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Abstract

This paper presents theoretical and numerical results for the modal characteristics of

the seismo-acoustic wavefield in generally anisotropic range-independent media. Gen-

eral anisotropy affects the form of the elastic stiffness tensor, which directly affects the

polarization of the local modes, the frequency and angular dispersion curves, and also in-

troduces the effects of nearly degenerate modes. Horizontally polarized shear motion plays

an important role in seismo-acoustic wave propagation in shallow water environments, and

will be important for proper analysis of sediment attenuation. The transverse particle

motion cannot be ignored when anisotropy is present for low frequency modes having sig-

nificant bottom interaction. The seismo-acoustic wavefield has polarizations in all three

coordinate directions even in the absence of any scattering or heterogeneity. Even in 1-D

media an explosion source excites particle motion in all three directions. The magnitude

of anisotropy as well as the direction of the symmetry axis can be of equal importance.

Even weak anisotropy may have a significant impact on seismo-acoustic wave propagation,

depending on the propagation direction in relation to the symmetry axis orientation of the

anisotropy. Unlike isotropic and VTI media where acoustic signals are composed of P-SV

modes alone (in the absence of any scattering), tilted TI media allow both quasi-P-SV and

quasi-SH modes to carry seismo-acoustic energy. The discrete modes for an anisotropic

medium are best described as generalized P-SV-SH modes with polarizations in all three

Cartesian coordinate directions. The superposition of these generalized P-SV-SH modes

describe the seismo-acoustic signal and reveal the importance of using an elastic treatment

of the seafloor bottom/subbottom for low frequency shallow water seismo-acoustic wave

propagation.



1 Introduction

Because of the way that marine sediments are formed, high gradients in shear velocity as well

as velocity anisotropy is a common, nearly ubiquitous, trait of marine sediments (Ewing et

al., 1992). Possible sources of elastic anisotropy in marine sediments are reported to be the

alignment of cracks and/or pores in the sediment structure, preferred orientation of mineral

grains, and lamination as a result of compositional layering (Carlson et al., 1982). Marine

sediment anisotropy seems to have been mentioned in the literature as long as ago as 1932

(McCollum and Snell, 1932). Even if sediments are deposited in a relatively homogeneous

manner, Bohlke and Bennett (1980) point out that the structure of the sediments evolves towards

anisotropy with time. Hamilton (1978) reports results from the Deep Sea Drilling Project

(DSDP) “... that in almost all cases there was a distinct (compressional) velocity anisotropic

relationship ...” between vertical and horizontal acoustic propagation speeds. Bachman (1983)

found a compressional wave anisotropy of around 10%. Some sediments even exhibited a small

density anisotropy as well. While the DSDP measurements were collected in the deep ocean

Berge et al.(1991) measured shear wave anisotropy in shallow-water sediments about 10 km east

of the New Jersey coast as high as 12%-15%. Badiey and Yamamoto (1985) discussed anisotropy

in porous sediments. Badiey and Yamamoto(1985) assumed the sediments were transversely

isotropic (TI). Such a medium is described by five elastic constants rather than the usual two,

but horizontally polarized waves (SH) are still not coupled to the vertically polarized (SV) and

compressional waves(P). The symmetry axis for a TI medium is vertical, normal to the seafloor.

Bachman(1983) studies the case for a non-vertical symmetry axis, and points out that assuming

sediment isotropy when it is not justified can cause errors in layer thickness computations, elastic

property gradient determinations and predictions of long range sound propagation.

[Figure 1 about here.]

[Figure 2 about here.]

Marine sediments often have transversely isotropic elastic symmetry (TI) with the fast ve-

locity directions in the plane parallel to the bedding plane and the slow velocity direction along

the normal of the bedding plane as shown in figure 1. The slow velocity direction is parallel to

an infinite fold symmetry axis ŝ, also shown in figure 1. This type of elastic anisotropy found in

marine sediments is likely predominantly due to compositional layering (Carlson et. al., 1982).

The majority of investigations of sediment anisotropy have concentrated on TI elastically

symmetric media with a vertical symmetry axis(VTI), where ŝ = ẑ as in figure 1, or with a

horizontal symmetry axis(HTI), where ŝ = cosϕx̂ + sinϕŷ. Figure 1 and Figure 2 show the

fixed coordinate frame of reference. An example of a VTI medium is the horizontally layering

of fine isotropic sediments, and an HTI medium can be produced by the introduction of vertical

parallel cracks in isotropic sediments. Although VTI and HTI are completely adequate for many
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applications, there are many instances where a more general orientation of the symmetry axis

ŝ is needed. Simply having VTI or HTI layered sediments with non-horizontal bedding planes

provides an example of a TI medium with a non-vertical and non-horizontal tilted symmetry

axis. Anisotropic variations other than azimuthal may also be considered, where the anisotropic

symmetry axis ŝ is allowed to tilt in both azimuth and elevation. Martin et. al. (1997),

Thomson et. al. (1997), and Zhu and Dorman (2000) provide results complementary to the

work presented in this paper.

Badiey and Yamamoto (1985) examined the effect of a porous VTI medium on acoustic sig-

nal attenuation. While we do not discuss poro-acoustic or poro-elastic effects, we also employ a

modal approach to the seismo-acoustic field modeling similar to Badiey and Yamamoto (1985).

An acoustic signal may be composed of acoustic modes (confined to the water column), hybrid

acoustic-crustal modes also known as seismo-acoustic modes, and oceanic crustal modes. An

acoustic mode carries its energy in the water column and has very little interaction with the

bottom/subbottom. A crustal mode propagates its energy in the sediment and basement layers.

A hybrid acoustic-crustal mode has significant energy in both the water column and the underly-

ing sediment and basement layers. Neglecting any seafloor bottom/subbottom elastic properties

may be a reasonable approach for problems involving high frequencies where the depth of the

water column is much greater than the wavelength of the acoustic signal of interest. For these

problems the acoustic signal may be entirely contained within the water column and may not

interact with the seafloor. However, for low frequencies and shallow water environments the

bottom interaction of the acoustic signal may become significant, and affect the propagation of

the acoustic signal, perhaps along the entire propagation path. Therefore, the characteristics

of the acoustic signal are influenced by interactions with the seafloor and seabed. Energy from

the acoustic wavefield can be scattered, radiated into the bottom, or damped by attenuation,

resulting in a signal that is more accurately described as seismo-acoustic. The seismo-acoustic

signal then is composed of both acoustic modes and hybrid acoustic-crustal modes. In this work

the focus remains predominantly on acoustic and seismo-acoustic modes (hybrid acoustic-crustal

modes) with energy within the fluid layer and bottom sediments. Odom et. al. (1996) inves-

tigate the effects of VTI elastic symmetry on local modes and on the coupling of local modes,

focusing on sediment modes. Their model has been modified to facilitate the study of acoustic

and seismo-acoustic modes in a generally anisotropic medium. The work of Odom et. al. (1996)

is extended by including a more generalized description of anisotropy found in marine sediments.

This paper focuses on modes of a 1-D range independent layered shallow-water acoustic

waveguide is complementary to the 1D work of Levin and Park (1997) and Okaya and McEvilly

(2003), and is somewhat tutorial in nature. The ultimate goal is to provide the background

for the incorporation of range dependent structure in a coupled local mode treatment, where

the influence of both anisotropy and range dependence is presented. This follow-on work is

complementary to the range-dependent elastic PE work, e.g. Collis et al. (2009), Jerzak et al.

2



(2005), Fredericks et al. (2000), Collins et al. (1995).

Section 2 discusses anisotropy and wave propagation for a 1-D homogeneous anisotropic

plane-layered structure. A brief description of the modal formalism of Maupin(1988) as applied

to the 1-D anisotropic structure is contained in section 3.1. An introduction to TI elastic sym-

metry and nomenclature is found in section 2.1 and section 2.2 demonstrates the usefulness of

the Bond transformation in obtaining a generalized elastic stiffness tensor. Numerical calcula-

tions are discussed in section 3 for the 1-D homogeneous anisotropic plane layered structure.

The anisotropic model/profile is described in section 3.2 and slowness curves are considered in

section 3.3. Section 3.4 covers angular and frequency dispersion curves while section 3.5 provides

the resulting generalized eigenfunctions. The summary, conclusions and discussion of results are

contained in section 4.

A variety of useful relations, such as theory, and concepts concerning anisotropy have been

collected and presented in the appendices. Appendix A expands on the elastic stiffness tensor and

matrix notation, while Appendix B provides further insight on the differential operator A from

the equations of motion. Appendix C defines some possible forms of anisotropy parameterization.

Appendix D elaborates on the specifics of the Bond transform for a TI medium. The notation

used along with definitions of variables or parameters can be found in the List of Symbols.

Symmetry planes and wave polarizations are considered in Appendix F for TI elastic symmetry.

2 Anisotropy Background

This section provides a somewhat tutorial presentation of elastic anisotropy. The medium is

assumed to comprise homogeneous, but elastically anisotropic 1-D layers. The elastic properties

of the sediment layers are allowed to vary with propagation direction. Specifically, energy prop-

agating along different directions within the sediment layers will result in the wave propagating

at different velocities. These anisotropic sediments are assumed to have TI elastic symmetry

with an arbitrarily oriented symmetry axis (ŝ). The effect of anisotropy on propagating modes,

including changes in phase and group velocities, and eigenfunction polarizations is investigated.

2.1 Transversely Isotropic Elastic Symmetry

Nomenclature for anisotropy has not been standardized in the literature. This poses a prob-

lem that Crampin (1989) and Winterstein(1990) recognized over a decade ago. Because the

term transverse isotropy has been used with multiple meanings in the literature, we attempt to

mitigate this confusion by explicitly stating the nomenclature used in this work.

For the purposes of this article, a general anisotropic medium is defined by an elastic stiffness

tensor belonging to the transversely isotropic elastic symmetry system. The nomenclature of

Winterstein (1990) is used, where TI refers to a medium with transversely isotropic elastic
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symmetry having an infinite-fold symmetry axis. A medium retains its TI elastic symmetry

regardless of the orientation of the symmetry axis or any physical rotation of the media. A TI

medium with a vertical, horizontal, or arbitrarily tilted symmetry axis is labeled VTI, HTI, and

TTI respectively.

The term “transverse” in transverse isotropy refers to any direction which is perpendicular

to the geometric symmetry axis of the medium. As noted by Winterstein (1990), TI has oc-

casionally been used to refer to a VTI medium. In addition, hexagonal symmetry has often

been used interchangeably with the TI symmetry in the wave propagation communities. The

hexagonal symmetry class is a subset of the TI symmetry system. Both TI and hexagonally

symmetric media have the same strain-energy functions, and the elastic equation of motion will

be exactly the same for both media. Elastically, a hexagonally symmetric and TI symmetric

medium look exactly the same, but compositionally or structurally they are quite different. It is

likely that real marine sediments would belong to the transverse isotropy symmetry class, and

according to Winterstein (1990), sediments are unlikely to be structurally hexagonally symmet-

ric. Elastically, TI and hexagonal symmetries have the exact same degree of symmetry, since

both require five elastic constants. However, structurally TI has a higher degree of symmetry

and is closer in symmetry to isotropy than the hexagonal symmetry. This is a result of TI having

an infinite-fold symmetry axis, the hexagonal symmetry only has a six-fold symmetry.

TI is an elastic symmetry system distinguished by a unique form of the elastic stiffness tensor.

The elastic stiffness tensor has five independent constants that define the individual coefficients.

Each coefficient is a linear combination of these five independent constants, and these five

independent constants can be parameterized into several forms. They may be expressed as

velocities, elastic moduli, or even a combination of ratios of velocities and elastic moduli (see

Appendix D). In comparison, an isotropic material is parameterized by only two elastic moduli.

Although the elastic symmetry has been limited to transverse isotropy for this work, the theory

and some portions of our code can incorporate more general anisotropy (up to 21 independent

elastic moduli). The elastic stiffness matrix aC for a VTI medium is:

aC =



A H F 0 0 0

H A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N


where H = A− 2N (1)

The A,C, F, L,N and H = A − 2N represent the VTI elastic moduli in Love (1944) notation.

The 6× 6 abbreviated subscript matrix aC contains all of the information of the elastic stiffness

tensor, Ciklj (see Appendix A).

The form of the elastic stiffness matrix is equivalent to that of an orthorhombic symmet-
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ric medium. They share the same pattern of zero and non-zero elements. The TI medium

has a higher degree of symmetry than the orthorhombic medium, which has nine independent

constants. The VTI medium in equation 1 may be thought of having the form of a quasi-

orthorhombic medium. Such similarities with other symmetry systems are helpful when the

elastic stiffness matrix aCIJ is rotated to more general orientations.

The elastic moduli A,C, F, L,N from the above VTI medium in equation (1) can be related

to velocities for compressional and shear plane-waves in the medium. The following describe

the wave velocities for horizontally transmitted plane waves within the xy-plane.

αH ≡

√
A

ρ
compressional waves (2)

βH ≡

√
N

ρ
horizontally polarized shear waves (3)

βV ≡

√
L

ρ
vertically polarized shear waves (4)

A vertically transmitted plane wave parallel to the z-axis have the velocities

αV ≡

√
C

ρ
compressional waves (5)

βV ≡

√
L

ρ
shear waves (6)

The elastic constant F is not typically defined in terms of a plane wave velocity. Muyzert

and Snieder (2000) relate the elastic parameter F to a velocity of a wave propagating in a

vertical plane between a source and receiver, and assign a velocity γ to the elastic parameter.

Muyzert and Snieder (2000) indicate that Anderson (1961) relates this velocity γ to a wave with

an incidence angle of 45◦ with the vertical axis.

γ ≡

√
F

ρ
velocity within the vertical xz-plane (7)

where γ2 = α2 − 2β2 in an isotropic medium.

The α and β represent the compressional and shear velocities, respectively, and the subscripts

H and V denote the horizontal and vertical displacement directions. When A = C = λ + 2µ,

L = N = µ, and F = λ, the medium is isotropic and rotationally independent.
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2.2 Bond Transformation

Using the Bond transform for tilting a structure’s symmetry axis has been suggested by Crampin

(1981) and Winterstein (1990) and actually implemented for acoustic body waves by Auld

(1990) and recently by Zhu and Dorman (2000) and Okaya and McEvilly (2003). The Bond

transformation is applied in the study of the seismo-acoustic modes to obtain a general rotation

of the elastic stiffness matrix with TI symmetry.

