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Abstract

A sensor network operates on an infrastructure of sensing, computation, and com-

munication, through which it perceives the evolution of events it observes. We

propose a fusion-driven distributed dynamic network controller, called MDSTC,

for a multi-modal sensor network that incorporates distributed computation for in-

situ assessment, prognosis, and optimal reorganization of constrained resources

to achieve high quality multi-modal data fusion. For arbitrarily deployed sensors,

certain level of data quality cannot be guaranteed in sparse regions. MDSTC reallo-

cates resources to sparse regions; reallocation of network resources in this manner

is motivated by the fact that an increased density of sensor nodes in a region of

interest leads to better quality data and enriches the network resilience. Simulation

results in NS-2 show the effectiveness of the proposed MDSTC.1
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1. Introduction

A distributed sensor network consists of many low-cost mobile or fixed sensor

nodes that are networked to observe spatial-temporal distributed events. Obser-

vations, decisions or estimates made by individual sensors are fused together to

create a composite view of the situation. The sensor nodes must dynamically col-

laborate to fuse information in the vicinity of an arbitrary critical event to optimize

its identification, classification, and tracking in operational environments. The sen-

sor nodes and the network they form are resource-constrained in terms of network

bandwidth, the lifetime of the node’s battery, sensing range and communication ra-

dius. Consequently, it is important to dynamically control the available resources

to deliver acceptable sensor fusion performance and possibly to maximize this per-

formance, measured in terms of data accuracy for fusion. The techniques described

combine distributed control and self-adaptation of the network topology to the re-

quirements of the application running at the highest level at each sensor node, and

can be applied to solve many problems in military, homeland security, medicine,

civil engineering, bathymetry, terrain mapping, etc.. Previous research efforts [1]

focused on human-controlled or human-guided sensor networks. In this paper we

consider networks that are autonomous; there is no human intervention involved in

designing or organizing the network.

Heterogeneous sensor networks have been extensively studied for the purpose

of classifying and tracking mobile targets, by obtaining an accurate estimation of

the sensed event(s) locations based on the sensors’ locations [2], measured signal

strength, and the quality of the raw data [3, 4, 5, 6]. When a multi-modal sensor

network is used to track moving targets, the critical resource optimization param-

eters are power consumption, coverage, communication, and data fusion. Major

sources of wasted energy are communication collisions, overhearing, idle listen-

2



ing, and control overhead [7]. Idle listening can be minimized by an appropriate

sleep-and-awake schedule for nodes [8, 9, 10, 11]. Collisions can be minimized

by scheduling the local transmission [12] and overhearing can be minimized by re-

ducing the transmission power [13]. To optimize the region coverage, various fault

tolerant schemes for the network topology are researched in order to guarantee that

a certain area is covered [14, 15, 16, 17]. To optimize communication, the network

capacity is to be maximized and the network delay is to be minimized [18]. To

optimize data fusion, interference is to be reduced by scheduling nodes’ transmis-

sion [19], higher fidelity of raw data is to be obtained by moving sensors closer

to observed event(s) [16], high fidelity compressed data is to be obtained from the

raw data [20], and the delivery rate of fused data is to be increased [21].

When a mobile target approaches a sensor node and the stimulus at the node

is above a given threshold, an event is said to have been detected. However, if

the threshold is not reached then the event is labeled as undetected and ignored.

When an event is detected by a sensor node, the node broadcasts a message con-

taining the event description and the event data. Since the events are assumed to

be localized in time and space, a burst of communication will occur in a small geo-

graphic region surrounding the target. So, instead of analyzing the topology of the

entire network, we concentrate on the topology of a relatively small geographical

region around the mobile target where nodes that are geographically near observe

an event of interest and form multi-modal (heterogeneous) clusters that together

support a specified level of multi-modal data fusion. We present MDSTC, a dis-

tributed network controller for a multi-modal sensor network, responsible for clus-

tering nodes in the space-time vicinity of a moving object, improving data fusion

by adapting the network topology (i.e., changing the location of selected mobile

nodes and the transmission range of selected nodes), localizing and tracking the

object. MDSTC is an adaptation of the dynamic space-time clustering (DSTC)
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protocol [22, 23, 24, 25] to the sensors’ heterogeneity and mobility; it hasthe en-

hanced capability to coordinate mobile nodes within a cluster to move to nearby

locations in order to lower interference, avoid field obstructions, and cover sparse

regions. Thus the topology of the cluster self-adapts to achieve better data fusion.

During the data fusion (necessary for tracking moving events), two modes of

intra-cluster communication are supported: between the same modality sensors

and between sensors of complementary modalities. In order to minimize the local

network communication that leads to reduced power consumption and network

bandwidth, we also describe a novel multicast group management protocol that

handles multicast groups between same-modality and complementary sensors.

The paper is organized as follows. In Section 2 we present the network archi-

tecture, the system model, and the communication optimization through multicast.

The multi-modal data fusion at the nodes observing an event of interest is pre-

sented in Section 3. In Section 4 we present the multi-modal cluster formation

and the dynamic adaptation of the multi-modal cluster to improve data fusion. In

Section 5 we show how the proposed multi-modal network controller improves the

quality of the multi-modal data fusion and we present the results of the experiments

conducted in our laboratory. Section 6 presents conclusions and future work.

