effective adaptations. However, given the
multifaceted nature of expertise, it cannot be diagnosed
by merely looking at a small subset of performance
measures. Instead, it is necessary (though challenging)
to consider several aspects of performance and
cognitive state. The Automated Expert Modeling for
Automated Student Evaluation (AEMASE) process
can be used to support such diagnosis (Abbott 2006).

AEMASE is a process for subject matter experts to
rapidly create and update their own models of
normative behavior (Abbott 2006). First, examples of
task behavior are recorded in a training simulator. The
examples may be either good or bad behavior
performed by either students or subject matter experts,
but the examples must be accurately graded by a subject
matter expert. Second, machine learning algorithms are

Developing a Decision Making Trainer
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applied to create a behavior model. Creating the model
requires selecting the data fields that best distinguish
between good and bad behavior (feature selection) and
applying an algorithm to generalize assessments of
observed behavior to assessments of new (potentially
novel) student behavior. An appropriate algorithm
must be selected for each student performance metric,
depending on the type and amount of example data
available. Third, student behavior is assessed using the
behavior model. As each student executes a simulation-
based training scenario, his or her behavior is compared
with the model for each performance metric to identify

and target training to individual deficiencies. The
model determines whether student behavior is more
similar to good or bad behavior from its knowledge
base. Initially, the knowledge base is sparse, and
incorrect assessments may be common. However, an
instructor may override incorrect assessments. AE-
MASE learns from this interaction, so the model
improves over time. Real-time student assessment can
be implemented by continuously reevaluating the
model throughout a scenario to support dynamic
scenario adaptation. In a previous pilot study, AE-
MASE achieved a high degree of agreement with a

Table 3. Typical performance characteristics and failure modes related to the SRK (Reason 1990).

Expertise level
Typical control

mode Performance characteristics Failure modes

Expert Skill based Errors occur during routine action Inattention

Attention during errors is not directed at task at hand Double-capture slips

Errors occur while applying known schemata Omissions following interruptions

Errors are ‘‘strong but wrong’’ and predicable Reduced intentionality

Error numbers may be high, but error/opportunity ratio

is small

Perceptual confusions

Low to moderate influence of (mostly intrinsic) factors Interference errors

Error detection is usually fairly rapid and effective Overattention

Knowledge of change is not accessed at proper time Omissions

Repetitions

Reversals

Journeyman Rule based Errors occur during problem-solving activities Misapplication of good rules

Attention during errors is directed at problem-related issues First exceptions

Errors occur while employing stored rules Countersigns and nonsigns

Errors are ‘‘strong but wrong’’ and predicable Informational overload

Error numbers may be high, but error/opportunity ratio

is small

Rule strength

Low to moderate influence of (mostly intrinsic) factors General rules

Error detection is difficult and often requires external

intervention

Redundancy

Changes in the environment are anticipated but when and

how is not known

Rigidity

Application of bad rules

Encoding deficiencies

Action deficiencies

Wrong rules

Inelegant rules

Inadvisable rules

N Novice Knowledge-

based

Errors occur during problem-solving activities Selectivity

Attention during errors is directed at problem-related issues Workspace limitations

Errors occur while employing limited, conscious processes Out of sight out of mind

Errors occur with variable predictability Confirmation bias

Error numbers are small, but high error/opportunity ratio Overconfidence

Influence of extrinsic situational factors on errors is high Biased reviewing

Error detection is difficult and often requires external

intervention

Illusory correlation

Changes in the environment are not prepared for and not

anticipated

Halo effects

Problems with causality

Problems with complexity

Problems with delayed feedback

Insufficient consideration of processes

in time

Thematic vagabonding

Carroll et al.
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human grader (89%) in assessing tactical air engage-
ment scenarios. In a subsequent study of E2 Naval
Flight Officer tasks, AEMASE achieved 80%–95%
agreement with a human grader on a range of metrics
(Stevens et al. 2009). AEMASE is useful when data
collection for a metric can be automated, but the metric
is difficult to assess (i.e., grade performance) because
the desired value for the metric depends on what is
happening in the scenario, or there are several equally
valid values. AEMASE can support real-time assess-
ment and scenario adaptation by operationalizing
complex or ‘‘fuzzy’’ assessments.

