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ABSTRACT

This is a set of lectures given by the author in 2009 at Flinders University, Ade-
laide, comprising one semester of a third-year undergraduate course in physics.
The lectures begin with an introduction to the theoretical background of sta-
tistical mechanics, and then continue with a mixture of theory and application.
Topics covered are those that comprise the standard tool kit for advanced study
in the field.
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A Course of Lectures on Statistical Mechanics

Executive Summary

These lectures were given by the author in 2009 for a one-semester course at Flinders Uni-
versity, Adelaide, as part of that university’s third-year undergraduate course in physics.

The lecture notes begin with an introduction to the mathematical background of sta-
tistical mechanics. They introduce the all-important notion of entropy, which leads to the
concept of temperature and then to the basics of thermodynamics. Following this is an
excursion into the physical chemistry of dissolved salts, and the idea of a reaction attaining
equilibrium. The Boltzmann distribution is then introduced; this serves as the departure
point for a study of systems interacting with an environment. The relevant ideas allow
the entropy of more complex and non-isolated systems to be calculated. At this point we
include a discussion of the approach to entropy advocated by E.T. Jaynes, who was at the
forefront of advanced ideas in statistical mechanics throughout the twentieth century.

Several standard topics are then covered: the Maxwell speed and velocity distributions,
and the theory of transport processes that successfully interrelates thermal conductivity,
viscosity, and heat capacity; this success was historically of prime importance to the for-
mation of an atomic view of matter in physics.

The notes end with a discussion of quantum statistics, blackbody radiation, electric
conductivity, and semiconductors.

It should be emphasised that, course notes being what they are, the following pages
cover the main ideas briskly. In particular, no pictures have been included, although of
course many were drawn in the lectures to aid in the presentation.

iii



DSTO–GD–0612

iv



DSTO–GD–0612

Author

Don Koks
Electronic Warfare and Radar Division

Don Koks completed a doctorate in mathematical physics at
Adelaide University in 1996, with a thesis describing the use of
quantum statistical methods to analyse decoherence, entropy
and thermal radiance in both the early universe and black hole
theory. He holds a Bachelor of Science from the University of
Auckland in pure and applied mathematics and physics, and a
Master of Science in physics from the same university with a
thesis in applied accelerator physics (proton-induced X ray and
γ ray emission for trace element analysis). He has worked on
the accelerator mass spectrometry programme at the Australian
National University in Canberra, and in commercial Internet
development.

Currently he is a Research Scientist with the Maritime Elec-
tronic Warfare Systems group in the Electronic Warfare and
Radar Division at DSTO, specialising in geospatial orientation
concepts. He is the author of the book Explorations in Math-
ematical Physics: the Concepts Behind an Elegant Language
(Springer, 2006).

v



DSTO–GD–0612

vi



DSTO–GD–0612

Contents

1 Introduction 1

2 Preliminaries for Counting Large Numbers 1
2.1 The Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Quantifying Fluctuations in the Binomial

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The Gaussian Approximation to the Binomial

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Integrating a Gaussian Function . . . . . . . . . . . . . . . . . . . . . . . 6

3 Accessible States and the Fundamental
Postulate of Statistical Mechanics 7
3.1 Density of States for a Monatomic Gas . . . . . . . . . . . . . . . . . . . 7
3.2 Density of States for More Complicated Structures . . . . . . . . . . . . . 10

4 Zeroth and First Laws of Thermodynamics 11
4.1 Preparing for the First Law of Thermodynamics . . . . . . . . . . . . . . 11
4.2 Partial Derivatives and Variables Held Constant . . . . . . . . . . . . . . 15

5 Accessible States for Interacting Systems 17
5.1 Defining Temperature, and the Equipartition

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Entropy and the Second Law of Thermodynamics . . . . . . . . . . . . . 19
5.3 Heat, Entropy, and the First Law Again . . . . . . . . . . . . . . . . . . . 21
5.4 “Deriving” the Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Heat Capacity 24
6.1 The Adiabatic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 The Flow of Heat Energy 26
7.1 The Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 The Heat Equation (a.k.a. Diffusion Equation) . . . . . . . . . . . . . . . 28
7.3 Solving the Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Integrating the Internal Energy 29
8.1 Switching Dependence on Variables . . . . . . . . . . . . . . . . . . . . . 30
8.2 Maxwell Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 The Chemical Potential and Phase Changes 32
9.1 Colligative Properties of Solutions . . . . . . . . . . . . . . . . . . . . . . 33
9.2 Osmotic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.3 Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



DSTO–GD–0612

10 Fluctuations for a System in Contact
with a Reservoir 38
10.1 The Concept of the Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.2 The Boltzmann Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.3 Diatomic Gases and Heat Capacity . . . . . . . . . . . . . . . . . . . . . . 42

10.3.1 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.3.2 Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10.4 Equipartition for a System Touching a Bath . . . . . . . . . . . . . . . . . 44

11 Entropy of a System Touching a Bath 45
11.1 A Brief Information Primer . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.2 The Brandeis Dice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12 Distribution of Motions of Gas Particles 51
12.1 The Maxwell Velocity Distribution . . . . . . . . . . . . . . . . . . . . . . 51
12.2 The Maxwell Speed Distribution . . . . . . . . . . . . . . . . . . . . . . . 53
12.3 Representative Speeds of Gas Particles . . . . . . . . . . . . . . . . . . . . 54

13 Theory of Transport Processes 55
13.1 Mean Free Path of Gas Particles . . . . . . . . . . . . . . . . . . . . . . . 55
13.2 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
13.3 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

14 Bands, Levels, and States 60

15 Introducing Quantum Statistics 62
15.1 Two Types of Fundamental Particle . . . . . . . . . . . . . . . . . . . . . 63

16 Blackbody Radiation 64
16.1 The Radiation Inside an Oven . . . . . . . . . . . . . . . . . . . . . . . . 64
16.2 Total Energy per Unit Volume of the Oven, U . . . . . . . . . . . . . . . 71
16.3 Planck’s Law in terms of Wavelength . . . . . . . . . . . . . . . . . . . . 72
16.4 Radiation Exiting the Oven . . . . . . . . . . . . . . . . . . . . . . . . . . 72
16.5 Radiation from a Black Body . . . . . . . . . . . . . . . . . . . . . . . . . 73
16.6 The Greenhouse Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
16.7 Thermal Noise and Maximum Channel Capacity . . . . . . . . . . . . . . 75

17 Theory of Electric Conduction 77
17.1 The Classical Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
17.2 The Quantum Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
17.3 Band Theory of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
17.4 Insulators and Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 82
17.5 Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



DSTO–GD–0612

18 Final Comments and Acknowledgements 85

References 86

Index 87

ix



DSTO–GD–0612

1 Introduction

These lectures begin with an introduction to the mathematical background of statistical
mechanics. They introduce the all-important notion of the entropy of an isolated system.
This leads to the concept of temperature and then to the basics of thermodynamics.
Following this is an excursion into chemical concepts to do with dissolved salts and the
idea of a reaction attaining equilibrium. Next, the Boltzmann Distribution is introduced;
this serves as the departure point for the study of systems interacting with an environment
of which we might know nothing. The ideas here give meaning to the entropy of more
complex and non-isolated systems, and allow it to be calculated. At this point we include
a discussion of the ideas of E.T. Jaynes, who was at the forefront of advanced ideas in
statistical mechanics throughout the twentieth century.

Following this, several standard topics are covered: the Maxwell speed and velocity
distributions, and the theory of transport processes that successfully interrelates thermal
conductivity, viscosity, and heat capacity; this success was historically of prime importance
in the formation of an atomic view of matter in physics.

The notes end with a discussion of quantum statistics, blackbody radiation, electric
conductivity, and semiconductors.

The general ordering of the subjects here follows reference [1]. However, much of the
mathematical analysis in these notes follows different routes from those in that book, and
other content has been added to these notes.

It should be emphasised that, course notes being what they are, the following pages
do cover the main ideas briskly. In particular, no pictures have been included, although
of course many were drawn in the lectures to aid in the presentation.

2 Preliminaries for Counting Large Numbers

Statistical mechanics is built on the idea that the world can be described using probability.
Yet on the surface there seems to be little randomness in the world around us, so is a
probabilistic description really such a good idea?

We will begin to answer this question by asking something more basic: given a set
number of particles of a gas in a room, what’s the chance of there being some given number
of particles in a given part of the room? Furthermore, how probable are fluctuations
around this number? It will turn out that for systems with large numbers of particles such
as we find in everyday life, fluctuations are very improbable things. This indicates that
a probabilistic view of the world might well be compatible with the fact that we don’t
see a lot of randomness around us. It’s the starting point for the subject of statistical
mechanics.

2.1 The Binomial Distribution

It’s simplest to divide the room into two regions and find probabilities for different numbers
of the particles to be in each region. This is the job of the binomial distribution. Given
N distinguishable particles, allocate each to one of two bins. The chance of a particular
particle being allocated to bin 1 is p, so that the chance of a particular particle being

1



DSTO–GD–0612

allocated to bin 2 must be 1− p. What is the chance P (n) that we’ll find any n particles
(without regard for order) in bin 1?

The chance that any such combination occurs, with n particles in bin 1 and N − n
particles in bin 2, is pn (1− p)N−n. We need only count how many such combinations
there can be. Do this by labelling the particles 1, 2, . . . , N and simply writing down all
possible combinations. We can do this systematically by writing down all permutations
as if the particles were all lined up in a row. This keeps track of their order, which allows
us to count them more easily since now there are simply N ! possible permutations. For
the case of N = 7 particles in total, n = 3 of which appear in bin 1, we might write all
7! permutations as (with bin 1 written first, then a space, then bin 2)

7! rows



1 2 3 4 5 6 7
1 2 3 4 5 7 6

...
1 3 2 4 5 6 7
1 3 2 4 5 7 6

...


3! 4! rows

1 2 4 3 5 6 7
1 2 4 3 5 7 6

...

 3! 4! rows

etc.

(2.1)

Each combination appears 3! 4! times, so the total number of permutations, 7!, over-counts
the number of combinations by this factor. Hence the number of combinations is 7!/(3! 4!).

Alternatively, we could focus on bin 1 and note that there are 7× 6× 5 = 7!/4! ways of putting
three particles into it if we take order into account (i.e. permutations); to count combinations,
we must correct for the fact that each combination produces 3! permutations, so must divide the
number of permutations by 3! to get 7!/(3! 4!). You might like to ponder on how to extend this
approach to the case of many bins that we’ll examine in Section 11.

More generally, the total number of combinations is N !/[n! (N − n)!], also written NCn.
Each of these combinations occurs with probability pn (1− p)N−n, so the final sought-after
probability is

P (n) =
N !

n! (N − n)!
pn (1− p)N−n . (2.2)

This function of the number of particles n is called the binomial distribution.
Example 1: 5 molecules are in a room. What’s the chance that any 2 of them are in

the front 1/3 at some chosen moment?

2 molecules

front 1/3

3 molecules

back 2/3

Prob. =
5!

2! 3!
(1/3)2 (2/3)3 ' 0.33 . Answer (2.3)

Example 2: 10 molecules are in a room. What’s the chance that any 4 of them are
in the front 1/3 at some chosen moment?

4 molecules

front 1/3

6 molecules

back 2/3

2
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Prob. =
10!
4! 6!

(1/3)4 (2/3)6 ' 0.23 . Answer (2.4)

For larger factorials, use Stirling’s rule:

n! ∼ nn+1/2
e
−n√2π . (2.5)

By “∼” we mean lhs/rhs→ 1 as n→∞, although their difference might not go to zero.
In particular,

lnn! ∼ (n+ 1/2) lnn− n+ ln
√

2π +
1

12n
− 1

360n3 + . . . (2.6)

This is an example of an asymptotic series. To see how it differs from the more well known
convergent series, consider how a convergent series is used: if (2.6) were such a series, we could
fix n and ensure convergence by letting the number of terms go to infinity. In other words, we
could calculate lnn! to any accuracy by summing a sufficient number of terms.

In contrast, and somewhat bizarrely, an asymptotic series does not converge in this way for
any value of n. The coefficients of the first few powers of n in (2.6) start out by decreasing term by
term, but that trend soon reverses and they become very large. For any choice of n, they soon grow
larger at a faster rate than the (denominator) powers of n, so that the series can never converge.
To use (2.6), we must truncate its right-hand side after some arbitrary number of terms, and then
note that increasing n gives a different sort of convergence: lim

n→∞
LHS

truncated RHS
= 1. That means

we can’t use the series to calculate lnn! to arbitrary accuracy. Precisely where the truncation
might best be made to maximise the accuracy of the approximation is something of an art.

Example 3: 1000 molecules are in a room. What’s the chance that any 400 of them
are in the front 1/3 at some chosen moment?

400 molecules

front 1/3

600 molecules

back 2/3

Prob. =
1000!

400! 600!
(1/3)400 (2/3)600 . (2.7)

Then ln prob. ' 1000.5 ln 1000−���1000 +����ln
√

2π
− 400.5 ln 400 +��400−����ln

√
2π

− 600.5 ln 600 +��600− ln
√

2π
+ 400 ln 1/3 + 600 ln 2/3 ' −13.3716 ,

so prob. ' 1.559× 10−6. Answer (2.8)

(A presumably fairly exact answer from Mathematica is ' 1.558× 10−6.)

N.B. Some books write lnn! ' n lnn− n. This will give ln prob. ' −9.7 in Example 3,
so is clearly not accurate in this case—and it becomes more and more inaccurate as n→∞.
But compare this expression with the correct one when n ≈ 1024, and ask yourself whether
it might in fact be useful after all.

3
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2.2 Quantifying Fluctuations in the Binomial
Distribution

Consider N = 10 coins flipped. What is the chance that half land heads up?

P (5 heads) =
10!
5! 5!

(1/2)5 (1/2)5 ' 0.25 . (2.9)

Now for N = 100:
P (50 heads) =

100!
50! 50!

(1/2)50 (1/2)50 ' 0.08 . (2.10)

And now N = 106:

P (500,000 heads) =
1,000,000!

500,000! 500,000!
(1/2)500,000 (1/2)500,000 ' 0.0008 . (2.11)

Although the chance of getting n heads is maximal if n = N/2, it goes to 0 as N →∞.
A more useful question: given N, p, what is the value of n where P (n heads) peaks, and
what is a good measure of the width of the probability distribution? Or, rather than ask
where the peak lies, ask: what is the mean number of heads , often written n̄ or 〈n〉?

Basic probability theory gives n̄ = pN . Alternatively we can use a first-principles
approach to write

n̄ =
N∑
n=0

nP (n) =
N∑
n=0

n NCn p
n (1− p)N−n . (2.12)

This looks to be a difficult expression to evaluate. But we can do it using a kind of trick:
replace 1− p (when it appears explicitly) by “q” and treat q initially as an independent
variable, only setting it equal to 1− p at the end of the calculation. Now make use of two
expressions:

(p ∂p)
k pn = nk pn and (p+ q)N =

N∑
n=0

NCn p
nqN−n , (2.13)

where ∂p ≡ ∂/∂p. Use the first of these in (2.12) with k = 1, then the second, to write

n̄ =
∑
n

NCn p ∂p p
n qN−n = p ∂p(p+ q)N = pN(p+ q)N−1 = pN , (2.14)

as expected. For the measure of fluctuation, use the variance σ2 = n2 − n̄2. Again
use (2.13)—now with k = 2—to write

n2 =
∑
n

n2P (n) =
∑
n

n2 NCn p
n qN−n = (p ∂p)

2
∑
n

NCn p
n qN−n

= · · · = p2N2 +Np(1− p) . (2.15)

So σ2 = Np(1− p). Define the relative fluctuation ≡ σ/n̄ ∝ 1/
√
N .

Example 1. 10 molecules in a room. What is the mean number in the front third of
the room, and what is its relative fluctuation?

n̄ = pN = 1/3× 10 = 3 1/3 . Answer

4
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σ =
√
Np(1− p) =

√
20/3, so σ/n̄ ' 0.45 . Answer (2.16)

Example 2. Do the same for 1027 molecules in a room—a realistic figure.

n̄ = pN = 1/3× 1027 . Answer

σ/n̄ =
√

(1− p)/n̄ =

√
2/3

1/3× 1027 ' 4.5× 10−14 . Answer (2.17)

This is tiny! Systems with stupendously large numbers of entities are very predictable.

2.3 The Gaussian Approximation to the Binomial
Distribution

Calculating P (n) = NCn p
n (1− p)N−n via Stirling is tedious and doesn’t give a feel for P (n).

Let’s do better by approximating its logarithm by a Taylor Series. (Why its logarithm?
Because this is less peaked and so yields a better approximation.)

f(n) ≡ lnP (n) = f(n̄) + f ′(n̄)(n− n̄) +
1
2!
f ′′(n̄)(n− n̄)2 + . . . (2.18)

f(n) ' lnN !− lnn!− ln(N − n)! + n ln p+ (N − n) ln q
' (N + 1/2) lnN − (n+ 1/2) lnn− (N − n+ 1/2) ln(N − n)

− ln
√

2π + n ln p+ (N − n) ln q . (2.19)

Differentiating,

f ′(n) ' − lnn− 1
2n

+ ln(N − n) +
1

2(N − n)
+ ln p− ln q ,

f ′′(n) ' −1
n

+
1

2n2 −
1

N − n
+

1

2(N − n)2 . (2.20)

Thus, if p isn’t close to 0 or 1 (which are statistically uninteresting cases anyway),

f(n̄) ' − ln
√

2πσ2 , f ′(n̄) ' 2p− 1

2σ2 , f ′′(n̄) ' −1

σ2 . (2.21)

So, with x ≡ n− n̄,

f(n) ' − ln
√

2πσ2 − x2 − (2p− 1)x

2σ2 . (2.22)

Complete the square to give

P (n) ∝ exp
− [n− (n̄+ p− 1/2)]2

2σ2 . (2.23)

Remember that n̄� 1, so this is a gaussian centred around n̄ approximately, with width σ.
It’s usual to approximate it by

P (n) ' 1
σ
√

2π
exp
−(n− n̄)2

2σ2 ,

{
n̄ = Np

σ2 = Np(1− p)
(2.24)

5
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Example: With N = 1027 molecules in a room, what’s the chance that the mean
number in the front third of the room actually occupies that front third?

N is so large here that we should use (2.24). The mean number in the front third of the
room is n̄ = 1/3× 1027. Set n = n̄ in (2.24) to get

σ =
√

20/3× 1013 , P (n̄) ' 1
√

20/3× 1013 ×
√

2π
' 3× 10−14. Answer (2.25)

What’s the chance that this number fluctuates upwards by 1%?

P (1.01n̄) ' P (n̄) exp
−(0.01n̄)2

2σ2 ' P (n̄) exp
(

1/4× 1023
)

≈ 10−10
22

Answer (2.26)

This is very small: even a 1% fluctuation can be treated as never occurring. More real-
istically, what’s the chance that the occupation number fluctuates by at least 1% up or
down? With more effort we can show that the answer is “close” to the number in (2.26),
but we won’t do that calculation here.

2.4 Integrating a Gaussian Function

Gaussian functions are common throughout probability theory, and statistical mechanics is
no exception. You will often find yourself integrating them, so here is a good place to write
down a general expression for the gaussian integral in terms of the error function erf x.
First in one dimension,

∫
e
−ax2

+bx dx =
1
2

√
π

a
e
b
2

4a erf
(√

a x− b

2
√
a

)
. (2.27)

This expression is true for all values of a and b—even complex ones. To help visualise it,
note that erf x is a strictly increasing odd function over the reals. It’s shaped much like
tan−1 x for real x, except that erf∞ = 1. A special case of (2.27) is∫ ∞

−∞
e
−ax2

+bx dx =
√
π

a
e
b
2

4a . (2.28)

For a complex integration, it’s useful to remember that erf(−z) = − erf z for all complex z,
and erf z → 1 as |z| → ∞, provided | arg z| < π/4.

The corresponding definite integral in multi dimensions also comes in handy. Sup-
pose the n integration variables x1, . . . , xn are written as a column vector x, A is a real
symmetric n× n matrix, and b is a column vector. Then, with “t” denoting transpose,

∫ ∞
−∞

exp
(
−xtAx + btx

)
dx1 . . . dxn =

πn/2 exp
(
btA−1b/4

)
√

detA
. (2.29)

6
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3 Accessible States and the Fundamental

Postulate of Statistical Mechanics

At the heart of statistical mechanics is the idea of counting the number of states that
a system can occupy. An isolated system is in equilibrium when the probabilities that
it will be in various states are constant over time. The characteristic time needed for a
perturbed system to attain equilibrium is called its relaxation time. In this course we’ll
always assume that systems are always at, or arbitrarily close to, equilibrium. This requires
that all changes happen slowly compared to the relaxation time. Such processes are called
quasistatic.

The fundamental postulate of statistical mechanics is

An isolated system in equilibrium is equally likely to be in any
state accessible to it.

The total number of states accessible at some energy is called Ω. So the chance of the
system being found in any particular state is 1/Ω.

Example 1: 3 coins are flipped. What is the chance that 2 of them land heads up?

P (hh) = 3C2 (1/2)2 (1/2)1 = 3/8 . Answer (3.1)

The total number of states of 3 flipped coins is Ω = 8. The number of states with 2 heads
is called the degeneracy of the 2-heads state, which is 3 in this case.

Example 2: 3 identical particles, spin 1/2. What is the chance that 2 particles have
spin up? Now Ω = 4, corresponding to all down, 1 up, 2 up, 3 up. There’s no degeneracy—
or equivalently, we might choose to say that the degeneracy equals 1, so

P (2 ↑) = 1/4 . Answer (3.2)

3.1 Density of States for a Monatomic Gas

What is the number of states Ω for a gas of N distinguishable particles of the same mass?
The number of states at any particular energy E is generally extremely difficult, if not
impossible, to compute. But we can use the fact that the energy spacing between neigh-
bouring states is typically so tremendously small that the state energies can be treated as
a continuum. This is analogous to treating the mass of a ruler as distributed continuously
along its length. The mass is not really a continuum; it’s located in the nuclei of the
atoms that comprise the ruler. We cannot talk about the mass at a point a distance L
from one end. For this reason, the concept of mass density was invented: the mass density
is %(L) at a point a distance L from one end, and we calculate it by averaging over many
nuclei. We can use this density to calculate approximately how much mass is in some
small length ∆L of the ruler: it is ∆M(L) ' %(L) ∆L. We even refer to an infinitesimal
mass dM = %(L) dL even though, strictly speaking, this has no proper physical meaning
for a ruler made of atoms.

Since discussing the number of states Ω(E) at some energy E is often problematic,
we treat Ω(E) like the mass of the ruler at some point. That is, just as we modelled the
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ruler as a continuum of mass and worked only with the mass density at a point, likewise
we approximate the spread of states as a continuum, and define a density of states. To
do this, write the total number of states in the energy range 0→ E as Ωtot(E), like the
total mass of a ruler of length L. With a suitable “coarse graining”, Ωtot(E) is related to
the density of states g(E) by dΩtot = g(E) dE. The number of states in a small energy
interval will then be g(E) times the width of the interval. If the typical spacing of energy
levels around E is ∆E (in practice an incredibly tiny number), then we might write the
number of states “at”E as

Ω(E) ' ∆Ωtot ' g(E) ∆E . (3.3)

Hence we can calculate g(E) by first finding Ωtot(E) and then writing

g(E) =
dΩtot

dE
. (3.4)

So rather than try to calculate Ω(E) for a gas of N distinguishable particles, we’ll instead
calculate g(E) via Ωtot(E). First, consider the number of states accessible to one particle
of energy E and momentum p. In phase space (position–momentum space), the particle
has a range [x] available to it in the x direction (similarly [y], [z]), and a range [px] available
to it in the px direction (similarly [py], [pz]). Quantum mechanically, the particle’s position
and momentum (in the x direction) are defined only up to [x], [px] with at best [x][px] ≈ h,
so we partition the phase space into cells where each cell defines one accessible state. For
example, for one-dimensional motion the xp-space is divided into cells of area [x][px] = h.

Does it make sense to define the volume of one cell of phase space by dividing by one factor of h for
each dimension? Perhaps we should use ~/2 instead? In fact, it doesn’t matter whether we use h
or ~/2 or, for that matter, 100h. All that matters is that we use a constant with the dimensions of
position × momentum, and h is a convenient choice. We’ll explain why at the end of Section 5.2.

For one particle confined in a box of volume V , the “small” number of cells in phase space
around energy E is then

dΩtot ≈
[x][px]
h

[y][py]
h

[z][pz]
h

=
V

h3 [px][py][pz] , (3.5)

because [x], [y], [z] range over the whole dimensions of the box, so their product is V .
The [px], [py], [pz] are very small ranges around the nominal values of px, py, pz. The total
number of cells in phase space for this particle for all energies 0→ E is Ωtot:

Ωtot(E) ≈ V

h3 × a volume of momentum space in 3 dimensions. (3.6)

For N particles with total energy E, the total number of states up to energy E is

Ωtot(E) =
V N

h3N
× a volume of momentum space in 3N dimensions. (3.7)

Label the particles’ momenta p1x, p1y, . . . , pNz. Then p2
1x+· · ·+p2

Nz = 2mE where m is the
particle mass. So we require the volume of a sphere in 3N dimensions with radius

√
2mE.