2. Network Architecture and System Model

An event is a dynamical process that is observed by sensors of various modal-

ities. The time-series data observed by a sensor of a certain modality can be com-

pressed to a probabilistic finite state automaton (PFSA) with an a priori fixed al-

phabet [26], which depends strictly on the modality of the sensor. The PFSA is

designed to extract the maximum semantic information from the raw sensor data,

while at the same time it compresses the sensory data to minimize the network
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bandwidth requirements. At each node the data is handled in a module called In-

formation Space and the network communication issues and adaptation decisions

are addressed by a separate module called Network Design Space [27, 28]; the

system model at a node is presented in Figure 1.

Figure 1: System model for a sensor node (independent of the sensormodality)

DSTC [22] protocol works for single-modality wireless networks and it has

five basic operations: creating a cluster, disbanding a cluster, adding a node to

a cluster, removing a node from a cluster, and moving the data from the cluster

head to another cluster member. We adapted DSTC to multi-modal mobile sensors

and we call the new algorithm as themulti-modal dynamic space-time clustering

(MDSTC). MDSTC is part of NDS and is responsible for clustering nodes in the

space-time vicinity of a moving object, improving data fusion, adapting the net-

work topology by moving mobile sensors to dynamically computed locations in

order to cover sparse regions and lower communication interference, localizing

and tracking the object that has triggered the composite pattern.

As DSTC, MDSTC allocates the sensor network resources only in the space-

time vicinity of an event or object, resources that belong to multi-modal, resource-

constrained, mobile sensor nodes. It also dynamically alters the topology of each
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cluster formed around an event by allocating and de-allocating resources(i.e., mov-

ing sensors in or out of a cluster) in order to maintain a specified level of fusion

performance. The space-time vicinity of an event [29, 22, 24] is defined as the set

of all space-time points that are close to the space-time point(x0, t0) within a time

and space boundary:

η(x0, t0, ∆x, ∆t) = {(x, t)|‖x − x0‖ ≤ ∆x ∧ ‖t − t0‖ ≤ ∆t}. (1)

The quantities∆x and∆t define the size of the neighborhood. Multi-modal data

that was measured within a distance∆x aroundx0 and within the time interval

t0 ± ∆t will be used for data fusion and the sensors within this neighborhood will

be considered for a multi-modal space-time cluster.

A distributed network of sensors achieves high performance by exploiting sen-

sor data fusion. Sensors of various modalities group together to form dynamic

multi-modal clusters; their sensed data (of various modalities) is fused locally at

each node. The clustering of multi-modal sensors is done in two stages.

Stages 1 and 2 of data fusion entail the following type of communication. In

Stage 1,same-modality sensor nodes located within the sensing radius of the sensed

event need to inform one another about the minimumsemantic distance between

the PFSA observed by a sensor node and some reference PFSA from the library.

The minimum semantic distance argument translates into the best match argument

between an observed PFSA pattern and the set of reference patterns. Thus, during

Stage 1, the sensor nodes need only to communicate with like-modality sensors.

Stage 2 focuses on constructing the composite PFSA that has the best possible

composite metric. The composite PFSA is made up of PFSA from all sensors of

complementary sensing modalities. Consequently, during Stage 2 only communi-

cation between sensors of different sensing modalities is needed. In the sequel,

we describe a novel multicast grouping algorithm that can substantially reduce the

communication among sensors, as well as computation at nodes.
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Let S be the set of sensors in a given region and letk = |S|. For any given

sensing modalitys, the setS can be partitioned intoSs, the subset of sensors that

have the same sensing modalitys, andS¬s = S \ Ss, the subset of nodes with the

sensing modality complementary tos; let ks = |Ss|.
During Stage 1, all nodes inS need to broadcast their semantic distance among

themselves; the message will be processed by an application entity present in the

application layer of the protocol stack of each node. However, this broadcast mes-

sage will have relevance only for the|ks| (<< |k|) sensor nodes. The application

entities of the remaining|k − ks| sensors of complementary sensing modality will

however, receive, process and eventually discard such messages, resulting in un-

necessary processing cycles and consumption of limited battery power.

Stage 2 deals with the formation of composite PFSA at each node of some

modality s, which are made up of individual PFSA provided by sensors of¬s

sensing modalities in addition to the PFSA constructed by the node. Therefore

in Stage 2, a node fromS¬s of sensing modalitys′ 6= s needs to send its PFSA

only to a node of sensing modalitys; this is the converse of Stage 1. After a node

i ∈ S¬s broadcasts its PFSA to all the nodes inS, such a message will be relevant

to only the nodes inSs; the remainingk−ks − 1 nodes will waste their processing

cycles in receiving and then discarding such a message. The number of wasted

processing cycles can be quite substantial, since a packet meant for an applica-

tion has to traverse all the protocol layers, before it is accepted or thrown away

by the application layer. Without multicasting, the amount of CPU cycles used by

a single sensor node for receiving and subsequently rejecting a packet is equal to

Cphysical layer + CMAC layer + Clink layer + Cnetwork layer. With multicasting, in

comparison the number of CPU cycles wasted by a single sensor node for receiv-

ing and subsequently rejecting a packet is equal toCphysical layer + CMAC layer,

since an IP multicast address gets embedded within the MAC address assigned to
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the network interface. Consequently, packets whose destination addressdoes not

correspond either to the unicast address or to one of the multicast addresses (joined

by this node) are filtered out by the MAC layer itself, thus saving CPU cycles and

energy for not having to process the packet in the link and network layers.