A formalism similar to Crampin (1981) is used whereby the propagation direction is assumed

to always coincide with a fixed coordinate direction, the x-axis. The elastic stiffness tensor is ro-

tated in order to consider anisotropy with various symmetry axis orientations. This is equivalent

to keeping the elastic stiffness tensor fixed and varying the direction of propagation. The first

method is preferred because the theory does not need to be modified for each directional change,

only the elements of the elastic stiffness tensor need to be changed. A physical reasonableness

to the modeling should be retained. Arbitrarily perturbing various elements of CIJ can lead to a

non-physical elastic stiffness matrix. By starting with a real physical model, the reasonableness

of the model is maintained regardless of any rotation of the medium. Odom et. al. (1996)

provides a good summary of the conditions which constrain the elastic moduli of a TI elastically

symmetric medium. Another advantage of the Bond Transformation is working with a 6 × 6

matrix with only 36 individual elements rather than a fourth order tensor with 81 individual

elements. Complex tensor transformations are replaced with simple matrix multiplication to

transform the elastic stiffness matrix to any arbitrary orientation.

Rotating the elastic stiffness matrix aCIJ essentially changes the form of the elastic stiffness

tensor, how the matrix or tensor is populated changes. This directly affects the solution of the

equation of motion as the elements of aCIJ change. The elastic stiffness matrix is a function of

the spherical coordinate angles θ and ϕ when aCIJ = aCIJ(θ, ϕ)

For an isotropic medium, the direction of propagation does not matter. All planes are

symmetry planes and all directions are symmetry axis directions. The elements of the elastic

stiffness tensor do not change with any rotation of the medium. For an anisotropic medium, the

velocity of plane waves vary with propagation direction through the medium. The elements of

the elastic stiffness tensor change with any rotation of the medium. For a TI elastic medium,

five independent elastic moduli along with two polar coordinates relating the symmetry axis and

the propagation direction are needed to adequately describe the velocity of plane wave through

the medium. The elements of Ciklj, being functions of the polar angles θ and φ, are linear

combinations of the five independent constants.

While the elastic stiffness matrix may be rotated, the physical boundaries, discontinuities

and the boundary conditions of the 1-D structure remain fixed. The procedure for implementing

the Bond transformation is to rotate the elastic stiffness matrix with respect to a fixed set of

coordinate axes. In general three angles ψ, θ, ϕ are needed to transform the elastic stiffness

matrix aCij to any arbitrary orientation. The rotations are taken first about the z-axis, next
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about the y-axis, and finally about the z-axis again. ψ is an angle in the xy-plane and corresponds

to the first rotation about the z-axis. The angle θ is defined in the xz-plane and corresponds to

the second rotation about the y-axis. The final angle ϕ is also defined in the xy-plane which

corresponds to the third rotation about the vertical axis. When the initial medium is VTI, only

rotations through the angles θ and ϕ need to be considered. In figure 1 the Bond transformation

is visually demonstrated. The elastic stiffness matrix representing the elastic constants within

the layer can be rotated to any arbitrary orientation, as shown by the blocks on the right of the

figure.

The spherical coordinates of the symmetry axis directions, ŝ = ŝ(θ, ϕ) can be projected

onto a unit sphere. When tilting the symmetry axis, the symmetry axis traces lines of constant

elevation on the unit sphere as ϕ is varied and remains θ fixed. Similarly, keeping ϕ fixed at some

value and varying the value of θ traces lines of constant azimuth. The lines of constant elevation

represent changes in azimuthal anisotropy, and the lines of constant azimuth representation

changes in elevational anisotropy. These are shown as red arcs in figure 4.

Applying the Bond Transformation to the unrotated elastic moduli within aC′′:

aC
′
= [My][aC

′′
][My]T Bond transformation about y-axis (8)

aC = [Mz][aC
′
][Mz]T Bond transformation about z-axis (9)

My and Mz are transformation matrices (e.g. Auld, 1990) about the y-axis and z-axis respec-

tively, and are defined for an elastic stiffness tensor with TI symmetry in Appendix E.

Substituting equation (8) into equation (9) and using the matrix multiplication property [MzMy]T =

[My]T [Mz]T to obtain:

aC = [R][aC
′′
][R]T where R = MzMy (10)

The individual elements of the elastic-stiffness tensor can be found by the following relation

for a medium with TI elastic symmetry.

aCIJ = A(RI1RJ1 +RI2RJ2) +H(RI1RJ2 +RI2RJ1)

+ F (RI1RJ3 +RI2RJ3 +RI3RJ1 +RI3RJ2) + CRI3RJ3

+ L(RI4RJ4 +RI5RJ5) +NRI6RJ6 (11)

The elements of aCIJ or Ciklj depend on the orientation of the symmetry axis through the

elements of R. A rotation of the symmetry axis changes the value of any given element in CIJ ,

where the specific elements of CIJ remain linear combinations of A,C, F, L,N as demonstrated

by equation(11). The tractable, analytic form for the rotated elastic stiffness matrix found in

equation (11) is due to the large number of elements with zero-values for a VTI medium.

The sensitivity of the aCIJ elements rotation can be determined by taking the derivative of
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equation (11) with respect to θ and ϕ. The derivative with respect to a generic angle ∆ is:

∂(aC)

∂∆
=
∂(aCIJ)

∂∆
where ∆ = θ or ϕ (12)

The angular sensitivity of a TI symmetric medium with an arbitrarily tilted symmetry axis

may be expressed as:

∂(aCIJ)

∂∆
= A

(
∂RI1

∂∆
RJ1 +RI1

∂RJ1

∂∆
+
∂RI2

∂∆
RJ2 +RI2

∂RJ2

∂∆

)
+ H

(
∂RI1

∂∆
RJ2 +RI1

∂RJ2

∂∆
+
∂RI2

∂∆
RJ1 +RI2

∂RJ1

∂∆

)
+ F

(
∂RI1

∂∆
RJ3 +RI1

∂RJ3

∂∆
+
∂RI2

∂∆
RJ3 +RI2

∂RJ3

∂∆

∂RI3

∂∆
RJ1 +RI3

∂RJ1

∂∆
+
∂RI3

∂∆
RJ2 +RI3

∂RJ2

∂∆

)
+ C

(
∂RI3

∂∆
RJ3 +RI3

∂RJ3

∂∆

)
+ L

(
∂RI4

∂∆
RJ4 +RI4

∂RJ4

∂∆
+
∂RI5

∂∆
RJ5) +RI5

∂RJ5

∂∆

)
+ N

(
∂RI6

∂∆
RJ6 +RJ6

∂RI6

∂∆

)
(13)

[Figure 3 about here.]

Each element of the aCIJ matrix may be evaluated through equation (11) and equation (13).

Figure 3 plots the aC11 element and its angular sensitivity as function of θ and ϕ.

Auld (1990) provides a more complete treatment of the Bond transformation and additional

details are included in Appendix D. Appendix F contains a useful and instructional tutorial

on symmetry planes and wave polarizations for a TI medium. The appearance of a lower

degree of symmetry when the TI symmetry axis rotated has been determined independently,

but similarly to Okaya and McEvilly (2003). Whereas they determined that rotations about the

y-axis result in a monoclinic form of the elastic stiffness matrix, the rotations in Appendix F

show that rotations where the symmetry axis remains in any of the coordinate planes results in

a monoclinic form of the elastic stiffness matrix.

3 1-D Plane-Layered Anisotropic Structure Calculations

A phase velocity ordering is used for all of the modes when considering the eigenfunctions

and dispersion curves. The modes are ordered from smallest phase velocity to the largest phase

velocity, where the lowest order mode has the lowest phase velocity and the highest ordered mode

has the highest phase velocity. Note that the phase velocity ordering scheme is independent of
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polarizations of the particular modes, therefore the phase velocity ordering is still used when

the P-SV and SH modes propagate independently. This is slightly different than Odom et.

al. (1996), and Park and Odom (1998) where only the P-SV modes were included in the

phase velocity ordering of the modes, and the SH modes were not included. The mode finding

code ANIPROP developed by Park (1996) calculates the eigenvalues and eigenfunctions. The

ANIPROP code (Park, 1996) has been modified to include fluid layers and used to generate

eigenvalues and eigenfunctions for each given model. The fluid/solid reflection and transmission

coefficients were determined using the method of Mallick and Frazer (1991), when adding the

fluid layers to ANIPROP. The effect on the eigenfunctions of altering the medium symmetry

axis away from the vertical is studied along with the corresponding phase and group velocities.

The inclination of the symmetry axis along lines of constant azimuth and constant elevation is

shown in figure 4.

[Figure 4 about here.]

The model, described in the next section is characterized by propagating seismo-acoustic

modes which have phase velocities in the range of 1500m/s and 2000m/s for frequencies between

10.0Hz and 100.0Hz. The corresponding wavelengths at 50.0Hz would be λ = 30m and λ = 40m

respectively.

[Table 1 about here.]

3.1 Modal Formalism for Plane Layered Anisotropic Structure

A modal representation of the Green’s function for the 1-D seismo-acoustic wave propagation

problem is employed. The wavefield is represented as a superposition of modes. The modes are

defined as the eigenfunctions (displacement and tractions) of a 1-D homogeneous anisotropic

structure. The homogeneous plane-layered medium is infinite in the xy-plane, and the modes

are the eigenfunctions appropriate for the entire domain and path of propagation. The initial

mode excitation may be determined by an appropriate source term.

A modal representation of the wavefield provides a convenient and natural way of observing

how sources and material parameters affect the wavefield. However, some limitations exist. The

computation time for calculating the modes and therefore the wavefield becomes larger as the

number of layers and or frequency of the model increases. This can be inconvenient for very

detailed analyses.

[Figure 5 about here.]

The modal formalism based on Maupin’s (1988) theory is presented for a 1-D plane layered

seismo-acoustic environment with general anisotropy as shown in figure 5. This modal approach
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to the equations of motion has the advantage of allowing the physics of propagation to be

examined on a mode by mode basis and is formally exact. Maupin also includes an analysis

of the 2-D coupled mode problem for fluid-elastic media. The modal theory arises out of the

equations of motion and is a convenient first order theory. Additional and complimentary work

with coupled-modes are given by Odom (1986), Odom et al.(1996), and Park and Odom (1998,

1999). The theory for the 1-D plane layered wave propagation problem contains two critical

steps: i) expressing the equation of motion as a first order differential equation and ii) solving the

wave-equation with a superposition of global modes. For this section the application of the modes

is limited to perfectly elastic (non-attenuating), deterministic anisotropic structures. In addition,

only the discrete modes are considered, while the continuum modes and their contribution are

neglected. While attenuation is also ignored in our examples, the theory remains valid for

attenuating media. Weak attenuation could easily be included as a perturbation.

As previously shown in figure 1 and 2, a Cartesian coordinate system is assumed with

wave propagation progressing in the horizontal direction parallel to the x-axis. The y-axis, the

transverse direction, is the geometric symmetry axis for the 1-D medium along which material

properties remain constant. This direction corresponds to the motion of a pure horizontally

polarized shear wave. The z-axis is the vertical direction, positive downwards, and corresponds

to the direction of motion of a pure vertically polarized shear wave.

The Einstein summation convention is assumed unless otherwise noted. The theory devel-

opment uses both Woodhouse(1974) and abbreviated subscript notation (e.g. Auld, 1990), also

known as Voigt notation (e.g. Nye, 1957), for representing the fourth order elastic stiffness

tensor, Ciklj. The Woodhouse notation is used primarily to represent a general anisotropic

medium in the modal theory, and the abbreviated subscript notation is convenient for rotating

the elastic stiffness matrix through the Bond transformation. In order to avoid some confu-

sion, a superscript notation has been introduced. The superscripts w and a imply Woodhouse

and abbreviated subscript notations, respectively (i.e. wC or aC). The indices of the fourth

order elastic stiffness tensor are iklj rather than the conventional ijkl in order to facilitate

the mapping between tensor notation and the matrix notation of Woodhouse (1974). In addi-

tion, lower case indices vary over ranges of i, k, l, j = 1, 2, 3 while upper case indices vary over

ranges of I, J = 1, 2, 3, 4, 5, 6. A more detailed account of elastic stiffness tensor and matrix

representations are located in Appendix A.

C = Ciklj fourth order elastic stiffness tensor

aC = aCIJ 6× 6 abbreviated subscript elastic stiffness matrix

wC = (wCij)kl 9× 9 Woodhouse elastic stiffness matrix

The 3-component displacement field vector w = (w1,w2,w3) is assumed to be in harmonic

form and involves a double Fourier transform over y and t of the displacement field w(x, y, z, t):
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w(x, z, ky, ω) =

∫ +∞

−∞

∫ +∞

−∞
w(x, y, z, t)exp(−ikyy + iωt)dydt (14)

Note that the physics convention of the Fourier Transform has been used, the same as Aki

and Richards (1980). The double Fourier transform has a mixed sign convention consistent for

wave propagation problems. The rightward propagating wavefields in this work have a phase

factor of the form:

exp(ikxx− iωt) (15)

Throughout this work, all references to the displacement, traction, and stress-displacement

vectors incorporate the double Fourier transform. The 3-component tractions are expressed as:

ti = wCij
∂w

∂xj

(16)

where the elastic stiffness matrix, wCij, is in Woodhouse (1974) notation. Each traction vector

relates to stress elements in the form ti = (τi1, τi2, τi3) for i = 1, 2, 3.

The equations of motion have the same general form for both fluid and solid media. The

equations of motion are found in Appendix E in equation (67). For solid media a 6-component

displacement-stress vector u = (w, t)T is introduced, where t = t1. For fluids , a 2-component

displacement-stress vector is defined as u = (w, t)T where w = w1 and t = τii (no summa-

tion). The equation of motion for the 1-D plane-layered structure shown in figure 5 can now be

expressed as:

∂u

∂x
= Au− F (17)

with the boundary conditions:

[τii]m = [w3]m = 0

[t3]n = [w]n = 0,
(18)

where the mth subscript is for fluid-fluid and fluid-solid interfaces, and the nth subscript is for

solid-solid interfaces. A free-slip boundary condition is imposed on the horizontal displacements

at the fluid-solid interfaces. The solid-solid interfaces are assumed to be welded contacts where

the displacement vector w and the traction vector t3 are continuous across the interfaces. For

fluid-fluid interfaces and fluid-solid interfaces the normal displacements, w3, and the vertical

stress, τ33, are assumed to be continuous across the interfaces. The square brackets with a sub-

script (e.g. [quantity]n,m) in equation (18) and the following equations represent the evaluation

of a quantity across the interface m or n. The quantity may be continuous or discontinuous
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and the evaluation is taken from the bottom of the interface to the top of the interface. For

example, a discontinuity in the elastic stiffness matrix across the nth interface is expressed as:

[aCij]n = aCij

∣∣∣
n+
− aCij

∣∣∣
n−

(19)

The differential operator A, described in Maupin (1988), from equation (17) and the bound-

ary conditions from equation (18) contain the physics of the 1-D problem for the plane layered

homogeneous anisotropic structure. Implicit in the A operator is the elastic stiffness matrix
wC which represents a TI elastically symmetric medium with an arbitrary symmetry axis. The

orientation of the symmetry axis is defined by the two angles θ and ϕ as in figure 2 and figure 4.