Based on a combination of relevant performance and
state metrics, AEMASE can thus be used to determine
the level of expertise to which a trainee’s overall
performance and state are most similar. This compar-
ison can be made in near real time, thereby feeding the
resulting categorization back to the ADAPT-DM
diagnostic component.

ADAPT-DM adaptation component
The final component of the ADAPT-DM frame-

work is the adaptation component, which precisely
adapts training to support individualized DM skill
development, based on the outcome of the diagnostic
component. It uses a hierarchical adaptation strategy to
adapt training without disrupting learning. Specifical-
ly, Bruner’s (1973) constructivist theory can be
formulated into a hierarchical adaptation strategy by
applying the following principles:

N First, consider the student’s willingness and
ability to learn (i.e., cognitive readiness, as
assessed via EEG-based cognitive state metrics).
This adaptation stage should aim to enhance
learning state to ensure learning can occur and
mitigate any negative learning states, such as
drowsiness and distraction.

N Second, structure training so that concepts can be
easily grasped by trainees and skills deficiencies
can be addressed (i.e., spiral organization). This
adaption stage should aim to improve knowledge
and skills to allow development of skilled
performance and prevent trainees from practicing
bad habits or perpetuating incorrect performance
or error patterns.

N Third, once performance is at target performance
levels, design difficult cases that facilitate extrap-
olation and fill any gaps in training (i.e.,
encourage trainees to go beyond the information
given). This adaptation stage should aim to
increase expertise levels to boost efficiency and
effectiveness of performance by providing trainees
with practice opportunities and instruction de-

signed to move them up the expertise continuum
to skilled performance (Figure 3).

A generalizable adaptation matrix was constructed
detailing adaptation strategies that can be used to
address each stage in the hierarchical adaptation
strategy (Table 4).

Case study: Submarine navigation, contact
evaluation task

As a proof-of-concept, the ADAPT-DM frame-
work was conceptually applied to submarine naviga-
tion, particularly the contact evaluation task, which is a
critical decision point in navigation. Based on a task
analysis, it was determined that the contact evaluation
task (Figure 4) entails the following perceptual,
cognitive, and response components. Perceptual compo-
nents: (1) scan the radar display for contacts; (2) detect
contacts; (3) scan for other relevant cues to assess the
contact. Cognitive components: (4) assess contact
relationship to own ship; (5) use tools to aid in
assessing contact relationship; (6) decide whether
contact is of enough concern to monitor. Response
components: (7) hook and monitor contact; (8) com-
municate contact information to the Contact Coordi-
nator (CC).

Based on the task analysis, behavioral performance
metrics (including eye tracking metrics) were identified
for all tasks within the task flow (Table 5). In addition,
EEG-based cognitive state metrics were identified to
assess trainee state (Table 2).

Based on the performance metrics identified, the
next step is diagnosing the adequacy of DM perfor-
mance. While many of the metrics have straightfor-
ward thresholds, which divide good and poor perfor-
mance (e.g., relevant contact hooked or not), several of
the metrics have complex performance thresholds (e.g.,
scan data). It was determined that AEMASE machine

Figure 3. Adaptation goals with respect to diagnosed

problem areas.
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Table 4. Adaptation strategies.

Performance Expertise Diagnosis Real time adaptation Future adaptation

Good Expert Criterion Increase difficulty Once criterion met for highest level

of difficulty, move on to new

training objective

Expert Optimal learning state None Continue practice at this level of

difficulty

Journeyman Optimal learning state None Continue practice at this level of

difficulty

Journeyman Nonoptimal learning:

drowsy

Increase pace of training Give trainee a break, encourage to

get up and walk around

Novel situation to challenge Increase difficulty of next scenario

Journeyman Nonoptimal learning:

distracted

Auditory cue to bring back into focus Increase difficulty of next event

Novice Nonoptimal learning:

drowsy

Give positive feedback until not drowsy:

‘‘You are scanning relevant areas, keep

up the good work!’’

Give trainee a break, encourage to

get up and walk around

Continue practice at this level of

difficulty

Novice Nonoptimal learning:

distracted

Auditory cue to bring back into focus Continue practice at this level of

difficulty

Bad Journeyman Skill deficiency Hints to abbreviate process or increase

efficiency of performance

Decrease difficulty of next event

Correction of error patterns/bad rules/

misapplication of good rules

Journeyman Nonoptimal learning:

drowsy

Cue to wake them up Give trainee a break, encourage to

get up and walk around

Increase volume of auditory cues Continue practice at this level of

difficulty

Increase intensity of visual cues

Journeyman Nonoptimal learning:

distracted

Auditory cue to bring back into focus—

feedback relevant to performance

decrements

Continue practice at this level of

difficulty

Novice Skill deficiency Scaffolding to assist in building rules

(training wheels, faded feedback, etc.)