Let us consider a fully connected sensor network withAcoustic (A),V isual

(V), andChemical (C) sensors,n of each modality. During Stage 1, an A-modality

sensor needs to communicate with the rest of the A-modality sensors only to ex-

change the semantic distance metric information. This implies that the remaining

2n sensors waste their processing cycles when A-modality broadcast packets tra-

verses their protocol stacks. During Stage 2, the selected cluster head (let us say

an A-modality sensor) needs to communicate only with the non-A modality sen-

sors, since the purpose of this communication is to create a composite PFSA. This

implies that, when V- and C-modality sensors broadcast their PFSA, only the A-

modality cluster head has to take cognizance of these broadcast packets. A naive

processing of the broadcast packets would require remaining the3n − 2 nodes to

process and then discard such packets. To address this waste, we describe a novel

multicast group formation technique that replaces the broadcast with the multicast,

thus eliminating the waste described earlier. It turns out that the minimum number

of multicast groups required to support Stages 1 and 2 is independent of the number

of sensor nodes, and it depends only on the number of modalities (Lemma 1).

Lemma 1. Given a sensor network with n nodes and m sensing modalities, the

minimum number of distinct multicast groups required to support Stages 1 and 2 is

2m. Out of these 2m groups, each sensor node needs to join only m + 1 groups.

Proof. During Stage 1, at least one node of some modalityX needs to send

its PFSA to sensors of the same modality and it does so by joining a groupGX .

Thus the minimum number of multicast groups to be created during Stage 1 ism
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since each modality is represented by at least one group.

During Stage 2, a node of some modalityX needs to send its PFSA to the

sensor nodes of non-Xmodalities and it does so by joining another groupG¬X that

contains sensors of modalities other thanX. Also, all nodes of non-Xmodalities

will also need to join theG¬X group to be able to receive a PFSA from aX-

modality sensor. Thus we need to createm additional groups in order to support

Stage 2. In all, we require a minimum of2m distinct multicast groups. ¤

As an example, for the 3-modality network described earlier six multicast

groups,GA, GC , GV , G¬A, G¬C , andG¬V , need to be formed. During Stage 1, a

sensor node of modalityi needs to communicate with sensors of the same modality.

This communication takes place on a multicast groupGi (see Table 1(a)). During

Stage 2, a sensor node of modalityi needs to communicate with sensor nodes of

modality j (j 6= i). This communication occurs on the multicast group given by

the entry(j, i) (of row j and columni) of the Table 1(b).

Modality A C V

A GA

C GC

V GV

Modality A C V

A G¬C G¬V

C G¬A G¬V

V G¬A G¬C

(a) Groups for Stage 1 (b) Groups for Stage 2

Table 1: Multicast groups for multi-modal data fusion

Each sensor of modalityA will have to communicate using four multicast

groups,GA, G¬A, G¬C , andG¬V , in order to form a composite pattern of in-

terest. In general, when there arem modalities, each sensor needs to usem + 1

multicast groups out of a total of2m multicast groups that need to be created,

which is independent of the number of the sensors.
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3. Information Space - Multi-modal Data Fusion

When a mobile target approaches a sensor node and the stimulus at the node

is above a given threshold, an event is said to have been detected. However, if the

threshold is not reached then the event is labeled as undetected and ignored. When

an event is detected by a sensor node, the node broadcasts a message containing the

event data. The time-series data observed by a sensor of a certain modality can be

compressed to a probabilistic finite state automaton (PFSA) over an a priori fixed

alphabet [26]. The PFSA is designed to extract the maximum semantic information

from the raw sensor data, while at the same time it compresses the sensory data to

minimize the network bandwidth requirements.

Multi-modal data fusion is done at individual nodes in the Information Space

(IS) module. During the training phase we identify and store a number of PFSA

of interest, which we callsubpatterns, in the IS of a sensor node. An example of

such a subpattern is the pressure signature of a car passing by a pressure sensor

(Section 3.1). In the operational phase, when an event is observed by the sensor,

the IS at the sensor node will construct a PFSA based on the time-series data from

the sensing unit. The constructed PFSA will be compared against the library of

subpatterns and asemantic distance [20] will be derived from each of the existent

subpatterns. If the constructed PFSA has a semantic distance less than a givenǫ

with regards to a particular subpattern, we conclude that the sensor has detected

that subpattern, and we have asubpattern match.

After the IS matches a computed PFSA to a specific subpattern, it sends to the

network controller the messagesubpatternObserved that contains the subpattern

ID and the metric which is the semantic distance between the observed subpattern

and the subpattern stored in the databank. The exact time when the message is sent

by the IS depends on the sensor modality, since the IS has to collect enough data in
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order to construct a PFSA. On receiving the messagesubpatternObserved from the

IS, MDSTC appends to it some control information such as the node position, node

ID, the time, and broadcasts it as the messageSubpattern. In this way the neigh-

boring nodes are notified about the observed subpattern. The messagesSubpattern

can be used for target localization (see [30]).

Based on the observed subpattern and received subpatterns from other nodes,

the IS will try to decide on a composite pattern. Namely, at each node, the data

received from sensors of different modalities is fused locally in order to generate

patterns of interest which we callcomposite patterns. If successful, the IS notifies

MDSTC about the decided composite pattern.

A composite pattern is the Cartesian product of subpatterns in each modality. If

we haveM > 1 different modalities, a composite patternP = {P 1, P 2, . . . , PM}
is aM -tuple of subpatterns, one subpattern for each modality. At each node, the

Information Space stores a set of composite patterns of interest,P, in a so-called

databank. The databank contains, for each stored pattern of interest and for each

individual subpattern, the minimum number of sensors of that modality that are

required to observe the subpatternNPj = (pj,1, pj,2, . . . , pj,M ), pj,l ≥ 1,∀ 1 ≤
l ≤ M . A pattern of interest has an associated maximum lifetime that represents

the period during which the pattern is observable.