To obtain a general rotation of the elastic stiffness matrix with TI symmetry, the Bond trans-

formation is utilized. The elements of the A operator may be real or complex. Attenuation may

be included as complex values when the medium becomes visco-elastic. Although attenuation

effects are currently neglected, the complex form of the elements of the A operator are retained.

The general form of the operator A in equation (80) of Appendix E will not be complex if

there is no attenuation and no dependence on the y-coordinate. The form used by Maupin

(1988) remains complex because of the explicit inclusion of the derivative with respect to the

y-coordinate. The form of A can be found in Appendix B for a fluid medium, a general solid

anisotropic medium, as well as for specific tilted TI orientations where meaningful analytical

results can be obtained. F from equation (17) is an applied external source FS .

F = FS =

(
0

fS

)
(20)

A modal representation of the wavefield is employed, which is formally exact. The modes are

independent solutions for the equations of motion and are functions only of depth. The initial

wavefield, u is expressed as a superposition of global modes ur = (wr, rt)T weighted by source

excitation amplitude coefficients c0r. The horizontal wave number is kr(ξ) and xs denotes the

source position.

u = (w, t)T =
∑

r

c0r exp

(
i

∫ x

xs

kr(ξ) dξ

)
ur(z), (21)

which reduces to

u = (w, t)T =
∑

r

c0r exp (ikr(x− xs)) ur(z), (22)

for a 1-D medium. The modal description of the wavefield in equation (21) is for the discrete

modes only. The continuum modes have been neglected. The seismo-acoustic signal prop-
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agating within the 1-D plane-layered waveguide will experience geometrical spreading as the

signal propagates along the x-direction. The modes of the homogeneous plane-layered medium

are also energy normalized.(
2

πkr(x− xs)

) 1
2

geometrical spreading term (23)(
1

8vr
cU

rIr

) 1
2

energy normalization term (24)

where vr
c , U

r, and Ir are the phase velocity, group velocity, and energy integral of the mode r

respectively as defined by Aki and Richards (1980).

No assumptions have been made about the nature of the symmetry of the elastic layers

in the modal theory. The theory describes propagation where the elastic regions have general

triclinic anisotropy - a medium described by 21 independent elastic moduli. One consequence of

restricting wave propagation to the x-direction is the reduction in the number of elastic elements

from the elastic stiffness tensor Ciklj needed to describe the medium. For the 3-D propagation

problem, all 21 elements of the elastic stiffness tensor would be needed and included in the

differential operator A. For the 2-D propagation problem with propagation along the x-direction

in a medium with triclinic symmetry, the total number of elastic elements needed from Ciklj

is 15. These fifteen elements of the elastic stiffness matrix remain linear combinations of the

original 21 independent elastic moduli when aCIJ has been rotated.

aC =



C11 C13 C14 C15 C16

C31 C33 C34 C35 C36

C41 C43 C44 C45 C46

C51 C53 C54 C55 C56

C61 C63 C64 C65 C66


(25)

The second row and the second column of the elastic stiffness matrix in abbreviated subscript

notation are not used in the 2-D wave propagation theory within the xz-plane. Using the

symmetry relationships for the elastic stiffness tensor, the 15 elements of the abbreviated elastic

stiffness matrix needed are:

aC11,
aC13,

aC14,
aC15,

aC16

aC33,
aC34,

aC35,
aC36,

aC44 (26)

aC45,
aC46,

aC55,
aC56,

aC66

The propagating seismo-acoustic signal will only be sensitive to these 15 elements of the

elastic stiffness matrix, regardless of whether the elastic stiffness matrix is rotated or not. Es-
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sentially, the 2-D description excludes any sensitivity to the elements in the 2nd row and 2nd

column of the elastic stiffness matrix. Zhu and Dorman (2000) also report a dependence of 15

elements for the elastic stiffness tensor for a general TI medium.

Every term in the differential operator A which contains elastic moduli also contains the

elements of wC11. It is reasonable to expect that the equations of motion and therefore the

modes are sensitive to the changes in these elastic elements.

aC11,
aC15,

aC16,
aC55,

aC56,
aC66 (27)

3.2 Anisotropic Model

Nine parameters are necessary to describe each elastic layer. The necessary parameters include

the thickness of the layer, the density, the five elastic moduli, and the two polar angles for the

symmetry axis. The elastic moduli A,C, F, L,N describe the intrinsic elastic symmetry of the

layer, the polar angles describe the orientation of the symmetry, and the thickness describes the

boundaries of the layer.

It is assumed that all anisotropic layers have the same symmetry axis orientation. The

elastic properties are constant within each layer, where each layer may have its own ranges of

anisotropy, except the last layer which is defined as a uniform isotropic halfspace.

A sediment model that is representative of a typical marine sediment profile has been chosen.

A typical sediment structure with TI anisotropy has its symmetry axis normal to the bedding

planes. The density for typical sediments range from 1.90 − 2.49g/cm3, while compressional

speeds vary from 1.87− 4.87km/s and the degree of velocity variation due to anisotropy varies

from 1-13% (Carlson et al., 1984). The degree of anisotropy typically increases with depth,

where sediments with bedding exhibit a higher degree of anisotropy than unbedded sediments.

The global modes are determined for a 1-D plane layered medium with the velocity/density

profile shown in figure 6.

[Figure 6 about here.]

The model is a variation of the Berge et. al. (1991) profile, and similar to the model used by

Odom et. al. (1996) and Park and Odom (1998). The velocity and density profile is based upon

a data set from Berge et. al. (1991) acquired in situ about 10 km east of the New Jersey coast.

A thicker water water and an oceanic crustal component has been added. The model consists

of an isovelocity fluid layer, five thin anisotropic sediment layers and seven thin isotropic layers,

a higher velocity subbottom layer, and a uniform isotropic halfspace as a basement layer. The

model has a water layer thickness of 100m. The low shear speed sediments have a total thickness

of 27.5m and overlay higher speed sediments 372.5m thick. The degree of anisotropy varies from

11% to 15% for the shear velocities. The compressional speeds of all the layers are isotropic.
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Figure 6 shows the velocity/density profile, while table 2 provides the parameter values for the

model structure.

[Table 2 about here.]

Table 2 indicates that the elastic symmetry is actually a reduced version of the TI elastic

symmetry. In all of the layers A = C , leaving only four independent elastic moduli. This

effectively places all of the anisotropy in the difference between the shear moduli N and L.

The anisotropy is purely shear in nature, where the compressional velocity is isotropic and the

shear velocity is transversely isotropic. Berge et. al.’s (1991) experiment was insensitive to

compressional wave anisotropy. For the purposes of the modeling, the symmetry axis is rotated

for all the anisotropic layers by using the Bond transformation as discussed previously.

3.3 Slowness Curves

Slowness curves reveal the nature of anisotropy in the direction of propagation. The slowness

curves show the inverse of the velocities of three mutually orthogonal plane-waves propagating

in an anisotropic medium: quasi-P, quasi-SV, and quasi-SH. Velocities and therefore slownesses

of the medium are determined numerically solving the Christoffel equation 28 (e.g. Auld 1990).

(k2γij − ρω2δij)vj = 0

|k2γij − ρω2δij| = 0 (28)

Solving the characteristic equation could be attempted analytically, which involves a cubic

polynomial. Although there exists an analytical solution to the general cubic equation (first

published by the Italian mathematician Girolamo Cardano in 1545, English translation published

by M.I.T. Press, 1968), it is not very insightful for the general elastic stiffness tensor. The

characteristic equation to be solved is:

−
(
ρω2

k2

)3

+ (γ11 + γ22 + γ33)

(
ρω2

k2

)2

+ (γ23γ32 + γ12γ21

+ γ13γ31 − γ11γ22 − γ11γ33 − γ22γ33)

(
ρω2

k2

)
+ γ11γ22γ33 − γ11γ23γ32 − γ12γ21γ33 + γ13γ21γ32

+ γ12γ23γ31 − γ13γ22γ31 = 0 (29)

Slowness curves are considered where the symmetry axis remains along a fixed direction

and the propagation direction is allowed to vary. The slowness curves for the first anisotropic

sediment layer, as described by line 2 of table 2 are shown in Figure 7. The slowness curves

show plane-wave propagation in the xy, xz, and yz-planes.

[Figure 7 about here.]
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Figure 7 shows the slowness curves for the xy, xz, and yz propagating planes for symmetry

axes aligned with the ẑ, x̂, and ŷ axes respectively. The quasi-P plane waves are entirely isotropic

in nature, being rotationally invariant, and all anisotropy is only in the shear velocities. For

a modal description of a seismo-acoustic wavefield in a waveguide, the P and SV polarizations

are always coupled together as P-SV modes. Therefore, any variation in the SV plane-wave

velocity will affect the P-SV propagating modes, even without any variation in the P plane-

wave velocities.

[Figure 8 about here.]

Figure 8 shows the slowness curves for the xz propagation plane for 36 symmetry axes

orientations within the first quadrant. The intervals of θ and ϕ are 0◦, 20◦, 40◦, 50◦, 70◦,

and 90◦. The horizontal axis of the figure is the ϕ axis, where rows represent changes in the

azimuthal angle ϕ. The vertical axis of the figure is the θ axis, where columns represent changes

in the elevational angle θ. Note that all of the slowness curves in the fifth row are degenerate

along the z-axis. These are slowness curves for propagation in the xz-plane at θ = 70◦ and

ϕ = 0◦, 20◦, 40◦, 50◦, 70◦, 90◦. The two shear velocities remain degenerate for propagation along

the z-axis for all variations of ϕ. When the shear velocities are degenerate along the z-axis,

the modes separate into two subfamilies of P-SV and SH modes that propagate independently.

This is the same mechanism for a VTI medium, where the degenerate shear velocities along the

vertical direction allow the SH and P-SV modes to propagate independently.

The line singularities for a TI medium are dependent upon the the specific values of the

elastic moduli A,C, F, L,N . Every unique TI model may have a line singularity at a different

value of elevation θ. The TI medium used in this article has a line singularity at approximately

70◦ elevation. When θ = 70◦, the line singularity nearly intersects the z-axis. The shear plane-

wave velocities may become degenerate, but the polarization of the two shear waves still remain

orthogonal.

There are instances where the plane waves (body waves) become degenerate. This only occurs

for the shear waves. The degeneracies of the shear plane waves occur at singularities in the phase

velocity sheet. For a VTI medium, line singularities occur at θ approximately 70◦ and 110◦,

and kiss (point) singularities occur at θ = 0◦ and θ = 180◦. A kiss singularity occurs where two

phase-velocity sheets touch tangentially at isolated points. A line singularity occurs where two

phase-velocity sheets intersect. The phase-velocity sheets intersect in the plane perpendicular

to the symmetry axis ŝ. A kiss singularity always occurs in a medium with transverse isotropic

elastic symmetry. The kiss singularity occurs where the phase-velocity sheet intersects the

symmetry axis ŝ. The slowness surfaces for VTI media have singularities. The P-wave slowness

sheet doesn’t have any singularities, and is a perfect sphere. The two shear wave slowness sheets

have two kiss singularities and two line singularities (Crampin; 1981,1984,1989,1991). Crampin
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(1989,1991) contain 3-D schematics that graphically distinguish between the different types of

singularities.

3.4 Angular and Frequency Dispersion Curves

A dispersion curve shows how the velocities of a set of modes change with the variation of a

particular independent variable. The phase or group velocities of the modes trace out branches

as the independent parameter is varied. The dispersion curves are functions of ω, θ, and ϕ which

are defined as the frequency, angle of symmetry axis ŝ tilt in the vertical plane θ, and angle of

symmetry axis ŝ tilt in the horizontal plane ϕ.

[Figure 9 about here.]

Fixing the symmetry axis orientation by keeping θ and ϕ constant while varying ω results

in a standard frequency dispersion curve. For a 1-D model, the frequency dispersion curve in

figure 9 shows how the number of acoustic modes and the phase velocity of the model varies

with frequency. The frequency dispersion curve produces vertical branches in phase or group

velocity. The frequency dispersion curve for the general TI medium looks very much like the

frequency dispersion curves for isotropic or VTI media. In both frequency dispersion curves

of figure 9, notice the “solotone” effect, where the spacing of the eigenvalues cluster to form

apparent ”solotone” branches, the dark bands in the figures. The modes that contribute to the

“solotone” branches are the modes sensitive only to the isotropic portion of the model, and are

therefore labeled as “invariant acoustic modes”. The “solotone” effect is due to discontinuities

in the density and elastic moduli of the model, and is a direct result of the inclusion of an elastic

bottom structure for the sediments and basement layers. This effect has been documented by

Lapwood(1975), Kennett et. al.(1983), and Alenitsyn(1998). The “solotone” branches are not

a result of any anisotropy in the model, however the invariant modes that contribute to the

“solotone” branches play an important role in angular dispersion curves. (By angular dispersion

we mean the change in mode eigenvalue (phase velocity) as the symmetry axis of a anisotropic

layer is rotated away from the vertical and out of the xy-plane.) This solotone effect is frequency

dependent. The number of modes in the 1500m/s-2000m/s range increases with frequency, and

the number of acoustic/invariant modes increases as the frequency increases. Another feature

worth noting in the frequency dispersion curves occurs for the eigenvalues at higher frequencies.

Figure 9(b) reveals modes that are closely spaced together and experience a braiding effect,

where the two eigenvalues appear to become intertwined, even though they do not cross. This

effect is not seen for the VTI case in figure 9(a) where the quasi-P-SV and quasi-SH modes

propagate independently.

Fixing the value of ω and θ while varying ϕ creates an azimuthal angular dispersion curve.

Keeping ω and ϕ constant while varying θ creates an elevation angle dispersion curve. The phase
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and group velocities of the modes are first computed for a beginning symmetry axis orientation

ŝ(θ, ϕ). The symmetry axis ŝ in the angular dispersion curves is then allowed to follow lines of

constant elevation or constant azimuth on a unit sphere as described in figure 4.

[Figure 10 about here.]

The VTI and TTI models appear similar, when observing the frequency dispersion curves

in figure 9. The differences between the models become much more evident in the angular

dispersion curves. An angular dispersion curve with variations in θ or ϕ produce horizontal

branches of phase or group velocities. Figure 10 displays azimuthal angular dispersion curves

on the top (figures 10(a) and 10(b)) and elevational angular dispersion curves on the bottom

(figures 10(c) and 10(d)). The left most figures (figures 10(a) and 10(c)) are the phase velocity

angular dispersion curves and the figures on the right (figures 10(b) and 10(d)) are the group

velocity angular dispersion curves. Note that a rectangular grid is used rather than a polar

grid for the angular dispersion curves. The velocities are displayed on the vertical axis, and

the angle variations are on the horizontal axis. The complexity of the modal structure upon

the inclusion of anisotropy is readily apparent. The dispersion branches show many instances

where the branches approach one another. The phase velocities appear to attract and repel one

another as the tilt angle varies for the 1-D model. It is evident that the the greatest changes in

phase and group velocities occur for the elevation angle dispersion curves (changes in θ).