The volume of a sphere of radius R in n dimensions is

volume =
πn/2Rn

(n/2)!
. (3.8)

(Try this formula for n = 1, 2, 3, using (1/2)! =
√
π/2.)
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On a side note, the factorial is actually defined as a function over the complex numbers. An
alternative notation for it is Π(z) ≡ z!, which lends itself to writing its derivative Π

′
(z). You will

usually see the equivalent notation Γ(z+ 1) ≡ z! in textbooks. Why is there a “ + 1” there? There
is no good reason for this, and I think we would all be better off by dropping it once and for all.
The gamma function with its unnecessary + 1 was even declared outdated in favour of the factorial
by Sir M.J. Lighthill a half century ago in his classic text on Fourier analysis [2]. If you do use the
gamma function you will find yourself writing tedious expressions like Γ(a+ 1) = Γ(b+ 1) Γ(c+ 1),
and you will forever need to remind yourself of the + 1 when calculating simple things like Γ(5).
Strike a blow for notational simplicity and write Π(z) when you need to use function notation for
the factorial.

Setting n = 3N and R =
√

2mE in (3.8), then writing γ ≡ 3N/2, (3.7) becomes

Ωtot(E) =
V N

h2γ

πγ(2mE)γ

γ!
. (3.9)

This is the total number of states up to energy E. We get at Ω(E), the number of states
at energy E, via the density of states g(E) using (3.4):

g(E) = Ω′tot(E) =
V N

h2γ

(2πm)γ

γ!
γEγ−1 . (3.10)

With N large, use Stirling’s rule:

g(E) ≈ V N

h2γ

(2πm)γeγγ

γγ+1/2√2π
Eγ−1 ≈ V N

(
2πm eE

h2γ

)γ
. (3.11)

The main result here is that g(E) ∝ V NE3N/2−1 ≈ V NE3N/2 when N is large. If we do
require the number of states “at” a particular energy E, we can estimate it using (3.3)
with a suitable choice of ∆E. But it turns out that we won’t have to do this.

Do note that a consequence of the above continuum approximation is that the number
of states Ω(E) and their density g(E) are often treated somewhat interchangeably in
statistical mechanics. We’ll explain why this is done at the end of Section 5.2.

Example 1. We have a cubic room of side 5 m with N = 1027 distinguishable particles
at 300 K, each with mass equal to the average mass of an air molecule (4.8 × 10−26 kg).
What is the density of states g(E)? Use the Equipartition Theorem (proved later) to set
a value for E of N 3kT/2.

Notational device: write a b ≡ a× 10b .

log10 g(E) = 1.5 27 log10

(
25× 2π × 4.8−26 × 2.7× 3/2× 1.38−23 × 300× 1027(

6.63−34 )2 × 1.5 27

)
' 3.5 28 . (3.12)

So
g(E) ≈ 103.5×10

28

states/joule. Answer (3.13)

How big is this number? If we just settle for writing it out as approximately 1 followed by
a string of 0s, with each 0 being 1 cm across, then the length of this string will be about 37
thousand million light years, or several times the extent of the observable universe. That’s
not how big the number is; rather, that’s just how big its decimal representation is. The
number itself is stupendously bigger.

9
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Identical particles

To do the same analysis for identical particles, realise that if the number of states is much
larger than the number of particles (which is very true above), the above calculation will
over-count by a factor of N !. So divide the result in (3.13) by 1027! (that’s a factorial, and
is left as an exercise) to obtain

g(E) ≈ 108.4×10
27

states/joule. Answer (3.14)

If the number of states is not � the number of particles, we will need the approach used
in quantum statistics later in the course.

3.2 Density of States for More Complicated Structures

Consider the variables that quantify a substance’s energy. There is a background potential
energy u0 along with various potential and kinetic energies, so the energy of one particle
is ε for the following regimes:

Monatomic liquid and gas:

ε = u0 +
p2
x

2m
+ · · ·+ p2

z

2m
. (3.15)

In liquids, u0 is complicated as molecular configurations fluctuate rapidly. In gases,
u0 ' 0.

Solid crystal lattice: particles are like harmonic oscillators, with x, y, z measuring their
displacement from equilibrium:

ε = u0 +
kx2

2
+ · · ·+ kz2

2
+

p2
x

2m
+ · · ·+ p2

z

2m
. (3.16)

Gas of complex molecules: with angular momenta L1, . . . , L3 about principal axes,
paired with moments of inertia I1, . . . , I3, along with reduced mass µ, vibration
frequency ω, vibrational separation r:

ε = u0 +
p2
x

2m
+ . . .︸ ︷︷ ︸

translation

+
L2

1

2I1
+ . . .︸ ︷︷ ︸

rotation

+
1
2
µṙ2 +

1
2
µω2r2︸ ︷︷ ︸

vibration

. (3.17)

Each of these variables that contributes to the energy via a square is called a degree
of freedom. (Why are the two terms for vibration above called two degrees of freedom
when one cannot be changed without also changing the other? The name is something of
a misnomer; a degree of freedom is simply defined as a term that contributes to the energy
via a square. Both of those terms do that.)

If we re-derive g(E) for these more complex structures, the same general arguments
apply, but with some modifications as follows. Each extra degree of freedom contributes
an extra dimension per particle to the sphere in phase space. E.g., if the number of degrees
of freedom per particle is ν = 5 (for a diatomic molecule, since experiments show that this
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won’t spin around its main axis), the “3N/2” above is replaced by 5N/2 and the various
coefficients change. Also, correcting for identical particles (when there are far more states
than particles, which is the case here) means dividing by N !, or approximately by NN .
In that case, for an ideal gas we can write expressions for the number of accessible states
for distinguishable and for identical particles:

Ωdist ∝ V
N

(
E

N

)νN/2
, Ωident ∝

(
V

N

)N (E
N

)νN/2
. (3.18)

The particles of a solid are not free to move about their container like a gas, so there is
no spatial volume term. Also, only the thermal energy ε − u0 contributes to the number
of accessible states. So for a solid we write

Ωdist ∝
(
E −Nu0

N

)νN/2
. (3.19)

The particles of a solid are certainly distinguishable by their locations at the various lattice
sites, so there is no Ωident to be considered.

4 Zeroth and First Laws of Thermodynamics

When two systems interact, energy can be transferred in three ways:

(a) transfer of heat: “thermal” (conduction, convection, radiation),

(b) doing work: “mechanical” (pressure, fields),

(c) letting particles move: “diffusive” (permeable membranes).

Zeroth Law of Thermodynamics

If two systems are in thermal/mechanical/diffusive equilibrium with a
third system, then they’re in thermal/mechanical/diffusive equilibrium
with each other.

4.1 Preparing for the First Law of Thermodynamics

The First Law of Thermodynamics is a statement of the conservation of energy. It is
usually—perhaps always—expressed in terms of infinitesimals, so we will first make some
comments about these.

Infinitesimal quantities, also called differentials, are used extensively in statistical me-
chanics. What does a quantity like dt mean? Consider deriving a particle’s velocity v(t)
from its position s(t) in one dimension. We might Taylor-expand s(t+ ∆t) to write

v(t) ≡ lim
∆t→0

s(t+ ∆t)− s(t)
∆t

= lim
∆t→0

s(t) + s′(t) ∆t+ 1
2!s
′′(t) ∆t2 + · · · − s(t)

∆t

11
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= lim
∆t→0

s′(t) +
1
2!
s′′(t) ∆t+ . . .

= s′(t) . (4.1)

But we could just as well write all of this as

v(t) =
s(t+ dt)− s(t)

dt
=
s(t) + s′(t) dt− s(t)

dt
= s′(t) . (4.2)

This last expression is an economical and elegant way of writing the previous one. By
writing “dt”, we really mean “∆t+O(∆t2)” along with a statement of an eventual division
by ∆t and a limit being taken as ∆t→ 0. So when speaking of an infinitesimal, or an
“infinitesimally small quantity”, we are really referring to the end result of a limit process
applied to the non-infinitesimal ∆t.

This sort of idea also applies to the delta function used widely in Fourier analysis. The delta
function δ(x) is usually defined as an infinitely tall spike at x = 0 and zero elsewhere, withR∞
−∞ δ(x) dx ≡ 1. Any expression involving this function can be treated as the limit of a se-

quence of similar expressions that each replace the delta by a bell-shaped function, where these
bell-shaped functions become increasingly narrower and higher in the limit.

Treating delta functions and infinitesimals as tied to a limit process gives them a firm founda-
tion, although with delta functions we need always to ask whether it’s valid to swap the relevant
manipulation and the limit process. You will find the occasional book stating that infinitesimals
need advanced ideas of differential geometry to give them substance. If you do investigate further
to analyse what this might mean, I suggest that you’ll only find notation that became briefly
fashionable some decades ago but never went anywhere, presumably because what it was designed
to do was able to be done more simply in other ways. The kernel of what infinitesimals are all
about is contained in (4.1) and (4.2). Infinitesimals as defined by equations like these are certainly
used routinely in differential geometry, where they have a natural and very central role. So, rather
than say infinitesimals need differential geometry to give them meaning, I would choose to say
that infinitesimals help to give differential geometry meaning.

Differentials are Increases

Correctly translating a physics task into the language of mathematics goes a long way
to making it tractable. In particular for doing problems in thermodynamics, we’ll stress
the following point. For any quantity f , the symbols ∆f and df refer to increases in f ,
meaning ffinal − finitial. Similarly, −∆f and −df are decreases in f . Usually ∆f and df
are called“changes in f”, but this is not a very useful phrase if we give“change”its everyday
meaning of the absolute value of increase or decrease. After all, discarding a sign is not a
good idea! Likewise, when we write ∇f and ∂f in the context of partial derivatives, we are
referring indirectly to increases in f as other quantities are increased. And remember that
an increase can be negative—that’s what is meant by a decrease. The same idea holds for
vectors too: by ∆v we mean vfinal − vinitial. This is the increase in v, although the idea
of a vector increasing might not be as intuitive as it is for everyday numbers, because the
length of v needn’t change when v increases. But that’s okay; after all, who said anything
about length? Just remember that

∆ = increase = final− initial , (4.3)

which applies to vectors as well as numbers, and you won’t go wrong. (It is still meaningful
to refer generically to a “change in a quantity” if we’re not concerned with its value.)
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If we keep the correct language in mind, we will have no problems recognising that a
term like −dV means a decrease in volume: when a volume V gets smaller, the amount
by which it decreased, −dV , is positive. For example, when we push a piston to squeeze
the air in a cylinder, we do work equal to the pressure P that we applied (always positive)
times the loss in volume −dV (again positive), or −P dV ; thus the energy E of the gas
increases by this amount: dE = −P dV. The pressure changes as the volume decreases,
which is why we write this using infinitesimals. We could also write

∆E =
∫ Vf

Vi

−P dV , (4.4)

which means neither more nor less than the infinitesimal expression (but takes more room
to write!). Keeping clear in our minds whether the quantities appearing in the equations
of statistical mechanics are increasing or decreasing helps us relate the mathematics to the
physics. A good example of such care will appear in Section 9.3.

Exact and Inexact Differentials

A differential df is called exact if the state of a system possesses a unique value of f .
As an example, suppose two people (“1” and “2”) walk from Adelaide to Melbourne.

They follow different paths and meet at some point en route. This point has a particular
height h above sea level. The position of each walker always has a unique value of h,
and so dh is an exact differential. If we write a walker’s height h(α, ω) as a function of
latitude α and longitude ω, then ∆h =

∫
dh is independent of the path that each took to

get to their meeting point. Also, ∆h equals “final height minus initial height”.
Their meeting point has a particular latitude α and longitude ω, and so dα,dω are

also exact differentials. An exact differential like dh can be written as dh = Adα+B dω,
which is entirely equivalent to writing

∂h

∂α
= A ,

∂h

∂ω
= B . (4.5)

Contrast the walkers’ height h at their meeting point by the distances they each have
walked. Their common position doesn’t possess a unique value of a variable called dis-
tance s. Certainly s is well defined for each walker, but in general they have walked
different distances s1, s2.

Now suppose each walker takes an infinitesimal step, increasing s1 and s2 by infinitesi-
mal amounts. These steps are certainly well defined, but are not exact differentials because
the state called “position” does not have a unique s. The steps are written ds1, ds2, and
are called inexact differentials. We can use a generic step ds to write the total distances
covered by each walker on arriving in Melbourne as

s1 =
∫

path 1

ds , and s2 =
∫

path 2

ds . (4.6)

Notice that we might not be inclined to write their total distances covered as ∆s1,∆s2.
That’s because ∆s means “final s minus initial s”, but there is no variable s that is a
function of position. Perhaps we could put a bar through the ∆ symbol, but this is not
something that anyone does.
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Another example of an inexact differential is the small area element used to discuss
Gauss’s theorem in electromagnetism. This is usually written dA, but it’s not as if we
have an area A that’s increasing by dA. This area element is more properly written dA.
Likewise, the force due to air pressure that acts on a small surface of area dA could be
written dF but it’s more usually written dF . Perhaps the use of d is confined to statistical
mechanics, but there’s no real reason why this should be so.

The Inexact Differential “Heat in”, dQ

Suppose we are given a container of hot gas. The subject of thermodynamics deals with
the processes this gas might’ve undergone to bring it to its present state. It might’ve been
heated over a stove (“thermal” in the Zeroth Law), by doing work on it (“mechanical”),
by changing its chemical environment (“diffusive”), or some combination of the three.
Knowing nothing of the gas’s history, we cannot generally ascertain how it was heated.
Heating it over a stove gives it thermal energy Q, but doing work on it gives it mechanical
energy

∫
−P dV, which manifests as the same heat. Both of these actions lead to the

same final state, so we cannot say the gas has a unique “heat” Q associated with it. We
can, however, talk about a small amount of heat being put into the gas, and this must
then be an inexact differential, written dQ. And just as in the discussion immediately
following (4.6) of the distance s covered by a walker, we will always write Q, never ∆Q,
for a large amount of heat put into a system.

Although we have written the mechanical work done on the gas as −P dV, it’s some-
times introduced by writing it as dW . Again the bar is necessary because the state does
not have a unique parameter called work W associated with it; any work we do on the
system must be an inexact differential. But notice that this inexact differential dW can
actually be written as an exact differential −P dV, because V is certainly a state variable!
We’ll show later that the same can be done for dQ. This rewriting of dQ in terms of a new
state variable was a key discovery of statistical mechanics, and was the central idea that
allowed thermodynamics to be analysed and extended using statistical mechanics ideas.

First Law of Thermodynamics (Provisional Form)

The infinitesimal increase in internal energy of a system is given by thermal,
mechanical, and diffusive contributions as follows:

dE = dQ− P dV + µ dN . (4.7)

dQ = heat put in by e.g. a stove.

−P dV = pressure × loss in volume = work done on system.

µ dN = chemical potential × increase in particle number = energy brought
in by new particles that isn’t related to heat transfer or work. Due to new
environment created by incoming particles. (Think of adding water to a
concentrated acid: it heats up dangerously.)

The term −P dV is just one example of work being done on the system. Others exist,
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such as an electric field which can change dipole moments, giving a term −E ·dp. We will
write −P dV to represent all such terms.

Our primary goal will be to rewrite the dQ in the First Law as an exact differential,
since the relevant quantities can then be used to quantify the state of a system. We’ll
take V as one of these quantities from the outset (so won’t stop to write dW ), and will
see later how to replace dQ by something else.

4.2 Partial Derivatives and Variables Held Constant

A good understanding of partial derivatives is useful in statistical mechanics. Here are
some points worth noting.

Consider a function f(x, y, z). When writing

∂f(x, y, z)
∂x

or
(
∂f

∂x

)
y, z

(4.8)

we mean df/dx at constant y and z. Thus(
∂x

∂f

)
y, z

=
1

(∂f/∂x)y, z
. (4.9)

However, normally when we swap the roles of e.g. f and x, the set of variables that are
being held fixed actually changes, and so the simple reciprocation of (4.9) doesn’t apply.
A more familiar example relates polar coordinates to cartesians. Begin with

x = r cos θ , y = r sin θ . (4.10)

In such an arena when we write something like ∂x/∂r, we mean (∂x/∂r)θ; that is, differ-
entiate with respect to one variable (r) holding all others of its family (θ) constant. With
this convention, the set of partial derivatives of one set of coordinates with respect to the
other is usually written as the elements of a matrix, called a jacobian matrix :

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

 =
[
cos θ −r sin θ
sin θ r cos θ

]
. (4.11)

There are two jacobian matrices: one has the partial derivatives of cartesians with respect
to polars, and the other has the partial derivatives of polars with respect to cartesians.
Now watch carefully: by multiplying these two matrices, you should be able to see that
the following relationship holds:

∂r

∂x

∂r

∂y

∂θ

∂x

∂θ

∂y

 =


∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ


−1

=

 cos θ sin θ

− sin θ
r

cos θ
r

 . (4.12)
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This is an important relationship because it enables us to invert partial derivatives when
the set of variables being held constant switches from one set of coordinates to the other.
For example, comparing the “1,1” elements of (4.11) and (4.12) shows that(

∂x

∂r

)
θ

=
(
∂r

∂x

)
y

= cos θ . (4.13)

With the above convention of omitting the constant variables in mind, this is normally
just written

∂x

∂r
=
∂r

∂x
= cos θ . (4.14)

This might at first look a little odd, until we realise that each derivative holds a different
variable constant, and so simple reciprocation cannot be used.

Example 1: Show that (∂x/∂r)θ = 1
(∂r/∂x)θ

.

Start with r = x/cos θ, so that(
∂r

∂x

)
θ

=
1

cos θ
=

1
(∂x/∂r)θ

. QED (4.15)

Example 2: What is (∂θ/∂r)y?

The easiest approach is to differentiate both sides of y = r sin θ with respect to r, holding
y constant, to get 0 = sin θ + r cos θ (∂θ/∂r)y. Or, for a slight variation, calculate (∂r/∂θ)y
in the same way and form the reciprocal. Here is a third way, which might give you more
insight. Draw two infinitesimally separated points at constant y. One has polar coor-
dinates (r, θ); the other has (r + dr, θ + dθ). Noting that we need keep only the lowest
powers necessary of the infinitesimals, write

y = r sin θ = (r + dr) sin(θ + dθ)
= (r + dr) (sin θ + cos θ dθ)
= r sin θ + sin θ dr + r cos θ dθ . (4.16)

So at constant y we have − sin θ dr = r cos θ dθ, in which case(
∂θ

∂r

)
y

=
− sin θ
r cos θ

. Answer (4.17)

Note that although we seemed to work to first order only, the answer is exact. Can you
see why? If not, study (4.1) and (4.2) in the more familiar language of position s(t) and
velocity v(t) in one dimension, and remember that velocity is a first-order increase in
position with respect to time.
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5 Accessible States for Interacting Systems

We wish to focus on the elusive notion of heat transfer. So consider 2 systems interacting
thermally, but not mechanically or diffusively. They’re isolated, so their total energy = E,
a constant. System 1 has N1 particles, each with ν1 d.o.f. and total energy E1. Similarly
for system 2. What is the total number of accessible states Ω as a function of E1?

N1, ν1
E1

system 1

N2, ν2
E2 =E−E1

system 2

Define γ1 ≡ ν1N1/2 and γ2 ≡ ν2N2/2, so that the results of Section 3 give

Ω1 ∝ E
γ1
1 , Ω2 ∝ E

γ2
2 . (5.1)

Then
Ω(E1) = Ω1 Ω2 ∝ E

γ1
1 (E − E1)γ2 , 0 6 E1 6 E . (5.2)

Consider plotting Ω(E1)-vs-E1. The stationary points occur when Ω′(E1) = 0:

Ω′(E1) = E
γ1−1
1 (E − E1)γ2−1 [γ1E − (γ1 + γ2)E1

] req.
0 . (5.3)

So stationary points occur at E1 = 0 and E (minima), and E1 = Ê1 ≡ γ1E/(γ1 + γ2)
(maximum).

How wide is the peak at E = Ê1? A useful measure is α such that

Ω(Ê1 + αÊ1) =
1
2

Ω(Ê1) , (5.4)

so that 2αÊ1 is approximately the “full width at half maximum” (commonly known as the
FWHM). (This is only approximate, as the peak isn’t necessarily symmetric.) In (5.2)
we see that Ω is a product and involves powers, so its logarithm turns out to be simpler
to work with; also, a logarithm will lead to a better approximation of the peak when we
Taylor-expand shortly, because the logarithm of a strongly peaked function is not strongly
peaked and so needs fewer Taylor terms to describe it. So we introduce a new symbol
which will play a central role in statistical mechanics, called the statistical entropy :

σ ≡ ln Ω . (5.5)

Use this to write (5.2) as

σ(E1) = constant + γ1 lnE1 + γ2 ln(E − E1) ,

so σ′(E1) =
γ1

E1
− γ2

E − E1
,

and σ′′(E1) =
−γ1

E2
1

− γ2

(E − E1)2 . (5.6)

[We can’t “really” take the logarithm of a dimensioned number such as energy; but the
constant of proportionality in (5.2) effectively introduces a scaling factor for the units that
does allow us to take a log. But this constant has no effect on the physical arguments
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and is perhaps a little tedious to include everywhere. See the comment just after (9.2).]
Equation (5.4) becomes

σ(Ê1 + αÊ1) = − ln 2 + σ(Ê1) , (5.7)

which Taylor-expands to

��
��*

0
σ′(Ê1) αÊ1 + σ′′(Ê1)

α2Ê 2
1

2
' − ln 2 . (5.8)

A little work gives

α '

√
2 γ2 ln 2

γ1(γ1 + γ2)
. (5.9)

When γ1 = γ2 ' 1024, we get α ' 10−12, and so the FWHM is about 2× 10−12 Ê1. This
is tiny compared with Ê1, so the thermal interaction means that systems 1 and 2 are
extremely likely to have energies

Ê1 =
γ1E

γ1 + γ2
=

ν1N1 E

ν1N1 + ν2N2
,

Ê2 ≡ E − Ê1 =
γ2E

γ1 + γ2
=

ν2N2 E

ν1N1 + ν2N2
(5.10)

respectively.

Fluctuations By what factor f does the number of accessible states Ω drop if E1 should
exceed Ê1 by one part per million? That is, calculate

f ≡ Ω(Ê1)

Ω
(
(1 + 10−6)Ê1

) . (5.11)

Taylor-expand ln f :

ln f = σ(Ê1)− σ
(
Ê1 + 10−6Ê1

)
' −σ′′(Ê1)

10−12 Ê 2
1

2
' 1012 . (5.12)

Hence
f ' e

10
12

' 100.4343×10
12

= 10434,300,000,000 . Answer (5.13)

This is a huge drop. So, with the system equally likely to be in any of its accessible states
(by postulate), then the chance of a 1 ppm fluctuation away from energies Ê1, Ê2 is so
minute that we can discount it from ever happening. (We should really do an integral
here to consider a fluctuation of at least 1 ppm, but the above calculation serves to give a
good idea of the numbers involved.)

5.1 Defining Temperature, and the Equipartition
Theorem

Prior to the advent of statistical mechanics, the concept of temperature was already known
in a heuristic way from thermodynamics. An early success of statistical mechanics was its
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precise definition of temperature using the above idea of two thermally interacting systems.
At thermal equilibrium when the energy has distributed itself as Ê1, Ê2, we define the two
systems to have equal values of temperature T . This is done by our noticing in (5.10) that
the average energy per particle per degree of freedom is the same for both systems, so that
the common value can be used to define their temperature:

Ê1

ν1N1
=

Ê2

ν2N2
=

E

ν1N1 + ν2N2
≡ kT

2
. (5.14)

Here k is Boltzmann’s constant, inserted to allow this statistical definition of temperature
to be equated with the everyday thermodynamic idea of temperature (as we’ll soon see;
so we’ll assume from now on that temperature is a positive quantity). The factor of 2
ensures compatibility with other uses of Boltzmann’s constant. In practice we must provide
something extra to disentangle temperature from k. This is done by setting T = 273.16 K
at the triple point of water (' 0.01◦C).

Note that the SI unit of the Kelvin temperature scale is a “kelvin”, not a “Kelvin degree”. A
temperature of 100 K is vocalised “one hundred kelvins”—not “one hundred degrees Kelvin”, nor
“one hundred Kelvin”. In common with all SI units, “kelvin” is written with a lowercase k but,
being someone’s name, its short form uses an uppercase K.

The two systems can be intermixed. E.g., system 1 might refer to translation (ν1 = 3)
of all the (diatomic) molecules present, and system 2 might refer to their rotation (ν2 = 2).
So (5.14) says that the translational degrees of freedom possess energy 3kT/2 per particle,
and the rotational degrees of freedom possess energy 2kT/2 per molecule. This constitutes
the Equipartition Theorem.