3.1. Constructing a Subpattern

To construct subpatterns in modalitym, a sensing model for modalitym is

assumed. We show next how subpatterns are constructed for pressure sensors; the

pressure sensor model in this case is omni-directional, but this is not a requirement

for other modalities. The data reading of a pressure sensor changes as a moving

object passes by (Figure 2(a)); when a mobile object approaches the pressure sen-

sor, different paths of the target determine different time series data for the sensor.
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Let d be the minimum distance between the object and the sensor at any moment of

time (Figure 2(b)); the solid line corresponds to the subpattern (trained PFSA when

d = 0), which corresponds to the time series data (solid curve) in Figure 2(c). The

PFSA constructed from the time-series data starting when the target was at distance

d = 1 meter to the sensor is shown as a dotted curve in Figure 2(b).
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Figure 2: Semantic distance for pressure sensors

When the object is at the same location as the sensor we are guaranteed that we

have a perfect subpattern match. This coincides with the concept ofclosest point of

approach (CPA) events [31, 32, 33]. In other terms, when the object passes closest

to the sensor node, the sensor’s signal reaches a peak and the event is signaled. The

captured event is called aCPA event. The signal peak of the CPA event is directly

related to the distance between the object and the sensor because the signal-to-

noise ratio of sensing decreases with the distance. The closer the target is to the

sensor, the higher the signal peak of the CPA event is. The difference between two

time series data is reflected in the so-called semantic distanceǫ.

For magnetic sensors, the subpatterns are constructed exactly the same way as

for the pressure sensors. However, the subpatterns of video sensors are constructed
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differently and they do not incur CPA events. Therefore the PFSA constructed by

the video sensors will only be used for pattern classification but not for estimating

the event location.

4. Network Design Space

MDSTC is part of the Network Design Space (NDS) module; it has has several

responsibilities: adjust the transmission power based on the battery power, com-

munication with other nodes, maintain and provide statistics of this communication

to the IS module, cluster multi-modal sensor nodes in the space-time vicinity of an

event, identify sensor nodes to be included or excluded from the clusters, request

sensor nodes to move in order to improve the quality of the data fusion or to cover

sparse regions in which events are expected, coordinate the detection of events and

correlate events based on spatial-temporal occurrence. The precluster and cluster

formation of DSTC are adapted in MDSTC to the heterogeneity of the sensors;

this adaptation is straightforward. To improve the quality of data needed for de-

ciding on a composite pattern and application-dependent computations (such as

estimating the target location, velocity, and predicting its trajectory), the cluster

also adapts its topology to the requirements of the IS (see Section 4.1) by adding

selected sensors (Sections 4.2 and 4.4) in specific locations (Section 4.3).

Each multi-modal cluster has an associated maximum lifetime. When the max-

imum lifetime expires, the cluster is disbanded by the cluster head. Thus all cluster

members, including the cluster head, become free. The cluster head can also dis-

band the cluster when its battery power falls below a certain threshold.

When the mobile target moves through the sensor network, a node other than

a cluster head may observe the pattern better. Since the cluster head is selected

as the node that currently observes the event the best, we may need make that
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node as the cluster head. In this case, we may need to disband the current cluster

and form another cluster. The local network stability may suffer if we create and

disband clusters as soon as nodes observe better than the current cluster heads. We

then take alazy approach, to maintain stability: we allow the cluster to live for

at least some period of time, that we callmin lifetime. During themin lifetime,

the cluster head does not change due to a better composite metric for the same

composite pattern. Once themin lifetime expires and beforemax lifetime expires,

it is possible for a cluster member or a non-cluster member to become a cluster

head and force the current cluster head to disband the cluster.

4.1. Dynamically Changing the Local Topology

We recall that the IS of the node knows a priori the number of nodes of each

modality needed to distinguish between subpatterns or composite patterns. Sensors

need to be moved in two distinct cases. One case is when the IS of the node

determines that it has too little information to properly identify either a uni-modal

or a composite pattern of interest, or it needs better quality data for composite data

fusion. Another case is when the IS of a node is notified that the trajectory of a

mobile target will intersect its sensing coverage region and it has determined that

there are not enough sensors of certain modality within the node’s communication

region to be able to do data fusion.

In either case, the IS sends the messagemoreData to the MDSTC with the

sensor modality needed, the number of extra sensors of that modality needed, and

the desired region where the sensors are needed (the center and the radius). The

MDSTC broadcasts the messageaddNode appended with the node ID, the node’s

physical location or coordinates, the sensor modality needed, and the desired re-

gion. The number of sensors needed of that modality is stored by the MDSTC.

On receiving the messageaddNode:
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- If the sensor is of the modality requested by the requester node and the requester

is further away from the center of the desired region, then drop the message. - If

the node’s modality is not the same as the requested one and the node’s location is

not far from the desired location, then broadcast the message further.

- If the node’s modality is the same as the requested one then the message is sent

to the IS for further processing (see Section 4.2) and may agree to participate. We

note that the nodes that have agreed to the request have to move within to the

requester’s transmission range.

Among the sensors that have responded positively to the request, the MDSTC

of the requester will decide where they will be placed (see Section 4.3) and which

of them will be asked to move (see Section 4.4).

