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Abstract—Extending the lifetime of wireless sensor networks
requires energy-conserving operations such as duty-cycling. How-
ever, such operations may impact the effectiveness of high-fidelity
real-time sensing tasks, such as object tracking, which require
high accuracy and short response times. In this paper, we quan-
tify the influence of different duty-cycle schemes on the bearings-
only object tracking efficiency. Specifically, we use the Maximum
Likelihood localization technique to analyze the accuracy limits
of object location estimates under different response latencies
considering variable network density and duty-cycle parameters.
Moreover, we study the tradeoffs between accuracy and response
latency under various scenarios and motion patterns of the object.
We have also investigated the effects of different duty-cycled
schedules on the tracking accuracy using acoustic sensor data
collected at Aberdeen Proving Ground, Maryland, by the U.S.
Army Research Laboratory (ARL). 1

I. I NTRODUCTION

Real-time, accurate object tracking is key to many applica-
tions such as vehicle tracking and security surveillance. Recent
developments in Wireless Sensor Network (WSN) capabilities
make them suitable for many applications with real-time
constraints and tight deadlines on the network responses.
Deadlines on the network responses to the task of interest
may arise for various reasons such as the necessity for fast
actions to the presence of a particular object in some strategic
locations in the field. Most of the time, these networks involve
a large number of sensors distributed in a vast geographical
area with limited accessibility once deployed. Therefore, it
is crucial to analyze and understand the expected real-time
performance of WSNs before the actual deployment.

The real-time guarantee for WSN performance makes its
design very challenging due to various reasons such as,
(1) physical events usually have uncertain and unpredictable
spatio-temporal properties which make the modeling process
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the official policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defense, or the UK
Government. The US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

The authors would also like to thank Dr. Raju Damarla for availing us the
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Fig. 1. Tracking scenario

hard,(2) besides the real-time responsiveness of the network,
other issues such as energy efficiency and response integrity
are also needed to be considered. Tracking accuracy, response
latency, and energy efficiency are among the most important
design metrics for tracking applications [1].

Our goal is to study the accuracy vs. response latency
performance trends for an object tracking application with
energy constraints. The key question of interest is: “what
is the impact of different parameters of an energy saving
design on the performance quality and responsiveness of
the tracking task?”. As an energy efficient scenario, in this
work, we consider a duty-cycled network with random wake-
up schedules for different sensor nodes, and focus on the
delays that system may face from the duty-cycled scheme.
An end-to-end delay in the network system also contains
communication delay from network traffic and packet losses
which are not of our focus in this work. We use both timeliness
and tracking quality metrics to quantify the performance of
the tracking process for each set of duty-cycle parameters.
Such a multi-attribute quality consideration is in-line with
Quality of Information (QoI) principles for sensor network
established in [2]. The QoI metrics are highly affected by
many factors including(1) object characteristics (the number
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of concurrent objects, their velocities, and moving patterns),
(2) sensor characteristics (activation schedule, measurement
quality, measurement type, radio range, sampling rate and
transmission rate), and(3) network characteristics (topology
and communication protocol).

In this work, we focus on an object tracking scenario
using a network of acoustic sensor (e.g. microphone) arrays
which are distributed in the observation region, see Fig. 1.
At any time, the Line of Bearing (LoB) of the object vs.
the sensor array center may be estimated by processing the
measurements of all the sensors in one array using Minimum
Variance Distortionless Response (MVDR) [3], Multi Signal
Classification (MUSIC) [4], or any other similar algorithm.
Having the LoB measurements of at least two sensor arrays
not collinear with the object, the fusion node can process the
information to localize and, ultimately, track the object(s) of
interest. Bearings-only object tracking has recently raised a lot
of interest in critical tracking applications [5] due to several ad-
vantages such as:(1) for an object with a smooth trajectory, the
LoB does not change abruptly, which enables outlier removal
from the measurements,(2) by using the MVDR or MUSIC
method, circular acoustic sensor arrays withM microphones
can provide information on bearing measurements of up to
M−1 objects in the field (MUSIC requires an a priori estimate
of the number of objects). This capability is a desirable feature
in multi-object tracking scenarios.

Analyzing the latency and accuracy metrics for the tracking
scenario of our interest is very challenging due to many
reasons including the random activation schedule of the duty-
cycled sensors, the unknown time of the object presence,
and the uncertain object trajectory. This work is concerned
in addressing the above issues. In particular, our main con-
tributions are:(1) performance analysis of QoI attributes and
their tradeoffs for bearings-only object tracking in duty-cycled
WSNs using Maximum Likelihood techniques;(2) extension
of the snapshot-base localization to the interval-based one and
derivation of their performance bounds; and(3) computation
of the probability distribution of the delay that an object
tracking task may experience before the availability of enough
number of applicable measurements.

The remainder of the paper is organized as follows. Sec-
tion II presents the related work. Section III overviews the
problem setting and our assumptions. Section IV describes
the QoI analysis of bearings-only object tracking based on the
Maximum Likelihood estimation techniques, and Section V
discusses the simulation results. Finally Section VI concludes
the paper.

II. RELATED WORK

Research on high quality tracking systems with close to
real-time responsiveness has been highly investigated by the
sensor network community in recent years. Various effective
techniques and approaches have been proposed and verified.
We here briefly review only a handful of them that are most
related to this study.