Decrease difficulty of next event

Feedback to deal with typical failure

modes

Novice Nonoptimal learning:

drowsy

Give feedback on errors until not

drowsy: ‘‘You are spending too much

time on irrelevant areas.’’

Give trainee a break, encourage to

get up and walk around

Decrease difficulty of next event

Novice Nonoptimal learning:

distracted

Auditory cue to bring back into focus—

feedback relevant to performance

decrements

Decrease difficulty of next event

Figure 4. Contact evaluation task.
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learning models (Abbott 2006) could be used to
compare performance on these metrics to expert and
novice models to effectively assess performance. Each
metric was thus defined by the behavioral or physio-
logical variables for expert or novice comparison, the
contextual variables that determine appropriate behav-
ior or expected physiological response, and the
algorithm proposed for modeling expected behavior
from the context (Table 6).

Most of the proposed metrics deal with the
allocation of attention over time. These metrics can
be implemented with occupancy grids. An occupancy
grid is a two-dimensional histogram that accumulates
the amount of time spent in each cell of a grid. It is
weighted to reflect the recent past using a decay
function. The visualization of an occupancy grid is
similar to heat maps used in eye tracking studies.
However, the purpose of the occupancy grid is not
mainly to produce a visualization; rather it is to create a

quantifiable similarity metric for expert versus trainee
attention allocation. The relevance of a context is
determined by a similarity metric over contextual
variables, such as the positions of a submarine and
contacts, and by ocean currents, etc. The similarity
between expert and trainee actions is the cross product
(or area of overlap) between the expert and trainee
occupancy grids.

In the example occupancy grid in Figure 5, a trainee
student (S, Left) is navigating toward a port in the
presence of other surface vessels. The knowledge base
(1-3, Right) contains recordings of previous expert
scenario executions. The knowledge base is searched
for relevant contexts (1 and 2, highlighted in green),
defined by similar positioning of the submarine and
other vessels, currents, etc.

After selecting relevant contexts 1 and 2 (Figure 5),
AEMASE determines whether the trainee’s actions are
similar to any performed by an expert. The red areas

Table 5. Behavioral performance metrics for the contact evaluation task.

Task Metrics

Scan radar screen for contacts Appropriate view/scale of Field of View (FOV)

% of relevant areas scanned

% of areas scanned that were relevant

Time until each/all relevant areas scanned

Overall fixation duration on individual AOIs and screen

Average fixation duration (on relevant and irrelevant)

No. of times scan pattern changes directions (and moves significant length)

Detect contact Target fixated (yes/no)

Time until first target fixation

No. of target fixations

Duration of target fixations (average duration, total duration)

Scan relevant cues needed to assess contact % of areas scanned that are relevant (cues and contact)

Appropriate view/scale of FOV

% of relevant areas scanned

% of areas scanned that were relevant

Time until each/all relevant areas scanned

Overall fixation duration on individual AOIs and screen

Average fixation duration (on relevant and irrelevant)

No. of times scan pattern changes directions (and moves significant length)—fixation

pattern on contact, on cue, on contact, on cue

Assess contact relationship to ship No. of target fixations

Duration of target fixations (average duration, total duration)

Use tools to assess contact relationship to ship

(e.g., threat rings)

Appropriate tool use (occurrence and duration of use)

No. of fixations on tools

Decide whether contact is of concern enough

to monitor

Reaction time (time from detection/fixation until response)

No. of target fixations

Duration of target fixations (average duration, total duration)

Decide whether contact is of concern enough

to report to CC

Reaction time (time from detection/fixation until response)

No. of target fixations

Duration of target fixations (average duration, total duration)

Hook contact/not Response accuracy: contact hooked or not

Response time (time from start to completion of response)

Communicate contact to CC/not Response accuracy: Occurrence of communication to CC (either measured via

instructor event-based checklist or voice recognition/Sandi software) and whether

contact relevant

Response time (time from start to completion of response)
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show where the trainee student (S, Left) or experts (1,2
Center) have been looking recently. S*1 and S*2 are the
dot product (or overlap) of trainee student attention
with expert attention 1 and 2, respectively. S*1
(highlighted in green) has the larger area. However,
S*1 covers only a portion of 1, so the trainee is
neglecting some important areas.