The eigenvalues do not remain evenly spaced. Near an elevation angle of θ = 0◦ the variations

are small and the curvature of the dispersion branches is small. For azimuthal variations in ϕ

there is much less converging and diverging of the dispersion branches and the spacing of the

eigenvalues remains more constant. This is particularly apparent around ϕ = 70◦ and θ = 70◦

(Figure 10(a) and Figure 10(c)). The horizontal branches occurring at 1511m/s, 1550m/s,

1625m/s, and 1904m/s at 50.0Hz, highlighted in red in figure 10(c), are the dispersion branches

for the invariant acoustic modes at 50.0Hz. The phase velocities for the invariant acoustic modes

for other frequencies are found in table 3.

The phase velocity of these modes scarcely changes for any variations of the symmetry axis

direction, in either the azimuthal or elevational dispersion curves. These modes are the same

invariant acoustic modes that participate in the “solotone” effect in the frequency dispersion

curves. The frequency “solotone” effect precisely predicts the invariant modes that sample the

isotropic part of the model which are not sensitive to any tilt of the symmetry axis. Because of

the constancy of these modes, they allow for an “angular solotone” effect to occur when another

mode branch sensitive to tilt angle approaches. These modes that are affected by the tilt of

the symmetry axis are labeled “sensitive modes”. The phase branches do not actually intersect,

but as the sensitive mode approaches the invariant mode, their characteristics switch. In fact

Arnold (1978) has a nice proof showing that it is not possible for dispersion curves to cross when

only one parameter, e.g. an angle, is varied. The invariant mode branch takes on the character
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of the sensitive mode branch, and the sensitive mode branch takes the character of the invariant

mode branch. When the P-SV and SH modes coalesce into a single family of quasi-P-SV and

quasi-SH modes or P-SV-SH modes, then any neighboring phase velocity branch may approach

the invariant acoustic mode branches and switch characteristics.

[Table 3 about here.]

An example of this can be seen in figure 17 of the eigenfunction section 3.5, which will be

discussed in further detail later. Two sensitive mode branches can also approach one another.

The branches do not actually cross, but they effectively take on the characteristics of the other

mode. It appears that when two mode branches that are sensitive to the tilt of the symmetry

axis, that they are modes of different wave types. A quasi-P-SV mode approaches a quasi-SH

mode or vice versa. When the P-SV and SH modes propagate independently, then only the

P-SV modes will approach the invariant acoustic modes and switch characteristics.

The angular dispersion curves are sampled discretely, so the near crossing of the branches may

lack strong curvature in narrow angular ranges. A degeneracy in the mode eigenvalues (phase

velocities) occurs when cr = cq or kr = kq. The two modes combine into a single composite

mode which is mutually orthogonal to all of the other modes in the basis set. The result is

still a set of mutually orthogonal modes, but the number of modes is reduced as the two modes

combine into a single mode. As two modes become nearly degenerate, the phase and group

velocities and mode shapes move toward a single phase and group velocity and mode shape.

When the eigenvalues become nearly degenerate, then the branches either pinch close together,

or indicate an apparent crossing. An actual crossing of the dispersion branches does not need to

occur in order for the mode order sequence to change. The phase velocity branches appear to

cross, but they never actually cross because of the numerical method imposed by the ANIPROP

code, and as stated above the mode branches cannot cross when only varying one parameter

such as an angle. Park(1996) applies an approximate plane wave solution when the reflectivity

matrix is nearly defective. The reflection matrix is formally defective when two eigenvalues are

repeated, and only one eigenfunction is shared for the duplicated eigenvalues. The treatment

of the defective matrix is necessary for numerical stability in ANIPROP, as two eigenvalues

become degenerate or nearly degenerate. In the the actual shallow water environment, the

modes likely never cross because heterogeneity and roughness would destroy the degeneracy.

Polarization of the modes, whether predominantly P-SV or SH, cannot be inferred directly by

a visual inspection of the curves, apart from the invariant acoustic modes.

Similar findings to Martin et al. (1997) and Thomson (1997) have been observed, where

the group velocity branches cross, but they do not necessarily correspond to crossings of plane-

waves in the slowness diagrams. Their phase and group velocity dispersion curves show many

of the same features as the angular dispersion curves. Martin et al. (1997) report the crossing

of the phase velocities in azimuthal angular dispersion curves. Several observations include
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the pinching together of the phase velocity branches, apparent crossings of the phase velocity

branches, as well as changes in the mode order sequence. Mode ordering can change for variations

in θ or ϕ. The change in the sequence of the modes occurs for both types of angular dispersion

curves, azimuthal and elevation. The branches approach very closely without actually touching.

The angular dispersion branches of the modes are symmetrical over a 180◦ range, with the

mirror symmetry plane occurring at 90◦. This is true for changes in θ or ϕ. For propagation in

the xz-plane, the P-SV angular dispersion branches are symmetrical over a 90◦ range and the

mirror symmetry occurring at 45◦. The SH angular dispersion branches are not symmetrical

over the range of 0◦ − 90◦ in the xz-plane.

The group velocity angular dispersion curves are helpful in revealing how quickly the velocity

of the energy of a mode changes with the rotation of the symmetry axis. The invariant acoustic

modes have particularly stable group velocities with respect to changes in θ or ϕ. The group

velocity of the invariant acoustic modes only tends to change when near degeneracies occur

and the mode characteristics are being switched with another mode. Other modes reveal group

velocity changes as the symmetry axis sweeps across constant lines of azimuth or elevation. The

group velocities are particularly sensitive to changes in the characteristics of the modes due to

apparent branch crossings in the phase velocities. The group velocities change rapidly when

another mode approaches. These changes occur over an angular range that correspond to the

near crossings of the phase velocity branches.

The higher group velocities belong to the invariant acoustic modes. These are similar to

the “banded” modes discussed in Thomson(1997). When the sensitive modes transition into

an invariant mode, the group velocities of both modes converge, and then cross. The sensitive

mode’s group velocity then assumes the invariant’s place, and the invariant mode becomes a

sensitive mode with a lower group velocity.

It is usually easier to interpret the azimuthal angular dispersion curves than the elevation

angular dispersion curves as in figure 10. However, additional insight into the mode branch

sensitivity to the tilt of the symmetry axis ŝ may be gained when the velocity data for an entire

set of elevation angular dispersion curves is stacked.

[Figure 11 about here.]

Figure 11 shows the stacked elevation angular dispersion curves for several frequencies. The

number of modes and character of the curves is frequency dependent. The width of the envelopes

tells us the sensitivity of the modes to changes in azimuth at a particular angle θ. At 50.0Hz

when θ is near 0◦ the envelope is narrow and the phase branches are only slightly dispersed.

This is true of the branches near 70◦ as well. The envelope has the largest width in the θ range

from 5◦ − 30◦, 45◦ − 65◦, and 75◦ − 90◦ for Figure 11(e) at 50.0Hz.
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3.5 Generalized Modes for Anisotropic Media

The focus of this section is on the effect anisotropy has on the modes - eigenfunctions. The

concept of generalized modes of Crampin (1981) is used to describe modes with particle motion

in all three coordinate directions. Only the modes which contribute primarily to an acoustic or

seismo-acoustic signal are considered. These are the discrete modes within the phase velocity

range of 1500m/s - 2000m/s. From the angular dispersion curves it has been demonstrated that

changes in the orientation of the symmetry axis can have a dramatic impact on the eigenvalues of

the propagating modes. How these variations in the modal eigenvalues affect the characteristics

of the eigenfunctions are now considered.

The most distinctive feature of acoustic wave propagation in anisotropic media is 3-D po-

larization of the particle motion. The polarization of the modes depends on the angle between

the propagation direction and the symmetry axis direction of the anisotropic media. The prop-

erties of the elastic stiffness matrix determine the degree with which the modes share particle

motion polarizations. Crampin (1981) notes that the two independent wave types, P-SV and

SH, characteristic of an isotropic medium coalesce into a single family of generalized modes with

three dimensional elliptical motion for general anisotropy. The once-pure P-SV modes acquire

SH motion and the once pure SH modes acquire P-SV motion. This results in quasi-P-SV

and quasi-SH modes or generalized P-SV-SH modes, which possess polarizations into all three

coordinate directions.

The eigenfunctions are generally complex in value. Anytime the single generalized family of

modes for anisotropic media separate into two independent family of modes, the components

of the eigenfunctions become purely real or purely imaginary. When a medium exhibits more

generalized anisotropy, the eigenfunctions may have both real and imaginary components in the

three polarization directions. The imaginary components represent a phase delay in the time

domain, and are not indicative of attenuation. The magnitude of the complex component in

fact supplies a method for estimating the magnitude of the anisotropy.

As discussed in Appendix (F), the form of the elastic stiffness tensor affects the eigenvalues

of the modal basis in the seismo-acoustic waveguide. Special symmetry axis orientations exist

where P-SV and SH motions propagate independently in TI symmetric media. In an isotropic

medium, the pure P-SV and pure SH modes do not share the same particle motion polarizations.

The medium is completely rotationally symmetric. For a TI elastically symmetric medium, the

P-SV particle motions and the SH particle motions propagate independently when the symmetry

axis ŝ lies within the sagittal plane or along one of the three coordinate axes, as summarized by

table 4. The sagittal plane is defined as the vertical plane containing the propagation direction.

Since the propagation direction is assumed to be parallel to the x-axis, the sagittal plane is

parallel to the xz-plane.

[Table 4 about here.]
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A visual inspection of the eigenfunctions at 50.0Hz in figure 12 reveals the P-SV modes have

polarizations only in the xz-plane, and the SH modes have polarization in the y-direction. The

pure SH modes are all rather similar to one another, with no particle motion in the fluid, and the

largest amplitudes in the thin anisotropic sediments. The shape of P-SV and SH eigenfunctions

are similar to the propagating modes for an equivalent isotropic medium. Schoenberg and Costa

(1991) found that SH waves in a stratified monoclinic medium can be modeled using an equiv-

alent stratified isotropic medium for propagation in the plane of symmetry. In instances where

the P-SV and SH modes propagate independently, it may not be entirely necessary to implement

anisotropic modeling. When the P-SV and SH particle motions propagate independently in a

range independent plane layered homogeneous medium (i.e. the absence of scattering), only the

P-SV modes are necessary to represent the seismo-acoustic wavefield.

[Figure 12 about here.]

The SH modes (e.g. 12(b)) are purely sediment and crustal modes when they propagate

independently. That is, they are pure SH with no quasi-P or quasi-SV character.

As shown in figure 13 the mode shape of mode 9 does not vary dramatically when the

symmetry axis ŝ is aligned with any of the three coordinate axes. This is typical of any of the

modes when the symmetry axis ŝ is aligned parallel to one of the coordinate axes.

[Figure 13 about here.]

The P-SV and SH motions are also separable when θ = 70◦. These symmetry axis orienta-

tions correspond to one of the line singularities in the TI elastically symmetric medium. The

eigenfunctions are complex, but otherwise very similar to those in figure 12.

[Figure 14 about here.]

As seen in figures 12 and 14, there is no SH motion in the fluid layers as expected. Even in

the generalized eigenfunctions, motion is suppressed in the y-direction because the fluid layer

can not support a shear stress. However, y-displacements in the generalized eigenfunctions do

become evident in the bottom/subbottom layers for a tilted symmetry axis.

For more general tilt of the symmetry axis away from the sagittal plane or coordinate axes,

the aCIJ has the form of a quasi-triclinic elastic stiffness matrix. For these general geometries,

the modes of the waveguide belong to the generalized eigenfunctions. They have polarization in

all three coordinate directions, as seen in figure 14. The modes can be classified as predominantly

quasi-P-SV or predominantly quasi-SH for most symmetry axis orientations. Energy begins to

appear in the SH component of the quasi-P-SV modes as shown in figure 14(a). A similar effect

for the quasi-SH eigenfunctions is shown in figure 14(b). As the symmetry axis is tilted away

from the vertical the quasi-SH eigenfunctions gain particle directions in the x and z-directions.
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However, some symmetry axis orientations exist where it is impossible to label a mode as

predominantly quasi-P-SV or predominantly quasi-SH. These modes can be more accurately

described as composite P-SV-SH modes. As seen in figure 14(c)the amplitudes in the vertical,

y and x directions are similar magnitudes for the P-SV-SH modes. The quasi-P-SV, quasi-SH,

and P-SV-SH modes possess both P-SV and SH particle motion characteristics. This is a direct

result of treating the sediments and bottom/subbottom as elastic.

The quasi-P-SV, quasi-SH, and P-SV-SH modes for when the symmetry axis ŝ(θ, ϕ) =

ŝ(80◦, 20◦) are shown in figure 19. The x, y, and z components of displacement are in fig-

ures 19(a), 19(b), and 19(c) respectively. Notice that the amplitudes of the modes are about

the same magnitude in the three coordinate directions. The x- and z-components resemble hy-

brid acoustic-sediment particle motions, and the y-components resemble the displacements of

sediment modes.

[Figure 15 about here.]

Some of the modes have the majority of their energy concentrated in the water column

and the elastically isotropic portions of the model. They have relatively little particle motion

in the anisotropic sediment regions of the model. These invariant modes are predominantly

quasi-P-SV acoustic modes with very little particle motion in the y-direction. Because these

eigenfunctions are dominated by the isotropic features of the model, they are only slightly

affected by any tilt of the symmetry axis within the anisotropic sediments. They closely resemble

the P-SV acoustic modes for isotropy and symmetry axis orientations where P-SV and SH

mode propagate independently. An example of an invariant acoustic mode is shown in figure

15. These are the same modes that participate in the frequency and angular solotone effects

observed in the dispersion curves. The acoustic modes are more sensitive to the anisotropy at

lower frequencies. As the frequency increases, the acoustic modes’ phase and group velocities

become more invariant, indicating they become less sensitive to the anisotropy. These acoustic

modes then become the invariant acoustic modes seen in the dispersion curves that participate

in the solotone effect. An example of the frequency dependence of an acoustic mode is shown

in figure 16. The figure shows the second acoustic mode for when ŝ = ẑ. The x-component and

z-component particle motions are shown in figures 16(a) 16(b) respectively.

[Figure 16 about here.]

In order to satisfy the boundary conditions between a fluid and anisotropic solid for the

equations of motion, the particle motion in the y-direction must be included. The modes in

figure 14 clearly show that as the symmetry axis ŝ tilts away from the vertical, the P-SV particle

motion is no longer independent of the SH motion. Quasi-SH, quasi-P-SV and P-SV-SH modes

are required for an accurate representation of the seismo-acoustic wavefield.

23



For the dispersion curve in figure 10 near-degeneracies occurred for P-SV modes, even when

the SH modes propagate independently. These degeneracies are due entirely to the solotone

effect, where the phase and group velocities of the invariant acoustic modes are only weakly

affected by perturbations due to changes in the anisotropy symmetry axis.

[Figure 17 about here.]