The work in [6] studies the quality and energy tradeoffs
for mobile object tracking by a wireless sensor network. It
discusses different activation strategies including synchronized
duty-cycled activation. Moreover, it is assumed that sensors
are binary detectors (with classical disk model) and, at any
given time, the centroid of all detecting sensors is used as
an estimate for the object location. It is also shown that the
duty-cycled activation offers a flexible and dynamic tradeoff
between the energy expenditure and tracking error when used
in conjunction with the selective activation based on the
trajectory prediction. Differently from our focus in this work,
authors in [6] do not analyze the effect of energy preserving
schemes on the response latency and achievable tracking
accuracy of the system.

The work in [1], [7], [8] presents the real-time design
and analysis of VigilNet, a large-scale sensor network system
which detects and classifies objects in a timely and energy effi-
cient manner. It provides a design framework and derivations
to guarantee the requested end-to-end deadline. The power
management system composes of both sentry and non-sentry
nodes where non-sentry nodes are sleep unless sentry nodes
activate them. The sensing model and tracking algorithm are
similar to those assumed in [6]. The contribution of our work
compared to [1], [7], [8] is in considering the problem of
bearings-only tracking and also analyzing the accuracy of
tracking vs. response latency to the tracking queries. We also
analyze the effect of duty-cycle parameters on the quality
metrics.

In [9], using Bayesian estimation techniques, the effect of
packet loss and network transport delays on the quality of
object localization is studied. Sensors in [9] are always on
and, hence, contrary to our work, the effect of delay due
to duty-cycling is not taken into consideration. As another
example of recent efforts on delay analysis for real-time
detection, [10] quantifies the tradeoff between the detection
delay and the false alarm rate. Besides classical disk model,
a probabilistic detection model for low SNRs is used in [10]
in order to analyze the minimum required network density
satisfying quality performance requirements.

Next, we go over the system assumptions and problem
specifications.

III. PROBLEM OVERVIEW

Throughout this work, we particularly study the tradeoffs
between the response latency and the tracking accuracy of
the system at times that a fusion node does not necessarily
hold a high quality prior information on the object state (its
recent location and velocity). This analysis is critical for many
different circumstances which we mention two of them next.

The first case occurs when an object initially appears in the
field, and the application has deadline requirements to receive
the object location information. In this case, it is essential to
analyze that how fast and with what accuracy the tracking
system can track the object.

The second case happens in query-based tracking appli-
cations where the tracking system may have two different



operating phases. The first phase corresponds to the time
that no query initiates from the user for that period of time.
In this phase, sensor nodes may perform a low-cost local
detection and report the available results to the fusion node
with a moderate rate. Consequently, the fusion node exploits
the global knowledge on sensor node locations and estimates
the object location. The second phase starts when at timetQ
a user initiates a query like: “report the object position at time
t∗ by the deadlineD”. Receiving this query, sensor nodes
switch to a higher sampling rate, perform a more advanced
local processing and send their local results to the fusion
node with a higher rate. Then, fusion node uses recent local
information and the prior knowledge of the network to provide
a high(er) quality estimate of the object location. In the case of
not receiving any new measurement betweentQ andtQ +D,
new location is estimated based on the prior information at
the fusion node.

Next, before focusing on the quality analysis, we introduce
the parameters and assumptions used through the rest of the
paper. As illustrated in Fig. 1, it is considered thatN sensor
arrays, which duty-cycle both their radios and samplers, are
distributed in an observation region. They all have the same
scheduling periodT , and duty-cycleβ = τon

T
(0 < β ≤ 1),

where τon is the duration of “on” (awake) state. All the
sensors in one array have synchronized wake-up times and
are considered as one sensor node which provides LoB mea-
surements with rateλs when it is on. Wake-up times for
different nodes can be either selected randomly or through a
systematic process. As it is shown in [1] and [8], at relatively
largeβ (e.g.,β > 0.05), the difference between the random
and optimal scheduling can be practically ignored. Since the
random scheduling of the wake-up times does not need any
extra control message and it is not affected by time drifts, we
choose a random scheduling for this work. In other words,
it is assumed that different sensor nodes select their wake-
up schedules independent of each other and with a uniform
distribution over the cycle ofT .

Fig. 2 illustrates the geometry of the object location vs.
a sensor node at one snapshot. The object location and
velocity at time t ≥ 0 are P (t) = [Px(t), Py(t)]

T and
V (t) = [Vx(t), Vy(t)]

T , respectively. Theith sensor node
location is S(i) = [Sx(i), Sy(i)]

T , and the object state at
time t is denoted byZ(t) = [P (t),V (t)]T . The true bearing
angleθi(P (t)) reflects the Direction of Arrival (DoA) of the
object at the time that object emitted the acoustic signal. It is
assumed that the object speed is small enough such that the
time retardation factor due to changes in the object location
during the propagation delay is negligible. At any timet, the
true bearing value from theith sensor node is computed from

θi(P (t)) = arctan

(

Py(t)− Sy(i)

Px(t)− Sx(i)

)

. (1)

The bearing measurement at timet from theith sensor node,
θ̃i(t), i = 1, . . . , N , is subject to the additive zero-mean

Fig. 2. Relative geometry of the object bearing line with respect to a sensor
node.