The composite diagnosis is driven by an expertise
model that integrates the AEMASE metrics with eye
tracking and EEG data to assess trainee proficiency.
The first step in this data integration process was to

identify a minimal set of skills necessary to characterize
trainee performance and expertise. Because trainees
learn a progression of skills throughout their training,
metrics that are appropriate for novices might be
irrelevant for experts (and vice versa). Through the
skills identification process, relevant metrics can be
identified for trainees at each level in the training
progression. Then Principal Component Analysis
(PCA) can then be used to identify skill dimensions
that reflect each proficiency level.

Table 7 shows hypothetical data as an example. In
the example, three metrics have been applied to four
trainees. The metrics include: ScanRelevance, which is
the overlap between expert and trainee occupancy grids
from eye tracking data; RadarZoom, which is the
overlap between expert and trainee occupancy grids
from radar center of view/zoom settings, and Respon-
seTime, which is the number of seconds from the
appearance of a new track until it is hooked by the
trainee. Figure 6 shows a scatter plot for each pairing of
two variables with the hypothetical data.

The values for RadarZoom and ScanRelevance are
strongly correlated; they lie nearly on a straight line.
This means either can be accurately predicted from the

Table 6. Metrics proposed for AEMASE evaluation.

Metric Description Context Algorithm

Metrics collected from the simulation

Field of view and

zoom scale of

radar operator

interface

Radar operators control display settings

specifying area and scale. Maintaining

overall situational awareness requires

adjusting the settings to maintain the

‘‘big picture’’ while frequently zooming

in to view important detail.

Position of the submarine in

the port, presence of tracks,

and distracters.

Occupancy grid.

Reaction time for

appearance of

new contact

Radar operators must maintain situational

awareness to react promptly to new radar

returns. A delayed reaction reduces the

amount of time to take measures in

response to the new contact.

The position of the new

contact relative to the

carrier. Other contacts or

navigation by own ship

may also influence the

allowable reaction time.

One-sided Gaussian distribution

of expert reaction times, which

captures the proportion of

experts requiring at least x

seconds to respond.

Metrics collected from eye tracking

Percentage of

relevant areas

scanned

This metric quantifies whether the student

is monitoring all areas that an expert

would monitor. It requires correlating

the view area (determined by radar scope

settings) with the onscreen gaze position.

The relevance of areas is

conditioned on the terrain

(contour of the ocean floor

or inlet). Relevance also

depends on entities in the

scenario, including their

locations, attributes, and

actions.

Using the occupancy grid, this is

the area of the overlap between

student and expert scan areas,

divided by the expert’s total

scan area.

Percentage of areas

scanned that were

relevant

This metric quantifies whether the student

is spending an inordinate amount of time

and effort monitoring areas that are

unlikely to be salient. The hypothesis is

that experts know which cues in the

environment are most salient, while

novices’ patterns of attention allocation

are more randomized.

The relevance of areas is

determined as before, by

retrieving examples of

expert attention allocation

in similar contexts.

Using the occupancy grid, this is

the area of the overlap between

student and expert scan areas,

divided by the student’s total

scan area.

Figure 5. Comparing expert versus student actions with
occupancy grids.
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other, so there is no need for both. Thus—in this
hypothetical sample—trainees who correctly select
radar settings also tend to focus visual attention on
the most important areas. ResponseTime, in contrast,
is not strongly correlated with either of the other
metrics. From these data, PCA would identify two
dominant dimensions: The first would correspond
closely with both ScanRelevance and RadarView, and
the second with ResponseTime.1

The second step of the expertise model assesses
general expertise. For this aspect of the diagnosis, an
instructor assesses the general expertise of each trainee
by watching the trainee execute a task scenario. A
model of the instructor’s assessment is trained using
multiple linear regression and the trainee’s skill ratings
as predictors. Models for different expertise levels (i.e.,
novice, journeyman, expert) use different skills (Klein
and Hoffman 1992), so the expertise model is
particular to each skill level. The model also reveals
the importance of each skill in the instructor’s general
assessment of expertise. The model is intended to yield
several insights:

N The system simulates the instructor’s assessment
of general expertise of trainees in the future.

