Quality Tradeoffs in Object Tracking with
Duty-Cycled Sensor Networks

Sadaf Zahedi and Mani B. Srivastava Chatschik Bisdikian Lance M. Kaplan
Electrical Engineering Department IBM T. J. Watson Research Center U.S. Army Research Labratory
University of California Los angeles Hawthorne, NY, USA Adelphi, MD, USA
Los Angeles, CA, USA bisdik@us.ibm.com lance.m.kaplan@us.army.mil

{szahedi, mbg@ee.ucla.edu

Abstract—Extending the lifetime of wireless sensor networks i fu |

requires energy-conserving operations such as duty-cycling. How- o taT . tee2T Observation regioh
ever, such operations may impact the effectiveness of high-fidelity .-, g 4
. . . . . . * €nsor node
real-time sensing tasks, such as object tracking, which require "-*
high accuracy and short response times. In this paper, we quan- W= Object 1
tify the influence of different duty-cycle schemes on the bearings- P ]
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I. INTRODUCTION

Real-time, accurate object tracking is key to many applica- Fig. 1. Tracking scenario
tions such as vehicle tracking and security surveillance. Recent
developments in Wireless Sensor Network (WSN) capabilities

make them suitable for many applications with real-timgard, (2) besides the real-time responsiveness of the network,
constraints and tight deadlines on the network responsgger issues such as energy efficiency and response integrity
Deadlines on the network responses to the task of interggé also needed to be considered. Tracking accuracy, response

may arise for various reasons such as the necessity for f@‘@éncy, and energy efﬁciency are among the most important
actions to the presence of a particular object in some strategisign metrics for tracking applications [1].

locations in the field. Most of the time, these networks involve Our goal is to study the accuracy vs. response latency

a large number of sensors distributed in a vast geographigglormance trends for an object tracking application with
area wlth limited accessibility once deployed. Therefore,.étnergy constraints. The key question of interest is: “what
is crucial to analyze and understand the expected real-timeq impact of different parameters of an energy saving
performance of WSNs before the actual deployment. design on the performance quality and responsiveness of
The real-time guarantee for WSN performance makes {igs tracking task?”. As an energy efficient scenario, in this
design very challenging due to various reasons such @3,k e consider a duty-cycled network with random wake-
(1) physical events usually have uncertain and unpredictablg schedules for different sensor nodes, and focus on the
spatio-temporal properties which make the modeling ProcesSiays that system may face from the duty-cycled scheme.
N An end-to-end delay in the network system also contains
Research was sponsored by US Army Research laboratory and icati del f t K traffi d ket |
the UK Ministry of Defense and was accomplished under Agreemeﬁpr_nmumca lon delay rom ne_Wor ramc and pac _e (?SSGS
NumberW911NF-06-3-0001. The views and conclusions contained in thighich are not of our focus in this work. We use both timeliness

document are those of the authors and should not be interpreted as represegfjig tracking quality metrics to quantify the performance of
the official policies, either expressed or implied, of the US Army Resear

Laboratory, the U.S. Government, the UK Ministry of Defense, or the U&(P]e tracking _proc_ess for ea_‘Ch set Pf dUI_y'Cy_CIe_ pgrame_ters.
Government. The US and UK Governments are authorized to reproduce &dch a multi-attribute quality consideration is in-line with

distributehreprints for Government purposes notwithstanding any copyrig@ua”ty of Information (Q0|) principles for sensor network
notation hereon.