Gaussian noise,

θ̃i(t) = θi(P (t)) + ni(t), ni(t) ∼ N (0, σ2
i ). (2)

It is assumed that sensor nodes are sufficiently separated so
that the noise terms are independent. The value of bearing
measurement varianceσ2

i depends on the signal to noise ratio
(SNR) of the received acoustic signal at nodei and is a
function of the relative distancedi between this node and the
object. In our numerical analysis, we useσ2

i = (Kdαi )
2 for

the bearing measurement variance [11], whereK is selected
such that bearing error at1 km from the object reaches5o.
From [11]α can be chosen to be0, 1 or 2, and we setα = 0
in our simulations in Section V-A.

We also assume that only one object appears at any location
in the observation region and its speed is low enough to allow
sufficient time for awake sensor nodes to sense the object.
Moreover, the object does not have any knowledge of the
sensor node positions and, therefore, it can not intentionally
choose a trajectory that reduces the detection probability. We
furthermore use a disk model for sensing, in which a LoB of an
object can be measured by a sensor nodei, with measurement
noise varianceσ2

i , if it is located inside a circle of radiusR
around the sensor node center. Using a localization algorithm,
the fusion node estimates the object location based on the
recent bearing measurements and available information on
the object moving patterns. For the rest of the paper, we
assume that the fusion node uses a Maximum Likelihood (ML)
localization algorithm. The ML localization method can be
used either to initially establish a track or to localize the object
at any snapshot during the tracking task. Next, we describe
the ML estimation techniques for both snapshot and interval-
based bearings-only object tracking and analyze their quality
performance.

IV. QUALITY ANALYSIS FOR BEARINGS-ONLY OBJECT

TRACKING

In this section, we study the accuracy and latency qual-
ity metrics for the ML estimation using measurements of
both a single snapshot and an interval. Since localization
performance of an object is highly depend on the availability
of the LoB measurements, we also investigate the statistics
of available measurements at any snapshot and during each
interval. Moreover, we analyze the distribution of a latency



that the localization task may face before having enough
measurements for a well-posed tracking task.

A. Single snapshot-based tracking

As the first case, we consider a localization based on the
estimated bearing measurements of one snapshot at timet.
This case is useful for making fast responses to the tracking
queries with short deadlines. When a query requests the object
location at a later timet∗ (t∗ > tQ), the snapshott can be
selected either very close tot∗ which results in high accuracy
localization, or closer totQ which results in a faster response
to the query. For the case thattQ > t∗, the snapshott can
be selected close totQ. In any case, fort 6= t∗, using the
available information on the object moving patterns, the object
location P̂ (t∗) at t∗ can be estimated from the computed
object location at timet, P̂ (t).

In order to have a well-posed localization problem, it is
required to have LoB measurements from at least two sensor
nodes non-collinear with the object. Following a query at
time tQ, due to random wake up schedules, the system may
experience a delay before the object is simultaneously within
the sensing range of two awake sensor nodes. The distribution
of such delay is studied in Section IV-A1. Moreover, at any
snapshott, we may have different number of awake sensor
nodes in the relative distance ofR from the object. In this
section, we first analyze the localization accuracy of a fixed
number of measurements at the snapshot and then investigate
the effect of randomness from wake up schedules.

Let N be the total number of sensor nodes in the rangeR of
the object locationP (t). At any timet due to the randomness
of wake-up schedules, we may haveNa (0 ≤ Na ≤ N )
awake sensor nodes providingNa LoB measurements. For
a feasible localization, we require to haveNa ≥ 2 awake
sensor nodes. The set of awake sensor nodes is denoted by
U = {SI1 , . . . , SINa

} where indicesI1, . . . , INa
are sensor

node IDs. Similar to [12] and with some notation adaptation
and considering the possible non-equal measurement noise
variances, from the Gaussian assumption of the measurement
noise, ML localization at snapshott can be formulated as

P̂ (t) = arg min
P (t)

Na
∑

k=1

(

1

σ2
Ik

|θ̃Ik − θIk(P (t))|2

)

. (3)

In (3), P̂ (t) = {P̂x(t), P̂y(t)} is the object location estimate
at timet, θ̃Ik(t) is the noisy bearing measurement from sensor
nodeIk, andθIk(P (t)) is its corresponding hypothesized bear-
ing computed from (1). In addition,σ2

Ik
is the measurement

noise variance of sensor nodeIk. Due to the nonlinearity of
θIk(P (t)), Eq. (3) is a nonlinear Least-Squares estimator.

The ML estimator in (3) is asymptotically unbiased [13],
and its error covariance is bounded below by the Cramer-
Rao Lower Bound (CRLB). In addition, the covariance of ML
estimator converges to CRLB whenNa goes to infinity, and for
measurements with high SNR the error variance approaches
the CRLB with smaller values ofNa [13].