N If a skill does not contribute significantly to
overall expertise, it might be because the skill is
not very important. Alternately, it might be that
the selected task scenarios do not exercise the
skill, and additional scenario development is
needed.

N If the model does not fit the instructor assess-
ments very well, it may be that the set of metrics
(and physiological metrics) is insufficient, and
new metrics should be added. Or, overall
expertise might be a nonlinear function of the
skills. In this case nonlinear models (e.g., neural
networks, support vector machines, etc.) could be
explored. Alternately, the instructor’s assessments
might simply be subjective and unreliable.

N Creating models for several instructors would
allow for determination of whether instructors are
consistent with each other in assessing expertise
and placing value on particular skills.

The expertise model was explored by prototyping
the algorithms for the model. The prototype was
implemented using synthetic data, so the associated
results (such as figures showing the contribution of
specific metrics to the expertise model) are notional
and serve only to illustrate the expertise model concept.
In developing the prototype, we simulated a subject
population of 75 students grouped into three levels of
expertise (novice, intermediate, and expert) for the set
of metrics presented in Table 8, which lists the
population mean and standard deviation for each
metric broken down by level of expertise. The units
for each metric in the synthetic data set are not
specified (e.g., negative values have no special signif-
icance).

In the prototype, PCA was performed on the data
for each level of expertise independently to explore the
hypothesis that different skills are developed at each
level of expertise. Figure 7 shows a ‘‘scree plot’’ for
components of variance (skills) for intermediate-level
students. This plot shows that most of the variance
from the 14 original metrics is explained by only the
first 2 principal components (52%), and the first 4
capture 80%, while the first 6 metrics capture 90% of
the metrics. Thus it is possible to construct new
composite metrics to simplify trainee assessment.

Figure 6. Scatter plot for each pairing of two variables with the hypothetical data.

Table 7. Hypothetical metric data.

Trainee ScanRelevance RadarView ResponseTime

1 .80 .75 8

2 .50 .55 4

3 .49 .40 7

4 .74 .81 3
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As such, composite metrics were extracted. Each of
the principal components is a composite metric, which
is a combination of the 14 original metrics. But in most
of the composite metrics, only a few of the original
metrics have significant influence. For the intermediate
trainee in the synthetic data set, most of the weight in
the first principal component is assigned to Distrac-
tion. Metrics that do not contribute significantly to the
composite metrics may be discarded entirely. Figure 8

shows the original 14 metrics projected onto the three
first principal components, which reveals which of the
original metrics best align with the principal compo-
nents. This information is used to derive meaningful
names for the composite metrics.

Based on the aforementioned three-tier diagnoses
(DM performance, learning state, and expertise), it was
then necessary to identify how these streams of data
would be integrated to identify adaptation trigger

points. First, the diagnosis engine would continuously
assess cognitive state based on neurophysiological
measures, including levels of workload, engagement,
distraction, and drowsiness. These assessments would
be based on predefined thresholds and evaluate
adequacy of cognitive learning state. Second, the
diagnosis engine would assess predefined behavioral
and physiological (i.e., eye tracking) performance
metrics associated with each step in the DM process
(see description of the SHOR DM model; Wohl
1981). Third, the diagnostic engine would identify the
level of expertise the trainee’s performance and state
that most closely matches based on a combination of all
relevant performance and state metrics. Based on
outputs from these two steps, the diagnostic engine
would place the trainee within one of three categories:

Table 8. Synthetic data.

Mean Standard deviation

Novice Intermediate Expert Novice Intermediate Expert

RADARView 1.05 4.63 7.87 2.06 1.67 1.72

ReactionTime 3.14 4.92 7.14 1.18 1.73 1.89

ResponseTime 6.04 8.01 10.19 2.42 2.15 2.19

Workload 10.60 21.17 216.71 2.31 2.08 2.90

Engagement 2.01 2.12 2.05 0.49 0.39 0.62

Distraction 0.83 0.90 1.25 1.27 0.82 1.07

Drowsiness 3.55 4.27 3.48 1.85 1.96 1.38

GazeCoverage 13.30 26.76 61.92 3.85 4.35 3.84

GazeRelevance 15.71 41.79 96.01 4.52 4.11 4.67

GazeTargetTime 19.21 57.07 65.92 4.34 3.11 4.47

GazeTargetDuration 1.46 0.72 27.45 1.67 1.30 1.47

GazeToolFixations 11.42 216.52 215.48 4.47 2.94 3.41

BlinkRate 10.93 10.05 12.20 3.06 2.54 2.54

PupilSize 5.05 5.38 4.85 1.26 1.21 1.39

Figure 7. Scree plot for intermediate level of expertise.