Equipartition Theorem

If the equilibrium distribution is

– the most probable distribution consistent with constant total energy
and constant particle number, and

– there is no restriction on the number of particles in any one state, and

– thermal energy E varies continuously with a coordinate u, and

– E depends on u2,

then the energy associated with this coordinate is kT/2.

5.2 Entropy and the Second Law of Thermodynamics

Equation (3.10) implies that when N is large, Ω = f(V,N)EνN/2 for some function f .
That means

σ(E, V,N) = ln Ω = ln f(V,N) +
νN

2
lnE . (5.15)

Thus (
∂σ

∂E

)
V,N

=
νN

2E
Equipartition νN

2 νNkT/2
=

1
kT

. (5.16)
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Define the thermodynamic entropy (usually just called entropy) of a general system to be
S ≡ kσ, i.e.

S = k ln Ω . (5.17)

With this definition, (5.16) becomes

1
T

=
(
∂S

∂E

)
V,N

, or T =
(
∂E

∂S

)
V,N

. (5.18)

This is often taken as the definition of T .
Entropy is additive, since for any two systems 1 and 2 with entropies S1 = k ln Ω1 and

S2 = k ln Ω2, the entropy of the combined system before they interact is k ln(Ω1 Ω2) =
k ln Ω1 + k ln Ω2 = S1 + S2.

Since a system composed of two subsystems having attained equilibrium is overwhelm-
ingly likely to be found in a state for which Ω, or S, is maximised, we can say that

When two systems interact, the entropy of the combined system increases
along the path to equilibrium.

This is one statement of the Second Law of Thermodynamics. There are several others
that are equivalent on various levels.

The Use of Planck’s Constant for Quantifying Entropy

Near the start of Section 3.1 we said that it doesn’t matter whether the volume of one cell
of phase space is defined by dividing by h for each dimension, or ~/2 or 100h. The reason
is because throughout our study of entropy in statistical mechanics, it will only ever be
an increase in entropy, ∆S, that has a role in the calculations. Even when we eventually
write S by itself in (8.2), it is still only ∆S that ever matters.

With that in mind, consider how entropy relates to a volume V of phase space:

∆S = Sf − Si = k ln Ωf − k ln Ωi = k ln
Ωf

Ωi
= k ln

Vf/h
νN

Vi/h
νN

= k ln
Vf

Vi

. (5.19)

It’s apparent that we could replace h by any multiple of h and nothing would change in
the last equation: ∆S would still only be determined by a ratio of phase space volumes.
In fact, h isn’t needed at all. As used in Section 3.1 it was really only a device giving us a
way of specifying and counting states for a continuous system, which is a modern way of
approaching entropy. An alternative approach might define entropy through the idea of
phase space volume alone, but that would divorce entropy from the idea of the number of
accessible states. Defining entropy via the number of accessible states allows us to build
an intuition about it, because we can then consider very simple discrete systems and count
their states easily.

This reasoning also explains why, as we noted on page 9, the number of states Ω(E) and
their density g(E) are often treated as interchangeable in statistical mechanics. Although
entropy is defined as the logarithm of Ω(E), we usually only have knowledge of g(E).
However, (3.3) ties these together by way of some unspecified energy width ∆E, which
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then acts as a factor in the mathematics without changing the physics, just like any factor
we might choose to put in front of Planck’s constant. So this ∆E is not usually written
explicitly. A slight complication is that unlike a factor in front of Planck’s constant,
∆E has a dimension; but any choice of units will do because they’re all related by scaling
factors, which ultimately vanish because we only ever really consider ∆S. In fact, any
absence of ∆E might be considered offset by the fact that we wrote λ for λ− 1 in (3.11).
However, (3.11) used Stirling’s rule, which itself is just an approximation! You can see
that there is some vagueness in the number of factors of energy when we are dealing with
large numbers of particles.

5.3 Heat, Entropy, and the First Law Again

When examining the energy of a system as a function of some variables, we have axes V
(volume, corresponding to mechanical interactions) andN (particle number, corresponding
to diffusive interactions). But a third axis is needed to account for thermal interactions:
the dQ term in the First Law. That’s why we considered a thermal-only interaction at
the start of Section 5. Heating the system corresponds to increasing the entropy S, which
means we can choose to make the third axis simply entropy since, unlike heat, entropy is
a state variable like V and N . In that case

dE =
∂E

∂S
dS − P dV + µ dN . (5.20)

For a quasistatic process we have T = (∂E/∂S)V,N , producing

dE = T dS − P dV + µ dN . (5.21)

Comparing this with the provisional form of the First Law (4.7) allows us to write
dQ = T dS, irrespective of whether V,N are constant or not. Note that for the inter-
acting systems 1 and 2 at the start of Section 5 on their way to equilibrium, no heat went
in from the outside. But their combined entropy went up! So on the way to equilibrium,
dQ = 0 but dS > 0. We can’t write dQ = T dS for the combined system; what would T be
here, since it’s only defined at equilibrium? But certainly at equilibrium T is defined, and
then dQ = T dS = 0. In general, dQ = T dS is only written for quasistatic processes, since
these are always arbitrarily close to equilibrium. Since we only consider such processes,
(5.21) can be considered as the final form of the First Law of Thermodynamics, and we
will use it extensively.

Directions of Flow from the First Law

Consider systems 1 and 2 interacting thermally, mechanically, and diffusively:

dS = dS1 + dS2 . (5.22)

Suppose energy, volume, and particle number are conserved. Express dS2 in terms of dS1

using the First Law:

dE2 = −dE1 , so T2 dS2 − P2 dV2 + µ2 dN2 = −T1 dS1 + P1 dV1 − µ1 dN1 ,
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dV2 = −dV1

dN2 = −dN1

}
so T2 dS2 + P2 dV1 − µ2 dN1 = −T1 dS1 + P1 dV1 − µ1 dN1 . (5.23)

Thus
dS2 =

−T1 dS1

T2
+

(P1 − P2) dV1

T2
+

(µ2 − µ1) dN1

T2
, (5.24)

so that (5.22) becomes

dS =
(

1− T1

T2

)
dS1 +

P1 − P2

T2
dV1 +

µ2 − µ1

T2
dN1 . (5.25)

As the system heads toward equilibrium, dS > 0. We have the freedom to control how
much of each interaction in (5.25) occurs. So we require the entropy to increase for each
interaction if that interaction occurs on its own. Hence consider each term on the right
hand side of (5.25) separately to conclude:

Thermal: (
1− T1

T2

)
dS1 > 0 , so


T1 < T2 and dS1 > 0 (dQ1 > 0)

or
T1 > T2 and dS1 < 0 (dQ1 < 0)

(5.26)

So heat flows toward the region of lower temperature.

Mechanical:

P1 − P2

T2
dV1 > 0 , so


P1 > P2 and dV1 > 0

or
P1 < P2 and dV1 < 0

(5.27)

So the boundary moves toward the region of lower pressure.

Diffusive:

µ2 − µ1

T2
dN1 > 0 , so


µ2 > µ1 and dN1 > 0

or
µ2 < µ1 and dN1 < 0

(5.28)

So particles flow toward the region of lower chemical potential.
At equilibrium, as before, each term = 0 individually. Hence the temperatures, pres-

sures, and chemical potentials become equal.

A Note on Heat Flow Equation (5.24) (× T2) says

dQ2 = −dQ1 + terms involving dV1,dN1 . (5.29)

That is, the heat flowing into system 2 will only equal the heat flowing out of 1 if the
interaction is purely thermal.
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Intensive and Extensive Variables

T, P, µ are intensive: they are only defined at equilibrium, and they don’t scale with the
system; they are constant throughout the system.
S, V,N are extensive: they are defined even outside of equilibrium, and they scale linearly
with the system.

In the First Law these variables occur in conjugate pairs, with each term being an
intensive variable times an infinitesimal increase in its conjugate, extensive, partner. Ex-
perimentally, these two types of variable seem to be sufficient to quantify all systems in
statistical mechanics.

5.4 “Deriving” the Ideal Gas Law

Consider rearranging the First Law to give

dS =
dE
T

+
P dV
T
− µ dN

T
. (5.30)

Thus, in particular,
P

T
=
(
∂S

∂V

)
E,N

. (5.31)

But we know from (3.18) that for an ideal gas, Ω = f(E,N)V N for some function f . Its
entropy is thus S = k ln f(E,N) +Nk lnV . Substitute this into (5.31) to give

P

T
=
Nk

V
, (5.32)

which is the ideal gas law:

PV = NkT . (5.33)

Actually, we haven’t really derived the ideal gas law here. What we have really done is
shown that our statistical definition of temperature is consistent with the thermodynamic
definition of temperature.

With the number of moles n ≡ N/NA (where NA = Avogadro’s number) and the gas
constant R ≡ NAk ' 8.314 SI units, we obtain the molar form of the ideal gas law:
PV = nRT . It’s often convenient in chemical calculations to replace k by R/NA: the gas
constant R is a conveniently simple number, and NA allows well-known molar quantities
to be used. Good examples of this are found in Section 9.

Example: What is the volume of 1 kg of O2 gas at 1 atmosphere and 20◦C (101,325 Pa
and 293.15 K)?

Since one mole of O2 has a mass of about 32 g, we are dealing with n = 1000/32 moles
of what is essentially an ideal gas. Then the required volume is

V =
nRT

P
' 1000× 8.314× 293.15

32× 101,325
m3 = 0.752 m3 = 752 ` . Answer (5.34)
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6 Heat Capacity

Define the heat capacity of a substance, when heated while holding parameter A con-
stant, as the heat added divided by the temperature increase it produces: CA ≡ dQ/dT .
Normally particle number N is constant, so

CA dT = dQ = dE + P dV . (6.1)

At constant volume, CV dT = dE, or

CV =
(
∂E

∂T

)
V,N

. (6.2)

At constant pressure, for an ideal gas we have

CP dT = dE + P dV
= CV dT + P dV
= CV dT + nR dT . (6.3)

That means
CP = CV + nR = CV +Nk . (6.4)

Now define

molar heat capacity Cmol ≡ C/n ,
specific heat capacity Csp ≡ C/m (m = total mass of the substance). (6.5)

Equation (6.4) leads to a useful expression in chemistry:

Cmol
P = Cmol

V +R . (6.6)

Given that specific heat capacity is usually fairly constant over everyday temperature
ranges of interest, the expression dQ = CA dT = mCsp

A dT can be integrated to give the
total heat energy Q that must be absorbed by a mass m to increase its temperature by ∆T :

Q ' mCsp
A ∆T . (6.7)

The specific heat capacity is usually just called specific heat.

6.1 The Adiabatic Process

This is a process for which dQ = 0: no heat is exchanged between the system and its
environment. Particle number N is usually taken as constant, so write dE + P dV = 0.
Then, for an ideal gas,

CV dT + P dV = 0 ,

or CV
d(PV )
nR

+ P dV = 0 .

That means CV dP V + CV P dV + nRP dV = 0 ,
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or CV V dP + (CV + nR)P dV = 0 ,
so CV V dP + CP P dV = 0 . (6.8)

Divide by PV CV :
dP
P

=
−CP
CV

dV
V

. (6.9)

Define a (temperature-dependent) parameter γ:

γ ≡ CP
CV

=
Cmol
P

Cmol
V

=
Csp
P

Csp
V

. (6.10)

In that case

lnP = −γ lnV + const.

or P ∝ V −γ ,

so PV γ = constant.

This last expression is used when describing adiabatic processes for ideal gases on a PV dia-
gram. The adiabatic process, together with the isothermal process (PV = constant), make
up the Carnot cycle that forms the core description of the thermodynamics of engines and
refrigerators.

For an ideal gas, E = νNkT/2, so CV = νNk/2. Then

γ =
CV +Nk

CV
= 1 +

Nk

νNk/2
=
ν + 2
ν

. (6.11)

So measuring CP and CV gives information on the structure of the gas molecules:

ν =
2

γ − 1
. (6.12)

Example: The entropy of water at 25◦C and 1 atmosphere is 188.8 J K−1mol−1.
Water’s molecular mass is 0.018 kg/mol and its specific heat is 4186 J K−1kg−1. Raise
its temperature to 27◦C. What is the new molar entropy? (This example comes from
page 183 #40 of [1].)

Deal with one mole. We require S, its entropy at 27◦C. When heating anything,
it’s wise not to bolt the lid down, so we assume the above specific heat is for constant
pressure, although what is being held constant actually doesn’t matter for the purpose
of the calculation (i.e., the number 4186 has the process built into it, and we don’t need
to know how the temperature was increased). We can only assume the specific heat is
constant over temperature. The entropy increase from 25◦C is

∆S =
∫

dS =
∫

dQ
T

=
∫ 27

◦
C

25
◦
C

C dT
T

= C ln
273.15 + 27
273.15 + 25

, (6.13)

where C is the heat capacity of 1 mole; this is the heat capacity of 0.018 kg, so that
C = 4186 J K−1kg−1× 0.018 kg. Then

S = 188.8 J/K + ∆S
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= 188.8 + 4186× 0.018 ln
300.15
298.15

J/K

= 189.3 J/K . (6.14)

So the new molar entropy is 189.3 J K−1mol−1. Answer

Third Law of Thermodynamics

Experimentally, there seems never to be more than one state available ultimately as a
system’s temperature → 0. This suggests the Third Law of Thermodynamics:

In the limit of temperature going to zero, a system’s entropy goes to zero,
regardless of its makeup or the makeup of its environment.

This allows us to write a system’s entropy at some temperature T and constant parame-
ter(s) A explicitly as

SA(T ) = SA(T )− SA(0) =
∫ T

T=0
dSA =

∫ T

0

CA dT
T

. (6.15)

7 The Flow of Heat Energy

The current density J (also known as flux density) of heat energy is defined as the vector
pointing in the direction of heat flow, whose length is the energy crossing a perpendicular
unit area in unit time in that direction. Experimentally it’s found to be proportional to
the spatial rate of loss of T , or −∇T . So

J = −κ∇T , (7.1)

where κ > 0 is the thermal conductivity. The heat current across an area A is

I =
∫

J ·n dA = −κ
∫
∇T ·n dA , (7.2)

where the unit vector n is perpendicular to dA. But for any scalar function T , the increase
in T along a small step n d` in space is dT = ∇T ·n d`. Then

dT
d`

in the n direction = ∇T ·n (7.3)

(called a directional derivative, and sometimes written ∂T/∂n.) Equation (7.2) becomes

I = −κ
∫ (

dT
d`

along n

)
dA

= −κ
〈

dT
d`

⊥ to
surface

〉
A , (7.4)

where 〈·〉 denotes the mean value over the area A. So〈
−dT
d`

⊥ to
surface

〉
=

I

κA
, (7.5)
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which leads to 〈
−∆T ⊥ to

surface

〉
' I ∆`

κA︸︷︷︸
≡ R

. (7.6)

Here R is the thermal resistance, analogous to electrical resistance by way of Ohm’s Rule,
which says that an electric current I experiences a drop in electric potential Φ across a
resistance R of

−∆Φ = IR . (7.7)

(The drop −∆Φ is more usually written V .) When connecting thermal resistances in series
and parallel to model heat flow through complex objects, we add them in the same way
as we do electrical resistances. The quantity RA = ∆`/κ is called the R-factor in the
building trade.

Example: An 18 m × 6 m roof is made of 25 mm thick pine board with thermal con-
ductivity κ = 0.11 W m−1 K−1, covered with asphalt shingles ofR-factorRf = 0.0776 K m2 W−1.
Neglecting the overlap of the shingles, how much heat is conducted through the roof when
the inside temperature is 21◦C and the outside temperature is 5◦C?

When speaking of conducted heat, we mean the heat current I, measured in watts.
We must calculate, using (7.6),

I =
−∆T

Rpine +Rasph
=

−∆T
∆`
κA(pine) + Rf

A (asph)

=
−∆T A

∆`/κ(pine) +Rf (asph)
=

16× 18× 6
0.025/0.11 + 0.0776

= 5.67 kW. Answer

7.1 The Continuity Equation

This is a general equation describing local conservation of some quantity. Consider an
energy density %E in a volume V . There is a current density J carrying energy across the
surface A of the volume. In a time dt, the volume loses an amount of energy equal to
−d
∫
%E dV . This equals the amount that flows out through the closed surface, which is∮

dtJ ·n dA. So

−d
∫
%E dV =

∮
dtJ ·n dA = dt

∫
∇·J dV . (7.8)

That means ∫
dV
[
∂%E
∂t

+∇·J
]

= 0 for all volumes V. (7.9)

Since the volume is quite arbitrary, we arrive at the continuity equation:

∂%E
∂t

+∇·J = 0 . (7.10)

This idea of local conservation contrasts with global conservation, in which a quantity
might vanish at one point but re-appear at another. Although the quantity might well
have been conserved, there may have been no flow across any surface in between the
two points of vanishing and emergence. This is a weak form of the idea of conservation;
local conservation is a much stronger concept. For example, energy is always found to be
conserved locally.
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7.2 The Heat Equation (a.k.a. Diffusion Equation)

Since J = −κ∇T , the continuity equation becomes

∂%E
∂t
− κ∇2T = 0 . (7.11)

But an increase in energy dE in the volume equals mCsp dT where the mass inside is m.
So divide dE = mCsp dT by the volume to get d%E = %mC

sp dT where %m is the mass
density. Thus

∂%E
∂t

= %mC
sp ∂T

∂t
. (7.12)

Put this into (7.11) to get

∇2T =
%mC

sp

κ

∂T

∂t
. (7.13)

This is the heat equation, or diffusion equation. It has been produced by combining the
continuity equation with the experimental observation that the current density is propor-
tional to the spatial loss in T .

7.3 Solving the Heat Equation

The general heat equation is

∇2T =
1
K

∂T

∂t
(K > 0) . (7.14)

We can see why this might well model the flow of heat. The reason is because ∇2T is
a second spatial derivative. When there are no sources and T is peaked (a hot spot),
the second spatial derivative is negative, which means ∂T/∂t is also negative. So the
temperature in a hot spot decreases with time. Similarly, when T is a trough (a cold
spot), the second spatial derivative is positive, which means ∂T/∂t is also positive. That
means the temperature in a cold spot increases with time. This behaviour is just what we
expect of temperature.

The heat equation is linear, from which it follows that any linear combination of so-
lutions is also a solution. There is a huge literature devoted to solving partial differential
equations that relate the laplacian operator ∇2 to zeroth, first, and second time deriva-
tives. The topic is normally found in applied maths courses, so here we’ll consider just one
approach useful for dealing with an infinite domain (i.e., no boundary conditions). One
solution to the heat equation is

T (t,x) =
1

(4πKt)3/2
exp
−|x− x′|2

4Kt
. (Prove it!) (7.15)

This is a (normalised) gaussian of width σ =
√

2Kt. When t = 0 this becomes a delta
function, δ(x− x′). That is,

T (0,x) = δ(x− x′) =⇒ T (t,x) =
1

(4πKt)3/2
exp
−|x− x′|2

4Kt
. (7.16)
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Now, suppose the initial temperature distribution is known to be T (0,x) = f(x). We can
certainly write

f(x) =
∫ ∞
−∞

f(x′) δ(x− x′) d3x′ . (7.17)

We have expressed the initial temperature distribution as a linear combination of delta
functions, and each of these delta functions evolves according to (7.16). That means the
general solution of the heat equation is

T (t,x) =
∫ ∞
−∞

f(x′)
1

(4πKt)3/2
exp
−|x− x′|2

4Kt︸ ︷︷ ︸
Green function for heat equation

d3x′ . (7.18)

So provided we can do the integral, perhaps numerically, any initial temperature distribu-
tion can be propagated forwards in time.

Equation (7.18) has the form

f(x) =
∫ ∞
−∞

a(x′) b(x− x′) dx′ ≡ a(x) ∗ b(x) , (7.19)

which is called the convolution of a(x) and b(x). In this language, (7.18) is written

T (t,x) = T (0,x) ∗ 1

(4πKt)3/2
exp
−|x|2

4Kt
. (7.20)

At each moment in time, the convolution is essentially a moving spatial mean: it acts to
smear out the initial temperature distribution, with the (gaussian) smear getting wider
and wider as time goes on, just as we expect will happen as heat flows. The theory of
convolutions is intimately related to Fourier and Laplace transforms.

8 Integrating the Internal Energy

Consider
E =

∫
dE =

∫
(T dS − P dV + µ dN) . (8.1)

Because T, P, µ are intensive and S, V,N are extensive, we can calculate E by breaking the
final complete system up into many small pieces, each with T, P, µ at their final values,
and each piece having dS, dV,dN . Then simply add these to get

E = TS − PV + µN . (8.2)

It might seem surprising that we have been able to integrate the energy so easily, but
the method works precisely because of the distinction between intensive and extensive
variables in the First Law.

Calculating dE once more from (8.2) and then applying the First Law produces the
Gibbs–Duhem equation

S dT − V dP +N dµ = 0 , (8.3)

which relates changes in the intensive variables. It also shows that if one of these intensive
variables changes, then at least one other intensive variable must change.
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8.1 Switching Dependence on Variables

How to switch from a dependence on e.g. S to its conjugate variable T? Define the
Helmholtz Free Energy F ≡ E − TS. (It is called free energy because in a heat engine it
is the energy available, or “free”, to do work.)

dF = dE − S dT − T dS = −S dT − P dV + µ dN . (8.4)

Compare this to the First Law: we have swapped the S and T by way of defining a new
variable F . (This technique of defining a new variable by adding or subtracting the product
of the relevant conjugate pair is an example of a Legendre transform, which appears in
other areas of physics.) For an isothermal nondiffusive process, dT = dN = 0, so

dF = −P dV = work done on system. (8.5)

Similarly, to interchange P and V , define the enthalpy H ≡ E + PV .

dH = T dS + V dP + µ dN . (8.6)

Isobaric nondiffusive processes are of great relevance to chemical reactions, which are
often performed in an open vessel and so are isobaric. For these,

dH = T dS = heat entering system. (8.7)

Enthalpy tells us whether such reactions make their surroundings hotter or colder. The
reaction a→ b has a total heat energy entering the system of ∆H = Hb − Ha. When
∆H < 0 the reaction is exothermic: the reaction vessel gets hotter. When ∆H > 0 the
reaction is endothermic: the reaction vessel gets colder.

Define the Gibbs Free Energy G ≡ E − TS + PV = µN .

dG = −S dT + V dP + µ dN . (8.8)

For an isothermal isobaric process, dG = µ dN (the N dµ is absent on account of the
Gibbs–Duhem equation). So the Gibbs free energy is useful in analysing diffusive processes.

The Grand Free Energy Φ ≡ E − TS − µN = −PV can also be defined, with

dΦ = −S dT − P dV −N dµ . (8.9)

This is useful for describing systems with constant T, V, µ (isothermal, isochoric, nondif-
fusive).

8.2 Maxwell Relations

These are simply expressions of mixed partial derivatives from the First Law. Consider a
function f(x, y, z). We have

df = X dx+ Y dy + Z dz . (8.10)

But we know that e.g.
∂2f

∂y ∂x
=

∂2f

∂x ∂y
; i.e.

∂X

∂y
=
∂Y

∂x
, (8.11)
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or, more explicitly, (
∂X

∂y

)
x,z

=
(
∂Y

∂x

)
y,z

. (8.12)

Apply this idea to the First Law: dE = T dS − P dV + µ dN. Then e.g.(
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

, (8.13)

and so on. This is an example of a Maxwell relation. Others follow from F,G,H. For
example, using dF = −S dT − P dV + µ dN, we get

−
(
∂P

∂N

)
T,V

=
(
∂µ

∂V

)
T,N

(8.14)

and so on. These relations are useful in allowing us to change variables depending on
the experimental setup. It’s usually best to use as independent variables ones that are
either constrained or easily measured. Because three variables are needed to describe a
system, we can choose one of each type (thermal, mechanical, diffusive). E.g., what is the
dependence of E on T, P for a closed system? (We can ignore µ,N here as there is no
diffusion.) We have

dE =
(
∂E

∂T

)
P

dT +
(
∂E

∂P

)
T

dP . (8.15)

We can consider E as a function of S, V , each a function of T, P , to write(
∂E

∂T

)
P

=
(
∂E

∂S

)
V

(
∂S

∂T

)
P

+
(
∂E

∂V

)
S

(
∂V

∂T

)
P

. (8.16)

But dE = T dS − P dV, so (∂E/∂S)V = T and (∂E/∂V )S = −P . Thus (8.16) becomes(
∂E

∂T

)
P

= T

(
∂S

∂T

)
P

− P
(
∂V

∂T

)
P

. (8.17)

Similarly, (∂E/∂P )T can be found.
An example of dependencies that are easily measured starts with

T =
(
∂E

∂S

)
V,N

. (8.18)

This leads to (assuming here that N is constant, so we’ll drop reference to N):

CV =
(

dQ
dT

)
V

=
(
T dS
dT

)
V

= T

(
∂S

∂T

)
V

,

CP =
(

dQ
dT

)
P

=
(
T dS
dT

)
P

= T

(
∂S

∂T

)
P

. (8.19)

Also define

coeff. of thermal expansion β ≡ 1
V

(
∂V

∂T

)
P

= relative increase in V with T at constant P , (8.20)
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and
coeff. of isothermal compressibility κ ≡ −1

V

(
∂V

∂P

)
T

= relative decrease in V with P at constant T . (8.21)

Another useful tool arises from answering a question such as: if z = z(x, y) and z is held
constant, how do x and y relate? Write

0 = dz =
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy . (8.22)

Hence

−
(
∂z

∂x

)
y

dx =
(
∂z

∂y

)
x

dy , (8.23)

in which case (
∂x

∂y

)
z

=
(∂z/∂y)x
−(∂z/∂x)y

= −
(
∂z

∂y

)
x

(
∂x

∂z

)
y

. (8.24)

For example, at constant N ,

β

κ
= −

(
∂V

∂T

)
P

(
∂P

∂V

)
T

=
(
∂P

∂T

)
V

. (8.25)

Although a study of the Maxwell Relations forms a useful exercise in dealing with the
various partial derivatives that arise in statistical mechanics, they do not form a major
part of the modern subject, and we will not pursue them further.