Similar to derivations in [12], the Fisher Information Matrix
(FIM) J for estimation problem (3) is

J =

Na
∑

k=1

1

σ2
Ik

∇θIk(∇θIk)
T , (4)

where∇ =
[

∂
∂Px(t)

∂
∂Py(t)

]T

. Further simplification results in

J =

Na
∑

k=1

(

1

σ2
Ik
d2Ik

Ak

)

, (5)

in which dIk is the relative distance between the object and
sensor nodeIk and

Ak =

(

sin2(θIk) − sin(θIk) cos(θIk)
− sin(θIk) cos(θIk) cos2(θIk)

)

. (6)

If C is the localization error covariance of Eq. (3), CRLB can
be computed by taking inverse ofJ , and therefore we have
C > J

−1.
Similar to [14], and with a small notation adaptation, we

set the expected localization error metric

ρ(U) = [C]1,1 + [C]2,2, (7)

which is a function of the awake sensor nodes setU =
{SI1 , . . . , SINa

}. Here [C]1,1 and [C]2,2 are the first and
second diagonal elements of matrixC and are the error
variances in estimation of the x and y coordinates of the object.
Results of Theorem1 in [14] show that the expected position
error for localization based onNa measurements is bounded
from below by

ρ(U) ≥ 4
(

Na
∑

k=1

1

σ2
Ik
d2Ik

)−1

= ρL(U), (8)

confirming that the lower bound of the error decreases as the
number ofNa available measurements increases. On the other
hand, the measurements from farther sensor nodes to the object
or measurements with larger noise variance, have more impact
on increasing the lower bound.

Next, we use the result in (8) to quantify the lower bound
on the overall expected position error of (3) where, due to the
randomness of wake-up schedules, the value ofNa may vary
even for a fixedβ. For the error analysis, we need to consider
all subsets with at least two amongN sensor nodes. We have
M = 2N − N − 1 of subsetsUi with 1 ≤ i ≤ M . With the
duty-cycleβ, the probability of having each sensor node in
“on” state isβ. Therefore, the probability of having the active
setUi is

P (Ui, β) = βγ(1− β)N−γ , (9)

where γ = |Ui|. Considering all the possible combinations
for the awake sensor nodes and their probabilities, we can
conclude the following Proposition.

Proposition 4.1: If U refers to the set of all sensor nodes
in the object range, for a network with duty-cycleβ, the total
expected object localization errorρT (U , β) satisfies

ρT (U , β) ≥
∑

Ui∈U

P (Ui, β)ρL(Ui) = ρL(U , β), (10)



Fig. 3. Overlap between “on” states of two different sensor nodes for three
different cases. Case1 is an example of overlaps forǫ0/T < β ≤ 1

2
+ǫ0/T .

Case2 and 3 are examples of two different possible situations forβ >
1

2
+ ǫ0/T , where overlap is one segment for case2 and two segments for

case3.

where P (Ui, β) and ρL(Ui) are derived from (9) and (8),
respectively. In practice, due to the hardware response and
sampling delay, a sensor node may experience an initial
activation delay (start-up time)ǫ0 at the beginning of its “on”
state. Thus, whenever applicable, it is more precise to replace
β in (9) and (10) byβ−ǫ0/T . It is also notable that, the lower
bound in (9) is particularly derived for a case that relative
distances between the object and sensor nodes are known. This
analysis is very useful for designers to estimate the localization
error bound for strategic points in the observation region. The
derivation of error lower bound for an unknown object location
is the subject of our future work.

Next, in Section IV-A1, we study the delay distribution
for the period of time that it takes for at least two sensor
nodes in the range of the object to be awake at the same
time and take measurements with negligible time differences.
Moreover, in Section IV-B we extend the localization method
from snapshot-based to an interval-based, which increases
the chance of receiving more samples from network thus
improving the tracking accuracy.

1) Delay distribution single snapshot tracking response:
To localize a moving object with no extra information on its
characteristics, it is required to have (almost) synchronous LoB
measurements from at least two nodes in the object range. The
sensitivity level of the localization accuracy to the time dif-
ference between the samples from two different sensor nodes
depends on the object speed. The faster the moving object
is, the more accurate synchronization between the samples
is required. Therefore, to study the delay distribution, it is
necessary to investigate the probability of overlaps between
“on” states of at least two of the sensor nodes in the range of
the object.

Let ǫ0 be the minimum overlap required between “on” states
for a successful localization. Fig. 3 shows three examples of

cases that “on” states of two sensor nodes have overlaps. For
the sake of not adding an extra parameter, we assume that
the object presents in an area covered byN nodes, each with
a asynchronous duty-cycleβ. The probability of having no
intersection of equal to or greater thanǫ0 is

PØ(N, β, ǫ0) =






1 β ≤ ǫ0
T
,

(

1−N(β − ǫ0
T
)
)N−1 ǫ0

T
< β < 1

N
+ ǫ0

T
,

0 β ≥ 1
N

+ ǫ0
T
.

(11)

Forβ ≤ ǫ0
T

, since the maximum overlap size isβT , two sensor
nodes can not have overlaps of size equal or greater thanǫ0.
For ǫ0

T
< β < 1

N
+ ǫ0

T
, the probability is computed based on the

fact that for the case of no intersection equal to or greater than
ǫ0 the distance between every two consecutive starting points
of the awake states must be greater thanβT − ǫ0. Moreover,
if we fix the first starting point as the start of the cycle, the
distance between the last starting point in the cycle and the
end of the cycle must be greater thanβT − ǫ0. Now that first
starting point is selected, we are not allowed to put any other
starting point in two intervals of sizeβT − ǫ0 at the first and
end of the cycle. Therefore, all the otherN−1 starting points
have to be located in an interval of sizeT − 2(βT − ǫ0). The
minimum required distance between the start points of any
two (amongN − 1) consecutive awake periods isβT − ǫ0.
Therefore, the total minimum required distance between all
consecutive pairs is(N − 2)(βT − ǫ0). Having that, we can
uniformly distribute the start ofN − 1 awake states on the
remaining intervalT − 2(βT − ǫ0)− (N − 2)(βT − ǫ0). This
will lead to the second equation in (11). Lastly, forβ ≥ 1

N
+ ǫ0

T
,

there is always at least one overlap of size equal or greater
thanǫ0.