4.2. When a Node Decides to Move

The decision of moving to a specific region is done in the IS. We note that, if

the node is not within the communication range of the requester node, the node

has to move into the requested region in order to participate in data fusion and

receive subsequent messages. If the node is capable of moving and is not part of

any cluster, then the IS estimates the cost of moving per unit distance

cpud = 1/(P · ρ)

based on the node’s powerP (the more power, the lower the cost) and thedensity

ρ, namely how many sensors of the same modality exist within the node’s commu-

nication range (the lower the density, the higher the cost). This value together with

the speedspeed which is the average speed the sensor can move and the requester

ID is sent as the messageAvailable to the MDSTC. When the MDSTC receives

the messageAvailable from the IS, it appends the node ID and the node position

and the message is then sent to the neighbor from which the messageaddNode has
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been received. On receiving the messageAvailable not addressed to itself, a node

forwards it to the node from which the messageaddNode has been received. On

receiving the messageAvailable addressed to itself, the MDSTC of the requester

sends it to the IS. The information from the messagesAvailable received within the

timeout period will be used by the IS of the requester to select a number of sensors

and request them to move. The selection is based on (i) the cost per unit distance,

(ii) the interval of time necessary to move, computed using the speed of the mobile

sensor and its distance, and (iii) the number of sensors that already exist in the

region where the sensor will be required to move, which we call itobstruction.

Let C be the region of interest in which the sensors will be asked to move by a

requester node; for simplicity we assume thatC is a circle of radiusR. Sensors of

the desired modality will be placed in regionC, which is included in the requester

communication region, in order for the requester to be able to form a cluster. In-

stead of requiring sensors to move arbitrarily to any location inC we propose a

uniform placement of them. To this end, we propose two methods in whichC is

partitioned intoK desired regions (see Section 4.3). For each of the available sen-

sors, let us sayM in total, we compute the distance between the node and each

desired region. In Section 4.4 we present a Greedy algorithm that selects nodes for

each of theK regions, using theM × K such distances.

4.3. Partitioning a Region of Interest C

We propose two methods of partitioningC into K desired regions:

(i) Concentric Circles: RegionC is partitioned intoK equidistant concentric cir-

cles (see Figure 3(a)).

(ii) Circular Sectors: RegionC is divided intoK circular sectors (see Figure 3(b)),

of angle⌈360/K⌉.
We compute the distance a node (whose modality is needed by the requester
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Figure 3: Partitioning the communication region of the requester intoK desired regions

noder) has to move in order to reach any of theK partitions ofC. For any node

u, let Xu be the location of nodeu.

4.3.1. Concentric Circles

RegionC is partitioned intoK equidistant concentric circles (see Figure 3(a)).

The K concentric circles,{Ci|i = 1, . . . , K}, createK − 1 rings or annulii2,

{CSi|i = 1, . . . , K − 1}, with the cross-section sizeR/K; the radius of the circle

Ci is i · R
K

. By abuse of notation, letCS0 be the circleC1.

We will compute the distance a node whose modality is needed by the requester

r has to move in order to reach any of theK regions. Letw be such a node whose

locationXw is outsideC. Letd(Xw; CSi), 0 ≤ i ≤ K−1, be the distance between

Xw and the regionCSi, which is the smallest distance the nodew needs to move

in order to touch the boundary ofCSi. Then

d(Xw; CSi) = Xw − (i + 1)R/K

for anyi, 0 ≤ i ≤ K − 1.

2An annulus is the region between two concentric circles of different radii.

17



4.3.2. Circular Sectors

We divideC into K equal circular sectors{Si, i = 1, . . . , K}, C = ∪K
i=1Si

(see Figure 3(b)). The central angle of each sector isβ = 360
K

. For simplicity, we

assume that360 is divisible byK. EachSi is defined by the centerXr and the two

radii R(i−1)·β andRi·β : Si = (Xr; R(i−1)·β ; Ri·β) 3. Note that two consecutive

circular sectorsSj andSj+1 share the radiusRj·β.

Consider some nodew whose modality is desired by the requesterr and whose

locationXw is outsideC. Let Dw be the distance fromXw andXr andαw be the

angle under which nodew is seen by noder (see Figure 4).

α w

X

D

X

X

X

D

r

w

w w

r

= location of node

= location of node

= distance to node

r

w

w

w

Figure 4: Nodew is outsideC and needs to move insideC

Let d(Xw; Si), 1 ≤ i ≤ K, be the smallest distance betweenXw and any

location in the sectorSi, which represents the smallest distance nodew needs to

move in order to touch the boundary ofSi. To computed(Xw; Si), i, 1 ≤ i ≤ K,

we have five cases.

Case 1) αw < (i − 1)β and(i − 1)β − αw < π
2 . Let γ = (i − 1)β − αw

(Figure 5(a− b)). We have two subcases:

Case 1.1) Dw cos γ > R (Figure 5(a)). The closest point inSi to Xw is the

intersection point ofC and the radiusR(i−1)·β . The distance nodew needs to move

3We denote byRα the ray ofC at the angleα from thex axis.
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in order to reachSi is

d(Xw; Si) =
√

(Dw sin γ − R)2 + (Dw cos γ)2.

Proof. The distanced(Xw; Si) is the lengtha of the edge in Figure 5(a), and

a =
√

b2 + c2 whereb = Dw sin γ − R andc = Dw cos γ. ¤

Case 1.2) Dw cos γ ≤ R (Figure 5(b)). The closest point inSi to Xw is on the

radiusR(i−1)·β . The distance nodew needs to move in order to reachSi is

d(Xw; Si) = Dw sin γ.