9 The Chemical Potential and Phase Changes

Consider interactions of various substances. For there to be much interaction at all, the
particles should be able to move about; so we will model the number of accessible states of
a complex material to have a volume term just like a gas of identical particles, combining
the ideas of (3.18) and (3.19):

Ω ∝
(
V

N

)N (E −Nu0

N

)νN/2
. (9.1)

Set % ≡ N/V = particle density. Also, Equipartition says E −Nu0 = νNkT/2. So

Ω ∝ %−N T νN/2 . (9.2)

The implied normalisation here will allow Ω to be dimensionless, and can be embodied
in a sort of “reference density” %∗ and “reference temperature” T ∗. In that case the en-
tropy S = k ln Ω would be written

S = const.−Nk ln(%/%∗) + 1/2 νNk ln(T/T ∗) , (9.3)

since we can only take the logarithm of a dimensionless quantity. But in practice, %∗

and T ∗ will end up cancelling out anyway, so we will simply absorb them into % and T ,
and write the entropy as

S = const.−Nk ln %+ 1/2 νNk lnT . (9.4)

32



DSTO–GD–0612

Use this to calculate µ:

µN = E + PV − TS = Nu0 + 1/2 νNkT︸ ︷︷ ︸
E

+
{

NkT (gas)
negligible (liq./sol.)

}
︸ ︷︷ ︸

PV

− const.× T +NkT ln %− 1/2 νNkT lnT︸ ︷︷ ︸
−TS

, (9.5)

or
µ = u0 + kT ln %+ g(T ) for some function g. (9.6)

That is, seeking a lower µ goes with seeking regions of lower “ambient” energies u0 and
seeking regions of lower particle densities.

9.1 Colligative Properties of Solutions

These are properties that only depend on the concentration of a dissolved substance (the
solute), but not on what it actually is. We will use the example of adding a small amount
of common salt (the solute) to pure water (the solvent), which approximates sea water.
Sea water typically has 2% salt by particle number, meaning there are approximately
2 salt ions (we’re not concerned with whether they are Na+ or Cl−) to every 98 water ions
(which could be H3O+ or OH−). For this case, set a variable f = 0.02.

Initially (before adding salt), the water has density %0 = N/V .
Finally (salt + water), the water’s density is % = (1− f)N/V = (1− f)%0.

Focus on the water’s chemical potential: for small f it increases by

∆µ = µf − µi ' u0 + kT ln %+ g(T )
− u0 − kT ln %0 − g(T )

= kT ln
%

%0
= kT ln(1− f) ' −fkT . (9.7)

[This is a good example of how %∗ cancels: we might choose to make the replacements %→ %/%∗,
%0 → %0/%

∗, but that won’t change the last line of (9.7).]
Start with (1) water in equilibrium with its vapor (both with chemical potential µ),

then (2) salt is added, which reduces the chemical potential of the water to µ− fkT and
so destroys the equilibrium, then (3) liquid/vapor equilibrium is again restored, with a
new chemical potential µ′. There have been overall increases in temperature and pressure
of ∆T,∆P . Now make use of the Gibbs–Duhem equation (8.3), writing that equation as

∆µ ' −S
N

∆T +
V

N
∆P . (9.8)

Also set the entropy per particle to be s ≡ S/N , and the volume per particle to be
v ≡ V/N . Now we note the following:

For the vapor, in going from (1) to (3) in the previous paragraph,

∆µ = µ′ − µ ' −svap∆T + vvap∆P . (9.9)
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For the water, in going from (1) to (2), there are approximately no changes in temper-
ature and pressure (this is a simplification), and in going from (2) to (3),

∆µ = µ′ − (µ− fkT ) ' −sliq∆T + vliq∆P . (9.10)

Combine (9.9), (9.10) to give

−svap∆T + vvap∆P + fkT ' −sliq∆T + vliq∆P , (9.11)

or
−
(
svap − sliq

)
∆T +

(
vvap − vliq

)
∆P ' −fkT . (9.12)

Examine this last equation for the two cases of constant temperature and constant pressure:

Constant Temperature (
vvap − vliq

)
∆P ' −fkT . (9.13)

But vvap � vliq, so write, for the vapor, v∆P ' −fkT , and treating the vapor as an ideal
gas (so Pv = kT ), this becomes

−∆P
P
' f . (9.14)

That is, the relative drop in vapor pressure ' f , the fraction of solute particles in solution.

Constant Pressure (
svap − sliq

)
∆T ' fkT . (9.15)

Follow n particles leaving the liquid: they have picked up the latent heat of vaporisation,
which increases the distance between particles without increasing their kinetic energy (and
therefore without increasing their temperature). They each have mass m, and the specific
latent heat of vaporisation (i.e. per unit mass) is Lsp. So

svap − sliq = s for the n particles after entering the vapor
− s for the n particles before leaving the liquid

=
∆S
n

=
Q

Tn
, (where Q = latent heat in)

=
Lspnm

Tn
. (9.16)

Thus (9.15) becomes
Lspm

T
∆T ' fkT , so ∆T ' fkT 2

Lspm
. (9.17)

If the latent heat is specified as a molar latent heat Lmol (latent heat per mole), then the
last equation becomes

∆T ' fRT 2

LspmNA
=

fRT 2

lat. heat for 1 mol
=
fRT 2

Lmol
. (9.18)
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Raising Boiling Points We add salt to water. That lowers the chemical potential of
the water by fkT , so that the vapor has a higher chemical potential. Thus vapor particles
start entering the brine (because diffusion always occurs from high chemical potential
to low chemical potential). Consider the water initially boiling, in equilibrium with its
vapor. Add salt, and vapor starts to enter the brine. If we wish to restore the equilibrium
at constant pressure, we must increase the temperature by ∆T . That is, the boiling point
of the brine will now be 100◦C + ∆T .

Example: Calculate the temperature at which the above 2% salt water mixture boils.
Its molar latent heat of vaporisation is Lmol = 40,700 J/mol.

Use f = 0.02 and write

∆T =
fRT 2

Lmol
=

0.02× 8.314× 3732

40,700
' 0.6 K. (9.19)

So the new boiling point is 100.6◦C. Answer

Lowering Melting Points Replace the water vapor in the above discussions with ice.
Now, instead of vapor particles entering the brine, ice particles enter the brine. That is,
when salt is added to a water/ice mixture, the ice starts to melt. To restore equilibrium at
constant pressure, we must now remove heat. This is equivalent to making Lmol negative
in the above equations. If the molar latent heat of fusion of water is 6000 J/mol, the new
melting point of the ice is 0◦C + ∆T , where

∆T =
fRT 2

Lmol
=

0.02× 8.314× 2732

−6000
' −2 K. (9.20)

So the new freezing point of the brine is −2◦C. Because adding salt to an ice/water mixture
causes the ice to melt, this is one method of de-icing roads in winter—provided the ambient
temperature is not too low.

9.2 Osmotic Pressure

Suppose some water (µ) is separated from brine (µ− fkT ) by a membrane through which
water can pass, but not salt. Imagine this was originally 2 systems, both at µ. Now we
lower the brine’s potential to µ− fkT . Gibbs–Duhem says that this change goes together
with a ∆P and a ∆T :

∆µ = −fkT = −sbrine∆T + vbrine∆P . (9.21)

At constant temperature, there will now be an osmotic pressure “forcing” water molecules
to diffuse from µ to µ− fkT (high to low potentials):

∆P =
(
N

V

)
brine

∆µ . (9.22)

We know the pressure acts to force water into the brine, so consider absolute values,
writing (with Vmol the volume of one mole, and there are N particles of water in the brine)

osmotic pressure =
(
N

V

)
brine

fkT =
N fkT
N
NA
Vmol

=
fRT

Vmol
. (9.23)
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Example: What is the osmotic pressure for pure water diffusing into brine at 25◦C?

pressure =
0.02× 8.314× 298

18−6 Pa = 2.75 MPa ' 27 atm. Answer (9.24)

This is very large! The salinity of humans is between pure water and sea water:

µsea water < µhuman < µfresh water
←− ←−
osmotic pressure

So if we drink fresh water, it diffuses into our organs, which is good. But if we drink sea
water, pure water diffuses out of our organs into the sea water, and we dehydrate.

9.3 Chemical Equilibrium

Because Gibbs energy is G = E − TS + PV = µN , or really
∑
µiNi, chemists tend to

useG to discuss chemical equilibrium. For isothermal isobaric processes, we have dG = µdN .
Now focus on the increase in G for two systems interacting diffusively:

dG1 = µ1 dN1 ,

dG2 = µ2 dN2 = −µ2 dN1 . (9.25)

Note that G is extensive.

Why? At equilibrium, G1 = µN1 and G2 = µN2, so that G1 +G2 = µN = G. So G scales linearly
with the system, which is what extensive variables do.

Because it’s extensive, we can write

dG = dG1 + dG2 = (µ1 − µ2) dN1 , (9.26)

and regardless of whether µ1 is greater or less than µ2, this expression will be negative.
That is, G tends to decrease, until at equilibrium it must be a minimum. We’ll use this
in the next discussion.

Direction of a Reaction and Law of Mass Action

Suppose we have molecules A,B,C that can react in either direction:

aA+ bB 
 cC . (9.27)

At some point in time, it’s known that the species have chemical potentials µA, µB, µC .
We can use these potentials to determine the direction in which the reaction will proceed,
by using the fact that G always decreases on the way to equilibrium. So calculate ∆G for
each direction of the reaction; the direction for which it’s negative will be the direction
in which the reaction proceeds. Previously we wrote dG = µ dN, but when there is more
than one particle species present we should write dG =

∑
µi dNi, or

∆G '
∑

µi ∆Ni . (9.28)

Calculate ∆G for each direction. Remembering the comments in Section 4.1, we must
ensure each ∆Ni has the correct sign.
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Left to right: When the mixture loses a molecules of A (i.e. −∆NA = a) and b molecules
of B (−∆NB = b), it gains c molecules of C (∆NC = c):

∆NA = −a , ∆NB = −b , ∆NC = c . (9.29)

When this happens,
∆GL→R ' −aµA − bµB + cµC . (9.30)

Right to left: Now everything is reversed: the mixture gains a molecules of A (∆NA = a)
and so on. Hence all the signs in the calculation of ∆G are reversed from above:

∆GR→L = −∆GL→R . (9.31)

Certainly one of either ∆GL→R or ∆GR→L is negative (unless they are both zero, in which
case the reaction has attained equilibrium). This negative one tells us in which direction
the reaction goes. You can see why µ is called the chemical potential.

If you remember that ∆ always refers to an increase, you’ll always get the
signs right in analyses like the above.

The increases in particle numbers for the left-to-right version of the above reaction,
written in (9.29), are called its stoichiometric coefficients. Consider a more general reaction
with stoichiometric coefficients b1, b2, b3, . . . . As in (9.30), we have

∆GL→R '
∑

µibi . (9.32)

But we saw in (9.6) that each chemical potential can be written as

µi = kT ln %i + functioni(T )
≡ kT

[
ln %i − ln ζi(T )

]
, (9.33)

where %i are the particle densities and ζi are defined for convenience in the following
calculation. Then

∆GL→R '
∑

bikT
[

ln %i − ln ζi(T )
]
, (9.34)

in which case

exp
∆GL→R
kT

= exp
∑

bi
[

ln %i − ln ζi(T )
]

=
∏
i %
bi
i∏

i ζ
bi
i (T )

. (9.35)

The denominator in this expression is called the equilibrium constant for the reaction,
which we’ll write as A(T ):

A(T ) ≡ ζb11 ζ
b2
2 ζ

b3
3 . . . (9.36)
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Examining (9.35) leads to the following:∏
%
bi
i < A(T )⇐⇒ ∆GL→R < 0⇐⇒ reaction goes from left to right,∏
%
bi
i > A(T )⇐⇒ ∆GL→R > 0⇐⇒ reaction goes from right to left,∏
%
bi
i = A(T )⇐⇒ ∆GL→R = 0⇐⇒ reaction is at equilibrium. (9.37)

In particular, the last line above is known as the law of mass action: it tells us the densities
of the various species present at equilibrium. In practice the %i are usually expressed as
molar densities (e.g. moles per litre), which is okay because the units will be wrapped up
inside A(T ).

Example: Writing “mol/` ” as M, the equilibrium concentrations in the reaction

2A+B 
 5C + 3D

are %A = 1 M, %B = 2 M, %C = 3 M. For the temperature at which the reaction occurs,
the equilibrium constant is 100 M5. What is the concentration of D?

The law of mass action says that at equilibrium,

%−2
A %−1

B %5
C %

3
D = 100 M5. (9.38)

Thus

%3
D = %2

A %B %
−5
C 100 M5

= (1 M)2 (2 M) (3 M)−5 100 M5 = 0.82 M3 , (9.39)

from which it follows that
%D = 0.94 M . Answer (9.40)

Note that if we had gotten the relative signs wrong in our set of stoichiometric coefficients
for the above example, the units wouldn’t have worked out right.

10 Fluctuations for a System in Contact

with a Reservoir

Statistical methods seemingly can’t be used to study small systems such as a single atom.
But suppose a small system is in contact with another, larger, system—one so large that
its parameters don’t change significantly when it interacts with anything else. This larger
system is called a reservoir, or a bath. Since the bath can be treated statistically, we can
use the fact that the bath and system affect each other, to calculate what happens to the
system.

So we ask the question: what fluctuations in a (smaller) system’s parameters will occur
when it’s in equilibrium with a reservoir? We begin with a preliminary treatment before
delving into the Boltzmann Distribution in Section 10.2. The probability that the system
will be found in some configuration is proportional to the number of the accessible states Ω
for the system + reservoir in that configuration. Focus on the fluctuations of some param-
eter χ ∈ {E, T, P, V, µ,N}. At equilibrium χ = χ0, but now a fluctuation ∆χ occurs, so
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that the new value is χ = χ0 + ∆χ. We require the probability that the system + reservoir
could be in a state with χ instead of χ0. The probability of a fluctuation ∆χ is

p(∆χ) ∝ Ω(χ) = e
Stot(χ)/k , (10.1)

where Stot = the sum of the entropies of the system and reservoir. Ignoring all other
parameters for conciseness, Taylor’s theorem gives

Stot(χ) = Stot(χ0 + ∆χ) = Stot(χ0) + S′tot(χ0)︸ ︷︷ ︸
= 0 at equilib.

∆χ+ S′′tot(χ0) ∆χ2/2 + . . . (10.2)

So for small fluctuations ∆χ,

p(∆χ) ∝ exp

(
S′′tot(χ0)

∆χ2

2k

)
≡ exp

−∆χ2

2σ2
χ

, (10.3)

where σχ is a gaussian characteristic spread of the fluctuations. Hence

σ2
χ =

−k
S′′tot(χ0)

. (10.4)

Because other variables really are present, we should write this as

σ2
χ =

−k

∂2Stot/∂χ
2
∣∣∣
χ0

. (10.5)

Example. What is σE/E for one mole of an ideal monatomic gas?

We require ∂2Stot/∂E
2 at equilibrium. Write the entropy of the system as S and that

of the reservoir as Sr, then use conservation of total energy, volume, and particle number
to write

dS =
dE
T

+
P dV
T
− µ dN

T
,

dSr =
dEr
Tr

+
Pr dVr
Tr

− µr dNr

Tr
=
−dE
Tr
− Pr dV

Tr
+
µr dN
Tr

. (10.6)

Add these to get

dStot =
(

1
T
− 1
Tr

)
dE +

(
P

T
− Pr
Tr

)
dV −

(
µ

T
− µr
Tr

)
dN . (10.7)

Then (
∂Stot

∂E

)
V,N

=
1
T
− 1
Tr

(10.8)

and Tr is constant (because the reservoir is huge, by definition), so(
∂2Stot

∂E2

)
V,N

=
−1

T 2

(
∂T

∂E

)
V,N

. (10.9)
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Model the system energy’s temperature dependence as

E = u0 + νN
kT

2
. (10.10)

After some algebra,
σE
E

=

√
νN k2T 2

2(u0 + ν NkT/2)2 . (10.11)

For an ideal gas, u0 = 0, and we get

σE
E

=

√
2
νN

. (10.12)

The 1/
√
N is the signature of a relative fluctuation. For one mole of an ideal monatomic

gas this is
σE
E

=

√
2

6 23 × 3
' 10−12. Answer (10.13)

10.1 The Concept of the Ensemble

When calculating quantities relating to a system in contact with a bath, it can be helpful
to picture a large number of identically prepared systems, each interacting with its own
bath, and each in some different (random) stage of its evolution. This imagined set of
system–bath pairs is called an ensemble. We can treat each system of the ensemble as a
fixed point in phase space, with the whole assembly of points comprising the path that
a single system would trace out in phase space as it evolved. This idea is called the
ergodic principle: it suggests that we can convert averages over time to averages over the
ensemble. While historically the ergodic principle has never been completely validated, it
is used frequently in statistical mechanics.

Ensembles are classified by the extent of their interaction with a bath:

No interaction: “microcanonical ensemble” (system isolated; its energy conserved)

Thermal/mechanical interaction: “canonical ensemble” (air molecules)

Thermal/mechanical/diffusive interaction: “grand canonical ensemble” (ice crystals
interacting with moist air).

10.2 The Boltzmann Distribution

Suppose the interaction increases the system’s energy, volume, and particle number by
∆E,∆V,∆N . The bath’s parameters become E−∆E, V −∆V,N−∆N . The probability p
that the system will have the stated energy, volume, and particle number is proportional
to the number of states accessible to the system + bath:

p ∝ Ωs ΩR . (10.14)

How to calculate these two numbers of accessible states? The system is probably so simple
that the number of states Ωs accessible to it are easily enumerated. On the other hand,
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the bath is so huge that we can’t easily enumerate the number of its accessible states ΩR

from first principles; however, we can treat it statistically, so can calculate ΩR from a
knowledge of its entropy SR = k ln ΩR. The above probability is

p ∝ Ωs e
SR/k . (10.15)

The First Law for the bath, ER = TSR − PVR + µNR, rearranges to give the bath’s en-
tropy as

SR =
ER + PVR − µNR

T
=
E −∆E + P (V −∆V )− µ(N −∆N)

T
, (10.16)

so that (10.15) becomes

p ∝ Ωs exp
E −∆E + P (V −∆V )− µ(N −∆N)

kT
. (10.17)

Absorbing E, V,N into the constant of proportionality gives

p ∝ Ωs exp
−∆E − P∆V + µ∆N

kT
. (10.18)

We are free to measure ∆E,∆V,∆N relative to arbitrary reference levels E0, V0, N0. That
is, if the system originally had E0, V0, N0 and now it has Es = E0 + ∆E, Vs = V0 + ∆V ,
and Ns = N0 + ∆N , then (10.18) becomes

p ∝ Ωs exp
−(Es − E0)− P (Vs − V0) + µ (Ns −N0)

kT

∝ Ωs exp
−Es − PVs + µNs

kT
, (10.19)

where the system’s energy Es might not all have come from an interaction with the bath.
For now we’ll restrict ourselves to the case in which no particles are exchanged with the

reservoir. The PVs term is significant only in exceptional circumstances of high pressure,
such as in a neutron star. So usually write (10.19) as

p ∝ Ωs e
−Es/(kT ) . (10.20)

This is the famous Boltzmann Distribution, and is one of the central equations of statistical
mechanics.

Example: Suppose a system of hydrogen gas is in contact with a bath at T = 295 K.
What ratio of the H atoms will be in the 1st excited state, compared to the ground state?
Use E0 = −13.6 eV, E1 = −3.4 eV.

p(E1)
p(E0)

=
Ω1 e

−E1/(kT )

Ω0 e
−E0/(kT )

=
Ω1

Ω0
e
−(E1−E0)/(kT ). (10.21)

In the ground state, the H quantum numbers are (n lm) = (1 0 0), with two possi-
ble electron spins, so Ω0 = 2. In the 1st excited state the quantum numbers can be
(2 0 0), (2 1 1), (2 1 0), (2 1 − 1), each with two spins, so Ω1 = 8. We have

kT ' 1.381−23 × 295

1.602−19 eV ' 0.0254 eV . (10.22)
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Then
p(E1)
p(E0)

=
8
2

exp
−10.2 eV
0.0254 eV

' 2× 10−174. Answer (10.23)

Clearly, most of the atoms are unexcited.

It’s useful to note that at room temperature, kT ' 1/40 eV. Remember this number: it forms a
good rule of thumb to help you determine quickly whether much of a system is excited or not.
In the above example, the energy “distance” to the first excited state is 10.2 eV, and this is so
much larger than 1/40 eV that we can see immediately that there will be almost no excitation.
The typical energy supplied by interactions with the bath, kT , is just too small to excite many
atoms—although, fluctuations being what they are, some few atoms will be excited.

In general, we can define the excitation temperature of a system as Te such that

E1 − E0

kTe
≡ 1 . (10.24)

The excitation temperature gives an indication of the temperature at which an appreciable
number of particles begin to occupy the 1st excited state.

10.3 Diatomic Gases and Heat Capacity

In (6.11) we wrote γ = (ν + 2)/ν in the context of heat capacity. At room temperature,
γ is measured to have the following values:

molecule: HCl NO Cl2 Br2 I2

γ: 1.41 1.40 1.36 1.32 1.30

These values begin at 7/5, so diatomic gases such as HCl and NO seem to be rigid rotors
with 5 degrees of freedom: presumably 3 translational and 2 rotational. For a non-rigid
rotor, we expect vibration to contribute 2 more degrees of freedom, making γ = 9/7 ' 1.29.
So iodine seems to be a non-rigid rotor at room temperature, with chlorine and bromine
somewhere in between.

It turns out that the heat capacity for any particular gas varies with temperature
as the degrees of freedom go from purely translational to translational + rotational, to
translational + rotational + vibrational. Let’s investigate this using quantum mechanics.

10.3.1 Rotation

A rigid diatomic molecule can only have rotational energy levels of

E` =
`(`+ 1)~2

2I
, where ` = 0, 1, 2, . . . (10.25)

In a gas at temperature T , we have relative populations

N(E`)
N(E0)

=
Ω` e

−E`/(kT )

Ω0 e
−E0/(kT )

, (10.26)
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where Ω` = 2`+ 1 is the usual quantum mechanical degeneracy associated with the set
−`, . . . , `. Thus

N(E`)
N(E0)

= (2`+ 1) exp
−`(`+ 1)~2

2I

kT
. (10.27)

Define the characteristic temperature of (the onset of) rotation as TR, where

kTR ≡
~2

2I
. (10.28)

Then
N(E`)
N(E0)

= (2`+ 1) e
−`(`+1)TR/T . (10.29)

If T � TR then N(E`)/N(E0) ≈ 0, and the rotational states are “frozen out”. The rota-
tional energy level spacing is large compared to the ambient supply of thermal energy kT ,
which is why rotational states can’t be activated.

If T � TR then N(E`)/N(E0) > 0 and the rotational energy states are well populated.
The rotational energy level spacing is now small compared to kT . With so many rotational
states able to be accessed, a gas of such molecules well and truly has rotational degrees of
freedom, and can be treated using the Equipartition Theorem.

Rotation about a non-internuclear axis Consider a classical picture of a rigid rotor
formed from two masses lying along the x axis, that spin around the z axis about their
centre of mass, which lies at the origin. The masses forming the rotor are m1, distance r1

from the origin, and m2, distance r2 from the origin. The two masses are a distance D
apart. What is TR? We need the moment of inertia Iz for rotation about the z axis:

Iz = m1r
2
1 +m2r

2
2 . (10.30)

But if the centre of mass is at the origin, then −m1r1 + m2r2 = 0. We can use this to
show that

Iz = µD2 , where
1
µ

=
1
m1

+
1
m2

. (10.31)

µ is called the reduced mass of the system.
Example: Calculate the characteristic temperature of rotation for CO, given that the

C and O atoms are a distance of 0.112 nm apart.
The masses of an atom of carbon and an atom of oxygen are 12 g/NA and 16 g/NA

respectively, and D = 0.112 nm. Thus

TR =
~2

2Izk
=

~2

2µD2k
=

[
6.626−34

/(2π)
]2 × 6.022 23 ( 1

0.012 + 1
0.016

)
2×

(
0.112−9)2 × 1.38−23

K

= 2.8 K Answer (10.32)

So at room temperature a gas of CO molecules has many rotational states occupied, and
the Equipartition Theorem can be applied to it.
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Rotation about the internuclear axis For the same masses above, we can use a clas-
sical picture to calculate the moment of inertia Ix for rotation about the x axis, i.e. about
the line joining the masses. We find that Ix � Iz. For CO, a similar calculation to the
one above gives the characteristic temperature for the onset of this type of rotation as
≈ 100,000 K; hence such rotation is frozen out at room temperature. In fact, quantum
mechanically, there can be no rotation at all about the x axis, so this rotation is frozen
out at all temperatures.