From (11), the probability of presence of at least2 out of
N sensor nodes with “on” states overlap size of equal to or
greater thanǫ0 is

P (N, β, ǫ0) = 1− PØ(N, β, ǫ0). (12)

It is notable that any sensor node pair with overlap ofǫ be-
tween their “on” states can be considered as a new monitoring
node with a duty-cycleǫ/T and a cycleT . The distribution
of delay,td, of being monitored by such a node is

Ftd|ǫ(τ) = P (td ≤ τ |overlap size= ǫ) =
ǫ

T
+

τ

T
, (13)

where0 ≤ τ ≤ T − ǫ. The first term in (13) refers to the case
of td = 0, expressing the concurrency of the object presence
(or the query time) with the overlap of the “on” states. The
second term in (13) is the probability of presence of the object
in the field (or receiving the query) at mostτ time unit from
the start of the “on” state.

Now, we use the results in (12) and (13) to approximate the
delay distribution in the presence of two sensor nodes. For
ǫ0
T

< β ≤ G = 1
2 + ǫ0

T
, the size of the applicable overlaps

(see an example in Fig. 3, case1) has a uniform distribution
on [ǫ0, βT ] with the averagēǫ = (βT + ǫ0)/2. Accordingly,
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Fig. 4. Comparison of simulated and analytical results for the tracking
response latency distribution at the presence of two sensor nodes. The
simulated results are from a Monte Carlo simulation with a sample size
200000 for ǫ0 = 0.1, T = 1 and ǫ0

T
< β ≤ G.

the distribution of delaytd is approximated by:

P (td ≤ τ,
ǫ0
T

< β ≤ G) ≃ min
{ ǭ

T
+

τ

T
, 1
}

(1−PØ(2, β, ǫ0)).

(14)
The second term in (14) confirms the presence of overlaps
of size equal to or greater thanǫ0. The first term has been
adopted from (13) and refers to the delay distribution for the
average case with overlap sizeǭ. The product of the two terms
in (14) is due to the independency assumption between the
detection process and the overlap occurrence. Forβ > G,
sensor node overlaps are either one or two segments with at
least one segment larger thanǫ0. For type one (see the example
in Fig. 3, case2), the overlap sizeǫ1 is uniformly distributed
on [(2β − 1)T, βT ] and has an average of̄ǫ1 = (3β− 1)T/2.
For type two (see an example in Fig. 3, case3), both overlaps
together have a fixed sizeǫ2 = 2βT − T . Considering these
two types of overlapping and their occurrence probabilities
together with (13), the delay distribution can be approximated
by

P (td ≤ τ, β > G) ≃ 2(1− β)min

{

ǭ1 + τ

T
, 1

}

+

(1− 2(1− β))min

{

ǫ2 + τ

T
, 1

}

.

(15)

To verify the accuracy of the derivation in (14) and (15) we
perform a Monte Carlo analysis withǫ0 = 0.1 and T = 1.
The outcome is reported in Figs. 4 and 5. We note that our
approximate is more accurate for the case ofǫ0

T
< β ≤ G

compared toβ > G. It is also notable that, in general, the
analytical result of the distribution of the tracking for two
sensor nodes can be used as an upper bound for the delay in
networks with more than two sensor nodes.

In the next section, we analyze the quality of tracking with
time interval measurements.

B. Interval-based tracking

As a result of duty-cycling with random schedules, for
some snapshots we may not have enough awake sensor nodes
in the object range. Therefore, it is beneficial to extend
the localization method for single snapshot to fuse all the
measurements during a time frame. In practice, the frame size
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Fig. 5. Comparison of simulated and analytical results for the tracking
response latency distribution at the presence of two sensor nodes. The
simulated results are from a Monte Carlo simulation with a sample size
200000 for ǫ0 = 0.1, T = 1 andβ > G.

W is selected based on the application requirements and the
amount of information that we have about the object. Any
information on the object moving pattern such as velocity,
acceleration, and also road map of the object may be used in
the modeling of hypothesized bearings of different snapshots
in the time frameW . With a proper selection ofW , we can
assume that the object velocity is constant, during each time
frame,V = [Vx, Vy]. We further assumed that the velocity
range is such that the time retardation factor is negligible.