Case 2) αw < (i − 1)β and(i − 1)β − αw ≥ π
2 (Figure 5(c)). The closest

point inSi to Xw is Xr. The distance nodew needs to move in order to reachSi is

d(Xw; Si) = Dw + ǫ

whereǫ > 0 is a value close to0 and is needed to ensure that the sensorw will not

be placed on the same location asr.

Case 3) (i−1)β ≤ αw ≤ iβ (Figure 5(d)). The closest point inSi to Xw is the

intersection point ofC and the radiusRαw
. The distance nodew needs to move in

order to reachSi is

d(Xw; Si) = Dw − R.

Case 4) αw > iβ andαw − iβ < π
2 . This case is similar to Case 1.

d(Xw; Si) =
√

(Dw sin γ − R)2 + (Dw cos γ)2.

Case 5) αw > iβ ∧ αw − iβ ≥ π
2 . This case is similar to Case 2.

4.4. Placement Algorithm

We propose AlgorithmChoose-1-out-of-M. Executed at the requester noder,

it assigns to each circular sector an available sensor with the lowest cost. Assign-

ing sensors to concentric circles can be done in similar manner, whereCSis are
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Figure 5: Moving nodew into the sectors of the desired regionC

considered instead ofSis. The proposed algorithm can be easily extended to select

D sensors out ofM for each region, or to assign different number of sensors to

different regions.

Algorithm Choose-1-out-of-M uses the following variables. For each sensori,

1 ≤ i ≤ M , the variablexi ∈ {0, 1, . . . , K} indicates either the circular sector

for which sensori has been selected (xi ≥ 1) or that the sensori is still available

(xi = 0). For each circular sectorj, 1 ≤ j ≤ K, the variableyj ∈ {0, 1, . . . , M}
indicates either the sensor assigned to it (yj ≥ 1) or that the circular sector is still

available (yj = 0).

The algorithm has at mostK +1 steps. Step0 is the initialization. Thexis and

yjs are set to zero. For each of theM sensors andK circular sectors, we compute

d(Xi; Sj), the minimum distance sensori needs to move in order to reach the

boundary of the desired regionSj , following the method described in Section 4.3.

We then computecost(i, j), the cost of moving sensori to regionSj as the product

of the distanced(Xi; Sj) and the cost per unit distancecpud(i) of sensori, reported

by sensori in the messageAvailable.

At each stepk, 1 ≤ k ≤ K, the algorithm selects an available sensor that has

the minimum cost for some region that has not been occupied and invites that sen-
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sor to move in that region. An optimal solution for AlgorithmChoose-1-out-of-M

seeks to select moves of the minimum cost, ignoring the moving time. Alterna-

tively, we can consider moves of the shortest time as an alternative for the objective

function; in that case we will computetime(i, j) to be the time it takes for sensor

i to move to regionSj , which is simply the ratio betweend(Xi; Sj) and the speed

speed(i) reported by sensori in the messageAvailable.

Theorem 2. Algorithm Choose−1−out−of−M assigns min{M, K} sensors,

one per circular sector.

Proof. After Step 0, the conditionxi = 0 ∧ yj = 0 is true for all sensorsi,

1 ≤ i ≤ M , and all circular regionsj, 1 ≤ j ≤ K.

In Step 1, the instructionL1 selects the minimum cost value among all sensors

and all circular sectors. The sensori0 and the circular sectorj0 with that minimum

cost will be assigned to each other by the instructionL3. Neither the sensori0 nor

the circular sectorj0 will be considered for future selection by the instructionL2

executed during some stepk, 1 < k ≥ K, sincexi0 = j0 andj0 ≥ 1, andyj0 = i0

andi0 ≥ 1.

At each stepk, 1 ≤ k ≤ K, one sensor gets assigned to a single circular region,

so the number of available sensors is decremented by one. IfM , the number of

sensors, is less than or equal toK, then the instructionL1 will be executed exactly

M times and all theM sensors will be assigned toM regions. The instructionL2

will stop the algorithm in caseM < K. If M > K then the instructionL1 will

be executed exactlyK times andK sensors will be selected and assigned toK

circular sectors. ¤

The following communication occurs:

- On receiving one or more messagesAvailable, the IS decides which nodes are to
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Algorithm 4.1 AlgorithmChoose − 1 − out − of − M

Input:

M total number of sensors

K total number of sectors

Xr location of the requester node

{ Xi — 1 ≤ i ≤ M}location of sensori

cpud(i), 1 ≤ i ≤ Mcost per unit distance of sensori

Step 0 (Initialization):

for i = 1 to M do setxi = 0

for j = 1 to K do setyj = 0

for i = 1 to M do

for j = 1 to K do

computed(Xi; Sj)

computecost(i, j) = d(Xi; S − j) × cpud(i)

Step k, 1 ≤ k ≤ K:

L1 selecti0 andj0 such that

cost(i0, j0) = min{cost(i, j)|(1 ≤ i ≤ M) ∧ xi = 0

∧(1 ≤ j ≤ K) ∧ yj = 0}
L2 if no sensor is available then STOP

L3 setxi0 = j0; setyj0 = i0 // assign sensor to that region

be invited to move and where they will be placed.

- The MDSTC of a node that receives the messagemoveNode not addressed to it

forwards it to the neighbor that has forwarded the messageAvailable to it.