10.3.2 Vibration

A harmonic oscillator of frequency f can only have vibrational energies

En = (n+ 1/2)hf , where n = 0, 1, 2, . . . (10.33)

Relative populations are

N(En)
N(E0)

=
Ωn e

−(n+1/2)hf/(kT )

Ω0 e
−1
2
hf/(kT )

= e
−nhf/(kT ) , (10.34)

because Ωn = 1 for all n. Define the characteristic temperature of (the onset of) vibration
as TV , where

kTV ≡ hf . (10.35)

Then
N(En)
N(E0)

= e
−nTV /T . (10.36)

If T � TV then N(En)/N(E0) ≈ 0, and the vibrational levels are frozen out. The vibra-
tional energy level spacing is large compared to kT .

If T � TV then N(En)/N(E0) > 0 and the vibrational energy levels are well populated.
The vibrational energy level spacing is now small compared to kT . With the vibrational
levels well occupied, a gas of such molecules has vibrational degrees of freedom, and can
be treated using the Equipartition Theorem. Typical values of TV for light molecules
are several thousand kelvins, so at room temperature and beyond, these molecules don’t
vibrate.

10.4 Equipartition for a System Touching a Bath

The Equipartition Theorem was stated originally in Section 5.1 for what amounted to an
isolated system. We saw there that each degree of freedom contributes 1/2 kT to the total
energy. What is its equivalent for a system in contact with a bath? Fluctuations now
allow the system to have a range of energies. For such a case, let’s calculate the mean
energy contributed to the system by each degree of freedom.

The mean thermal energy associated with any particular coordinate u is

〈Eu〉 =
∫ ∞

0
Eu p(Eu) dEu , (10.37)

where

p(Eu) dEu = prob. that the system has energy in Eu → Eu + dEu
= (prob. system in a state with Eu)× no. of states in that interval. (10.38)
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The probability of being in a state with energy Eu is ∝ e
−Eu/(kT ). The number of states

in the energy interval dEu equals the number of states in the coordinate interval du. In
Section 3.1, we showed that this number is proportional to the length du of that interval.
Hence

p(Eu) dEu = Ae
−Eu/(kT ) du , for some normalisation A. (10.39)

As before, we’ll just consider quadratic energy dependence: Eu = bu2 for some b. Calcu-
late A by demanding that

∫∞
0 p(Eu) dEu = 1. (Note that it suffices to consider positive u

only, since Eu is even in u. In fact, if we use the whole range of u we will get a dif-
ferent normalisation, but the end result for 〈Eu〉 will be the same.) Using the gaussian
integral (2.27) it’s easy to show that

A = 2

√
b

πkT
. (10.40)

Now we can evaluate (10.37):

〈Eu〉 =
∫ ∞

0
bu2Ae

−bu2
/(kT ) du

= bA

∫ ∞
0

uu e
−bu2

/(kT ) du . (10.41)

This last equation can be integrated by parts (the parts are u and u e
−bu2

/(kT )) to give

〈Eu〉 = 1/2 kT . (10.42)

[For an alternative way to integrate (10.41), see (12.5) and (12.6).] So this is the general-
isation of the Equipartition Theorem to the case of a non-isolated system. Each degree of
freedom now contributes an average value of 1/2 kT to the thermal energy.

11 Entropy of a System Touching a Bath

The central postulate of statistical mechanics is that the accessible states of an isolated
system are all equally likely. Calling the number of these Ω, we defined the thermodynamic
entropy S ≡ k ln Ω in Section 5. From a purely mathematical viewpoint, we also had the
statistical entropy σ ≡ ln Ω, which just omits Boltzmann’s constant.

A system S in contact with a bath is no longer isolated, so its accessible states are
in general not equally likely. Can we still find an expression for its entropy? Suppose its
states are labelled |1〉, |2〉, . . . , |M〉, where M might be infinite. If the probabilities pi of
being found in a state |i〉 are all equal, we can set Ω = M and write σ = lnM . When
the probabilities are not all equal, we form an (isolated) ensemble of a huge number N of
distinguishable copies of S. As N →∞, the number of copies of S found in state |i〉 is
ni = Npi.

Now, how to count the accessible states? This number will be hugely dominated by
the number pertaining to equilibrium, being the number of ways that we can arrange
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n1 systems in |1〉, n2 systems in |2〉, etc. Because of the incredibly highly peaked nature
of Ω, we can set Ω equal to this equilibrium number and not include all the other ways,
such as n1 + n2 copies in |1〉, none in |2〉, n3 in |3〉, etc. We calculated this number for
M = 2 states in Section 2 by considering the binomial distribution. There we found:

Number of ways of putting n1 systems in |1〉 and n2 systems in |2〉 =
N !

n1!n2!
, (11.1)

where N = n1 + n2. The same reasoning applies to the case of more than 2 states. Label
N distinguishable particles 1, 2, . . . , N and allocate each to one of M bins; then apply the
approach outlined in (2.1). Each combination will occur n1! n2! . . . nM ! times, so the total
number of permutations, N !, over-counts by this factor. Thus the required total number
of combinations must be

N !
n1! n2! . . . nM !

. (11.2)

The actual probability distribution that extends the binomial case is called the multinomial distri-
bution. That is, if the chance of a particular particle being allocated to bin i is pi, then what is the
chance P (n1, n2, . . . , nM ) of finding ni particles, without regard for order, in bin i for some given
n1, n2, . . . , nM? Each combination described in the previous paragraph occurs with probability
p
n1
1 p

n2
2 . . . p

nM
M

, so

P (n1, n2, . . . , nM ) =
N !

n1! n2! . . . nM !
p
n1
1 p

n2
2 . . . p

nM
M

. (11.3)

This is useful to know, but we only need the total number of combinations N !/(n1! n2! . . . nM !).

The number of combinations in (11.2) pertains to the whole ensemble so, to the accuracy
mentioned above, it must equal ΩN , since the number of states is multiplicative just as
entropy is additive. In that case the statistical entropy is

σ = ln Ω =
1
N

[
lnN !−

M∑
i=1

lnni!

]

' 1
N

(N + 1/2) lnN −��N + ln
√

2π︸ ︷︷ ︸
≡ `

−
∑
i

[
(ni + 1/2) lnni −��ni + ln

√
2π
]

=
(

1 +
1

2N

)
lnN +

`

N
−
∑
i

(
pi +

1
2N

)
ln(Npi)−

M`

N
. (11.4)

(Note that this expression is not overly changed if M →∞, since the states can’t all have
large occupation numbers. Stirling’s approximation only applies to those with large ni, and
we’ll ignore the rest because they are not well populated.) Writing ln(Npi) = lnN + ln pi,
regrouping and cancelling terms gives

σ =
1−M

2N
lnN + (1−M)

`

N
−
∑
i

pi ln pi −
1

2N

∑
i

ln pi

→ −
∑
i

pi ln pi as N →∞ . (11.5)
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This last expression is important and famous: it’s the statistical entropy of a single system,
and is worth rewriting in a box:

σ = −
∑
i

pi ln pi . (11.6)

(Thus the thermodynamic entropy is S = −k
∑

i pi ln pi.) What does (11.6) give for the
entropy of an isolated system? The fundamental postulate of statistical mechanics (on
page 7) says that all states are equally possible for an isolated system in equilibrium. If
the M states are all equally possible, then pi = 1/M for all i. Then (11.6) becomes

σ = −
M∑
i=1

1
M

ln
1
M

= − ln
1
M

= lnM . (11.7)

This is just what we expect from first principles, because in such a case of M equiprobable
states we’d write Ω = M , so that σ = ln Ω = lnM . So the above ensemble analysis is
consistent with the fundamental definition of entropy for an isolated system that we have
been using throughout this course.

11.1 A Brief Information Primer

The expression for entropy that we have just found was known by physicists long before
it was rediscovered in a new context by Claude Shannon in the 1940s, who pioneered the
field of information theory.

Central to information theory is the idea of the probability pi that the next symbol
in a sequence being transmitted will be symbol i. If pi ≈ 0 then symbol i is rare, so we’ll
be surprised to see it; in that sense, it has a high “information-transmitting potential”.
If pi ≈ 1, symbol i is common, so we are not surprised to see it: it can’t have much
information-transmitting potential if it was expected anyway. Define the “surprise at
seeing symbol i ” to be − logb pi. The number b is usually set equal to 2 by information
theorists, as it relates to storing information in a binary way using e.g. on/off settings of
a switch. We’ll leave it as a general number b here. In fact, for any a, b, c,

loga b =
logc b
logc a

, (11.8)

so the logarithm to any base is just equal to a constant times the natural logarithm that
we have been using exclusively in statistical mechanics.

As the probability pi that the next symbol will be i ranges from 0 to 1, the surprise
− logb pi associated with seeing it ranges from∞ to 0, consistent with the above discussion.
Our average surprise on seeing the next symbol (i.e. averaged over all symbols of the
alphabet being used) is

average surprise ≡ 〈− logb p〉 = −
∑
i

pi logb pi =
−1
ln b

∑
pi ln pi . (11.9)

Note that we could have used another expression, such as 1/pi − 1, for the surprise at seeing
symbol i, that would also range from ∞ to 0. However, Shannon’s original analysis showed
that (11.9) is the only possible expression for what we have called the average surprise that is
consistent with a set of requirements that he laid down for such a quantity.
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The average surprise is called the Shannon entropy of the alphabet, and usually b is set
equal to 2; in other words, Shannon replaced the Boltzmann constant of our expression for
entropy by 1/ln 2 in his context. This average surprise can be shown to be maximal when all
the pi are equal (we’ll do so below for a 2-symbol alphabet). In that sense, a high entropy
means each letter is being well used. Such an alphabet has a high information-transmitting
potential:

information-transmitting potential ≡ Shannon entropy
= average surprise when b = 2. (11.10)

Example: Describe the information-transmitting potential of an alphabet of two sym-
bols; i.e., when two symbols are available to be transmitted. Symbol 1 appears with
probability p1 and symbol 2 appears with probability p2 = 1− p1.

There is only one free variable: choose it to be p1. Also, to show that base 2 isn’t
actually necessary to this discussion, we won’t set b = 2. Then (11.9) produces

I(p1) ≡ inf.-trans. potential =
−1
ln b
[
p1 ln p1 + (1− p1) ln(1− p1)

]
. (11.11)

We leave it to you to show that I(0) = I(1) = 0. Also, I ′(p1) = logb(1/p1 − 1), which is zero
when p1 = 1/2. This leads to a graph of I(p1) versus p1 that is everywhere concave down,
rising from zero at the endpoints to a maximum at the midpoint of p1 = p2 = 1/2, and
symmetrical about that midpoint. So the information-transmitting potential (Shannon
entropy) of this small alphabet is maximal when each symbol is equally allowed to appear—
which sounds reasonable—and zero when only one symbol is allowed to appear. Again
this is quite reasonable; after all, if sentences using the alphabet were primarily composed
of just one of the symbols, then the alphabet wouldn’t be of much use.

It’s not hard to show—using the method of Lagrange multipliers—that the same con-
clusion is true for an alphabet of any length. The information-transmitting potential of
an alphabet of M letters is again maximal when each letter is equally allowed to appear,
and has the value 〈− logb 1/M〉 = logbM where b is arbitrary.

Example: We can calculate the information-transmitting potential, or entropy, of
the English language as follows. Take a typical book that represents the language as it’s
normally used. Count the frequencies of the letters and punctuation and use these to
compile a set of probabilities for those characters. For example, when the letters “a” to “z”
and spaces are counted, a set of probabilities p1, . . . , p27 is produced. (These are not all
equal; for instance, the probability of an “e” is comparatively high, and so on.) One such
set of typical probabilities gives −

∑
pi ln pi ' 2.83. Thus the information-transmitting

potential of English is about 2.83 (using the natural logarithm). Now suppose that English
were to be replaced by a new alphabet in which each letter was equally able to appear. How
many letters would be required to match the information-transmitting potential of English?
Call this number of lettersM . Then the fact that all of the new pi are equal implies that the
new alphabet’s information-transmitting potential is lnM . This is required to equal 2.83,
so M = e

2.83 ' 17. That is, the new alphabet would need just 17 letters.
That English could get by with 17 letters does not imply that it should have 17 letters.

Redundancy in information flow can be useful because it makes the job of processing
that information easier for our brains—as well as giving us time to savour what is being
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imparted. If English were to be pared down to become entropically efficient (but perhaps
lifeless), our level of concentration would have to increase to ensure we didn’t miss any
details of its tight transmission. That would tend to introduce errors of its own.

Additionally, if our task were to trim our alphabet to a set that fulfils a computer’s
expectations of efficiency, then where would such trimming end? Would each letter be
streamlined to minimise its use of ink and complexity of shape, with the final result being
that calligraphy is reduced to nothing more than strings of agitated commas? No, and for
the same reason, singers don’t replace a song’s repeated verse with the word “Ditto”. Nor
do portrait painters depict only one eye of their subject, arguing that the other is more or
less a mirror image and so needn’t be drawn.

Entropy and Information

The entropy, or information-transmitting potential, of an alphabet is usually just called
its “information” by information theorists, who know what they are doing. However, we
shouldn’t be misled by this word into thinking that the entropy −

∑
pi ln pi is somehow

giving the information content of whatever was sampled to give the set of pi. The concept of
information as it’s usually understood (as opposed to information-transmitting potential)
is not quantifiable, and certainly cannot easily be related to entropy. For example, the
entropy, or information-transmitting potential, that we calculated above for English has
nothing to do with whatever information might be contained in the sample text that was
used to compile the set of probabilities.

To see further why entropy and information content cannot simply be equated, consider
a monkey who types a book using a standard 26-letter typewriter. Each letter will probably
appear about 1/26 of the time, so that all the pi equal 1/26. Now suppose I write a book.
I use a new language in which each word has 26 letters, with each letter from “a” to “z”
appearing exactly once. (There are 26! possible words in such a language, more than
enough for the job.) Each letter appears 1/26 of the time in my book too, so again all
the pi equal 1/26. Yet the monkey’s book almost certainly carries no information, whereas
presumably my book has a lot of information.

So a book’s information content is not simply related to the set of pi; nor is it easily
related to various correlations of letters, although these would have to be taken into account
in any deeper analysis. The deepest analysis would completely classify all correlations to
such an extent that we would simply end up reading the book; nevertheless, we could still
only make a value judgement on how much information it contains. Information theory
is not about such things. Rather, it’s concerned with information-transmitting potential.
And certainly the two alphabets of the two languages used by the monkey and myself do
have high information-transmitting potentials.

11.2 The Brandeis Dice

The following question was made famous by the statistical physicist E.T. Jaynes in his
1962 lectures at Brandeis University.

A (possibly biased) die is thrown many times, and the results are summarised in a single
statement: the mean number showing on the top face is 5. What is the best estimate of
the probability of getting each of the numbers 1 to 6 on the next throw? The mean of
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the numbers that land face up on an unbiased die will be 3.5, so we do know that the
probabilities for each of the numbers 1 to 6 cannot all be equal. That’s all we can say with
certainty, but we can make an educated guess as to what the required probabilities might
be.

Set pi to be the probability of face i landing up. Jaynes defined the sought-after best
estimate of this probability to be the “blandest” probability function consistent with the
constraints of

∑6
i=1 i pi = 5 and

∑6
i=1 pi = 1. Why? Because we hardly expect it to be

otherwise; yes, the function might have an interesting peak: the die might have a 5 on each
of its faces so that p5 = 1 and all the other pi = 0, but this is unlikely. (We can still model
such a case as the die having 1 to 6 on its faces, with an extreme—and interesting!—bias
such that only the 5 face ever lands up.)

Suppose we construct lots of estimates of this set of six probabilities by having a team
of monkeys repeatedly construct “three-dimensional metallic” bar graphs by dropping a
huge number N of coins into six vertical slots. Jaynes’ approach was thus to choose the
most common distribution of coins that resulted. That is, if the monkeys drop ni coins
into the ith slot (i = 1, . . . , 6), then we wish to maximise Ω(p1, . . . , p6), the number of ways
of obtaining the set n1, . . . , n6, where pi = ni/N .

Suppose that in general there are M slots (M = 6 for a die). Then

Ω =
N !

n1! n2! . . . nM !
. (11.12)

But we’ve already seen this in (11.2), and we know that when N �M , maximising Ω
is equivalent to maximising −

∑M
i=1 pi ln pi. Jaynes made this an entry point for a new

approach to statistical mechanics, one that gave pre-eminence to the entropy −
∑
pi ln pi.

Let’s generalise the die further, so that the number on face i is Ei. If the average
number thrown is E, what are all of the pi? We need to maximise −

∑
pi ln pi subject to

M∑
i=1

piEi = E ,
M∑
i=1

pi = 1 . (11.13)

Extremising an expression subject to constraints is usually done using Lagrange multi-
pliers. These multipliers are unknowns that are introduced (one for each constraint, and
called α and β in the next few lines), such that the following holds for each variable pi:

∂

∂pi

(
−
∑

pi ln pi
)

= α
∂

∂pi

∑
piEi + β

∂

∂pi

∑
pi . (11.14)

(The method of Lagrange multipliers is not meant to be obvious, but proving why it works
is left for a maths course.) Doing the partial derivatives gives

− ln pi − 1 = αEi + β for all i , (11.15)

so that

pi = e
−1−β︸ ︷︷ ︸

normalisation

e
−αEi =

e
−αEi∑
i e
−αEi

≡ e
−αEi

Z
, (11.16)

where the (reciprocal of the) normalisation is Z ≡
∑

i e
−αEi , a useful quantity in statistical

mechanics known as the partition function, that we’ll meet again in Section 15.
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For the case of the die withE = 5 andM = 6 that we began with, Ei = i, so (11.16) gives

p1 =
e
−α

Z
, p2 =

e
−2α

Z
, . . . , p6 =

e
−6α

Z
. (11.17)

To find α, substitute the pi into (11.13) to yield a fifth-order polynomial whose roots must
be found. When this is done, we obtain

p1 ' 0.02 , p2 ' 0.04 , p3 ' 0.07 , p4 ' 0.14 , p5 ' 0.25 , p6 ' 0.48 . (11.18)

As expected, the probabilities are larger around the number 5.
What about the case of E = 3.5? This is the mean for an unbiased die. When we

apply Jaynes’ procedure as above, we do indeed find that all of the pi = 1/6, as expected.
It should be no surprise to find that the blandest die that gives E = 3.5 is an unbiased
one.

Jaynes’ “Brandeis dice” automatically generate the Boltzmann distribution, although
of course as presented in this short section, the notion of a temperature still needs to
be introduced. Nonetheless, his ideas have proved to be extremely fruitful in statistical
mechanics.

12 Distribution of Motions of Gas Particles

When a gas is in contact with a heat bath, its particles will have a distribution of velocities
governed by the Boltzmann distribution. We ask two questions:

(a) How many particles will be found in the range of velocities from v to v + dv? Call
this infinitesimal number N(v) d3v, where d3v ≡ dvx dvy dvz. The function N(v) is
the Maxwell velocity distribution.

(b) How many particles will be found in the range of speeds from v to v + dv? Call this
infinitesimal number N(v) dv. The function N(v) is the Maxwell speed distribution.

In most situations, a gas can be considered to be in contact with a heat bath. For example,
the molecules of the air in the lecture theatre follow a Maxwell distribution. We can
calculate these distributions as follows.

12.1 The Maxwell Velocity Distribution

Suppose there are Ntot gas particles each with mass m, and that they are distinguishable,
so that we can consider the probability that any particular one of them will be found in
the velocity interval v to v + dv. This is

N(v) d3v

Ntot
= (prob. particle in vx → vx + dvx)× (ditto vy)× (ditto vz)

= (prob. particle in state with E = 1/2mv2
x + · · ·+ 1/2mv2

z = 1/2mv2)︸ ︷︷ ︸
∝ exp −mv

2

2kT

× (no. of states in E → E + dE)︸ ︷︷ ︸
= dΩtot = g(E) dE

. (12.1)
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We did some density-of-states calculations in Section 3.1, but will rerun the analysis here
to show an alternative approach. In Section 3.1 we wrote Ωtot for the number of states
with energies 0→ E. We calculated Ωtot in (3.9), then differentiated it in (3.10) to get the
density of states g(E). But as we wrote in (3.4), dΩtot = g(E) dE. So instead of calculat-
ing Ωtot we might choose to focus on dΩtot, the number of states in the range E → E + dE,
as we did in (3.5):

dΩtot = (no. of “quant. mechanical cells” for x coord.)× (ditto y)× (ditto z)

=
[x][px]
h

. . .
[z][pz]
h

=
1

h3 [x] . . . [z]︸ ︷︷ ︸
= Vspace

[px] . . . [pz]︸ ︷︷ ︸
= mdvx ... m dvz ∝ d

3
v

. (12.2)

Then (12.1) becomes

N(v) d3v ∝ e
−mv2
2kT d3v , or N(v) = C e

−mv2
2kT (12.3)

with normalisation C. Determine C by counting the particles:

Ntot =
∫

all velocities

N(v) d3v = C

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e
−mv2
2kT d3v︸︷︷︸

convert to polar: = v
2

sin θ dv dθ dφ

= C

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ ∞
0

dv v2
e
−mv2
2kT

= C · 2π · 2 ·
∫ ∞

0
dv v2

e
−mv2
2kT . (12.4)

This integral was evaluated in Section 10.4. Alternatively, do it by differentiating∫ ∞
0

e
−av2dv =

1
2

√
π

a
(12.5)

with respect to a (this is called “differentiation under the integral sign”) to get∫ ∞
0

v2
e
−av2dv =

√
π

4
a−3/2. (12.6)

Setting a = m
2kT gives the integral. We can then write C in terms of Ntot, so that (12.3)

becomes a gaussian:

N(v) = Ntot

( m

2πkT

)3/2
e
−mv2
2kT . (12.7)

Is this reasonable? Imagine drawing a bar graph of the numbers of molecules in a room ver-
sus the x components of their velocities. In a first simplistic analysis, divide the molecules
into two roughly defined sets: half are moving up/down and half are moving left/right. The
half that are moving up/down all have vx ≈ 0, so draw a bar of height 1/2Ntot at vx= 0.
For the molecules moving left/right, half move left and half move right, so draw two bars
of height 1/4Ntot, at equal distances somewhere to the left and right of vx= 0. We see a
symmetrical function that peaks at vx= 0 beginning to take shape.

The width of the gaussian in (12.7) (i.e. its standard deviation) is
√
kT/m. As might

be expected, the distribution is broadened by higher temperatures and less massive gas
particles.
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12.2 The Maxwell Speed Distribution

We are usually only interested in the speeds of the particles, not their directions of motion.
What results is the Maxwell speed distribution.

Let N(v) dv be the infinitesimal number of particles found in the range of speeds from v
to v + dv:

N(v) dv =
∫∫

all directions

N(v) d3v =
∫∫

all directions

Ntot

( m

2πkT

)3/2
e
−mv2
2kT d3v

= Ntot

( m

2πkT

)3/2
∫ 2π

0
dφ
∫ π

0
dθ sin θ v2

e
−mv2
2kT dv

= Ntot

√
2
π

( m
kT

)3/2
v2

e
−mv2
2kT dv . (12.8)

Thus we arrive at

N(v) = Ntot

√
2
π

( m
kT

)3/2
v2

e
−mv2
2kT . (12.9)

(Remember that speed is always non-negative, so v > 0.) Compare this with the velocity
distribution (12.7): aside from the different normalisation, the speed distribution has an
extra factor of v2, which pushes its peak out to some value of speed greater than zero.
We’ll determine this value soon.