For the sake of simplifying the notation, in the remainder
of this section, we assume that query timetQ is the same as
the timet∗ that the object location requested. In this case, to
localize an object at timet∗, a fusion node processes all the
received sensor node measurements taken during[t∗, t∗+W ].
Consequently, we useNa(W ) to denote the number of samples
received during this time frame. The ML estimator for this case
is

Ẑ(t∗) = arg min
Z(t∗)

Na(W )
∑

i=k

(

1

σ2
Ik

|θ̃Ik − θIk(Z(t∗))|2

)

, (16)

whereẐ(t∗) = [P̂ (t∗), V̂ (t∗)] is an estimate of the location
and velocity at timet∗. IndicesI1, . . . , INa(W ) in (16), refer to
the sensor node IDs of all theNa(W ) received measurements.
Moreover, θ̃Ik , 1 ≤ k ≤ Na(W ), is the kth received
measurement during the time frameW andθIk(Z(t∗)) refers
to the hypothesized LoB measurement. From the constant
velocity assumption on the frameW , any object location at
time t ∈ [t∗, t∗ +W ], is given by

P (t) = P (t∗) + (t− t∗)V (t∗). (17)

From (17) and (1), the hypothesized LoB measurement is

θIk(Z(t∗)) = arctan

(

Py(t
∗) + ∆IkVy − Sy(Ik)

Px(t∗) + ∆IkVx − Sx(Ik)

)

. (18)

Here ∆Ik = tIk − t∗ and tIk is the timestamp of thekth

received measurement.
Next, we present the CRLB for the localization problem

(16). Similar to the derivation in (4) and (5), the error
covariance matrix can be computed from the inverse of the



FIM

J =

Na(W )
∑

k=1

1

σ2
Ik
d2Ik

(

AIk AIk∆Ik

AIk∆Ik AIk(∆Ik)
2

)

, (19)

whereAIk , σ2
Ik

anddIk are the same as in (6).
Notice that the localization performance improves with

more samplesNa(W ) and with the smaller noise varianceσ2
Ik

.
Increasing the window sizeW , results in the largerNa(W ) at
the cost of a higher response latency and possibly the violation
of the constant velocity assumption in (17). Therefore, it is
important to select the proper value forW based on the
application requirements and constraints. Similar to (8) and
(10), we can analyze a lower bound for the localization error
in (16) which is the subject of our future work.

Due to the important role ofNa(W ) in the localization
error and the performance bound, we next study the first two
statistics ofNa(W ) for a fixed duty-cycle. Since different
sensor nodes schedule their duty-cycles independently, we can
start the analysis for the case with only one sensor node in the
field. Let N1,a(W ) be the number of provided LoBs by one
sensor node. Then, from the uniform distribution of the start
time of the awake period over a cycleT , the average value of
N1,a(W ) is

E[N1,a(W )] = ⌊βWλs⌋. (20)

Next, V ar[N1,a(W )] = E[N2
1,a(W )] − E[N1,a(W )]2 is

used to compute the variance value. The complete derivation
of E[N2

1,a(W )] can be found in Appendix A, and from that
the V ar[N1,a(W )] is,

V ar[N1,a(W )] =






λ2
sW

2(β − 1
3
W
T

− β2) 0 < W
T

≤ φ
λ2
sφ

2(TW − 1
3φT

2 −W 2) φ < W
T

≤ (1− φ)
λ2
s(T −W )2(β − 1

3
T−W

T
− β2) (1− φ) < W

T
≤ 1

(21)

where φ = min(β, 1 − β). Since the number of available
samples in a complete cycleT is fixed, the variance has a
periodic pattern. Therefore, forW > T , V ar[N1,a(W )] =
V ar[N1,a(w

′)] whereW ≡ w′ (mod T ).
Next, to compute the average and variance of available

samples from all the sensor nodes in the field, we use the
independency assumption between the sensor node schedules.
For a network with a uniform sensor node topology of density
ρ, at any time, the average number of sensor nodes in the
relative distanceR of the object isπR2ρ. Therefore, the
average and variance of available number of samples from
all sensor nodes in the range are

E[Na(W )] = (πR2ρ)E[N1,a(W )], and

V ar[Na(W )] = (πR2ρ)2V ar[N1,a(W )].
(22)

From (21) and (22),V ar[Na(nT )] = 0 for integer values
of n, which results in the minimum variation for the overall
localization error of (16). Also the variance value in (22) and
therefore the localization performance variation are maximized
for W = nT/2, wheren is an odd integer.

In order to study the latency accuracy tradeoffs for different
scenarios, in what follows, we present some test cases.

V. SIMULATION RESULTS

A. Study cases

In this section, we study the tradeoffs between the local-
ization accuracy and its response latency through some study
cases.

1) Static object and variable duty-cycle β: Similar to the il-
lustrated scenario in Fig. 1,N = 10 sensor nodes are randomly
deployed with a uniform distribution in an observation region
of size 10 × 10. All the sensor nodes have the same sensing
range of8. Bearing measurements from all sensor nodes are
assumed to have a zero-mean Gaussian noise with variance
σ2 = 0.09 unless specified otherwise. It is further assumed all
sensor nodes duty-cycle asynchronously with the sameβ and
T .

In this case, we have studied the performance of MLE
localization in (3) for a static object. We sett∗ = 0 as the
time when the object appears in the field. At any snapshot
t ≥ 0, the fusion announces a new estimate for the object
location, utilizing all the received LoBs fromt∗ to t. The
error is defined as the Euclidean distance between the actual
and estimated object location. Smaller values of the average
and variance of the error imply, respectively, more accurate
and less uncertain localization.

The result in Fig. 6 is computed from a Monte Carlo
simulation with a sample size4000 on the activation schedules
and confirm the following points;(1) Due to the chance of re-
ceiving higher number of samples, network with a higher duty-
cycle reaches a higher localization performance in a shorter
time; (2) For different activation schedules, a network with a
smaller duty-cycle (e.g.,β = 0.2) experiences more variations
in the set of awake sensor nodes. Active set variations result
in different localizations and, hence, increase the variance.
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Fig. 6. (a) Average of error vs. localization response latency, (b) Variance of
error vs. localization response latency for a fixed noise varianceσ2 = 0.09,
T = 1, and different duty-cycles. The results are based on a Monte Carlo
simulation with a sample size4000 and with fixed locations for the object
and sensor nodes.