- On receiving the messagemoveNode, the MDSTC of the desired node arranges

for the node to move.
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5. Application - Tracking a Mobile Target in an Urban Scenario

In an urban environment, the ambient noise for certain type of sensors is more

prevalent than in an open field or underwater due to buildings, people, motor ve-

hicles, and so on. We simulated the sensor network in an urban environment in

NS-2, using sensory data collected during training experiments executed in our

laboratory for locating and tracking a Segway RMP robot (as the moving object).

Each sensor from the laboratory has been simulated in NS-2 and its readings were

emulated using the readings of that sensor in the lab during the training phase. The

spatial-temporal information of the Segway’s movement collected by individual

sensors are fused in NS-2 by clustering the sensors along the estimated path of the

Segway. The cluster heads of each of the formed clusters then estimate the Seg-

way’s position and velocity. The urban scenario in NS-2 simulates the positioning

of the sensors in the lab as follows. Three types of sensors were deployed on roads

arranged as a Manhattan-like grid (see Figure 6): pressure sensors, video sensors

(cameras), and magnetic sensors. A large brown block represents a building and a

yellow dashed line is a road marking for a 20-feet wide two-way street.

Figure 6: Urban multi-modal sensor network
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312 fixed pressure sensors are embedded in the ground of two-way streets.

Each pressure sensor generates an analog voltage due to the pressure applied when

an object goes over it. This voltage is fed into a 10-bit A/D channel and thereby

the output ranges from 0 to 1023. Video sensors, mounted on the buildings, have

adjustable view angles so that the sensing coverage can be easily changed; there are

six of them on each building. A video sensor takes snapshots of the scene within

its view at some certain frequency and these images are used to construct PFSA.

72 magnetic sensors are initially positioned close to the street intersections and are

mounted on some mobile platforms that can move freely along the streets; they can

be quickly relocated if necessary.

Nodes communicate wirelessly using the two-ray ground reflection radio model.

Each sensor node uses the 802.11 channel access scheme. The AODV algorithm is

employed as the routing protocol for the entire network. The transmission power

of a single node is 0.3W and the reception power is 0.2W. We recall that a sensor

broadcast its observed subpattern only if the stimulus created by the target is above

a certain threshold. To save more energy, we consider a sleep-and-awake schedule

for the sensor nodes, A-SAS, proposed by [11]. For a 1500 second–simulation,

around 50% percent of the nodes are awake at any moment. Table 5 gives the en-

ergy consumption of the nodes when A-SAS is used or not. We note that the nodes

that have joined a cluster consume more energy than the sensing only nodes. We

have incorporated and run the rest of the simulations using the A-SAS schedule.

Sensing only nodes Nodes once in a cluster

WithoutA-SAS 0.2194 0.2905

With A-SAS 0.1052 0.2068

Table 2: Average energy consumption per sensor node during a 1500 second–simulation (in Joules)
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In Section 3 we showed how subpatterns for pressure, magnetic, and video

sensors are constructed during the training phase. We consider composite patterns

that are3-tuple of subpatterns, one from each modality. During the operational

phase we locate and track vehicles carrying large amounts of metallic material.

Such a vehicle will trigger subpattern matches at the pressure, video, and magnetic

sensors that are geographically closer to its moving location. Thus a composite

pattern that involves PFSA from these multi-modal sensors could be identified and

a heterogeneous cluster that contains the sensors that matched the subpattern be

formed. Such a vehicle is deemed by our sensor network as suspicious and is

marked with yellow color in Figure 6. Vehicles that do not carry large amounts of

metal will not trigger a subpattern match at any magnetic sensor, thus a composite

pattern that involves PFSA from pressure, video and magnetic sensors cannot be

identified. Such a vehicle is considered by our sensor network as benign and is

marked with green in Figure 6.

Based on the speed of the robot and the fact that a cluster needs some time

to form, we fix the maximum lifetime of any cluster to be 80 seconds and the

minimum lifetime of any cluster to be 50 seconds.

Target location estimation is done at the cluster head after the cluster is formed.

We use a triangulation scheme based on the location of the cluster members to esti-

mate the target location which works as follows. When a cluster has been formed,

each cluster member starts estimating its distance to the target and sends that dis-

tance to the cluster head. Then the cluster head collects these local estimators in-

cluding its own estimator and finalizes a localization via a non-linear least squares

triangulation algorithm [34]. Such a triangulation algorithm requires at least three

estimators from the nodes in a cluster. In general, more nodes lead to better local-

ization. If the size of a cluster is less than three, a localization cannot be properly

done. We consider only that the magnetic and the pressure sensors contribute to
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the triangulation for heterogenous clusters. This is justified on the basis that while

a video sensor may be more important for long distance surveillance, for target lo-

calization the utility of magnetic sensor data and the pressure data is much higher.

Both magnetic and pressure sensors are assume to be isotropic, which means that

the sensor measurement depends only on the distance to the target.

Figure 7: Tracking a suspicious vehicle using composite patterns

The triangulation scheme used by the cluster head has a smaller error than

individual estimations sent by individual sensor nodes, since, without clustering,

the localization error of a pressure sensor could be of 1 meter.

Figure 7 shows a snapshot of the NS-2 simulation for heterogeneous cluster-

ing. Arrows indicate the estimated direction of the target (estimated velocity) and

the origin of the arrow indicates the estimated position of the target. Homogeneous

clustering using the same sensor network is shown in Figure 8; three homogeneous

clusters, corresponding to the three modality sensors, form around the target. How-

ever, only the cluster of pressure sensors generates target location estimation useful

for tracking, because the other two clusters do not have good location estimation.