Alternative Derivation of the Speed Distribution

The speed distribution is sometimes calculated slightly differently to what we have done.
We derived it by summing over all directions using the velocity distribution. But we could
have avoided reference to the velocity distribution as follows. We have

N(v) dv
Ntot

= prob. for particle to have speed in v → v + dv

= (prob. particle in energy state 1/2mv2)︸ ︷︷ ︸
∝ exp −mv

2

2kT

× (no. of states in v → v + dv)︸ ︷︷ ︸
= dΩtot = g(v) dv = g(E) dE

. (12.10)

Now realise that dΩtot is the number of states in a shell of infinitesimal thickness in
momentum space at energy E = 1/2mv2:

dΩtot = (no. of “quant. mechanical cells” for x coord.)× (ditto y)× (ditto z)

=
[x][px]
h

. . .
[z][pz]
h

=
1

h3 [x] . . . [z]︸ ︷︷ ︸
= Vspace

[px] . . . [pz]︸ ︷︷ ︸
volume of shell in 3-D momentum space

∝ volume of shell of radius v → v + dv

∝ v2 dv . (12.11)

Putting this into (12.10) gives

N(v) dv ∝ v2
e
−mv2
2kT dv , (12.12)
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which can be normalised as before to arrive at (12.9) again.
On a side note, with E = 1/2mv2 implying dE = mv dv, we can also write

v2 dv =
v2 dE
mv

=
v dE
m
∝
√
E dE , (12.13)

as was found in Section 3.1. This gives a spread over energies of

N(E) dE ≡ N(v) dv ∝
√
E e

−E
kT dE . (12.14)

12.3 Representative Speeds of Gas Particles

There are different ways of producing a representative speed of the particles. Four standard
ones are derived from the Maxwell speed distribution N(v) in (12.9). They are not all
equally important, but are different ways of approaching the idea of a representative value.
Thus it’s useful to examine each briefly. In order of increasing size, they are

Most likely speed v̂. This is found by solving N ′(v̂) = 0. The straightforward differ-
entiation leads to

v̂ =

√
2kT
m

=

√
2RT
Mmol

' 1.4

√
RT

Mmol
, (12.15)

where, as usual, R is the gas constant and Mmol is the gas particles’ molar mass.

Median speed vm. This is the speed at which half the particles are travelling slower,
and half faster. Obtain it by solving∫ vm

0
N(v) dv =

Ntot

2
. (12.16)

Do this with a change of variables: x ≡
√

m
2kT v, along with∫

x2
e
−x2

dx =
√
π

4
erf x− x

2
e
−x2

, (12.17)

to arrive at (with xm ≡
√

m
2kT vm)

erf xm −
2√
π
xme

−x2
m =

1
2
. (12.18)

This is solved numerically, resulting in a median speed of

vm '
√

2.366 kT
m

' 1.5

√
RT

Mmol
. (12.19)

Mean speed v̄ or 〈v〉.

v̄ =
∫ ∞

0
v prob(v) =

∫ ∞
0

v
N(v) dv
Ntot

=

√
2
π

( m
kT

)3/2
∫ ∞

0
v3

e
−mv2
2kT dv . (12.20)

This integral can be done by parts, writing it as
∫∞

0 v2 v e
−mv2
2kT dv. We get

v̄ =

√
8kT
πm

' 1.6

√
RT

Mmol
. (12.21)
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RMS speed vrms. This is the “(square) root (of the) mean (of the) square (of the)
speed”, so

v2
rms = 〈v2〉 =

∫ ∞
0

v2 N(v) dv
Ntot

=

√
2
π

( m
kT

)3/2
∫ ∞

0
v4

e
−mv2
2kT dv . (12.22)

Do this integral in the same way as (12.5)–(12.6), but now differentiate twice under the
integral sign. The final result is (remembering to take the square root)

vrms =

√
3kT
m
' 1.7

√
RT

Mmol
. (12.23)

This value makes good sense, since it implies that the mean value of a particle’s energy is

〈E〉 = 〈1/2mv2〉 =
m

2
〈v2〉 =

mv2
rms

2
=
m

2
3kT
m

= 3/2 kT , (12.24)

just as we expect from the calculation of Section 10.4: a particle’s average thermal energy
per degree of freedom for a system contacting a bath is 1/2 kT , and we are only concerned
with translational kinetic energy here, so there are 3 degrees of freedom. This simple
connection with the average energy makes the rms speed perhaps the most widely used
representative speed of the particles.

13 Theory of Transport Processes

Here we study several processes based on the concept of the mean free path, that combine
to allow experiments to be done that test the validity of the models we have been using.

13.1 Mean Free Path of Gas Particles

Consider a gas with all particles alike but distinguishable, for which the Maxwell velocity
distribution will apply. We wish to calculate λ, the particles’ mean free path, or the mean
distance between successive collisions. The following is a rough argument for how to do
this. It can be made more rigorous by examining more closely the relevant interactions,
but for our purpose it’s fine. We assume the gas isn’t too dense, so that each particle
spends most of its time in free flight. This is a very good approximation for all manner
of gases—even pseudo gases such as conduction electrons moving about in a metal, that
we’ll consider later.

Suppose a particle travels at mean speed v̄ for a time ∆t. It “carves out” a tube of
length v̄∆t. If the particles it encountered were all at rest in the laboratory (and so moving
with relative speed v̄ past our particle), the number of collisions would equal the number of
particles whose centres are in this tube. For a particle density n, this number of particles
(collisions) equals

n× volume of tube = nσ v̄∆t , (13.1)

where σ is the collision cross section. We can imagine that any particle at a distance
farther than 2r (where r is the radius of each particle) will not be struck, so σ = π(2r)2.

55



DSTO–GD–0612

In this case then, the mean free path would be approximately the tube length divided by
the number of collisions, or

λ ' v̄∆t
nσ v̄∆t

=
1
nσ

. (13.2)

In practice the particles are not at rest, so they don’t come past our particle with a relative
speed v̄. Suppose instead that they all pass our particle with a relative speed ū, and we
will disregard the finer points of averaging over the various directions from which they
came. Then the number of collisions, or particles encountered, by our particle is as if our
particle were travelling at ū for a time ∆t through stationary particles. In that case (and
remembering that the tube length is still v̄∆t),

number of collisions = nσ ū∆t , so λ ' v̄∆t
nσ ū∆t

=
v̄

nσū
. (13.3)

What is ū? Although we won’t do so here, we can use the Maxwell velocity distribution to
write the combined probability that some particle (“particle 1”) has velocity v1 and another
particle (“2”) has velocity v2. We can then write each velocity in terms of the particles’
relative velocity u = v1 − v2 and their centre-of-mass velocity, V = 1/2 (v1 + v2). We then
integrate over V to get the distribution of u, and find the mean of the relative speed u in
the same way as was done in Section 12.3. There is a change of 6 variables v1x, . . . , v2z to
Vx, . . . , uz needed (requiring the determinant of a 6× 6 matrix, but that turns out to be
straightforward), and some more integration. We’ll omit the details and simply write the
answer:

ū = v̄
√

2 . (13.4)

Hence (13.3) becomes

λ ' 1
nσ
√

2
. (13.5)

We can also write down the collision frequency :

collision frequency ≡ no. of collisions
∆t

=
nσ ū∆t

∆t
= nσv̄

√
2 . (13.6)

Example: What are the mean free path and collision frequency for particles in the
air of our lecture theatre?

Give these particles a temperature of 300 K and a pressure of 105 Pa. Use the ideal gas
law PV = NkT to write the particle density as

n =
no. of molecules in V

V
=
N

V
=

P

kT
(13.7)

and
σ = 4πr2 , where r ' 10−10 m. (13.8)

So the mean free path is

λ =
1

nσ
√

2
=

kT

P4πr2√2
=

1.38−23 × 300

105 × 4π × 10−20 ×
√

2
m ' 0.23 µm. Answer (13.9)

The collision frequency is

nσv̄
√

2 =
P

kT
4πr2

√
8kT
πm

√
2 =

P

kT
4πr2

√
16RT
πMmol

. (13.10)
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For air, Mmol ' 0.8× 28 + 0.2× 32 = 28.8 g, so the collision frequency is

105

1.38−23 × 300
× 4π × 10−20

√
16× 8.314× 300

π × 0.0288
' 2.0× 109 s−1. (13.11)

Two thousand million collisions per second is an extraordinary number, but there are, of
course, many air molecules in the room.

13.2 Viscosity

Our discussion of mean free path in a gas can be applied to connect ideas of viscosity,
thermal conductivity, and heat capacity for a gas. More generally it can also be applied
to a fluid (being a substance that takes the shape of its container), provided the fluid’s
internal processes are not so complex as to negate the assumptions that we’ll make.

Consider a fluid with, say, a metal plate on top in the xy plane that is pulled with
some constant velocity. The plate will drag fluid particles along with it. For gases, a good
model of the situation is that the gas is composed of a stack of plates in the xy plane,
where the plate at z = constant experiences a force that drags it against internal friction
along the x direction with velocity ux(z). As we pull on the top plate, excess x momentum
is transferred by random particle motion down through the plates, which drags them in
turn—although the lower the plates are, the lesser the x velocity they’ll inherit. (We dis-
regard the ever-present mean x momentum, which must cancel over large areas, otherwise
the plates would move spontaneously. The only x momentum used below is the excess
responsible for the plates moving.)

We wish to relate the force required to drag the top plate to some measure of the gas’s
viscosity. First, note that

force applied =
momentum transferred

time taken
. (13.12)

So as the plate at z = constant is dragged in the x direction, we can define a quantity
sometimes called T xz by

T xz ≡

 x component of force needed
to drag the unit-area plate of
gas at z with constant velocity

 (13.12) px transferred to plate
area× time taken

= net px transferred up through plate at z, per unit area per unit time

= (px per particle)×

 no. of particles transferred up
through plate at z, per unit area
per unit time

 . (13.13)

With n particles per unit volume, consider that n/3 have some motion in the z direction,
with half of these going up and half going down. So the n/6 going down carry a higher
x momentum down (which accelerates those bottom layers), and the n/6 going up carry a
lower x momentum up. Thus x momentum leaks down through the plates, pulling them
to the right with decreasing force the lower it goes.

The number of particles passing, say, up through the z plate per unit area per unit
time is their flux density in the z direction. (Flux density is very often just called flux, but
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this conflicts with its most well-known use, in electromagnetism. So we won’t call it flux.)
If we consider N particles per unit volume passing with speed v for a time ∆t along a tube
of cross-sectional area A, then the flux density through the tube’s end face is governed by
how many particles passed through the face in this time:

flux density =
no. through face

area× time
=
NAv∆t
A∆t

= Nv . (13.14)

As used here, “flux” is synonymous with current. Flux can refer to the motion of anything, such as
particles, mass, electric charge, as well as being applied to field lines in electromagnetism. More
generally, flux density is a vector that can be dotted with the normal to an area to tell us the flux
through that area. For the flow of a substance, the expression

flux density = substance density× substance velocity (13.15)

is well worth remembering. Note that the first word “density” in (13.15) refers to the unit spatial
area, not the unit time; that is, flux density is flux per unit area, where flux means how much
substance flows per unit time. So flux equals flux density times an area (not times a time). The
second word “density” in (13.15) refers to the amount of substance per unit volume.

In our case, N = n/6 in each direction across a plate, and the flux density in each
direction is then nv̄/6. So (13.13) says that the average “up” contribution to T xz is
nv̄/6× (px per particle). The px carried by each particle is what that particle inherited
at its last collision, which happened a distance of approximately λ from the plate at z.
For “up” motion (say, the direction of increasing z), this momentum is formed from the
particle’s velocity at z − λ, so is approximately mux(z − λ). Similarly, the momentum
carried down is mux(z + λ). The net momentum travelling up through the plate is then

T xz =
nv̄

6
mux(z − λ)︸ ︷︷ ︸
“up” part

− nv̄

6
mux(z + λ)︸ ︷︷ ︸

“down” part

' nv̄m

6
[
��
�ux(z)− u′x(z)λ−��

�ux(z)− u′x(z)λ
]

(a Taylor expansion)

=
−nv̄mλ

3
∂ux
∂z

≡ −η ∂ux
∂z

, (13.16)

where we have written a partial derivative to show that more generally ux depends on y
as well, and where η ≡ nv̄mλ/3 is the coefficient of viscosity. Since our top metal plate is
only moving in the x direction, T xz is the whole force per unit plate area needed to drag
it, and so η can be measured.

Writing η in terms of what we know already,

η =
n

3
v̄mλ =

n

3

√
8RT
πMmol

Mmol

NA

1
nσ
√

2
=

√
4RTMmol

3
√
πNA σ

. (13.17)

Note that the gas’s particle density n cancels; the surprising result is that viscosity is
independent of this density (at a given temperature). This was both derived and experi-
mentally confirmed by Maxwell.

A gas of close-packed particles each with radius r has a mass density in the region of

m

r3 =
Mmol

NA r
3 . (13.18)
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Equations (13.17) and (13.18) provided the first values of r and NA by Loschmidt in 1885.
Equation (13.17) predicts, correctly, that the viscosity of a gas increases with temper-

ature. The viscosity of liquids actually decreases with temperature. For liquids, we must
add something to the model: the particles are so close together that particles on adjacent
planes will interact with each other, even though they are not crossing the planes. But
that’s outside this course.

13.3 Thermal Conductivity

In Section 7 we looked at thermal conduction from a bulk point of view. Now we investigate
the coefficient of thermal conductivity κ with an atomic approach almost identical to the
above for viscosity. In particular, consider a plate in the xy plane at some temperature T .
The flux density of thermal energy across a plate at z = constant is the z component
of (7.1), or

Jz = −κ ∂T
∂z

. (13.19)

In fact Jz has another name: T
tz

, where T
tz

and T
xz

are 2 of 10 components of the stress–energy
tensor (which is not part of our course). Suffice it to say that if we arrange for the speed of light
to be dimensionless, then the components of the stress–energy tensor all have units of pressure.
Einstein postulated that stress–energy curves spacetime; that is, stress–energy is to Einstein what
mass is to Newton: the source of gravity.

Equation (13.19) holds well for liquids and gases, as well as solids with sufficient homo-
geneity. It’s analogous to (13.16); for viscosity we looked at the transfer of x momentum,
but now we look at the transfer of thermal energy E. Particles at height z each have
thermal energy E(z). We have

Jz = net heat transferred up through plate at z, per unit area per unit time

= (heat energy per particle)×

 no. of particles transferred up
through plate at z, per unit area
per unit time


=
nv̄

6
E(z − λ)︸ ︷︷ ︸

“up”

− nv̄

6
E(z + λ)︸ ︷︷ ︸
“down”

' nv̄

6
[
�
��E(z)− E′(z)λ−���E(z)− E′(z)λ

]
=
−nv̄λ

3
∂E

∂z
, (13.20)

where again we have used a partial derivative for generality. But if we just consider
heat conduction in the z direction, we can use an ordinary derivative, and equate (13.19)
with (13.20):

−κ dT
dz

=
−nv̄λ

3
dE
dz

. (13.21)

But that means

κ =
nv̄λ

3
dE
dT

=
nv̄λ

3
C1 particle
V =

nv̄λ

3
Cmol
V

NA
. (13.22)
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Now use this last equation along with η = nv̄mλ/3 to write

κ

η
=
Cmol
V

Mmol
= Csp

V . (13.23)

So we have related viscosity, thermal conductivity, and heat capacity using an atomic view
of matter. Experiments yield values of

κ

η
≈ (1.5→ 2.5)× Csp

V . (13.24)

Their approximate agreement with theory forms a good justification for the validity of the
kinetic/atomic models that we have been using. We can easily expect to be out by a factor
of 2 in our calculations, as these are based on heuristic models with a heavy reliance on
averaging. But we haven’t done too badly.

14 Bands, Levels, and States

Discrete values of energy that a system can have are called energy levels, and each one may
contain some degeneracy; that is, there might be several states all with the same energy.
When energy levels are very close together so as to form more or less a continuum, the
language used to describe them can be a little confusing. Such a set of such energy levels
is called an energy band, and the levels and states comprising it are treated together and
collectively just called energy states.

As an example, consider two energy levels. Suppose that for a system in contact
with a bath at 17◦C (kT = 0.025 eV), level 1 has energy E1 = 1 eV and degeneracy g1 = n
states. Level 2 has E2 = 1.02 eV and g2 = n states also. What is the ratio of the numbers
of particles in these two levels? If there are Ntot particles present, then the number of
particles in level i is

Ni = Ntot × probability for each particle to have energy Ei

= Ntot ×
∑

states

prob. for a particle to be in a state at level Ei

= Ntot giC exp
−Ei
kT

, (14.1)

where C is a normalisation. Then

N2

N1
=
Ntot nC exp −1.02

0.025

Ntot nC exp −1.00
0.025

= exp
−0.02
0.025

' 0.45 . (14.2)

Suppose now that the n states in level 2 are spread out, forming an energy band from
1.02→1.03 eV. (These energy states have now become energy levels!) Now what is the
ratio of numbers of particles in band 2 to level 1 (a.k.a. band 1)? Let’s first approximate
band 2 as two energy levels (at 1.02 and 1.03 eV), each with degeneracy n/2 states. Thus

g1 = n , g1.02 = g1.03 = n/2 . (14.3)
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Then

N2

N1
=
Ntot

n
2 C exp −1.02

0.025 +Ntot
n
2 C exp −1.03

0.025

Ntot nC exp −1.00
0.025

=
1
2

exp
−0.02
0.025

+
1
2

exp
−0.03
0.025

' 0.375 . (14.4)

Now let’s do better by approximating band 2 as three energy levels (at 1.02, 1.025,
1.03 eV), each with n/3 states:

g1 = n , g1.02 = g1.025 = g1.03 = n/3 . (14.5)

Then

N2

N1
=
Ntot

n
3 C exp −1.02

0.025 +Ntot
n
3 C exp −1.025

0.025 +Ntot
n
3 C exp −1.03

0.025

Ntot nC exp −1.00
0.025

=
1
3

exp
−0.02
0.025

+
1
3

exp
−0.025
0.025

+
1
3

exp
−0.03
0.025

' 0.373 . (14.6)

Suppose we could spread the n energy levels out evenly over the band. Then

N2 = Ntot × prob. for a particle to be in band 2

= Ntot

∑
levels

prob. for a particle to be in a level E

= Ntot

∑
levels

(prob. for a particle to be in a state around level E)

× (number of states around level E) . (14.7)

Imagine that in fact we spread the n levels out over the band’s 0.01 eV width to form a
continuum. Then the number of states (or levels!) around E is

g(E) dE =
n

0.01 eV
dE . (14.8)

For such a case, (14.7) becomes

N2 = Ntot

∫
Ce

−E
kT g(E) dE

= Ntot
n

0.01 eV
C

∫ 1.03 eV

1.02 eV
e
−E
kT dE

= Ntot
n

0.01 eV
C(−0.025 eV)

[
exp
−1.03
0.025

− exp
−1.02
0.025

]
, (14.9)

and with N1 unchanged from (14.2), we get

N2

N1
=
−0.025

0.01

[
exp
−1.03
0.025

− exp
−1.02
0.025

]
' 0.370 . (14.10)
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More generally, (14.7) can be written as

number of particles
in E0 → E0 + ∆E

= Ntot

∫ E0+∆E

E0

Ce
−E
kT︸ ︷︷ ︸

prob. to be in
state around E

× g(E) dE︸ ︷︷ ︸
number of states
around E

(14.11)

or

number of particles
in E → E + dE︸ ︷︷ ︸

≡ N(E)| {z }
number of particles per
unit energy interval

dE

= NtotC e
−E
kT︸ ︷︷ ︸

= n̄(E), mean
number of
particles/state

× g(E)︸ ︷︷ ︸
number of states
per unit energy
interval

dE (14.12)

This is written more compactly as

N(E) = n̄(E) g(E) . (14.13)

Systems are characterised by n̄(E), the mean number of particles per state (or occupation
number), and g(E), the density of states, or “spectrum of accessible states”. When the
number of particles is much less than the number of states, the Boltzmann distribution
holds, meaning

n̄(E) ∝ e
−E
kT . (14.14)

In contrast to the occupation number, the density of states g(E) varies widely from system
to system.

15 Introducing Quantum Statistics

In quantum mechanics, identical particles really are identical: they cannot be distin-
guished, even in principle. This loss of individuality has consequences for arguments in
which they are counted. Previously we have focused on a single particle and asked for the
chance that it can occupy any one of several different states (and so calculated the mean
number of particles per state). We must now take two things into account:

– the particles’ indistinguishability,

– the higher particle densities encountered in systems for which a quantum mechanical
treatment is necessary.

These are both incorporated by shifting focus to a state, and computing the chance that
it’s occupied by some number of particles. In (10.19) we wrote down the probability that
a single quantum state of energy Es and volume Vs is occupied by Ns particles:

p ∝ exp
−Es − PVs + µNs

kT
. (15.1)

Typically the volume of a state is fixed; the state is occupied by n particles, each of
energy E. Then (15.1) becomes

pn ∝ exp
−nE + µn

kT
= exp

−n(E − µ)
kT

. (15.2)
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Write this last equation as

pn =
e
−nα

Z
, where α ≡ E − µ

kT
> 0 , (15.3)

and Z is the (reciprocal of the) normalisation, called the partition function, that we met
previously in Section 11.2. Determine it by writing

1 =
∑
n

pn =
∑

n e
−nα

Z
, (15.4)

so that
Z =

∑
n

e
−nα . (15.5)

The occupation number, being the mean number of particles in a state, is

n̄ =
∑
n

n pn =
∑

n ne
−nα

Z
=
−1
Z

∂Z

∂α
. (15.6)

This is an example of the utility of the partition function: once it’s found, other quantities
can be produced from it by simple operations such as differentiation.

15.1 Two Types of Fundamental Particle

Experiments show that fundamental particles come in either of two types:

Fermions. At most one fermion can occupy a given state, so (15.5) becomes

Z =
1∑

n=0

e
−nα = 1 + e

−α , (15.7)

Hence (15.6) gives

n̄ =
e
−α

1 + e
−α =

1
e
α + 1

. (15.8)

Bosons. Any number of bosons can occupy a given state, so (15.5) becomes

Z =
∞∑
n=0

e
−nα =

1
1− e

−α , and n̄ =
1

e
α − 1

. (15.9)

The occupation number can be written for both particles at once with

n̄ =
1

exp E−µ
kT ± 1

{
fermions

bosons
(15.10)

Fermions turn out be particles with odd half-integral spin, such as electrons, positrons,
protons, neutrons, neutrinos, and muons. Bosons turn out to be particles with integer
spin, such as α particles, pions, photons, and deuterons. Fundamental particles don’t
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seem to exist with any other spin varieties than these two, so they are all either fermions
or bosons. Just why spin should determine a particle’s occupation number is analysed by
relativistic quantum mechanics, but the fundamental reason is not well understood. The
study of fermions is known as Fermi–Dirac statistics, while that of bosons is Bose–Einstein
statistics. In the high-energy limit, or low particle-density limit, these both reduce to what
we have been studying up until now, Maxwell–Boltzmann statistics.

16 Blackbody Radiation

Hot objects contain oscillating charges, and oscillating charges radiate electromagnetic
waves. An obvious example is the light emitted by the hot gas that makes up a flame.
The electromagnetic theory of just how this occurs is complicated even for very simple
systems; but given that a huge number of oscillating charges are responsible for the light
emitted, it turns out that we can use statistical mechanics to examine such macroscopic
objects within electromagnetic theory.

But the emission of light is not an equilibrium process; there’s a continuous transfer
of energy from the object to the waves, which is then lost from the object. We have
only considered equilibrium processes in this course, and the subject of non-equilibrium
processes is an advanced branch of statistical mechanics. However, we can calculate how
much light is emitted from a hot body by considering a related process that does occur in
equilibrium. The idea that allows us to make this connection is the Principle of Detailed
Balance, which is discussed in [3]. Because oscillating charges emit light, if a body has
charges that resonate at some particular frequency, then not only will it readily emit light
of that frequency, but it will also readily absorb light of that frequency. The Principle of
Detailed Balance postulates that the ability to emit equals the ability to absorb:

When in thermal equilibrium with a bath of electromagnetic waves, any object—
regardless of its colour or makeup—emits the same spectrum and intensity that
it absorbs.

So we will derive the spectrum emitted by a hot body by examining a related scenario:
the spectrum that exists inside a hot oven. The walls inside the oven are in equilibrium
with the radiation inside, so we can use statistical mechanics to examine that, and transfer
what we learn to the emitting hot body.

Consider, then, a perfectly absorbing (“black”) body placed in an oven that is ideal
in the sense that it is “perfectly emitting” (which we’ll define in a moment). The black
body must emit exactly what it absorbs; but by definition, it absorbs all the radiation it
receives. So it must emit the same spectrum that the oven produces. But the mechanism
for how the body emits doesn’t depend on the oven, so the black body must therefore
also emit identically when outside the oven. We conclude that the spectrum of frequencies
produced by a black body equals that found inside an ideal oven.

16.1 The Radiation Inside an Oven

Next consider an oven (often called a cavity) with hot walls, containing radiation. We
wish to find this radiation’s spectral energy density %(f): its total electromagnetic energy
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per unit frequency per unit oven volume. Different hot materials emit different amounts of
each wavelength, so we cannot hope to use only general arguments to obtain the spectral
energy density of an oven made from some arbitrary material. Also, we cannot expect to
discuss the emission of arbitrarily low frequencies (long wavelengths) from any one oven,
it being problematic to discuss a light wave of longer wavelength than the typical size of
the object that produced it.