2) Static object and variable noise variance σ2: The goal
of this case is to study the effect of noise varianceσ2 on
the static object tracking accuracy. For this purpose, a similar
scenario as in case1 with a fixed duty-cycleβ = 0.5 and three



different noise levelsσ2 ∈ {0.04, 0.09, 0.16} is considered.
As seen from Fig. 7, to guarantee a minimum localization
accuracy, a system with higher noise level experiences a larger
response latency.
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Fig. 7. (a) Average of error vs. localization response latency, (b) Variance of
error vs. localization response latency for a fixed duty-cycleβ = 0.5, T = 1,
and different variances. The results are based on a Monte Carlo simulation
with a sample size4000 and fixed object and sensor node locations.

3) Static object and variable scheduling cycle T : In this
case, we study the effect of schedule cyclesT on the accuracy
of a static object tracking. Again, a similar scenario as in
Section V-A1 with a fixed duty-cycleβ = 0.5 but different
T values is considered. At any time instance, the parameter
T does not affect the availability of each sensor node and the
probability of any sensor node being awake isβ. As a result,
changingT does not make a difference in the snapshot-based
localization. Furthermore, for an interval-based localization,
to achieve the same accuracy level, networks with larger
scheduling cycles experience higher latency. Results in Fig.
8 confirm the above two points att ≃ 0 and t > 0.
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Fig. 8. (a) Average of error vs. localization response latency, (b) Variance
of error vs. localization response latency for a fixed duty-cycleβ = 0.5,
σ2 = 0.09, and different cycle valuesT . These results are based on a Monte
Carlo simulation with a sample size4000 and fixed object and sensor node
locations.

4) Moving object and variable duty-cycle β: For this study,
the scenario parameters are similar to those of previous cases
and a moving object with constant velocityV = [10,−10] is
considered. The interval-based localization approach described
in Section IV-B is implemented withW = 0.4 and considering
both conditions of known and unknown velocities. We use
MLE in (16) for both conditions, where for the known velocity
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Fig. 9. Average of the interval-based localization error withW = 0.4 sec
for a moving object and with a noise varianceσ2 = 0.09. The results are
from a Monte Carlo simulation with a sample size10000, fixed sensor node
locations, and random wake-up schedules.
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Fig. 10. Variance of of interval-based localization error withW = 0.4
sec for a moving object and with noise varianceσ2 = 0.09. The results are
from a Monte Carlo simulation with a sample size10000, fixed sensor node
locations, and random wake-up schedules.

case, the variableZt is replaced byP t. The Monte Carlo
simulation results under both assumptions are presented in
Figs. 9 and 10. Each point witht ≥ 0.4 sec in Fig. 9 reflects
the error average of the interval-based localization over the
time frame[t−W, t]. Similarly, Fig. 10 reflects the localization
error variance. As the results in both figures confirm, higher
duty-cyclesβ experience less localization error. Moreover,
comparing error averages in Fig. 9, we experience less error
when the velocity is known. Furthermore, it is notable that a
network with a smallerβ (e.g.,β = 0.2) experiences more
variations in the localization error at different times. This is
a consequence of smallerNa(W ) and larger sensitivity of
the localization to the randomness of the awake sensor nodes
set. Lastly, our localization with an unknown velocity has
higher variation compared to the one with known velocity as
estimating the velocity, in addition to the location, requires
larger number of samples.

5) Error bound for static object with variable duty-cycle
β and noise variance σ2: In this case, we study the re-
lationship between the expected localization error and the
analytical derived lower bound in (10). A tracking scenario
with parameters from Section V-A1 is considered. The error
is defined as the square of the Euclidean distance and the
average error is computed by a Monte Carlo simulation on
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Fig. 11. Expected localization errorρT (U , β) vs. error lower bound
ρL(U , β) for different bearing measurement noise variances and different
β values.
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Fig. 12. Sensor array positions and tracked vehicle trajectory in the universal
transverse mercator (UTM) coordinates.

the sensor node wake-up schedules. Fig. 11 shows the average
error from the simulation and the analytical lower bound
from (10) when different values ofβ andσ2 are considered.
The results in Fig. 11 confirm the following points:(1) For
largerβ values, a larger number of sensor nodes are awake at
any snapshot resulting in a smaller localization performance
variability, smaller error variance, and closer average error to
its lower bound;(2) For smaller measurement noise variances
σ2, the localization accuracy is higher and the error varies
less by increasing the number of measurements. Therefore,
by increasingβ, the average error for a smallerσ2 has less
change and is closer to the error lower bound.

B. Simulation on the real data

In this section we test the localization techniques described
in Section IV on the collected data at Aberdeen Proving
Ground, Maryland, by the Army Research Lab in June 2002.
During the field experiment, six microphone arrays were
deployed in a2.5 Km by 2.5 Km field to collect the acoustic
signature of some vehicles, see Fig. 12. The diameter of each
sensor array was8 feet and consists of7 microphones arranged
in a circular configuration. The data was collected at each
sensor in the array at the rate of1024 samples per second.