Near-degeneracies seen in figure 10 affect the characteristics of the modes. Even though

the dispersion curves do not cross, the characteristics of the modes switch. This is seen in

the dispersion branches when a sensitive mode becomes an invariant mode. Figure 17 shows

how the characteristics of the modes changes as the angle θ varies. Figures 17(a), 17(b), and

17(c) show the displacements for the x, y, and z-directions respectively. The mode begins as a

predominantly quasi-SH mode and transforms into a predominantly quasi-P-SV as the angle θ

varies. The characteristics of the quasi-SH mode are taken on by the quasi-P-SV mode and the

characteristics of quasi-P-SV mode are taken on by mode the quasi-SH mode. The identity of

the mode in figure 17 is exchanged as it closely approaches the quasi-P-SV mode. As the modes

approach near degeneracy, the eigenfunctions of both modes transition towards composite modes

with characteristics of both modes. There can exist two P-SV-SH modes that closely resemble

each other as the modes become nearly degenerate.

The mode order sequence does not remain fixed for increases in frequency or changes in

symmetry axis orientations. The sense of mode ordering is somewhat lost when the two sets of

mode polarizations coalesce into a single set of generalized P-SV-SH modes. The sequence of the

mode ordering is not completely clear as the symmetry axis is tilted. The switching of modes

is a complex function of the phase and group velocity relationships with the phase velocities

approaching one another and where the group velocities actually cross. For TI elastic symmetry,

the mode ordering of the eigenfunctions does not necessarily stay fixed as the symmetry angle

is tilted. The mode ordering changes when two modes approach one another. The mode order

sequence tends to remain the same for the eigenfunctions at lower frequencies. The eigenvalues

are spaced further apart and near-degeneracies do not occur. As the frequency increases, the

eigenvalues become more closely spaced, as is evident in the the dispersion figures 9 and 10.

Near degeneracies have a higher occurrence as the frequency increases, and the modes switch

characteristics more often. Although it may be insightful to keep track of individual modes

and their characteristics as they transition from quasi-P-SV to quasi-SH or vice versa, it really

is not necessary. The modal formalism of section 3.1 does not require all of the modes to be

individually identified as P-SV, SH quasi P-SV, quasi SH or P-SV-SH. All that is needed is to

be sure and include all of the modes important to the seismo-acoustics waves composition.

[Figure 18 about here.]

[Figure 19 about here.]

24



The modes of the shallow water waveguide may be directly excited by any number of source

types. When the PSV and SH modes propagate independently, then the polarization of the

acoustic modes are more source dependent represented by figure 18. An explosive source will

excite only PSV motion (x and z-displacements). The displacements for the x, y, and z-directions

excited by an explosive source are shown in figures 18(a), 18(b), and 18(c) respectively. Moment

tensor sources can also be of interest for some acoustic wave propagation problems, such as T-

wave excitation (Park et. al., 2001). A pure double couple in the xy-plane will only excite

SH motion as displayed in figures 18(d), 18(e), and 18(f). The excitation of the P-SV and

SH modes can be compared to the excitation of quasi-P-SV, quasi-SH, and P-SV-SH modes.

Using an explosive source, energy becomes evident in the x, y, and z-displacement directions in

figures 19(a), 19(a), and 19(a) respectively. The significance is that the wavefield will contain

y-displacements in the absence of any heterogeneity or scattering. Using a double-couple source

contained in the horizontal plane, excitation of x, y, and z-displacements again becomes evident

as shown in figures 19(d), 19(e), and 19(f) modes. Here, a shear source is able to excite modes

which contribute to a seismo-acoustic wavefield. Because of the 3-D polarization of the modes,

they may be excited by a wide range of sources.

The generalized mode structure is significant for the shallow water environment. With the

bottom interacting modes, acoustic energy can leave the water column. It can then be atten-

uated by the low shear velocity sediments, and redistributed to other predominantly sediment

modes. In addition, energy from other sources or signals, such as noise, from the sediment

and bottom layers can enter the water column through these bottom interacting modes. With

the anisotropic bottom interacting modes, there exists a greater opportunity for the energy to

become redistributed and leave or enter the water column. This is due to the three component

nature of the eigenfunctions, the displacement and the tractions. Therefore, in the presence

of anisotropy, attenuation of bottom interacting modes would be underestimated if isotropy is

assumed.

4 Summary and Conclusions

The form of the elastic stiffness matrix, and its symmetry in relation to the propagation direction

affects the wave propagation in the seismo-acoustic waveguide. The form of the elastic stiffness

tensor determines whether the local modes coalesce into a set of quasi-P-SV, quasi-SH, and

generalized P-SV-SH modes or into P-SV and SH modes which propagate independently. This

distinction greatly affects the polarization of the propagating signal. Since it usually cannot be

pre-arranged to record a seismo-acoustic signal in a specific symmetry plane, tilted anisotropy

cannot be completely ignored. Horizontal shear motion is often ignored or neglected in the

modeling of acoustic signals. The majority of attention has been placed on the P-SV motion.

However, any description of seismo-acoustic signal propagation which ignores SH motion in these
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environments would be incomplete. All three coordinate particle motion polarizations must be

included into the seismo-acoustic wavefield.

Conversion of acoustic energy into horizontally polarized shear motion can be expected at

fluid/solid boundaries anisotropy exists in the solid layer. As a result, one consequence of

the presence of anisotropy is that the seismo-acoustic signals can have a significant portion

of their energy in horizontally polarized shear motion (SH and quasi-SH) even in the absence

of any range-dependence. This is in contrast to an isotropic or VTI elastic medium, where

all acoustic energy propagates independently of any horizontally polarized shear motion. In

the absence of any scattering, all particle motion for an acoustic signal would be restricted

to the sagittal plane. For general anisotropy the compressional motion(quasi-P), vertically

polarized shear motion (quasi-SV) and horizontally polarized shear motion (quasi-SH) no longer

propagate independently. Horizontally polarized shear motion experiences more attenuation

than compressional motion, where intrinsic SH attenuation is approximately 2-3 times larger

than compressional wave attenuation, or even larger in low shear speed sediments. Because shear

motions experience higher attenuation than compressional motion, this could be an important

loss mechanism for acoustic signals with significant seafloor interaction. The SH motion could

have a profound effect on the propagation of the acoustic signal. The signal may experience

more energy loss than an equivalent signal propagating in an isotropic model or only fluid layers.

Hughes (1990) observed high propagation loss in thin sediment layers over hard bottoms. Some

of this type of loss may result from acoustic energy being converted to quasi-SH modes.

An investigation has been carried out on how the anisotropic elastic stiffness tensor affects

eigenfunctions, phase and group velocity dispersion curves as a function of frequency or sym-

metry axis orientation (angular dispersion curve), and energy transfer between modes. The

magnitude of anisotropy as well as the direction of the symmetry axis have been observed to be

of equal importance. Any rotation of the symmetry axis away from vertical (e.g. non-horizontal

bedding planes) will cause energy to be transferred between the modes.
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A Elastic Stiffness Tensor and Matrix Notation

The fourth order elastic stiffness tensor Ciklj has symmetries that allow the 21 independent

elements to be expressed in more compact matrix notations. The elastic stiffness tensor obeys

the following symmetry:

Ciklj = Ckilj = Cikjl = Cljik.

which reduces the 81 components of Ciklj to at most 21 independent components.

The indices of the fourth order elastic stiffness tensor are iklj rather than the conventional ijkl in

order to facilitate the mapping between tensor notation and the matrix notation of Woodhouse

(1974). Woodhouse’s notation (1974) and abbreviated subscript notation (e.g. Auld, 1990)

describe the exact same elastic parameters from the elastic stiffness tensor Ciklj. However, the

Woodhouse matrix and the abbreviated subscript matrix are not equivalent.

C = Ciklj fourth order elastic stiffness tensor

aC = aCIJ 6× 6 abbreviated subscript elastic stiffness matrix

wC = (wCij)kl 9× 9 Woodhouse elastic stiffness matrix

wCij 3× 3 Woodhouse submatrix

Lower case suffixes such as iklj have values that range from i, k, l, j = 1, 2, 3. Upper case suffixes

such as IJ have values that range from I, J = 1, 2, 3, 4, 5, 6. The individual elements of the elastic

stiffness tensor can be put into a matrix format by using an abbreviated subscript notation,

also known as Voigt notation (Nye, 1957) or matrix notation. Table A.1 below describes how to

transfer between traditional fourth order tensor notation and the abbreviated subscript notation

for the individual elements of Ciklj and CIJ .

[Table 5 about here.]

The four suffixes iklj are replaced with two suffixes IJ . Considering the Woodhouse elastic

stiffness matrix first, which is composed of nine submatrices:

wC = (wCij)kl =

 (wC11)kl (wC12)kl (wC13)kl

(wC21)kl (wC22)kl (wC23)kl

(wC31)kl (wC32)kl (wC33)kl

 (30)

The 9× 9 Woodhouse matrix is a symmetric matrix, and there are only six unique submatrices,

where:

wCij = wCji (31)
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The elements of the Woodhouse submatrices wCij expressed in traditional fourth order subscript

notation, composing the 9× 9 Woodhouse matrix:

wC =



C1111 C1121 C1131

C1211 C1221 C1231

C1311 C1321 C1331

C1112 C1122 C1132

C1212 C1222 C1232

C1312 C1322 C1332

C1113 C1123 C1133

C1213 C1223 C1233

C1313 C1323 C1333

C2111 C2121 C2131

C2211 C2221 C2231

C2311 C2321 C2331

C2112 C2122 C2132

C2212 C2222 C2232

C2312 C2322 C2332

C2113 C2123 C2133

C2213 C2223 C2233

C2313 C2323 C2333

C3111 C3121 C3131

C3211 C3221 C3231

C3311 C3321 C3331

C3112 C3122 C3132

C3212 C3222 C3232

C3312 C3322 C3332

C3113 C3123 C3133

C3213 C3223 C3233

C3313 C3323 C3333


(32)

The elements of the Woodhouse submatrices as expressed in abbreviated subscript notation,

composing the 9× 9 Woodhouse matrix:

wC =



C11 C16 C15

C61 C66 C65

C51 C56 C55

C16 C12 C14

C66 C62 C64

C56 C52 C54

C15 C14 C13

C65 C64 C63

C55 C54 C53

C61 C66 C65

C21 C26 C25

C41 C46 C45

C66 C62 C64

C26 C22 C24

C46 C42 C44

C65 C64 C63

C25 C24 C23

C45 C44 C43

C51 C56 C55

C41 C46 C45

C31 C36 C35

C56 C52 C54

C46 C42 C44

C36 C32 C34

C55 C54 C53

C45 C44 C43

C35 C34 C33


(33)

The above forms of the wC are valid for any triclinic anisotropic medium with 21 independent

constants, as well as for any medium with a higher degree of symmetry, such as TI. Substitut-

ing the Love notation (1944) elastic constants into the Woodhouse matrix for a TI elastically

symmetric medium.
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For ŝ(θ, ϕ) = ŝ(0◦, 0◦) = ẑ

wC =



A 0 0

0 N 0

0 0 L

0 H 0

N 0 0

0 0 0

0 0 F

0 0 0

L 0 0

0 N 0

H 0 0

0 0 0

N 0 0

0 A 0

0 0 L

0 0 0

0 0 F

0 L 0

0 0 L

0 0 0

F 0 0

0 0 0

0 0 L

0 F 0

L 0 0

0 L 0

0 0 C


(34)

For ŝ(θ, ϕ) = ŝ(90◦, 0◦) = x̂

wC =



C 0 0

0 L 0

0 0 L

0 F 0

L 0 0

0 0 0

0 0 F

0 0 0

L 0 0

0 L 0

F 0 0

0 0 0

L 0 0

0 A 0

0 0 N

0 0 0

0 0 H

0 N 0

0 0 L

0 0 0

F 0 0

0 0 0

0 0 N

0 H 0

L 0 0

0 N 0

0 0 A


(35)

For ŝ(θ, ϕ) = ŝ(90◦, 90◦) = ŷ

wC =



A 0 0

0 L 0

0 0 N

0 F 0

L 0 0

0 0 0

0 0 H

0 0 0

N 0 0

0 L 0

F 0 0

0 0 0

L 0 0

0 C 0

0 0 L

0 0 0

0 0 F

0 L 0

0 0 N

0 0 0

H 0 0

0 0 0

0 0 L

0 F 0

N 0 0

0 L 0

0 0 A


(36)

The 6 × 6 abbreviated subscript matrix is also a symmetric matrix, with the possibility of 21

unique and independent elements where:

aCIJ = aCJI . (37)
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Any additional symmetry would reduce the number of independent elements. The elements of

the abbreviated subscript elastic stiffness matrix expressed in traditional fourth order tensor

notation for a general triclinic medium.

aC =



C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212


(38)

The abbreviated subscript elastic stiffness matrix with the elements expressed in abbreviated

subscript notation.

aC =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


(39)

Consider a TI elastically symmetric medium as used in the main text of the paper. The elastic

moduli are expressed in Love notation (1944).

For ŝ(θ, ϕ) = ŝ(0◦, 0◦) = ẑ

aC =



A H F 0 0 0

H A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N


where H = A− 2N (40)

For ŝ(θ, ϕ) = ŝ(90◦, 0◦) = x̂

aC =



C F F 0 0 0

F A H 0 0 0

F H A 0 0 0

0 0 0 N 0 0

0 0 0 0 L 0

0 0 0 0 0 L


where H = A− 2N (41)
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For ŝ(θ, ϕ) = ŝ(90◦, 90◦) = ŷ

aC =



A F H 0 0 0

F C F 0 0 0

H F A 0 0 0

0 0 0 L 0 0

0 0 0 0 N 0

0 0 0 0 0 L


where H = A− 2N (42)

The individual elements for a TI medium with an arbitrary symmetry axis ŝ(θ, φ) can be deter-

mined by equation (11) from the main text. The elements of aC will be linear combinations of

the elastic moduli A,C, F, L,N .
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B Differential Operator A

The differential operator A from the equation of motion (17) in the main text and in equation

(79) below is described in greater detail.

∂u

∂x
= Au− F (43)

where u is the stress-displacement vector, A is a differential operator which contains the

combinations of the elastic stress matrix wCij and its derivatives, and F is an external force.