The authors would also like to thank Dr. Raju Damarla for availing us th@StainShed in. [2] The QO'_ metrics are _hi_ghly affected by
ARL data set. many factors including1) object characteristics (the number
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of concurrent objects, their velocities, and moving paggrn The work in [6] studies the quality and energy tradeoffs
(2) sensor characteristics (activation schedule, measuremfntmobile object tracking by a wireless sensor network. It
quality, measurement type, radio range, sampling rate agidcusses different activation strategies including synchronized
transmission rate), an() network characteristics (topologyduty-cycled activation. Moreover, it is assumed that sensors
and communication protocol). are binary detectors (with classical disk model) and, at any
In this work, we focus on an object tracking scenarigiven time, the centroid of all detecting sensors is used as
using a network of acoustic sensor (e.g. microphone) arrag/s estimate for the object location. It is also shown that the
which are distributed in the observation region, see Fig. duty-cycled activation offers a flexible and dynamic tradeoff
At any time, the Line of Bearing (LoB) of the object vsbetween the energy expenditure and tracking error when used
the sensor array center may be estimated by processing itheconjunction with the selective activation based on the
measurements of all the sensors in one array using Minimurajectory prediction. Differently from our focus in this work,
Variance Distortionless Response (MVDR) [3], Multi Signafuthors in [6] do not analyze the effect of energy preserving
Classification (MUSIC) [4], or any other similar algorithmschemes on the response latency and achievable tracking
Having the LoB measurements of at least two sensor arra@gcuracy of the system.
not collinear with the object, the fusion node can process theThe work in [1], [7], [8] presents the real-time design
information to localize and, ultimately, track the object(s) ofind analysis of VigilNet, a large-scale sensor network system
interest. Bearings-only object tracking has recently raised a lwhich detects and classifies objects in a timely and energy effi-
of interest in critical tracking applications [5] due to several adient manner. It provides a design framework and derivations
vantages such aét) for an object with a smooth trajectory, theto guarantee the requested end-to-end deadline. The power
LoB does not change abruptly, which enables outlier removalanagement system composes of both sentry and non-sentry
from the measurement§2) by using the MVDR or MUSIC nodes where non-sentry nodes are sleep unless sentry nodes
method, circular acoustic sensor arrays with microphones activate them. The sensing model and tracking algorithm are
can provide information on bearing measurements of up somilar to those assumed in [6]. The contribution of our work
M —1 objects in the field (MUSIC requires an a priori estimateompared to [1], [7], [8] is in considering the problem of
of the number of objects). This capability is a desirable featup@arings-only tracking and also analyzing the accuracy of
in multi-object tracking scenarios. tracking vs. response latency to the tracking queries. We also
Analyzing the latency and accuracy metrics for the trackirgnalyze the effect of duty-cycle parameters on the quality
scenario of our interest is very challenging due to mariyetrics.
reasons including the random activation schedule of the duty-n [9], using Bayesian estimation techniques, the effect of
cycled sensors, the unknown time of the object preseng@cket loss and network transport delays on the quality of
and the uncertain object trajectory. This work is concernédject localization is studied. Sensors in [9] are always on
in addressing the above issues. In particular, our main cand, hence, contrary to our work, the effect of delay due
tributions are:(1) performance analysis of Qol attributes ando duty-cycling is not taken into consideration. As another
their tradeoffs for bearings-only object tracking in duty-cycleéxample of recent efforts on delay analysis for real-time
WSNs using Maximum Likelihood technique) extension detection, [10] quantifies the tradeoff between the detection
of the snapshot-base localization to the interval-based one &eday and the false alarm rate. Besides classical disk model,
derivation of their performance bounds; af8) computation a probabilistic detection model for low SNRs is used in [10]
of the probability distribution of the delay that an objectn order to analyze the minimum required network density
tracking task may experience before the availability of enougatisfying quality performance requirements.
number of applicable measurements. Next, we go over the system assumptions and problem
The remainder of the paper is organized as follows. Segpecifications.
tion Il presents the related work. Section Il overviews the
problem setting and our assumptions. Section IV describes
the Qol analysis of bearings-only object tracking based on theThroughout this work, we particularly study the tradeoffs
Maximum Likelihood estimation techniques, and Section Petween the response latency and the tracking accuracy of

discusses the simulation results. Finally Section VI conclud#¥ system at times that a fusion node does not necessarily
the paper. hold a high quality prior information on the object state (its

recent location and velocity). This analysis is critical for many
different circumstances which we mention two of them next.
The first case occurs when an object initially appears in the
Research on high quality tracking systems with close fld, and the application has deadline requirements to receive
real-time responsiveness has been highly investigated by the object location information. In this case, it is essential to
sensor network community in recent years. Various effectiemalyze that how fast and with what accuracy the tracking
techniques and approaches have been proposed and verifigstem can track the object.
We here briefly review only a handful of them that are most The second case happens in query-based tracking appli-
related to this study. cations where the tracking system may have two different

IIl. PROBLEM OVERVIEW

II. RELATED WORK



operating phases. The first phase corresponds to the time Yy @\\T

that no query initiates from the user for that period of time. P,(t) ) \\/m@”\]”