What electromagnetic frequencies exist inside the oven? It might be argued that the
electric field inside a metal oven will go to zero at the walls since otherwise wall currents
would arise which would then eliminate the field at the walls. That would quantise the
field modes so that only certain frequencies would be present—although for all practical
purposes they would form a continuum. But in a ceramic oven, the field need not go to
zero at the walls, and so the frequencies present need not be quantised. On the other hand,
if the walls inside an oven are reflective enough that a light wave inside bounces back and
forth many times, it will be reinforced if a whole number of wavelengths fit into a round
trip. Different ovens will have different amounts of internal reflectivity, and different-sized
ovens will reinforce some wavelengths but not others.

The task of calculating a spectral energy density is beginning to look difficult! To
make progress, we consider an idealised oven that holds a continuum of wavelengths. Its
wall oscillators produce light of all frequencies; this light bounces about inside the oven,
sometimes reflected and sometimes not, so that the spread of frequencies quickly tends
toward some equilibrium distribution.

The following argument suggests that the oven’s shape can be arbitrary. Join two
differently shaped idealised ovens at the same temperature via a hole. If the radiation
spectra of the two differed around some particular frequency (say, yellow light), we could
presumably introduce a filter that passed that frequency only. That would allow a flow
of energy in one direction through the hole, which would perhaps act to “unequalise” the
temperatures. It’s unreasonable for the system to depart from thermal equilibrium in such
a way—it contravenes the Second Law of Thermodynamics. So we might conclude that
there cannot be such a flow of energy, so that the oven’s shape doesn’t affect the spectrum
of radiation inside.

Actually, this argument is not quite as straightforward as it might appear. While the
filter would pass yellow light into the oven whose walls did not naturally emit much yellow
light, the Principle of Detailed Balance says that those walls wouldn’t absorb much yellow
light either, in which case that oven’s temperature need not increase. Would the yellow
light then build up inside that oven, perhaps interacting with the filter to heat it up until it
broke down? Also, the hot filter would emit radiation of its own. We will simply postulate
that an idealised oven’s spectral energy density is independent of its shape, and appeal to
experiment for validation.

In that case, consider an oven shaped as a rectangular box with side lengths Lx, Ly, Lz
and volume V = LxLyLz. We assume that

– the oven walls are continuously emitting and absorbing radiation,

– the oven’s shape doesn’t affect its spectrum,

– there is no restriction on what frequencies can exist inside the oven,

– the walls contain a huge number of quantised harmonic oscillators,
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– at thermal equilibrium, the total energy of the oven radiation in one “frequency
state” (defined soon) in the frequency interval f → f + df equals the mean thermal
energy ε(f) of a wall oscillator at frequency f . That is,[

total energy of radiation in f → f + df
][

number of frequency states in f → f + df
]−→
−→

%(f) df V
g(f) df

= ε(f) , (16.1)

in which case
%(f) =

ε(f) g(f)
V

. (16.2)

We calculate the mean thermal energy ε(f) and the density of states g(f) as follows.

First Requirement: the Mean Thermal Energy of an Oscillator, ε(f)

Model the walls of the oven as composed of a set of quantum oscillators held at tempera-
ture T . (That is, we can consider the walls to be in contact with a heat bath at T .) Recall
that the nth energy level of the quantised oscillator has energy (n+ 1/2)hf , giving it a
thermal energy of nhf , since the 1/2hf is the ever-present zero-point energy which cannot
be taken away from the oscillator; it’s not thermal energy, so does not enter our analysis.
Refer to Section 10.3.2 to write the mean thermal energy of the oscillators as

ε(f) =
∑∞

n=0 e
−nhf
kT nhf∑∞

n=0 e
−nhf
kT

=
hf
∑

e
nαn∑

e
nα , with α ≡ −hf

kT
. (16.3)

Because e
α < 1, the middle denominator in (16.3) is simply a geometric series:

∞∑
n=0

e
nα =

1
1− e

α , (16.4)

in which case the sum in the middle numerator in (16.3) is

∞∑
n=0

e
nαn =

d
dα

∞∑
n=0

e
nα =

d
dα

1
1− e

α =
e
α(

1− e
α)2 . (16.5)

Hence (16.3) becomes

ε(f) =
hf

e
hf
kT − 1

. (16.6)

Note that in the regimes of low and high temperature,

kT � hf ⇐⇒ ε(f)→ 0

kT � hf ⇐⇒ ε(f) ' kT . (16.7)

The first equation just shows that the thermal energy vanishes as T → 0, and the second is the
expected result for a classical oscillator (2 d.o.f.), from the Equipartition theorem.

The Schrödinger equation ascribes an infinite number of energy levels to a harmonic oscil-
lator: the nth level has thermal energy nhf . The quantum statistics view of Section 15 is
that the oscillator has just one state, which can be occupied by any number n of particles,
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called photons, that each have energy hf . The expression for ε(f) in (16.6) implies that
the mean number of photons of energy hf in the oven is

n̄(f) =
mean energy of photons

energy per photon
=
ε(f)
hf

=
1

e
hf
kT − 1

. (16.8)

Compare this with (15.10): we conclude that photons are bosons with chemical poten-
tial µ = 0.

Second Requirement: Density of States g(f) for Light Waves

In Section 3.1 we derived an ideal gas’s density of states g(E) at energy E by calculating the
total number of energy states in the energy range 0→ E, and then using g(E) = Ω′tot(E).
We calculated the total number of states by postulating that each state could be repre-
sented by a cell in phase space. The total number of states was then just the total number
of cells, which equalled the total phase space volume able to be occupied for energies from
0 to E divided by the volume of one cell. Constructing a cell wasn’t quite a unique affair,
because although we used Planck’s constant h to give the cell a natural size, the remarks
on page 20 showed that a state itself was not very well defined. And yet, happily, this
latitude in how we defined a state had no effect on calculations of entropy increase.

We’ll use a similar argument here to count the number of wave states in the oven. Just
as for the ideal gas above, there is some latitude in how we can define a wave state. The
following line of argument is accepted in statistical mechanics because its prediction of
how much radiation exists inside an oven has stood up well to experimental tests.

So, as in Section 3.1, calculate the density of states g(f) at frequency f by defining
and counting the total number of states in the frequency range 0→ f , and then use
g(f) = Ω′tot(f).

There is an immediate problem in defining and counting wave states. With the range
of allowed frequencies being continuous, the idea of a frequency state doesn’t immediately
make any sense. We can make progress by identifying each wave by its “wavenumber”
vector k (usually just called its wave vector), whose length is k = 2π/λ = 2πf/c where
c is the speed of light, and which points in the wave’s direction of travel.

Why use k to calculate the density of states? If n is a unit vector pointing in the wave’s direction
of travel, could we define a “frequency vector” f ≡ fn, or a “wavelength vector” λ ≡ λn, and use
one of these instead to characterise the wave? It turns out that these are not reasonable quantities
to define. Suppose the wave’s direction of travel has angle θ with the x axis. If f were indeed a
vector, we would probably expect that its x component fx = f cos θ would be the frequency of the
wave crests’ intersections with the x axis; but that frequency is in fact f ! Also, if λ were indeed
a vector, we might expect that its x component λx = λ cos θ would be the wavelength of the wave
crests’ intersections with the x axis; but this wavelength is actually λ/cos θ. So neither of these
would-be “vectors” f or λ is particularly meaningful, and that’s why physicists don’t define them.

But the appearance of cos θ in the denominator a couple of lines up suggests that the reciprocal
of wavelength might make a vector. And indeed it does: enter the wave vector k ≡ kn, where
k ≡ 2π/λ is the wave number. The 2π is just for convenience, but the λ in the denominator
now sends the cos θ back to the numerator in the previous paragraph’s discussion of components.
That means the wave vector’s x component kx = k cos θ is indeed the wave number of the crests’
intersections with the x axis: kx = 2π/(wavelength of crests’ intersections). So k behaves just
as we expect vectors to behave. That’s why it is so useful for characterising waves, and why it’s
found everywhere in wave theory.
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Any particular wave has a vector k = (kx, ky, kz). Perhaps we can find the number Ωtot(f)
of states in the frequency range 0→ f by counting how many wave vectors can fit into a
sphere in 3-dimensional “k space” such that the longest vector has a length corresponding
to frequency f : this length will be k = 2π/λ = 2πf/c. But, of course, there are an infinite
number of such vectors, so it will do no good to treat each one as a separate state. We must
postulate something new: that the vectors can be “binned”, grouped into cells in k space.
Each cell defines 2 states, corresponding to the 2 possible polarisations that a wave can
have. A cell is defined by requiring the coordinates (kx, ky, kz) of one of its corners to
satisfy a certain condition. We must search for a condition that leads to experimentally
verifiable predictions. Consider two such conditions, which both lead to the same g(f)
(which is eventually given experimental validation).

(a) We treat the oven as holding a continuum of travelling waves, and require the coor-
dinates kx, ky, kz of a cell each to be related to a whole number of wavelengths that
fit into the corresponding side lengths of the oven. That is, cells that are adjacent
along say the x axis describe waves whose numbers of wavelengths fitting into a side
length along the x axis differ by 1. In this case, remembering the factor of 2 for the
polarisations,

Ωtot = 2× number of cells

= 2× volume of sphere of radius k = 2π/λ
volume of one cell

. (16.9)

What is the volume of a cell? We need to know each of its edge lengths. This is a question that arises
frequently in statistical mechanics. We can answer it with the help of some apparently unrelated
analysis: if we have some function z(x, y)

z = ax+ by + c (16.10)

where a, b, c are constants, how does z increase when x and y increase? By definition, increases ∆x
and ∆y in x and y cause an increase ∆z in z, so

z + ∆z = a(x+ ∆x) + b(y + ∆y) + c . (16.11)

Subtracting (16.10) from (16.11) gives

∆z = a∆x+ b∆y . (16.12)

This is a useful expression because it means that the operation of finding the increase is linear.
Linearity is a central theme in physics. An operation L is linear if, for constants a and b,

L(ax+ by) = aL(x) + bL(y) . (16.13)

It suffices to have just two terms on the right hand side of (16.13), but it’s easy to show that if L is
linear, then it can be applied to any number of terms:

L(ax+ by + cz + . . . ) = aL(x) + bL(y) + cL(z) + . . . (16.14)

We’ll use the idea that ∆ is linear in a moment.

With ∆kx being the increase in kx along the side of a cell in the x direction, and
similarly for y and z, a cell must have volume ∆kx ∆ky ∆kz. We can calculate
e.g. ∆kx by writing kx in terms of something else with a known increase along a
cell’s x direction. We haven’t yet used the requirement that a whole number of
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wavelengths must fit into the corresponding side lengths of the oven. These whole
numbers of wavelengths are triplets (nx, ny, nz) such that

nαλα = Lα , for α = x, y, z . (16.15)

Thus
kα =

2π
λα

=
2πnα
Lα

. (16.16)

Now remembering that ∆ is linear, we can immediately write

∆kα =
2π∆nα
Lα

=
2π
Lα

, (16.17)

since by definition ∆nx = 1 when we move along a cell in the x direction, and
similarly for y, z. So

cell volume = ∆kx ∆ky ∆kz =
8π3

LxLyLz
=

8π3

V
. (16.18)

Hence (16.9) becomes

Ωtot = 2×
4
3π
(2πf

c

)3
8π3/V

=
8πf3V

3c3 . (16.19)

(b) Alternatively, we treat the oven as containing standing waves only. In that case
the kx, ky, kz each specify that a whole number of half -wavelengths fits into each
dimension of the oven. For this case we use only positive values of the wave vector
components; the reason is because while a standing wave is comprised of superposed
travelling waves of opposite-sign wavenumbers, it needs only the positive wavenum-
ber to quantify it. Again with a factor of 2 for the polarisations,

Ωtot = 2× number of cells

= 2× volume of one octant of sphere of radius k = 2π/λ
volume of one cell

, (16.20)

since positive wavenumbers comprise just one octant. Now to determine the cell
volume ∆kx ∆ky ∆kz, realise that the whole numbers of wavelengths (nx, ny, nz)
satisfy

nα
λα
2

= Lα , for α = x, y, z ; (16.21)

thus
kα =

2π
λα

=
πnα
Lα

, and so ∆kα =
π

Lα
. (16.22)

Then

cell volume = ∆kx ∆ky ∆kz =
π3

LxLyLz
=
π3

V
, (16.23)

and (16.20) becomes

Ωtot = 2×
1
8 ×

4
3π
(2πf

c

)3
π3/V

=
8πf3V

3c3 , (16.24)
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just as obtained for condition (a). This is no surprise; in going from condition (a)
to (b), we reduced the volume of k space by a factor of 8, but we also reduced the
volume of a cell by the same factor, so Ωtot is unchanged.

Both conditions (a) and (b) give the same number of states Ωtot, so we conclude that the
density of states is

g(f) = Ω′tot(f) =
8πf2V

c3 . (16.25)

A comment on this calculation of g(f) The fact that conditions (a) and (b)—and
other similar conditions that can be used—give the same number of states indicates that
there might be something simple hiding behind our analysis. Although each frequency
in a continuum can have only infinitesimal energy, there are an infinite number of such
waves in any cell in k space. It seems that in our idealised oven, perhaps all of these waves’
energies integrate to give the same energy as would be contained in just one standing wave
occupying a cell—although granted we have postulated a continuum of waves in the oven.
Even so, we did assume on page 66 that at thermal equilibrium the total energy in one
frequency state is determined by the wall oscillators, and nothing was said about whether
this energy could be held by only a continuum of waves, or whether standing waves could
also possess it.

Textbooks usually choose one or both of conditions (a) and (b) above: they tend to
treat the oven as full of resonating waves, even though we might presume that an ideal
oven would be made of perfectly black material whose walls would not reflect waves at all,
and so would not allow the wave to resonate by bouncing back and forth. But we see here
that this assumption of resonance is not actually necessary. In analogy, we saw on page 20
that there is more than one way to define the state of an ideal-gas particle via a cell in
phase space by using any multiple of Planck’s constant, but that luckily what results is a
unique expression for increases in entropy. The difficulty in defining the state of the gas
particle is due to our insisting on counting states, which entails the notion of a discrete
state.

The same ideas of counting apply to the waves in the oven. Defining and then counting
their states by constructing discrete cells in wavenumber space can be problematic—do
we use wavelengths or half wavelengths, and why does it not matter what we do? But in
the end we have some kind of counting procedure that gives a seemingly unique expression
for g(f), and this expression turns out to produce the experimentally verified expression
for the spectral energy density %(f). It’s certainly interesting and nontrivial why this
should be so. Ideas of counting frequency states are intimately related to the quantum
mechanical idea of representing the waves by a “gas” of photons. A fundamental difference
between photons and the particles of our ideal gas in Section 3.1 is that the number of
photons in an oven is not constant over time, unlike the number of ideal gas particles in
a container. More discussion of the idea of photons comprising such a gas can be found
in [4].

An Alternative Approach to the Maths of Counting States On page 53 we high-
lighted the fact that calculating the density of states g by differentiating Ωtot is essentially
the same as calculating dΩtot. Whereas Ωtot requires the calculation of the volume of a
sphere in k space, dΩtot requires the calculation of that sphere’s surface area.
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The same idea applies here. Our calculations of g(f) in conditions (a) and (b) above
were really no different to counting the number of cells within a thin spherical shell of ra-
dius k, which could be done by treating the volume as surface area times shell thickness dk.
In essence we calculated the area of the spherical shell by differentiating its volume 4/3πk3

with respect to k to arrive at 4πk2. In the same way, textbooks usually calculate g(f) by
considering this shell of k space. They do this for e.g. condition (a) by writing

g(f) df = 2× number of cells in spherical shell of radius k and thickness dk

= 2× volume of spherical shell of radius k and thickness dk
volume of one cell

=
2× 4πk2 dk

8π3/V
=

2× 4π
(2πf

c

)2 2π df
c

8π3/V
=

8πf2V df

c3 , (16.26)

which is (16.25) again without any mention of Ωtot and so without having to differentiate
it with respect to f . This is fine. We only calculated Ωtot to emulate and reinforce our
approach in Section 3.1 for calculating the number of energy states of an ideal gas.

The End Product: Planck’s Law

Now that we have ε(f) in (16.6) and g(f) in (16.25), we can go back to (16.2) to write
Planck’s law :

%(f) =
8πhf3/c3

e
hf
kT − 1

. (16.27)

Compare Planck’s result for the energy density with the prior result of Rayleigh and Jeans, who
used the classical expression ε(f) = kT , based on equipartition with 2 d.o.f., as can be seen
in (16.7). This gave them an energy density of

%RJ(f) =
8πf

2
kT

c
3 . (16.28)

This equation’s very wrong prediction of arbitrarily large amounts of radiation at high frequencies
was called the “ultraviolet catastrophe”. Planck’s result rested on energy quantisation, and marked
the beginning of quantum theory. Note that Planck’s expression reduces to that of Rayleigh and
Jeans in the low-frequency limit.

16.2 Total Energy per Unit Volume of the Oven, U

The total radiation energy in a unit volume is the spectral energy density integrated over
all frequencies:

U =
∫ ∞

0
%(f)df . (16.29)

Writing x ≡ hf
kT converts this to

U =
8πk4T 4

c3h3

∫ ∞
0

x3dx
e
x − 1︸ ︷︷ ︸

= π
4
/15

=
8π5k4

15c3h3︸ ︷︷ ︸
= 4σ/c, where σ is the Stefan–Boltzmann
constant, defined in (16.40) ahead.

T 4. (16.30)
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That is, the total photon energy inside an oven of volume V and temperature T is

total photon energy inside oven = V
4σ
c
T 4 , (16.31)

where σ = 5.67× 10−8 W m−2 K−4 is the Stefan–Boltzmann constant, defined in (16.40)
ahead.

16.3 Planck’s Law in terms of Wavelength

Since an increase in frequency df is accompanied by a decrease in wavelength −dλ, where
df and −dλ have the same sign, define the energy density over wavelength %(λ) by

%(λ)(−dλ) ≡ %(f)df , (16.32)

which leads to

%(λ) =
8πhc/λ5

e
hc
λkT − 1

, (16.33)

where we have used f = c/λ and df/dλ = −c/λ2. Although we won’t do so here, it’s
not difficult to use (16.33) to derive Wien’s law, which gives the “most copiously emitted
wavelength” λ0. We simply solve %′(λ0) = 0 numerically to get

λ0 =
constant

T
' 2.898 mm K

T
. (16.34)

The same idea serves to determine the “most copiously emitted frequency”f0 from (16.27).
The result is

f0

T
= constant ' 58.8 GHz K−1. (16.35)

It might be thought that f0λ0 = c, but such is not the case! The reason for this apparent
anomaly is that the phrase “most copiously emitted frequency” implies that there are
various frequencies present, like balls of various colours, and we are finding the ball of the
most common colour—and similarly for wavelength. But this is not quite the case; we have
assumed that frequency and wavelength are continuous, so that the equal-width frequency
bins that we are essentially comparing to find the “most copiously emitted frequency” do
not map to equal-width wavelength bins, since frequency and wavelength are not related
linearly. So the phrase “most copiously emitted” should be taken with a grain of salt.

16.4 Radiation Exiting the Oven

Make a small hole in the oven. How much energy escapes per second? To determine this,
place the origin of a cartesian coordinate system at the hole, and let the wall containing
the hole be the xz plane, with the y axis pointing into the oven. The energy passing
through the hole of area dA in a time ∆t is that of some of the photons that are within a
distance c∆t of the hole: the photons of interest are those moving in the correct direction
to encounter the hole. The energy escaping the hole from a volume dV at a distance r
from the hole is then (call it α) determined by the solid angle subtended by dA as seen
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from dV , or, equivalently, the area that dA projects onto a sphere of radius r centred
at dV :

α = U dV × “area on sphere” subtended by dA as seen from dV

4πr2 . (16.36)

The “area on the sphere” is the dot product of the hole area expressed as a vector, −dA ey
(where ey is the usual y basis vector, of unit length), with the “look direction” from dV ,
which is minus the radial basis vector, −er (of unit length):

“area on sphere” = −dA ey · (−er) = dA (0, 1, 0) · (sin θ cosφ, sin θ sinφ, cos θ)
= dA sin θ sinφ , (16.37)

where θ, φ are the usual spherical polar coordinates. So (16.36) becomes

α = U r2 sin θ dr dθ dφ× dA sin θ sinφ

4πr2 . (16.38)

That means the total energy passing through the hole of area dA in a time ∆t is∫
α =

∫ π

0
dθ sin2 θ

∫ π

0
dφ sinφ

U dA
4π

=
Uc

4
dA∆t . (16.39)

So the energy radiated per unit hole area per unit time is Uc/4. In other words,

power radiated per unit hole area =
Uc

4
(16.30) 2π5k4

15c2h3 T
4 ≡ σT 4 , (16.40)

where σ ' 5.67× 10−8 W m−2 K−4 is the Stefan–Boltzmann constant.
Note that although the U here is the total energy per unit volume of the oven, it can

also stand for the total energy per unit volume of the oven per unit frequency, or per unit
wavelength; i.e., %(f) or %(λ). The conversion to a power was simply accomplished with
the factor of c/4. For example, the power radiated per unit hole area per unit wavelength
is, from (16.33),

%(λ)c
4

=
2πhc2/λ5

e
hc
λkT − 1

. (16.41)

16.5 Radiation from a Black Body (usually called
“blackbody radiation”)

We now return to where we started, with the task of calculating how much radiation is
emitted by a black body. We argued that it must emit what it absorbs, which is thus the
same (Planck) spectrum produced by the oven. So we infer that the black body’s radiated
power equals that which emerges from a hole made in the side of the oven. That means
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the power radiated by a black body per unit area of its surface is σT 4, from (16.40). If it
has area A, then

total power emitted by black body = AσT 4. (16.42)

A body that isn’t black has an emissivity e(λ, T ), typically measured experimentally. The
emissivity is sometimes approximated by a constant e, so

total power emitted by any body ' AeσT 4. (16.43)

Example: The sun’s power output is fitted well by a Planck spectrum for T = 5800 K,
so we can treat it as a black body with this surface temperature. It has radius r = 700,000 km,
and its internal temperature (averaged over its volume) is about 107 K. If the sun’s ther-
monuclear reactions stopped today, how long could it continue to emit at its current rate?

Use (16.31) and (16.43) to write

this time period =
total photon energy inside
total current luminosity

=
4
3πr

3 4σ
c T

4
internal

4πr2 σ T 4
surface

=
4r
3c

(
Tinternal

Tsurface

)4

=
4× 7 8

3× 3 8 ×

(
107

5800

)4

× 1

31.5 6 years

' 870,000 years. Answer (16.44)

16.6 The Greenhouse Effect

Consider a glass greenhouse with its ceiling somewhere above the ground, along with an
incoming flux density Ji (i.e. power per unit area) of solar radiation. Almost all of the
mainly visible light of the solar spectrum passes through glass without being absorbed and
re-scattered. It heats the ground—but not to solar temperatures of course, so the ground
re-radiates an “outgoing” flux density Jo, but at a much longer wavelength: typically
largely in the infra-red.

Glass absorbs some of this infra-red light and re-radiates a portion αJo back to the
ground, which further heats the ground. When equilibrium is reached, there can be no
net flow anywhere, so consider an imaginary plane between glass and ground. The flux
density down through this imaginary plane, Ji + αJo, equals the flux density up through
it, Jo, so

Jo =
Ji

1− α
. (16.45)

That means Jo > Ji. Alternatively, place the imaginary plane above the glass. Now what
comes down through this imaginary plane, Ji, equals what goes up through it, (1− α)Jo,
giving us (16.45) again.

Now consider Jo with and without the glass ceiling present:

σT 4(glass)

σT 4(no glass)
=

Jo(glass)
Jo(no glass)

=
Ji

1−α
Ji

=
1

1− α
. (16.46)
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Therefore the glass heats the ground in the ratio

T (glass)
T (no glass)

=
(

1
1− α

)1/4

> 1 . (16.47)

Example: Earth receives a mean flux density of solar energy of Ji = 175 Wm−2,
averaged over all latitudes and all times of the day and night. Of this, 90% is absorbed
and 10% reflected back into space. Assuming Earth’s infra-red emissivity is 0.9, what
would be the average temperature on Earth’s surface if it had no atmosphere?

90% of 175 Wm−2 is 158 Wm−2. At equilibrium this must all be re-radiated, so

0.9σT 4 = 158 Wm−2 . (16.48)

Thus

T =
(

158

0.9× 5.67−8

)1/4

K = 236 K = −37◦C. Answer (16.49)

Now introduce our atmosphere, which absorbs and re-radiates almost all of the radiation
leaving the ground. What temperature results?

In this case α = 1/2, since we are taking all of Jo to be absorbed, and half of this is
radiated back to the ground. So (16.47) gives

T (atmos.)
T (no atmos.)

=
(

1
1− α

)1/4

= 21/4, (16.50)

resulting in
T (atmos.) = 21/4 × 236 K = 281 K = 8◦C. Answer (16.51)

16.7 Thermal Noise and Maximum Channel Capacity

Thermal fluctuations in electrical circuits produce noise that manifests as voltage fluctu-
ations. To explore this, model a circuit resistor as a one-dimensional oven of length L,
carrying electromagnetic waves as before. We will mimic the derivation of %(f) of Sec-
tion 16.1, but it will be simpler this time. We’ll also focus not on %(f) by itself, but on
the total energy inside the resistor over a frequency range f → f + df , which is %(f) df L.