The operator lacks any horizontal derivatives and the only derivatives are vertical derivatives

of the elastic moduli, horizontal slowness, and eigenfunctions. For a fluid medium or a solid

anisotropic structure, the differential operator A may be expressed in terms of sub-operators:

A =

(
A11 A12

A21 A22

)
(44)

For a solid triclinic anisotropic medium, the sub-operators are:

A11 =

(
−(wC−1

11 )(wC13)
∂

∂z
+ (wC−1

11 )(wC12)ip

)
,

A12 =
(

wC−1
11

)
,

A21 =

(
−ρω2 − ∂

∂z
(wQ33

∂

∂z
) + ipwQ23

∂

∂z
+

∂

∂z
(wQ32ip) + p2(wQ22)

)
,

A22 =

(
− ∂

∂z
(wC31)(

wC−1
11 ) + ip(wC21)(

wC−1
11 )

)
, (45)

where the wQij matrix is defined as:

wQij = wCij − (wCi1)(
wC−1

11 )(wC1j) (46)

This general form is valid for any triclinic anisotropic structure. The differential operator A

for a TI elastically symmetric medium can be obtained by substituting the elastic stiffness

submatrices from Appendix A into equations (45),(45),81), and (81). The differential operator

A is then expressed analytically for the case when the symmetry axis ŝ is aligned with the

Cartesian coordinate axes.
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For ŝ(θ, ϕ) = ŝ(0◦, 0◦) = ẑ:

A11 =

 0 iky
A−2N

A
−F

A
∂
∂z

iky 0 0

− ∂
∂z

0 0

 ,

A12 =


1
A

0 0

0 1
N

0

0 0 1
L

 ,

A21 =


−ρω2 0 0

0 −ρω2 − ∂
∂z

(
L ∂

∂z

)
+ ky

2
(

4N(N−A)
A

)
iky

2NF
A

∂
∂z

+ ∂
∂z

(ikyL)

0 ikyL
∂
∂z

+ ∂
∂z

(
iky

2NF
A

)
−ρω2 − ∂

∂z

(
AC−F 2

A
∂
∂z

)
+ k2

yL

 ,

A22 =

 0 iky − ∂
∂z

iky
A−2N

A
0 0

− ∂
∂z

F
A

0 0

 , (47)

This is the same result found by Park and Odom (1997).

For ŝ(θ, ϕ) = ŝ(90◦, 0◦) = x̂:

A11 =

 0 iky
F
C

−F
C

∂
∂z

iky 0 0

− ∂
∂z

0 0

 ,

A12 =


1
C

0 0

0 1
L

0

0 0 1
L

 ,

A21 =


−ρω2 0 0

0 −ρω2 − ∂
∂z

(
N ∂

∂z

)
+ ky

2
(

AC−F 2)
C

)
iky

(
AC−2CN−F 2

C

)
∂
∂z

+ ∂
∂z

(ikyN)

0 ikyN
∂
∂z

+ ∂
∂z

(
iky

AC−2CN−F 2

C

)
−ρω2 − ∂

∂z

(
AC−F 2

C
∂
∂z

)
+ k2

yN

 ,

A22 =

 0 iky − ∂
∂z

iky
F
C

0 0

− ∂
∂z

F
C

0 0

 , (48)
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For ŝ(θ, ϕ) = ŝ(90◦, 90◦) = ŷ:

A11 =

 0 iky
F
A

−A−2N
A

∂
∂z

iky 0 0

− ∂
∂z

0 0

 ,

A12 =


1
A

0 0

0 1
L

0

0 0 1
N

 ,

A21 =


−ρω2 0 0

0 −ρω2 − ∂
∂z

(
L ∂

∂z

)
+ ky

2
(

AC−F 2)
A

)
iky

(
2NF

A

)
∂
∂z

+ ∂
∂z

(ikyL)

0 ikyL
∂
∂z

+ ∂
∂z

(
iky

2NF
A

)
−ρω2 − ∂

∂z

(
4N(N−A)

A
∂
∂z

)
+ k2

yL

 ,

A22 =

 0 iky − ∂
∂z

iky
F
A

0 0

− ∂
∂z

A−2N
A

0 0

 , (49)

Additional symmetry, where the TI elastic symmetry reduces to isotropic symmetry may be

considered. When A = C, L = N , H = F , and F = A− 2L, then all planes within medium are

symmetry planes, and therefore all directions are equivalent:

A11 =

 0 iky
F
A

−F
A

∂
∂z

iky 0 0

− ∂
∂z

0 0

 ,

A12 =


1
A

0 0

0 1
L

0

0 0 1
L

 ,

A21 =


−ρω2 0 0

0 −ρω2 − ∂
∂z

(
L ∂

∂z

)
+ ky

2
(

A2−F 2)
A

)
iky

(
AF−F 2

A

)
∂
∂z

+ ∂
∂z

(ikyL)

0 ikyL
∂
∂z

+ ∂
∂z

(
iky(

AF−F 2

A
)
)

−ρω2 − ∂
∂z

(
F 2−A2

A
∂
∂z

)
+ k2

yL

 ,

A22 =

 0 iky − ∂
∂z

iky
F
A

0 0

− ∂
∂z

F
A

0 0

 , (50)

where A = λ+ 2µ, L = µ, and F = λ.

This is the same result as reported by Park and Odom (1997) and Maupin (1988).

Consider the case where µ = 0 and the isotropic medium becomes an isotropic fluid. As stated

by Maupin (1988), the wC11 matrix becomes singular for a fluid layer. A simple solution is

to define the wC11 matrix and its inverse wC−1
11 within a fluid as Kennett (1983) does in his
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monograph:

(wC11)fluid =

 A 0 0

0 0 0

0 0 0

 (wC−1
11 )fluid =


1
A

0 0

0 0 0

0 0 0

 (51)

Therfore, a form of the differential operator and equation of motion for any fluid layers may be

formulated.

A11 =

 0 iky − ∂
∂z

iky 0 0

− ∂
∂z

0 0

 ,

A12 =


1
A

0 0

0 0 0

0 0 0

 ,

A21 =

 −ρω2 0 0

0 −ρω2 0

0 0 −ρω2

 ,

A22 =

 0 iky − ∂
∂z

iky 0 0

− ∂
∂z

0 0

 , (52)

After some algebra, the system of equations can be reduced to a two component displacement-

stress vector form.

Afluid =

(
0 − iky

2

ρω2 + ∂
∂z

1
ρω2

∂
∂z

+ 1
A

−ρω2 0

)
, (53)

where u,w2,w3, and t are defined as:

u = (w1, t)
T (54)

w2 =
iky

ρω2
t (55)

w3 = − 1

ρω2

∂t

∂z
(56)

t = tii (57)

This is Maupin’s (1988) result for a fluid layer. The fluid/solid coupling terms used in the

main text are the same as those reported in Maupin (1988). Tromp (1994) also has described

fluid/solid coupling terms using a slightly different modal notation.
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C VTI Parameterization

The elastic stiffness constants in the elastic stiffness tensor, Ciklj, can be parameterized in a

number of ways. Each parameterization results in the same elastic stiffness tensor. Love notation

(1944), Backus notation (1965) and Takeuchi and Saito notation (1972) are each considered. The

theory of Odom et. al. (1996) and Park et. al. (1997) use the Love parameterization where the

five independent constants for a VTI medium are expressed as the elastic moduli A,C, F, L,N .

Both relied on the Disper80 code which uses Takeuchi and Saito notation (1972) where the five

independent constants are expressed as velocities αH and βV along with ratios of the elastic

moduli χ, φ, η which are based on Love’s notation. Park (1996) uses Backus notation (1965)

where the five independent parameters of a VTI medium are the elastic moduli Ā, B̄, C̄, D̄, Ē.

The relationship between the three parameterizations is outlined below.

C.1 Love Parameterization

The ACFLN parameterization for a VTI medium can be described in terms of ξ, φ, η, αH , βV

and Ā, B̄, C̄, D̄, Ē.

[Table 6 about here.]

C.2 Takeuchi and Saito Notation (Anderson Notation)

The anisotropy described by Takeuchi and Saito (1972) is represented by five parameters,

a horizontal compressional velocity, a vertical shear velocity, a ratio of horizontal and vertical

compressional velocities, a ratio of horizontal and vertical shear velocities, and a fifth anisotropic

parameter. The previous results can be substituted into the expressions given by Takeuchi and

Saitio.

The Takeuchi and Saito notation can be described in terms of ACFLN , and Ā, B̄, C̄, D̄, Ē.

[Table 7 about here.]

Notice that parameter φ is not to be confused with the angle ϕ in the xy-plane describing the

orientation of the symmetry axis ŝ of the TI medium.

C.3 Modified Backus Parameterization

The angular dependence of the compressional and shear velocities are treated in a similar manner

to the formulas of Backus(1965), Crampin(1977), Shearer and Orcutt (1986), and Park(1996).

ρα2(ξ) = Ā+ B̄ cos 2ξ + C̄ cos 4ξ

ρβ2(ξ) = D̄ + Ē cos 2ξ (58)
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The previous works related the five parameters Ā, B̄, C̄, D̄, Ē to the individual elastic stiffness

tensor elements for a HTI, with a symmetry axis in the x-direction . These expressions are

similar, except they describe the Ciklj elastic stiffness tensor for a VTI medium.

[Table 8 about here.]

Additional parameterizations of VTI media include the Thomsen parameterization (1986)

and the alternate parameterization of Romanowicz and Snieder(1988) and Muyzert and Snieder(2000).
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D Bond Transformation of TI Symmetric Structures

Any arbitrary tilt of a TI symmetric medium can be obtained by rotating through the two angles

θ and ϕ. The Bond transformation matrices described by Auld(1990) are found below.

M =



a2
xx a2

xy a2
xz 2axyaxz 2axzaxx 2axxaxy

a2
yx a2

yy a2
yz 2ayyayz 2ayzayx 2ayxayy

a2
zx a2

zy a2
zz 2azyazz 2azzazx 2azxazy

ayzazx ayyazy ayzazz ayyazz + ayzazy ayzazz + ayzazx ayyazx + ayxazy

azzaxx azyaxy azzaxz axyazz + axzazy axzazx + axxazz axxazy + axyazx

axxayx axyayy axzayz axyayz + axzayy axzayx + axxayz axxayy + axyayz


(59)

The Bond transformation matrix M is composed of the elements form the general transform

matrix a.

a =

 axx axy axz

ayx ayy ayz

azx azy azz


The general transformation matrices for rotation about the y and z axes are ay and az respec-

tively.

ay =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



az =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


The corresponding Bond transformation matrices about the y and z axes are then My and M z

respectively.

My =



cos2 θ 0 sin2 θ 0 − sin 2θ 0

0 1 0 0 0 0

sin2 θ 0 cos2 θ 0 sin 2θ 0

0 0 0 cos θ 0 sin θ
1
2
sin 2θ 0 −1

2
sin 2θ 0 cos 2θ 0

0 0 0 − sin θ 0 cos θ


(60)
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Mz =



cos2 ϕ sin2 ϕ 0 0 0 sin 2ϕ

sin2 ϕ cos2 ϕ 0 0 0 − sin 2ϕ

0 0 0 0 0 0

0 0 0 cosϕ − sinϕ 0

0 0 0 sinϕ cosϕ 0

−1
2
sin 2ϕ 1

2
sin 2ϕ 0 0 0 cos 2ϕ


(61)

Applying the Bond transformation to the elastic stiffness matrix aC to obtain a general rotation.

aC
′′

= [R][aC][R]T where R = MzMy

The individual elements of the elastic-stiffness tensor for a TI elastically symmetric medium

can be found by the following relation.

aC ′′
IJ = A(Ri1Rj1 +Ri2Rj2) +H(Ri1Rj2 +Ri2Rj1) (62)

+ F (Ri1Rj3 +Ri2Rj3 +Ri3Rj1 +Ri3Rj2) + CRi3Rj3

+ L(Ri4Bj4 +Ri5Rj5) +NRi6Rj6

The R transformation matrix for a general rotation of a VTI medium to any arbitrary orientation

is:

R =



cos2 θcos2ϕ sin2 ϕ sin2 θcos2ϕ

cos2 θ sin2 ϕ cos2 ϕ sin2 θ sin2 ϕ

sin2 θ 0 cos2 θ

−1
2
sin 2θ sinϕ 0 1

2
sin 2θ sinϕ

1
2
cos θ sin 2ϕ 0 −1

2
sin 2θ cosϕ

−1
2
cos2 θ sin 2ϕ 1

2
sin 2ϕ −1

2
sin2 θ sin 2ϕ

− sin θ sin 2ϕ − sin 2θ cos2 ϕ cos θ sin 2ϕ

sin θ sin 2ϕ − sin 2θ sin2 ϕ − cos θ sin 2ϕ

0 sin 2θ 0

cos θ cosϕ − cos 2θ sinϕ sin θ cosϕ

cos θ sinϕ cos 2θ cosϕ sin θ sinϕ

− sin θ2 cosϕ 1
2
sin 2θ sin 2ϕ cos θ cos 2ϕ


(63)

Once the rotated elastic moduli are determined for some symmetry axis ŝ(θ, φ), they can be

inserted into the elements of the differential operator A and the coupling matrix Bqr. The

elements of aCij need to be converted from abbreviated subscript notation into Woodhouse

notation as done in Appendix A. It should be noted that the Bond Transformations that include
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rotations about both the y and z axes are best done numerically. Analytical results are not always

insightful for most arbitrary symmetry axis orientations of ŝ(θ, ϕ).

The sensitivity of the elastic stiffness matrix to changes in θ and ϕ may also be considered.

∂(aC)

∂∆
=

∂R

∂∆
aCRT + RaC

∂RT

∂∆
where R = MzMy (64)

The individual elements of the derivative of the elastic stiffness matrix with respect to the generic

angle ∆ is:

∂(aCIJ)

∂∆
= A

(
∂Ri1

∂∆
Rj1 +Ri1

∂Rj1

∂∆
+
∂Ri2

∂∆
Rj2 +Ri2

∂Rj2

∂∆

)
+ H

(
∂Ri1

∂∆
Rj2 +Ri1

∂Rj2

∂∆
+
∂Ri2

∂∆
Rj1 +Ri2

∂Rj1

∂∆

)
+ F

(
∂Ri1

∂∆
Rj3 +Ri1

∂Rj3

∂∆
+
∂Ri2

∂∆
Rj3 +Ri2

∂Rj3

∂∆

+
∂Ri3

∂∆
Rj1 +Ri3

∂Rj1

∂∆
+
∂Ri3

∂∆
Rj2 +Ri3

∂Rj2

∂∆

)
+ C

(
∂Ri3

∂∆
Rj3 +Ri3

∂Rj3

∂∆

)
+ L

(
∂Ri4

∂∆
Rj4 +Ri4

∂Rj4

∂∆
+
∂Ri5

∂∆
Rj5) +Ri5

∂Rj5

∂∆

)
+ N

(
∂Ri6

∂∆
Rj6 +Rj6

∂Ri6

∂∆

)

∂R

∂θ
=



− sin 2θcos2ϕ 0 sin 2θcos2ϕ

− sin 2θ sin2 ϕ 0 sin 2θ sin2 ϕ

sin 2θ 0 − sin2 θ

cos 2θ sinϕ 0 cos 2θ sinϕ

−1
2
sin θ sin 2ϕ 0 − cos 2θ cosϕ

−1
2
sin 2θ sin 2ϕ 0 1

2
sin 2θ sin 2ϕ

cos θ sin 2ϕ −2 cos 2θ cos2 ϕ − sin θ sin 2ϕ

cos θ sin 2ϕ −2 cos 2θ sin2 ϕ sin θ sin 2ϕ

0 2 cos 2θ 0

− sin θ cosϕ 2 sin 2θ sinϕ cos θ cosϕ

− sin θ sinϕ −2 sin 2θ cosϕ cos θ sinϕ

− cos θ2 cosϕ cos 2θ sin 2ϕ − sin θ cos 2ϕ


(65)
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∂R

∂ϕ
=



− cos2 θ sin 2ϕ sin 2ϕ − sin2 θ sin 2ϕ

cos2 θ sin 2ϕ − sin 2ϕ sin2 θ sin 2ϕ

0 0 0

−1
2
sin 2θ cosϕ 0 1

2
sin 2θ cosϕ

cos θ cos 2ϕ 0 1
2
sin 2θ sinϕ

− cos2 θ cos 2ϕ cos 2ϕ − sin2 θ cos 2ϕ

−2 sin θ cos 2ϕ sin 2θ sin 2ϕ 2 cos θ cos 2ϕ

2 sin θ cos 2ϕ − sin 2θ sin 2ϕ −2 cos θ cos 2ϕ

0 0 0

− cos θ sinϕ − cos 2θ cosϕ − sin θ sinϕ

cos θ cosϕ − cos 2θ sinϕ sin θ cosϕ

2 sin θ2 sinϕ sin 2θ cos 2ϕ −2 cos θ sin 2ϕ


(66)
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E Equations of Motion and First Order Equations

Consider the equations of motion for elastic waves in anisotropic structures as described equation

(3) of Maupin (1988).