Figure 8. The original 14 metrics projected onto the three first

principal components, which correspond roughly with

engagement, drowsiness, and radar view settings.
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1. Performance to criterion in which the trainee’s
performance is effective and efficient across a
broad range of situations,

2. Optimal learning state in which a trainee’s
performance is effective; however, practice is
necessary to increase efficiency and build experi-
ence base,

3. Nonoptimal learning state in which the trainee is
having performance or state issues that need
remediation or cognitive state issues that need
mitigation.

Students in the last category would be further
categorized based on performance and state indicators
to pinpoint the root cause of nonoptimal learning state,
specifically identifying whether there was a skill
deficiency or a cognitive state deficiency of drowsiness
or distraction. Based on these categorizations and the
context-specific performance measures, appropriate
adaptations would be triggered (Figure 9).

Table 9 presents the generalizable diagnosis matrix
that shows precisely how the streams of data will be
combined and resulting diagnoses.

Conclusions
This effort has resulted in conceptualization of the

ADAPT-DM framework for supporting precision

training, which is adaptive to trainees’ differing needs,
skill proficiency levels, learning states, and expertise
levels. Implementation of this framework into a training
system should accelerate DM skill development by

N Developing a comprehensive picture of a trainee’s
knowledge, skills, and cognitive state through
continuous performance and state measurement.

N Using sophisticated models of expert and novice
performance to evaluate expertise, along with
performance and learning state, to understand key
deficiencies and opportunities to accelerate learning.

N Ensuring an optimal mix of experiences and
instruction (such as real-time feedback, real-time
scenario modification, and automated cueing and
scaffolding strategies) to rapidly develop robust
and effective DM skills.

Through root cause analysis based on physiological
and neurophysiological data, ADAPT-DM goes
beyond simply assessing whether trainees made good
decisions. Process level measures become feasible,
enabling instructors to pinpoint where in the DM
process breakdowns occurred. The expected benefits of
a system based on the ADAPT-DM framework are

N Training is compressed and accelerated because
the system detects and adapts to the acquisition
of specific skills, learning state, and expertise.

Figure 9. ADAPT-DM real-time diagnosis concept.
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N Trainees are better prepared for live training and
operations by ensuring an optimal experience
base.

N Seamless integration with existing DM trainers.
C
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Table 9. General diagnoses.

Performance measures

DiagnosisPerformance Workload/difficulty Engagement Distraction Drowsiness Expertise

Good Low High Low Low Expert Criterion

Journeyman Optimal learning state

Novice

Low Low High Expert Criterion

Journeyman Nonoptimal learning: drowsy

Novice

Low High Low Expert Criterion

Journeyman Nonoptimal learning: distracted

Novice

High High Low Low Expert Optimal learning state

Journeyman Optimal learning state

Novice

Low Low High Expert

Journeyman Nonoptimal learning: drowsy

Novice Nonoptimal learning: drowsy

Low High Low Expert

Journeyman Nonoptimal learning: distracted

Novice Nonoptimal learning: distracted

Bad Low High Low Low Expert

Journeyman Skill deficiency

Novice Skill deficiency

Low Low High Expert

Journeyman Nonoptimal learning: drowsy

Novice Nonoptimal learning: drowsy

Low High Low Expert

Journeyman Nonoptimal learning: distracted

Novice Nonoptimal learning: distracted

High High Low Low Expert

Journeyman Skill deficiency

Novice Skill deficiency

Low Low High Expert

Journeyman Nonoptimal learning: drowsy

Novice Nonoptimal learning: drowsy

Low High Low Expert

Journeyman Nonoptimal learning: distracted

Novice Nonoptimal learning: distracted
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Endnotes
1It would also identify a third dimension but with a very small

eigenvalue, indicating that the third dimension is negligible.
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