Using only homogeneous clusters, it is impossible to do a proper classification
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Figure 8: Snapshot of homogeneous clustering

when two targets can trigger similar subpatterns for some modality sensors but

not for all, unless we add another layer of inter-cluster communication. Thus the

main disadvantage of a homogeneous cluster is that it cannot properly distinguish

benign targets and malicious targets, except for the cluster of magnetic sensors,

and the network cannot selectively track the targets, which leads to unnecessary

cluster formation and therefore wastes the network resources. In Figure 7, when

two vehicles are present, one labeled as ”suspicious” and one labeled as ”benign”,

the benign vehicle carries little metal and will not trigger subpattern generation at

the magnetic sensors, due to the fact that its magnetic sensory data does not reach

the threshold imposed (see Section 3).

To compare the localization performance, we modify MDSTC to form either

heterogeneous or homogeneous clusters in two scenarios: (1) homogeneous clus-

tering (homog Clus), (2) heterogeneous clustering (heterClus).

For both scenarios, only one target is included since an homogeneous cluster

cannot distinguish between the benigna and malicious target. We consider different

paths for the target. The path parameterp gives the ratio of the distance between

the target and the right building and the width of the road. For example, whenp is
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0.5, the target moves exactly in the middle of the street. We rangep from 0.4 to 0.6

by the increment of 0.05 in the simulation. We conduct a 1500-second simulation

for eachp in each scenario.

Figure 9 gives the histogram of the number of clusters formed during the 1500-

second simulation for homogeneous clusters and heterogeneous clusters. The av-

erage number of clusters is around ten or eleven, while in the case of homogeneous

clustering the average is over 50.
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Figure 9: Histogram of the number of clusters formed

Table 3 gives the average error of position estimation for various path param-

eters using heterogeneous and homogeneous clustering. We note that the hetero-

geneous clustering provides a better localization for the malicious target than the

homogeneous one. The reason is that in the heterogeneous scenario, the number

of clusters formed is smaller than the homogeneous scenario, but the cluster size

is larger. A larger cluster results in a better triangulation estimation. We also note

that for some path parameters, the homogenous clustering does not give any es-

timation. This is due to the fact that the cluster size should be at least 3 for the

triangulation scheme to work and in the homogeneous scenario, either the mag-

netic sensors are geographically far away from each other or the pressure sensors
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have a relatively short sensing range. It is very difficult for the targetto trigger

three magnetic sensors or three pressure sensors roughly at the same time.

Scenarios\ pathp 0.4 0.45 0.5 0.55 0.6

heter Clus 0.5917 0.5644 0.5443 0.6050 0.6822

homog Clus None 0.7950 0.6468 None None

Table 3: Average localization estimation error in meters for homogeneous and heterogeneous sce-

narios and various path parameter values (None means there is no estimation during the simulation)

Table 4 gives the total number of estimations done for both scenarios. We note

that the heterogenous clustering does many more estimations than the homoge-

neous one because it allows different types of sensors to be included in one cluster.

Hence our heterogeneous clustering makes the tracking more robust.

Scenarios\ pathp 0.4 0.45 0.5 0.55 0.6

heter Clus 35 28 59 11 14

homog Clus 0 6 39 0 0

Table 4: Number of estimations done in both scenarios and various path parameter values

All three types of sensors must be present in the vicinity of the target to be

able to form a heterogeneous cluster. If the sensor field is not dense enough, more

likely a malicious target will be missed. To show the need of moving sensors and

the purpose of our proposed moving algorithm, we purposely put some magnetic

sensors to sleep. In this way we create a local area sparse in magnetic sensors.

As shown in Figure 10, sensors number 5 and 34 (gray dash boxes) are sleeping

and no magnetic sensor monitors that intersection. Thus the track of the malicious

target will be lost when it reaches that intersection since no cluster will be formed

without at least one magnetic sensor. We have implemented the first method of

dividing the region of interest using concentric circles and the placement algorithm.
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That will trigger the magnetic sensor number 27 to move to that intersection, as

shown in Figure 11. For our simulations, since we consider that every composite

pattern needs at least one node of each modality, we have a degenerated case of

the method using concentric circles, since only one magnetic sensor is requested to

move. A heterogeneous cluster is formed in the vicinity of the intersection around

the malicious target and the track of the target is followed further.

Figure 10: Sparse sensing area at some intersection

Figure 11: A magnetic sensor moves to a sparse sensing area

6. Conclusion and Future Work

We proposed a network controller that is responsible for clustering multi-modal

sensor nodes only in the space-time vicinity of a moving object, thus improving

data fusion and localizing and tracking the object that has triggered the composite

pattern. We showed that in general composite-base estimation is more accurate
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than individual estimation, i.e. multi-modal (heterogeneous) clusters offer better

estimation than homogeneous clusters. Thus multi-modal clusters are better for

estimation, as well as for classification.

Our multi-modal clustering algorithm MDSTC considers only one-hop clus-

ters. In order to save energy, sensor nodes may reduce their transmission power

so they may need to form multi-hop clusters in order to group enough sensors of

various modalities. We plan to use the work of [18, 19] to extend the results of an

one-hop cluster to a multi-hop cluster where the transmission schedule of the nodes

within the cluster plays a much more important factor than it does in an one-hop

cluster. We plan also to design a traffic analyzer that observes the local traffic at a

node in order to predict future events and alter the transmission schedule based on

patterns of communication detected in the past and stored locally at the node.
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