−ρω2w =
∂t1

∂x
+
∂t2

∂y
+
∂t3

∂z
+ F

ti = wCij
∂w

∂xj

(67)

The characteristic equation can be expanded out for each individual traction vector.

t1 = wC11
∂w

∂x
+ wC12

∂w

∂y
+ wC13

∂w

∂z
(68)

t2 = wC21
∂w

∂x
+ wC22

∂w

∂y
+ wC23

∂w

∂z
(69)

t3 = wC31
∂w

∂x
+ wC32

∂w

∂y
+ wC33

∂w

∂z
(70)

Now consider the the derivative with respect to x of w and t1. The derivatives are chosen

to be expressed only in terms of material properties and the vectors w and t1:

∂w

∂x
= wC−1

11 t1 − wC−1
11

wC12
∂w

∂y
+ wC−1

11
wC13

∂w

∂z
(71)

∂t1

∂x
= −ρω2w − ∂

∂y

(
X22

∂w

∂y

)
− ∂

∂y

(
X23

∂w

∂z

)
− ∂

∂y

(
wC21

wC−1
11 t1

)
− ∂

∂z

(
X32

∂w

∂y

)
− ∂

∂z

(
X33

∂w

∂z

)
− ∂

∂z

(
wC31

wC−1
11 t1

)
− F (72)

Now consider w and t2 and their derivative with respect to y. The derivatives are chosen to

be expressed only in terms of material properties and the vectors w and t2:

∂w

∂y
= wC−1

22 t2 − wC−1
22

wC21
∂w

∂x
+ wC−1

22
wC23

∂w

∂z
(73)

∂t2

∂y
= −ρω2w − ∂

∂x

(
Y11

∂w

∂x

)
− ∂

∂x

(
Y13

∂w

∂z

)
− ∂

∂x

(
wC12

wC−1
22 t2

)
− ∂

∂z

(
Y31

∂w

∂x

)
− ∂

∂z

(
Y33

∂w

∂z

)
− ∂

∂z

(
wC32

wC−1
22 t1

)
− F (74)

Similarly the derivatives of w and t2 with respect to z may be considered. The derivatives
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are chosen to be expressed only in terms of material properties and the vectors w and t3:

∂w

∂z
= wC−1

33 t3 − wC−1
33

wC31
∂w

∂x
+ wC−1

33
wC32

∂w

∂y
(75)

∂t3

∂z
= −ρω2w − ∂

∂x

(
Z11

∂w

∂x

)
− ∂

∂x

(
Z12

∂w

∂y

)
− ∂

∂x

(
wC13

wC−1
33 t3

)
− ∂

∂y

(
Z21

∂w

∂x

)
− ∂

∂y

(
Z22

∂w

∂y

)
− ∂

∂y

(
wC23

wC−1
33 t3

)
− F (76)

These three sets of equations can be reformulated into a single set of generalized equations

of motion.

∂w

∂xm

= wC−1
mmtm − wC−1

mm
wCmi

∂w

∂xi

+ wC−1
mm

wCmj
∂w

∂xj

(77)

∂tm

∂xm

= −ρω2w − ∂

∂xi

(
(wCii − wCim

wC−1
mm

wCmi)
∂w

∂xi

)
− ∂

∂xi

(
(wCij − wCim

wC−1
mm

wCmj)
∂w

∂xj

)
− ∂

∂xi

(
wCim

wC−1
mmtm

)
− ∂

∂xj

(
(wCji − wCjm

wC−1
mm

wCmi)
∂w

∂xi

)
− ∂

∂xj

(
(wCjj − wCjm

wC−1
mm

wCmj)
∂w

∂xj

)
− ∂

∂xj

(
wCjm

wC−1
mmtm

)
− F (78)

where m = 1, 2, 3 and xm = x, y, z

An eigenvalue problem may be formulated from the generalized equations of motion, which

results in a generalized first order coupled equation.

∂um

∂xm

= Amum − F where um = (w, tm)T (79)

A =

(
Am

11 Am
12

Am
21 Am

22

)
(80)

For a solid triclinic anisotropic medium, the sub-operators for the generalized first order coupled
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equation are:

Am
11 =

(
−(wC−1

mm)(wCii)
∂

∂xi

+ (wC−1
mm)(wCjj)

∂

∂xj

)
,

Am
12 =

(
wC−1

mm

)
,

Am
21 =

(
−ρω2w − ∂

∂xi

(
(wCii − wCim

wC−1
mm

wCmi)
∂

∂xi

)
− ∂

∂xi

(
(wCij − wCim

wC−1
mm

wCmj)
∂

∂xj

)
− ∂

∂xi

− ∂

∂xj

(
(wCji − wCjm

wC−1
mm

wCmi)
∂

∂xi

)
− ∂

∂xj

(
(wCjj − wCjm

wC−1
mm

wCmj)
∂

∂xj

)
− ∂

∂xj

)
,

Am
22 =

(
− ∂

∂xi

(wCim)(wC−1
mm)− ∂

∂xj

(wCjm)(wC−1
mm)

)
, (81)
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F Symmetry Planes and Wave Polarizations

The polarization of the modes composing the seismo-acoustic wavefield depend on the propa-

gation direction through the anisotropic medium. The polarization of any mode will change

if the propagation direction changes or the elastic stiffness matrix is rotated. Pure P-SV and

SH polarization directions exist in a TI elastically symmetric medium for specific propagation

directions. The polarization of the modes is determined by the proximity of the propagation

direction to the symmetry axis direction.

The form of the elastic stiffness matrix indicates the amount of symmetry and the location

of symmetry planes for an anisotropic medium. These symmetry planes, help predict when

transverse particle motion may propagate independently of the P-SV particle motion, or when

quasi-SH particle motions propagate independently of quasi-P-SV particle motions.

Auld(1990) discusses pure plane-wave mode propagation directions in relation to symmetry

planes and symmetry axes. The modes of a shallow water waveguide follow these same principles

with a little modification. P, SV, and SH plane waves propagate independently for pure mode

directions of propagation. For the modes of a shallow water wave guide, the P and SV particle

motions are always coupled, but the SH particle motions may propagate independently for some

geometries of the symmetry axis and propagation directions. If the SH motions coupled with

either SV or P particle motions, then the modes will have polarizations in all three coordinate

directions.

[Table 9 about here.]

Whenever the propagation is within a symmetry plane, the single generalized mode family

splits into two independent mode families, and the SH modes will propagate independently of

the P-SV modes. The propagation, in a sense, will behave as quasi-isotropic. This is true

regardless of whether the anisotropy is strong or weak. A VTI medium can be thought as a

quasi-isotropic or quasi-orthorhombic medium. The wave propagation is similar to an isotropic

medium, but the modes have slightly different shapes.

Consider rotating the elastic stiffness matrix, so that the symmetry axis ŝ first aligns with the

three coordinate axes. When ŝ = x̂, ŷ, or ẑ then the form of the elastic stiffness matrix remains

in the form of a quasi-orthorhombic, with 12 non-zero matrix elements and the remainder having

zero values:

aCIJ =



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


where ŝ = x̂, ŷ, or ẑ (82)

49



For a VTI medium, all elements of the elastic stiffness matrix aCIJ are unaltered by rotations

about the z-axis.

An orthorhombic medium has the xy, xz, and yz-planes as symmetry planes, and the quasi-

orthorhombic elastic stiffness matrix will have these symmetry planes as well. Applying the

symmetry principles from table 9 for ŝ along any of the coordinate axes, the SH modes will

propagate independently of the P-SV modes. The mode set is separated into two families of

modes, the SH modes and the P-SV modes, when the ŝ is aligned with any of the three coordinate

axes.

Now consider tilting the symmetry axis ŝ so that it remains in the xz-plane. The elastic

stiffness matrix aCIJ takes on the form of a monoclinic medium where the single symmetry

plane is orthogonal to the y-axis and parallel to the xz-plane.

aCIJ =



C11 C12 C13 0 C15 0

C21 C22 C23 0 C25 0

C31 C32 C33 0 C35 0

0 0 0 C44 0 C46

C51 C52 C53 0 C55 0

0 0 0 C64 0 C66


where ŝ(θ, ϕ) = ŝ(all, 0◦) (83)

A monoclinic medium has a single plane of symmetry. Consider the form of the elastic

stiffness matrix when the symmetry is parallel with the xz, yz, and xy-planes respectively. The

tilted TI medium with the symmetry axis along one of the coordinate planes has the form of a

monoclinic material, but with a higher degree of symmetry. A true monoclinic material has 13

independent parameters. The tilted TI medium only has five independent elastic moduli, even

though the elastic stiffness matrix is populated the same as a monoclinic medium. The elastic

stiffness tensor can be thought of exhibiting a quasi-monoclinic form, with higher symmetry due

to a reduction in the number of independent elastic moduli.

For the symmetry axis in the xz-plane, the C22 element is insensitive to any variation in θ

when ϕ = 0◦. This is of little consequence, since the C22 element is not included in the equation

of motion for 2-D propagation along the x-direction. The horizontally polarized shear modes

will propagate independently of the P-SV modes for all orientations of the symmetry axis that

lie in the xz-plane. The modes are split into two families of propagating modes: P-SV modes

with polarizations in the xz-plane and SH modes with polarizations in the transverse coordinate

direction.

Now consider tilting the symmetry axis so that it remains in the yz-plane. The elastic stiffness

matrix again takes on the form of a quasi-monoclinic medium where the single symmetry plane
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is orthogonal to the x-axis and parallel to the yz-plane.

aCIJ =



C11 C12 C13 C14 0 0

C21 C22 C23 C24 0 0

C31 C32 C33 C34 0 0

C41 C42 C43 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C65 C66


where ŝ(θ, ϕ) = ŝ(all, 90◦) (84)

The C11 element of the stiffness tensor is insensitive to any variations of θ when ϕ = 90◦.

The symmetry plane and symmetry axis principles indicate that no pure horizontally po-

larized modes should be expected when the elastic stiffness matrix is in this form, unless the

symmetry axis ŝ is vertical or horizontal in the yz-plane. The principles indicate that the quasi-

shear modes will have polarizations parallel to the symmetry axis, having both transverse and

vertical components. The modes will likely consist of a single family of generalized P-SV-SH

modes with polarizations in all three coordinate directions. The quasi-monoclinic elastic stiffness

matrix has a higher degree of symmetry than a true monoclinic medium.

Next consider tilting the symmetry axis ŝ so that it remains in the xy-plane. The elastic

stiffness matrix again takes on the form of a quasi-monoclinic medium with the single symmetry

plane orthogonal to the z-axis and parallel to the xy-plane.

aCIJ =



C11 C12 C13 0 0 C16

C21 C22 C23 0 0 C26

C31 C32 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C54 C55 0

C61 C62 C63 0 0 C66


where ŝ(θ, ϕ) = ŝ(90◦, all) (85)

The C33 element of the elastic stiffness matrix is insensitive to any variations of ϕ for θ = 90◦.

Now consider tilting the symmetry axis to a general orientation that excludes the coordinate

axes directions and the xy, xz, and yz coordinate planes. The general form of the rotated aCIJ

elastic stiffness matrix is quasi-triclinic in nature with a higher degree of symmetry than a true

triclinic elastic stiffness matrix. Similar to the monoclinic comparison, a true triclinic material

has 21 independent elastic moduli. The rotated elastic stiffness matrix in equation (86) still only

has 5 independent elastic moduli. Each element remains a linear combination of the five elastic

moduli. So the rotated elastic stiffness matrix can be thought of being quasi-triclinic, with a
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higher degree of symmetry due to the reduction in the number of independent elastic moduli.

aCIJ =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


where ŝ(θ, ϕ) (86)

Except when the symmetry axis ŝ is aligned with the x-axis or y-axis, the mode set consists

of quasi-P-SV, quasi-SH, or generalized P-SV-SH modes.

The form of the elastic stiffness tensor may change as a TI medium rotates from a general

orientation to more specific orientations. The elastic stiffness tensor of a TTI medium would

be described as quasi-triclinic, the elastic stiffness tensor for a symmetry axis within any of the

coordinate planes would be described as quasi-monoclinic, and the elastic stiffness tensor when

the symmetry axis is aligned with any of the three coordinate axes would be quasi-orthorhombic.

Figure 20 shows the form the elastic stiffness matrix takes for orientations of the symmetry

axis ŝ(θ, ϕ) in the first quadrant. The vertical axis is the angle ϕ in 10◦ increments and the

horizontal axis is the angle θ in 10◦ increments. Each matrix represents the form of the elastic

stiffness matrix aCIJ for a specific symmetry axis ŝ orientation. The first row shows the form of
aCIJ for ϕ = 0◦ and θ = 0◦ − 90◦. This represents the symmetry axis within the sagittal plane

and the elastic stiffness matrix has the form of a quasi-monoclinic medium. The first column

shows the elastic stiffness matrix for ŝ = ẑ, with the form of a quasi-orthorhombic medium or

VTI. The corner matrices of figure 20 in the tenth column also have the quasi-orthorhombic

form and correspond to HTI media with the symmetry axis ŝ aligned parallel to the x̂ and ŷ

axes. The tenth column shows the form of aCIJ for θ = 90◦ and ϕ = 0◦ − 90◦. This represents

the symmetry axis within the xy-plane and the matrices have the form of a quasi-monoclinic

medium. This also is a HTI medium where ŝ(θ, ϕ) = cosϕx̂+ sinϕŷ. The tenth row shows the

form of the elastic stiffness matrices for φ = 90◦ and ϕ = 0◦ − 90◦. The matrices for ŝ in the

yz-plane also have a quasi-monoclinic form. All other orientations of the symmetry axis for aCIJ

produce the form of a quasi-triclinic medium. Okaya and McEvilly (2003) noticed similar results

for rotations of hexagonal symmetry about the x, y, and z axes, and mentioned the appearance

of monoclinic symmetry for rotations about the y-axis. Shoenberge and Costa (1991) also state

that hexagonal anisotropy behaves as monoclinic when the symmetry axis is within the sagittal

plane.