The one-dimensional analogue of (16.2) is

%(f) =
ε(f) g(f)

L
. (16.52)

As ever, ε(f) is the mean thermal energy of an oscillator, now inside the resistor instead
of an oven wall. This is again (16.6). Usually we are concerned with sub-GHz frequencies
at room temperature, for which hf � kT , so that ε(f) ' kT (the equipartition value).

The discussion beginning on page 67 of how to calculate the density of states g(f)
applies equally here, but now the wave vector space is one dimensional. We can choose
either of conditions (a) or (b) on pages 68 and 69, and choose to calculate Ωtot or use the
alternative approach that produced (16.26). The results will all be the same.
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We’ll choose condition (a) and calculate Ωtot. A continuum of waves is held in the
resistor (so that both signs of k are used), and a whole number n of wavelengths fit into
the resistor’s length L. Again remembering there are 2 polarisations,

Ωtot = 2× number of cells

= 2× length of interval [−k, k]
length of one cell (= ∆k)

=
4k
∆k

. (16.53)

But nλ = L, so

k =
2π
λ

=
2πn
L

, and therefore ∆k =
2π
L
. (16.54)

Also k = 2πf/c, so the number of frequency states is

Ωtot =
4k
∆k

=
4× 2πf

c L

2π
=

4fL
c

. (16.55)

Thus
g(f) = Ω′tot(f) =

4L
c
. (16.56)

Now use (16.52) to get the total energy inside the resistor over a frequency range f → f + df
for the sub-GHz frequencies of interest:

total energy within resistor in df = %(f) df L = ε(f) g(f) df ' kT 4Ldf/c . (16.57)

Typically we require the total energy held in some frequency range B, where B is called
the bandwidth. Integrate (16.57) to find this total energy:

total energy within resistor in B ' 4kTLB/c . (16.58)

If this energy all emerges in a time L/c by moving along the resistor at speed c (an adequate
approximation), then

power out =
energy out
time taken

=
4kTLB/c
L/c

= 4kTB . (16.59)

This is an average of course; it’s all based on the idea of electromagnetic fluctuations
occurring inside the resistor. It is given the name Nyquist’s theorem for thermal noise in
circuits:

noise generated in a circuit = 4kTB . (16.60)

This noise power manifests as a fluctuating voltage, since the power dissipated in a resis-
tor R due to a voltage V across it is V 2/R. In that case

〈V 2/R〉 = 4kTB , (16.61)

so that the mean-square voltage arising from the noise is

〈V 2〉 = 4RkTB . (16.62)

The noise of complicated circuits arises from many sources interacting with each other in
various ways, so that more generally the “4” in Nyquist’s theorem (16.60) is replaced by
the circuit’s noise factor, F .
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Why might we be interested in having some particular bandwidth B? One reason in
an era of communication is the Shannon–Hartley theorem, which states that the maximum
transmission capacity C that some data-transmitting channel can have, below which we
can always arrange for an arbitrarily low error rate, is a function of the bandwidth B that
we use, and the signal-to-noise ratio S/N that we require:

C︸︷︷︸
bits/unit time

= B log2(1 + S/N) , (16.63)

where a“bit” is a binary digit: 0 or 1, and S,N are the signal and noise powers respectively.
For example, if we want to send a signal with signal-to-noise ratio of S/N = 10, and we
haveB = 1 MHz of bandwidth at our disposal, then the maximum throughput for which we
can ever hope to arrange an arbitrarily low error rate is 1 MHz × log2 11, or 3.46 megabits
per second.

By “hoping to arrange an arbitrarily low error rate” we mean the following. When signals are sent
down a line, errors can always be introduced by noise en route and in the receiver. Sophisticated
error-correction algorithms can correct some of these errors; but the higher the percentage of errors
we wish to correct, the more sophisticated our algorithm will need to be. The Shannon–Hartley
theorem puts an upper bound on the amount of information that we can ever send, even if we
have an all-powerful error-correction algorithm corrects 100% of the errors.

Equation (16.63) shows that to achieve a high transmission rate, we should have a large
bandwidth.

This makes sense from the viewpoint of Fourier analysis: having a large bandwidth means we have
a large range of frequencies at our disposal, and that means we’re able to craft signal waveforms
with “tighter turns” in them. So for example, if we are transmitting a square wave that encodes
binary digits, more bandwidth allows us to squeeze more oscillations of the wave into a given
length. After all, signals travel at a set speed, so if we want to send more of them per second, we
have to make each one shorter. This need for a “broader band” of frequencies to send more data
is the origin of the term broadband used frequently by Internet service providers.

But in an electronic circuit, the noise N is given by F kTB. So increasing the bandwidth
has two competing effects: it partly acts to increase the maximum transmission capacity C,
but it also partly acts to decrease C because increasing B introduces more noise into the
system, through Nyquist’s theorem. You can see that calculating a channel’s maximum
capacity requires knowledge of its noise factor and temperature.

17 Theory of Electric Conduction

Here we outline an example of where the classical picture of electric conduction fails, and
investigate how quantum mechanics steps in to begin to solve the problem.

17.1 The Classical Picture

The electrons that carry a current through a wire of end area A can be modelled as a gas
of free electrons inside a metal lattice.
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Write

n = electron number density, q = electric charge,
vd = electron drift speed, A = area of wire,
m = electron mass. (17.1)

The charge crossing A in a time ∆t equals the charge contained in the swept volume Avd∆t,
which is nqAvd∆t. The electric current in the wire is then

I =
charge passed

∆t
=
nqAvd∆t

∆t
= nqAvd , (17.2)

and the current density is

J =
I

A
= nqvd . (17.3)

On average, vd is about half the speed picked up from an acceleration due to a force Eq
(exerted by the electric field E) that acts for a time of λ/v̄, where λ is the mean free path
of the electrons, and v̄ is their mean thermal speed (from the Maxwell speed distribution).
So

vd =
1
2

Eq
m

λ

v̄
, (17.4)

and therefore

J =
nEq2λ

2mv̄
. (17.5)

What does experiment say? Ohm’s rule gives the resistance across a length ` as

R =
V

I
=

E`
JA
≡ %`

A
, (17.6)

where % is the resistivity of the conductor. This means that, experimentally,

J = E/% . (17.7)

This agrees with (17.5), which predicts J ∝ E . So far so good, for our (classical) micro-
scopic model of electric current. But notice that (17.5), (17.7) also imply

% =
E
J

=
2mv̄

nq2λ
. (17.8)

We know that v̄ ∝
√
T , from the Maxwell speed distribution. We might use (13.2) to write

the mean free path amongst fixed lattice atoms, with ν of these atoms per unit volume
and each with cross section σ:

λ =
1
νσ

. (17.9)

In that case, we conclude that % ∝
√
T . However, this is experimentally wrong. Exper-

iments show that % ∝ T . We can try to fix this by modifying the mean free path of the
electrons among the lattice atoms. Suppose an electron sees a lattice atom (mass M)
vibrating in three dimensions with circular frequency ω and amplitude A. Equipartition
gives this atom a vibrational energy

3/2Mω2A2 = 3/2 kT (17.10)
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so that it presents a cross section to wandering electrons of

σ = πA2 =
πkT

Mω2 . (17.11)

This combines with (17.9) to give

λ =
Mω2

νπkT
. (17.12)

With this temperature-dependent λ, (17.8) predicts % ∝ T 3/2. But this still disagrees with
experiment.

17.2 The Quantum Picture

Quantum mechanics clears the above puzzling aspects of conduction in great depth by
incorporating the proposition that electrons are fermions. This proposition can be taken
as confirmed, thanks to the experimental success of the predictions that result.

In Section 15 we saw that at most only one fermion can occupy a given quantum state.
This is a severe restriction that drastically alters the quantum behaviour of electrons as
compared to a classical treatment. But it successfully predicts properties of conductors,
semi-conductors, and insulators that are not predicted classically. We’ll see some of this
in what follows.

The simplest quantum viewpoint models the gas of electrons as noninteracting particles
in a cubic infinite square well of side length L. Solving Schrödinger’s equation for such
a “particle in a box” is a standard and straightforward exercise in introductory quantum
mechanics textbooks. The infinite potential energy at the walls of the box constrain each
particle to the box. Inside, the zero potential energy makes Schrödinger’s equation easy
to solve for its wave functions and energy eigenvalues. These eigenvalues are interpreted
as the quantised energy levels of the gas of particles, and are

Enxnynz =
h2

8mL2︸ ︷︷ ︸
≡ E1

(
n2
x + n2

y + n2
z

)
. (17.13)

How many electrons can fill these quantum states up to energy E? This number of electrons
equals the number of states Ωtot with energy 6 E (recall Section 3.1), which—with two
spins allowed—is twice the number of unit cubes in nxnynz space, in the octant of radius√
n2
x + n2

y + n2
z, i.e. of radius

√
E/E1. This number is twice the volume of the octant of

positive nx, ny, nz out to this radius, or

number of electrons = Ωtot = 2× 1
8
× 4π

3

(√
E

E1

)3

=
π

3

(
E

E1

)3/2

= nL3 , (17.14)

since there are n electrons per unit volume in the cube. At T = 0 these will fill the lowest
energy states up to the Fermi energy EF , which in this context is just another name
for the chemical potential µ at this temperature: the reason is because a plot of (15.10)
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at T = 0 shows that the occupation number changes abruptly from 1 to 0 at energy µ. So
we conclude that at T = 0,

EF =
h2

8m

(
3n
π

)2/3

. (17.15)

Example: Calculate EF (T = 0) for copper metal, which has n = 8.47× 1028 electrons/m3.
The electron’s mass is m = 9.11× 10−31 kg.

Equation (17.15) gives, in SI units with a final conversion to electron volts,

EF =

(
6.626−34)2

8× 9.11−31

(
3× 8.47 28

π

)2/3
1

1.6−19 eV ' 7.0 eV. Answer (17.16)

– Note that the gain in energy from lattice atoms ' kT (' 1/40 eV at room tempera-
ture), so only those electrons within kT of EF can be excited into unoccupied levels.
(Incidentally, the characteristic width of the sloping section of the n̄(E)-vs-E plot
for fermions is around kT as well.)

– The electrons don’t scatter off each other. The reason is because if this were to
happen, pushing one into an unoccupied level, the other would have to drop to a
lower unoccupied level—which doesn’t exist, because the levels are all filled. So these
electrons don’t obey the Equipartition Theorem.

Mean Electron Energy

This is

Ē =
total e− energy
total no. of e−

=
1

nL3

∫ nL
3

0
E dΩtot , (17.17)

where Ωtot is the number of electrons out to some energy E. Equation (17.14) gives
dΩtot = π/2E−3/2

1 E1/2. In that case,

Ē = 3/5EF . (17.18)

Fermi Temperature TF

Define this via
kTF ≡ EF . (17.19)

If T � TF , the mean energy of the lattice atoms (' kT ) is � EF , so the electron occupa-
tion number distribution varies little from its T = 0 shape. For copper,

TF '
7.0× 1.6−19

1.38−23 K ' 81,000 K , (17.20)

and we conclude that copper’s gas of conduction electrons certainly cannot be treated
classically for any reasonable temperature at all.
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Fermi Speed vF

Define this via
1/2mv2

F ≡ EF . (17.21)

For copper,

vF =

√
2EF
m
'

√
2× 7.0× 1.6−19

9.11−31 m/s ' 1600 km/s . (17.22)

This is not overly affected by temperature, at least for T � 81,000 K. . . Compare this to
the Maxwell mean speed v̄ ∝ T 1/2. At room temperature,

v̄ =

√
2× 1.38−23 × 300

9.11−31 m/s ' 95 km/s . (17.23)

(Note that some people define the Fermi speed via 1/2mv2
F ≡ 3/5EF .)

The quantum mechanical point of view considers it more appropriate to replace the v̄
in (17.8) with vF . Since vF is effectively independent of T , and (17.12) gives λ ∝ 1/T ,
(17.8) becomes

% =
2mvF
nq2λ

∝ T , as observed experimentally. (17.24)

So quantum mechanics has come to the rescue by predicting the correct dependence on
temperature for the electrical resistivity.

17.3 Band Theory of Solids

To understand the degree of availability of free electrons, we must consider the effect of
the crystal lattice on the electron energy levels. Solving the Schrödinger equation for an
electron in an atom yields a discrete set of energy levels. However, when we bring two
atoms close together, the energy of each level changes due to the influence of the other
atom. (We can also arrive at this by solving the Schrödinger equation for electrons moving
in a periodic potential.)

If we bring N atoms together in a lattice, a particular energy level splits into N levels,
forming a band. The band width is determined by the atomic spacing—not by N , so for
large N the band is composed of an almost continuous spread of energy levels. Bands are
typically a few eV thick, and may overlap.

One piece of direct evidence for bands in solids comes from X ray spectra. Gaseous
sodium shows the expected sharp peaks due to energy level quantisation, whereas the same
peaks produced from solid sodium are broadened due to the bands being present.

Allowed bands are continuous bands of energy levels for electrons.

Forbidden bands are regions where there are no energy levels.

The band containing the outer electrons is called either the valence band if it’s full of
electrons—i.e. if all of its energy levels are occupied; or the conduction band if it isn’t full.
Valence bands correspond to insulators and semiconductors. Conduction bands correspond
to conductors.
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We treat materials as well and truly insulators when the width of the first forbidden
band above their valence band is > 2 eV. (E.g. the width for diamond is 7 eV.) If the
width is < 2 eV, we call the material a semiconductor. Examples are silicon (1.1 eV) and
germanium (0.7 eV).

17.4 Insulators and Semiconductors

Consider a material whose (filled) valence band extends to energy Ev. There is then a
gap of width Eg which forms a forbidden band, and then the (almost empty) conduction
band begins at energy Ec. By symmetry, the Fermi energy EF lies in about the middle
of the gap, so that EF = Ev + Eg/2. What is the number density ne of electrons in the
conduction band? Set β ≡ 1/(kT ) to write

ne =
1

L3

∫ ∞
Ec

n̄(E)g(E) dE =
1

L3

∫ ∞
Ec

g(E) dE

e
β(E−EF ) + 1

' 1

L3

∫ ∞
Ec

e
−β(E−EF )g(E) dE . (17.25)

The density of states g(E) depends heavily on the material. Remember from Section 3.1
that g(E) dE = dΩtot. For the simple model of particles in a box, Ωtot is given by (17.14):

Ωtot =
π

3

(
E

E1

)3/2

, so g(E) =
π

2
E1/2

E
3/2
1

. (17.26)

What is more usual is to model the possibly complicated density of states by

g(E) =
π

2
(E − Ec)

1/2

E
3/2
1

. (17.27)

Also, the electron mass m (inside E1) is replaced by some effective mass m∗ that depends
on the nature of the lattice. In this new model, the electron number density of (17.25)
becomes

ne '
1

L3

∫ ∞
Ec

e
−β(E−EF )π

2
(E − Ec)

1/2

E
3/2
1

dE . (17.28)

Write E − EF = E − Ec + Eg/2 and use a change of variables u ≡ (E − Ec)
1/2. The inte-

gral is then straightforward, and gives

ne
n
≈
(
kT

EF

)3/2

exp
−Eg
2kT

. (17.29)

Example: Calculate ne at room temperature using the electron number density and
Fermi energy of copper, for the two cases of forbidden band widths 7 eV (an insulator)
and 1 eV (a semiconductor).

We use kT = 1/40 eV, n = 8.47× 1028 m−3, and EF = 7 eV:
Insulator: Eg = 7 eV, so

ne ≈ 8.47 28

(
0.025

7

)3/2

exp
−7
0.05

≈ 3× 10−36. (17.30)
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Semiconductor: Eg = 1 eV, so

ne ≈ 8.47 28

(
0.025

7

)3/2

exp
−1
0.05

≈ 4× 1016. (17.31)

The comparatively huge number of conduction electrons in the semiconductor is evident.
Their number is also affected by temperature: materials that are insulators as T → 0 can
become semiconductors as the temperature rises.

17.5 Diodes

Electrons that jump across the gap into the conduction band leave behind a “hole” in
the valence band. This can be treated as another particle, but with positive charge, that
contributes to the current.

By adding impurities—small amounts of other elements—to the semiconductor, we
can cause more or less free electrons to move within the lattice (actually orbiting say an
arsenic atom at a large distance), or holes to move within the lattice (actually orbiting
say a gallium atom at a large distance). These donor impurities create electron energy
levels which allow electrons to be excited; thus they cause semiconductors to conduct much
better than if the conduction were due to thermal excitation alone.

An n-type semiconductor is one that has been “doped” with an element such as arsenic
or antimony, elements that donate electrons (negative change—hence the name n-type).
These donated electrons populate new energy levels that appear at the top of the forbidden
band. Thermal excitation or an external electric field can quite easily bump these electrons
into the conduction band; hence the dramatic increase in conduction due to the impurity.

A p-type semiconductor is doped with e.g. gallium or indium: metals that accept
electrons or, equivalently, donate holes: positive change—hence the name p-type. These
holes populate new energy levels that appear at the bottom of the forbidden band. Thermal
excitation or an external electric field can now easily bump electrons from the top of the
valence band into these holes.

Suppose we have two doped semiconductors: the p-type has holes that are free to
wander about its lattice, and the n-type has electrons that are free to wander. If we join
them together to form a pn-semiconductor, some of the free electrons in the n-type close
to the junction will move to fill the immediately adjacent holes on the p-type side of the
junction. This creates a slight excess of negative charge on the p-type side of the junction,
and a slight excess of positive charge on the n-type side of the junction. A permanent
internal electric field has now been created across the junction, pointing from the slightly
positive n-type side to the slightly negative p-type side.

There are now two processes continuously occurring across the junction:

Thermal: Free electrons from the n-type side are always being propelled by thermal
fluctuations to join the excess negative charge on the p-type side. That serves to
increase the field’s strength. The Boltzmann distribution can be applied to determine
how many thermal electrons are propelled across the junction.

Electromagnetic: The strong field in turn keeps returning electrons from the p-type
side back home across the junction. That acts to reduce the field’s strength, and the
whole situation is in a steady state.
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The energy term in the Boltzmann distribution (10.20) will be the increase in potential
energy that the n-type’s free electrons “see” from where they are to the far side of the
junction before they are thermally propelled across.

Note that I am being descriptive in my wording here because the details are easy to get confused.
The field across the junction points from n-type to p-type; that means the n-type’s free electrons
experience a drop in electromagnetic potential when they are forced across the junction by thermal
fluctuations. But because they have negative charge, their potential energy will increase during
this process.

Should the energy term in (10.20) be the potential energy seen on the far side of the junction
by the electrons, or the potential energy increase that they see across the junction? In fact either
will work. Remember that potential energy is only ever defined up to an additive constant. We can
include this constant in the exponential in (10.20), but it will only get absorbed into the constant
of proportionality in that equation. So we might as well set it equal to zero.

So set the potential energy of a free electron on the n-type side of the junction to zero. It
then sees a potential energy on the p-type side of U0 > 0.

We can envisage the continuous thermal and electromagnetic flows of electrons as
follows. (In the next paragraphs, it helps to consider the current of electrons as a particle
current, so we’ll use a lower-case i to refer to electron current, and an upper-case I to refer
to conventional circuit-theory current.)

Thermal: A current ithermal > 0 of electrons going from n to p (i.e. this is not electric
current of the “conventional” sign) due to thermal fluctuations boosts these electrons
into a higher potential energy. The number of electrons forming the current obeys
the Boltzmann distribution, which closely approximates the tail of the Fermi-Dirac
distribution for the electron occupation number at energies above the forbidden band,
or > EF .

Electromagnetic: This current of electrons i0 > 0 (again not “conventional” electric cur-
rent) flows from p to n across the junction, driven by the permanent internal electric
field. A typical value of i0 is about a milliamp.

In equilibrium these flows are balanced, so there is no net current at all.
Suppose that now we apply a bias voltage, by connecting the p-type to one terminal

of an electric cell of voltage Vb > 0, and the n-type to the other terminal. We’ll “for-
ward bias” the diode, connecting the p-type to the positive terminal. Now the potential
energy of an electron on the p side of the junction decreases from U0 to U0 − eVb (where
e = 1.6× 10−19 C). This lowers the potential barrier for the n-type’s free electrons to
form the ithermal current, but doesn’t affect i0, which is a kind of ever-present background
current due to the base conditions existing internally to the junction. Set

I ≡ conventional electric current through diode from p-type to n-type
= electron current through diode from n to p
= ithermal − i0 . (17.32)

But notice that

ithermal ∝ exp
−∆ pot. energy (n→p)

kT
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= C exp
−(U0 − eVb)

kT
= C ′e

eVb
kT (17.33)

for some normalisations C,C ′. For the case of no bias, ithermal = C ′ which therefore
equals i0, because I = 0 with no bias. That means (17.32) can always be written

I = i0e
eVb
kT − i0 = i0

(
e
eVb
kT − 1

)
. (17.34)

The case of a negative value of Vb is a reverse bias, meaning the p-type has been
connected to the negative cell terminal (and n-type to positive). Here the potential energy
step that the electrons must jump (n→p) gets higher, so ithermal → 0 and the only current I
across the junction is the small background electric current −i0 (the negative sign is due
to I being conventional electric current). So the diode passes almost no current when it’s
reverse biased, as (17.34) shows. Commercial diodes can be quite robust when reverse
biased, and will only pass 1 or 2 milliamps even when Vb equals minus several hundred
volts.

But when the diode is forward biased, the potential energy barrier seen by the elec-
trons drops. Given the exponential nature of the Boltzmann distribution, this allows a
huge number of thermally excited electrons to jump up the potential step. So a forward
bias produces a current I which is typically several amps for Vb = +1 volt, and which
in principle can be huge as (17.34) shows; whereas a reverse bias produces essentially no
current at all. Diodes thus pass current pretty much in one direction only, which makes
them very useful in electronic devices.

18 Final Comments and Acknowledgements

Historically, statistical mechanics resulted from physicists’ efforts to put thermodynamics
onto a more mathematical footing. One thing I have tried to emphasise in these notes is
that this mathematical basis should not be taken as implying that statistical mechanics
is a completely “closed” subject, whose concepts are now completely well defined, easy to
calculate, and subject to the application of endless rigor.

For example, I put some emphasis on explaining the difficulties involved with counting
states in Section 3.1. The states of simple systems can certainly be counted, but in general
it seems to be impossible to count the states of more complex systems exactly, even in
some idealised way. A good example of this difficulty is the standard expression for the
entropy of an ideal gas, not covered in these notes but which is found in some textbooks,
such as [5]. What might be surprising is that this entropy expression fails the Third Law of
Thermodynamics, because it does not vanish at zero temperature. Its derivation is based
on setting the gas’s number of states at a given energy E to be what I have called Ωtot(E)
instead of the more correct Ω(E), so is headed in the wrong direction from the very start.
Given that the counting procedure used to derive that standard expression for the gas’s
entropy is already an approximation, we can certainly introduce further approximations
to make the entropy vanish at zero temperature. But it’s not clear whether any such
expression for the entropy of an ideal gas, that is as correct as it can be at all temperatures
given the relevant idealisations, exists in the literature. The subject routinely hardly rates
a mention in textbooks. If we already meet with difficulty when calculating the entropy
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of an ideal gas, we might expect bad things farther down the road. And yet in spite of
this, statistical mechanics is very successful at predicting and shedding light on some of
Nature’s very complex behaviour.

Another example of the difficulties underlying the subject can be found in my exposi-
tion of blackbody radiation. Every discussion of this subject that I have seen rests on the
idea of electromagnetic field nodes at the oven walls. There seems no reason to assume this
(especially for non-metallic walls), but if such nodes do exist at the walls, then Planck’s
law would already have to be a continuous approximation to what is really a discrete func-
tion dependent on oven size. Also, the necessary introduction of the concept of emissivity
shows that Planck’s law applies to an idealised oven only, for emissivity varies with the
material of the emitter, and is even a function of wavelength for a single emitter. The
key question seems to be just how to define such an idealised oven. I have stressed this
approach in these notes.

Parts of these lectures owe much to those given by Graeme Putt and Paul Barker of
Auckland University’s Physics Department during my own undergraduate physics degree
there. My discussions of the course topics here have benefited from conversations with
Sanjeev Arulampalam, Shayne Bennetts, Scott Foster, David Griffiths, Alex Kalloniatis,
Roland Keir, Jim McCarthy, Jamie Quinton, Andy Rawlinson, Nikita Simakov, Keith
Stowe, Alice von Trojan, and Vivienne Wheaton. I wish to thank DSTO and Flinders
University for the opportunity to give this lecture course. The clarity of these notes was
also greatly improved by the feedback of my class, who were an interested group of students
and a delight to teach. There seemed to be no time to really teach everything properly in
the few months in which I gave the course, but the students were always willing to listen to
my endless asides and my “here he goes again” digressions into semi-relevant mathematics.
At least, that’s the way it seemed.
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