In this section, we have used the data from a period of
time (60 sec) in the deployment where a tracked vehicle is
traversing a path (shown in Fig. 12) from the north to south
of the field. Each sensor node data is processed to obtain
LoB using the MVDR method [3]. At the training phase,
having the LoB measurements and exploiting the available
ground truth on the vehicle trajectory, the noise level of each
sensor node is estimated. To study the effect of duty-cycling
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Fig. 13. (a) Average of error vs. time forβ = 0.5, T = 20 sec, and
different window sizesW . The results are from a Monte Carlo simulation
with a sample size400 on sensor node schedules.
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Fig. 14. Localization accuracy forT = 20 sec,W = 5 sec, andβ ∈
{0.25, 0.5, 1}. The results are from a Monte Carlo simulation with a sample
size400.

on quality metrics for tracking techniques in (3) and (16), we
have selected three different duty-cyclesβ ∈ {0.25, 0.5, 1} and
created duty-cycled patterns with random wake-up times for
all the six sensor nodes. The duty-cycle frame sizeT is set to
20 sec and the tracking performance for different frame sizes
W is studied. Fig. 13 shows the average error for different
frame size and suggests that, for this tracking problem, the
interval-based tracking withW = 5 sec outperforms other
studied time frames. Each point in Fig. 13 is the average
error computed from a Monte Carlo simulation on the interval-
based localization with random wake-up schedules. The error
is defined as the Euclidean distance between the estimated
vehicle location and its ground truth. Fig. 14 shows the average
error for both snapshot and interval-based tracking for different
β values. The results in Fig. 14 confirm that using higher
duty-cycles and applying the interval-based localization highly
improves the accuracy.

VI. CONCLUSION

In this paper, we study the effect of random duty-cycling
on the accuracy and response latency of bearings-only object
tracking. In order to investigate the tradeoffs between response
latency and its accuracy, a set of closed-form formulas and ap-
proximations are derived. Extensive simulations are conducted
to study the validity and applicability of the analysis both on
the synthetic and real data. The provided analytical results in
this paper are of high importance for energy efficient sensor
network designs with multi-attribute Quality of Information
(QoI) design metrics. Designers can apply these results to



predict the tracking performance in advance of costly deploy-
ments. Using the procedure of this work, and according to the
detection requirements of the system, they can make decisions
on design parameters of the system (e.g., parametersβ andT
for duty-cycle scheme).

To the best of our knowledge, this is the first study of
its kind for object tracking that relates QoI performance
metrics with duty-cycled sensor networks. It, thus, makes a
significant contribution towards gaining deeper understanding
of the relationship between system energy efficient parameters
and achievable tracking performance.

APPENDIX A

To derive the mean ofN2
1,a(W ), we consider all possible

scenarios for the overlap of an awake state of a node with
the time interval[t∗, t∗ +W ]. In Fig. 15, we have selected
different colors to illustrate some examples of these overlap
scenarios forW ≤ T . For simplification, and without loss of
generality, we sett∗ as the start of the frame (t∗ = 0). From
Fig. 15, case1 refers to the circumstances where the interval
[t∗, t∗ +W ] either includes one complete awake state (e.g.,
the β1T awake state in Fig. 15) or completely overlaps with
an awake state (e.g., theβ2T awake state in Fig. 15). Case
2 refers to the situations in which the awake state partially
overlaps with the interval[t∗, t∗ +W ] and the sensor node is
awake either at the start of the interval (β2T example) or at the
end of it (β1T example). Case3 also refers to the situations
that the awake state has two overlapping segments with the
interval [t∗, t∗ +W ].

We now formulateE[N2
1,a(W )] with the following two

assumptions:(1) To simplify the study of the statistics of
N2

1,a(W ), we approximate the analysis by replacing the non-
negative discrete random variableN1,a(W ) with a continuos
random variable;(2) We neglect the effect of the sensor
node start-up delay and this is justified by the assumption
that the sensor node sampling rateλs is large enough. If we
consider all the three cases in Fig. 15 and their probabilities
of occurrence respectively, thenE[N2

1,a(W )] for 0 < W ≤ T
is

E[N2
1,a(W )] = (α1λs)

2 |W − βT |

T
+

∫ α1

α2

(xλs)
2 2dx

T
+ (α2λs)

2α2

T
.

(23)

whereα1 = min(βT,W ) andα2 = max(W − (1− β)T, 0).
The first term on the right hand side of (23) corresponds to the
case1 in Fig. 15, where it considersN2

1,a(W ) for this case
multiplied by its probability. Similarly, the second and third
terms in (23) refer to the case2 and3 in Fig. 15. Simplifying
the terms in (23),E[N2

1,a(W )] for 0 < W ≤ T is,

E[N2
1,a(W )] =







λ2
sW

2(β − 1
3
W
T
) 0 < W

T
≤ φ

λ2
sφ

2(TW − 1
3φT

2) φ < W
T

≤ (1− φ)
λ2
s(X)2(β − 1

3
X
T
− β2) + β2W 2λ2

s (1 − φ) < W
T

≤ 1
(24)

Fig. 15. Different cases of overlaps between the awake time and the
monitoring interval[t∗, t∗ +W ], whereW ≤ T .

whereφ = min(β, 1 − β), andX = T −W .
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