[Figure 20 about here.]
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ŝ

VTI TTI HTI

Figure 1: A representative elastically symmetric transversely isotropic structure (TI) due to
compositional layering with a vertical symmetry axis ŝ. The fast velocity directions Vfast are
normal to the symmetry axis direction and parallel to the bedding plane, the xy-plane for this
instance. The slow velocity direction Vslow is parallel to the vertical symmetry axis. A TI
structure with a vertical symmetry axis is often referred to as vertical transverse isotropy (VTI)
or as azimuthally isotropic. The geometrical orientation of the anisotropy in a plane layered
homogeneous anisotropic model, depends on the orientation of the symmetry axis ŝ. The white
block of material from the plane layered structure on the right is expanded on the left to show
the importance of symmetry axis direction on velocity properties of the medium. A structure
can be transversely isotropic with a vertical, tilted (neither vertical nor horizontal), or horizontal
symmetry axis and be classified as VTI, TTI, or HTI respectively. For a VTI orientation, the
fast velocity direction is in the horizontal plane. A TTI orientation results in the fast velocity
direction being contained to an oblique plane and the HTI orientation restricts the fast velocity
directions to a vertical plane normal to the symmetry axis ŝ. Note that the slow velocity
direction (Vslow) always corresponds with the symmetry axis direction ŝ.
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Figure 2: The Cartesian coordinate system is defined with the x-direction corresponding with
the direction of propagation, the z-direction is positive downwards, and thee y-direction is free
of any lateral variations. The symmetry axis ŝ is defined in reference to the fixed Cartesian
coordinate system by the Spherical coordinate angles θ and ϕ. The angle between the z-axis
and the symmetry axis ŝ is described by θ. The angle between the projection of the symmetry
axis ŝ onto the horizontal plane and the x-direction is described by ϕ.
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Figure 3: The C11 element of the elastic stiffness matrix aCIJ is shown in Figure 3(a) for various
angles of θ and ϕ. This is a numerical plot of equation 11. Figures 3(b) and 3(c) plot the
sensitivity of the C11 element to the angles ϕ and θ respectively.
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Figure 4: Any tilt of the symmetry axis with respect to the fixed coordinate system results in
an azimuthal, elevational, or a combination of azimuthal and elevational change in anisotropy.
The red line in the horizontal plane represents changes of azimuth ϕ of the symmetry axis and
the red line in the vertical plane represents changes in elevation θ of the symmetry axis.
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is no lateral variations in the structure, and thee elastic parameters only vary with depth. The
anisotropy is restricted to elastically symmetric transverse isotropy, but the symmetry axis ŝ
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Figure 6: The velocity and density profile of the starting VTI medium. The red, blue, and
dotted black lines represent the shear velocity, compressional velocity, and density respectively
with depth. The profile on the right is an enlargement of the thin sediment region to show
the shear wave velocity splitting within the anisotropic layers. The solid red line represents the
vertical shear speed βV and the dotted red line represents the horizontal shear speed βH . Note
that the velocity profile lacks any compressional anisotropy
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Figure 7: The slowness curves for the xy, xz, and yz-planes for a VTI anisotropic sediment
layer, where ŝ = ẑ. The inner circle is the compressional slowness, indicating the absence of any
anisotropy in the compressional velocity. The outer paths represent the vertical and horizontal
shear slownesses. In Figure (a) there is complete shear velocity splitting. Both Figures (b) and
(c) reveal shear velocity singularities at θ = 0◦, 180◦ and θ ≈ 70◦, 110◦.
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Figure 8: Slowness curves for orientations of the symmetry axis ŝ within the first quadrant.
Each slowness figure indicates a change in azimuth or elevation of symmetry axis of 10◦. The
horizontal row represents variations of θ and the vertical column represents variations of ϕ. The
slowness curves are shown for the xz-plane for an anisotropic marine sediment layer.
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Figure 9: Frequency dispersion curves for modal phase velocities between 1500m/s and 2000m/s,
for the VTI (ŝ(θ, ϕ) = ŝ(0◦, 0◦) and a TTI (ŝ(θ, ϕ) = ŝ(60◦, 80◦). The dispersion curves for the
VTI symmetry in (a) and TTI symmetry (b) are very similar. Both figures clearly show the
“solotone” effect, the dark bands in both figures (a) and (b). The modal phase velocities trace out
vertical paths that are nearly parallel in figure (a). The even parallel nature is disrupted when the
phase velocities approach the value of an “invariant ”mode. The modal phase velocities in figure
(b) also trace out vertical paths, but a braiding effect can be seen to occur between adjacent
phase velocity traces. The dark bands that represent the phase velocities of the “invariant”
modes are frequency dependent, but they vary more slowly than for the non-invariant modes.
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Figure 10: Angular dispersion curves for both phase and group velocities. Figure (a) and (b)
show the angular dispersion curves for the phase and group velocities respectively for ŝ(θ, ϕ) =
ŝ(10◦, 0◦ − 90◦). Figure c) and (d) represent the angular dispersion curves for the phase and
group velocities respectively for ŝ(θ, ϕ) = ŝ(0◦ − 90◦, 10◦). In general, changes in elevation (θ)
have a larger affect on the phase and group velocities than changes in azimuth (ϕ).
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Figure 11: The stacked angular dispersion curves show the dependence and sensitivity of the
dispersion branches on variations of the angles θ and ϕ for a range of frequencies. The thickness
of an envelope indicates the sensitivity of a particular mode to changes in azimuth (ϕ). Note
the convergence of the phase velocities at 0◦ and approximately 70◦. This is where the shear
velocities become degenerate.

64



(a)

−1 0 1

0

100

200

300

400

500

600

700

X − Comp.

Z 
(d

ep
th

 in
 m

et
er

s)

−1 0 1
Y − Comp.

−1 0
Z − Comp.

1

(b)

−1 0 1

0

100

200

300

400

500

600

700

X − Comp.

Z 
(d

ep
th

 in
 m

et
er

s)

−1 0 1
Y − Comp.

−1 0 1
Z − Comp.

Figure 12: This is an example of P-SV and SH modes for ŝ(θ, ϕ) = ŝ(80◦, 0◦). This is an instance
where the elastic stiffness matrix is quasi-monoclinic and the pure P-SV and SH modes have
completely separate polarizations. The P-SV mode has particle motion in the sagittal plane and
the SH mode has particle motion in the y-coordinate-direction of the horizontal plane.

65



−1 0 1

0

50

100

150

200

250

300

350

400

450

500

550

X − Comp.

Z 
(d

ep
th

 in
 m

et
er

s)

−1 0 1
Y − Comp.

−1 0 1
Z − Comp.

Figure 13: The P-SV mode remains polarized in the sagittal plane when the symmetry axis
ŝ = x̂, ŷ, ẑ. The mode shapes are similar when the symmetry axis is aligned parallel to any of
the three coordinate axis directions.
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Figure 14: The quasi-P-SV mode in figure (a) has gained some particle motion in the y-direction,
but still has particle motion predominantly in the sagittal plane. The quasi-SH mode in figure (b)
has gained particle motion in the sagittal plane, but the mode remains predominantly polarized
along the y-direction. The P-SV-SH mode in figure (c) has polarizations in all three coordinate
directions and attributes of both P-SV and SH modes.
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Figure 15: An example of an “invariant acoustic mode” at 50.0Hz for ŝ(θ, ϕ) = ŝ(80◦, 30◦). The
mode only gains a very small portion of particle motion in the y-direction.
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Figure 16: The characteristics of an acoustic mode changes with frequency. Figure (a) shows
the x-component of displacement and figure (b) shows the z-component of displacement. The
acoustic mode shown has a single zero crossing in the z-component particle displacement within
the fluid layer at higher frequencies.
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Figure 17: The x, y, and z particle displacements of a mode switches characteristics with another
mode due to a near degeneracy. The near degeneracy occurs a the symmetry axis ŝ is varied in
θ. In this case the quasi-SH mode becomes a quasi-P-SV mode as θ = 0◦ − 90◦.
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Figure 18: The figures (a), (b), and (c) show the x, y, and z displacement components for an
explosive source respectively. The figures (d), (e), and (f) show the x, y, and z displacement
component for a double couple source respectively. An explosive source only excites modes with
particle motion in the sagittal plane. A double couple in the horizontal plane only excites modes
with particle motion in the y-direction. These modes reflect a geometrical orientation of the
symmetry axis ŝ when the P-SV and SH particle motions propagate independently. The modes
of this quasi-monoclinic medium are similar to modes of an isotropic or VTI medium.
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Figure 19: Both explosive and double couple sources are effective at exciting modes with 3-D
particle motion. This is purely a result of the introduction of anisotropy into the sediments,
which results in the coupling of the x, y, and z particle displacements. Note that the double
couple source is more effective at exciting the lower order modes, than the explosive source. The
figures show the displacement of all the modal eigenfunctions with phase velocities between the
of 1500m/s and 2000m/s. The x, y and z-components of displacement are shown in figures (a)
& (d), (b) & (e), and (c) & (f) respectively. P-SV-SH modes are clearly evident with energy in
all three coordinate directions.
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Figure 20: Each matrix in the figure represents the form of the elastic stiffness matrix aCIJ for
specific orientations of the symmetry axis ŝ. The matrices graphically reveal how the elastic
stiffness matrix aCIJ is populated as the symmetry axis is rotated. Each matrix in a horizontal
row represents a 10◦ increments in ϕ for a fixed value of θ. Likewise, each matrix in a vertical
column represents a 10◦ increment of θ for a fixed value of ϕ. The first row represents rotations
about the y-axis, the last row represents rotations about the x-axis, and the last column repre-
sents rotations about the z-axis when ŝ is within the xy-plane. All of the matrices on the outside
edges of the figure represent the elastic stiffness matrix being rotated about a coordinate axis
and have a quasi-monoclinic form. More general rotations of the symmetry axis ŝ results in a
quasi-triclinic form of aCIJ .
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Table 1: Mode Wavelength Ranges

Phase Velocity 10.0Hz 20.0Hz 30.0Hz 40.0Hz 50.0Hz 75.0Hz
1500.0m/s 150.00m 75.00m 50.00m 37.50m 30.0m 40.00m
2000.0m/s 200.00m 100.00m 66.67m 50.00m 40.00m 26.67m
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Table 2: Velocity/Density Profile

DEPTH A = aC11 C = aC33 F = aC13 L = aC44 N = aC66 ρ
100.00 2.250 2.2 2.2 0.0000 0.0000 1000
2.50 5.544 5.544 5.376 0.0526 0.0669 2100
2.50 5.544 5.544 5.376 0.0526 0.0683 2100
2.50 5.544 5.544 5.376 0.0526 0.0700 2100
2.50 5.544 5.544 5.376 0.0526 0.0714 2100
2.50 5.586 5.586 5.376 0.0792 0.0864 2100
2.50 5.586 5.586 5.366 0.1100 0.1100 2100
2.50 5.649 5.649 5.383 0.1330 0.1330 2100
2.50 5.754 5.754 5.438 0.1580 0.1580 2100
2.50 5.859 5.859 5.495 0.1820 0.1820 2100
2.50 5.964 5.964 5.550 0.2070 0.2070 2100
2.50 6.069 6.069 5.607 0.2310 0.2310 2100

372.50 8.400 8.400 2.798 2.8010 2.8010 2100
1000.00 70.634 70.634 23.528 23.5530 23.5530 2335
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Table 3: Invariant Acoustic Modes

Frequency Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
10.0Hz
20.0Hz 1560m/s
30.0Hz 1528m/s 1637m/s
40.0Hz 1517m/s 1577m/s 1920m/s
50.0Hz 1511m/s 1550m/s 1626m/s 1905m/s
75.0Hz 1506m/s 1524m/s 1556m/s 1606m/s 1679m/s 1757m/s
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Table 4: P-SV and SH Particle Motion Independence

Coordinate Axes:
ŝ(θ, ϕ) = ŝ(90◦, 0◦) = x̂
ŝ(θ, ϕ) = ŝ(90◦, 90◦) = ŷ
ŝ(θ, ϕ) = ŝ(0◦, 0◦) = ẑ
Sagittal Plane:
ŝ(θ, ϕ) = ŝ(all◦, 0◦)
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Table 5: Abbreviated Subscript Notation

ik or lj I or J
11 1
22 2
33 3

23,32 4
13,31 5
12,21 6
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Table 6: Love Notation

Love Notation Backus Notation Takeuchi and Saito Notation Isotropy
A = Ā− B̄ + C̄ ρα2

H λ+ 2µ
C = Ā+ B̄ + C̄ ρα2

Hφ λ+ 2µ
F = Ā− 3C̄ − 2(D̄ + Ē) ρη(α2

H − 2β2
V ) λ

L = D̄ + Ē ρβ2
V µ

N = D̄ − Ē ρβ2
V ξ µ
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Table 7: Takeuchi and Saito Notation

Takeuchi and Saito Notation Love Notation Backus Notation Isotropy

αH =
√

A
ρ

√
Ā−B̄+C̄

ρ

√
λ+2µ

ρ

βV =
√

L
ρ

√
D̄+Ē

ρ

√
µ
ρ

ξ = N
L

D̄−Ē
D̄+Ē

1

φ = C
A

Ā+B̄+C̄
Ā−B̄+C̄

1

η = F
A−2L

Ā−3C̄−2(D̄+Ē

Ā−B̄+C̄−D̄−Ē
1
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Table 8: Backus Notation

Backus Notation Love Notation Takeuchi and Saito Notation Isotropy

Ā = 3(A+C)+2(F+2L)
8

α2
H(3(1+φ)+2η)+2β2

V (1−η)

8
λ+ 2µ

B̄ = 4(C−A)
2

4α2
H(φ−1)

8
0

C̄ = A+C−2(F+2L)
8

α2
H(1+φ−2η)−4β2

V (1−η)

8
0

D̄ = L+N
2

ρβV
2
(

1+ξ
2

)
µ

Ē = L−N
2

ρβV
2
(

1−ξ
2

)
0
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Table 9: Propagation Principles

Symmetry Plane Principles
propagation direction within symmetry plane:

shear motion polarized normal to symmetry plane
propagation direction normal to TI symmetry axis ŝ:

shear motion polarized parallel to TI symmetry axis ŝ
propagation direction parallel to TI symmetry axis ŝ:
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