In this phase, sensor nodes may perform a low-cost local W7
detection and report the available results to the fusion node
with a moderate rate. Consequently, the fusion node exploits

the global knowledge on sensor node locations and estimates s, WQ P

the object location. The second phase starts when at#jme S, (@) |- 7\% (P @)

a user initiates a query like: “report the object position at time

t* by the deadlineD”. Receiving this query, sensor nodes S (1) P (t) X

switch to a higher sampling rate, perform a more advanced _ , o

local processing and send their local results to the fusilﬁﬁd.eZ.. Relative geometry of the object bearing line with extdo a sensor

node with a higher rate. Then, fusion node uses recent local

information and the prior knowledge of the network to provide

a high(er) quality estimate of the object location. In the case Gfaussian noise,

not receiving any new measurement betwégrandtg + D, ~

new location is estimated based on the sﬁor inf((;?rmation at 6:(t) = 6:(P(1) +ni(t),  nilt) ~ N (0,07). ()

the fusion node. It is assumed that sensor nodes are sufficiently separated so
Next, before focusing on the quality analysis, we introdudbat the noise terms are independent. The value of bearing

the parameters and assumptions used through the rest ofrtreasurement varianee’ depends on the signal to noise ratio

paper. As illustrated in Fig. 1, it is considered tiédtsensor (SNR) of the received acoustic signal at nodend is a

arrays, which duty-cycle both their radios and samplers, dwection of the relative distancé between this node and the

distributed in an observation region. They all have the sambject. In our numerical analysis, we us¢ = (Kd%)?* for

scheduling period’, and duty-cycles = Ze= (0 < 8 < 1), the bearing measurement variance [11], whires selected

where 7,,, is the duration of “on” (awake) state. All thesuch that bearing error dt km from the object reaches’.

sensors in one array have synchronized wake-up times drdm [11] « can be chosen to b& 1 or 2, and we setx = 0

are considered as one sensor node which provides LoB migmeur simulations in Section V-A.

surements with rate\; when it is on. Wake-up times for We also assume that only one object appears at any location

different nodes can be either selected randomly or throughnathe observation region and its speed is low enough to allow

systematic process. As it is shown in [1] and [8], at relativelgufficient time for awake sensor nodes to sense the object.

large 8 (e.g.,8 > 0.05), the difference between the randonMoreover, the object does not have any knowledge of the

and optimal scheduling can be practically ignored. Since tlsensor node positions and, therefore, it can not intentionally

random scheduling of the wake-up times does not need arhyose a trajectory that reduces the detection probability. We

extra control message and it is not affected by time drifts, vierthermore use a disk model for sensing, in which a LoB of an

choose a random scheduling for this work. In other wordspject can be measured by a sensor npdéth measurement

it is assumed that different sensor nodes select their wakwise variancer?, if it is located inside a circle of radiug

up schedules independent of each other and with a unifoaround the sensor node center. Using a localization algorithm,

distribution over the cycle of . the fusion node estimates the object location based on the

Fig. 2 illustrates the geometry of the object location véecent bearing measurements and available information on

a sensor node at one snapshot. The object location 4R@ object moving patterns. For the rest of the paper, we
velocity at timet > 0 are P(t) = [P.(t),P,(t)]T and assume that the fusion node uses a Maximum Likelihood (ML)

V(t) = [Va(t),V,(t)]T, respectively. Thei» sensor node IocaIiza_ltion algorithm. The ML localization method can be
location is (i) = [S.(i),S,(i)]T, and the object state atused either to initially establish a track or to localize the object
time ¢ is denoted byZ(t) = [P(t), V(¢)]Z. The true bearing at any snapshot during the tracking task. Next, we describe
angled;(P(t)) reflects the Direction of Arrival (DoA) of the the ML estimation techniques for both snapshot and interval-
object at the time that object emitted the acoustic signal. It Rgsed bearings-only object tracking and analyze their quality
assumed that the object speed is small enough such thatRREormance.

tim(_e retardation facFor due to change_s in the obje_ct location;y, QUALITY ANALYSIS FORBEARINGS-ONLY OBJECT
during the propagation delay is negligible. At any timehe

true bearing value from th&" sensor node is computed from ) .
9
In this section, we study the accuracy and latency qual-

Py(t) — S, (i) ity metric_s for the ML estimation_ using mgasuremer)ts _of
0;(P(t)) = arctan (#) (1) both a single snapshot and an interval. Since localization
P(t) = Sa(2) performance of an object is highly depend on the availability
of the LoB measurements, we also investigate the statistics
The bearing measurement at timé&om thei*" sensor node, of available measurements at any snapshot and during each
0;(t), i = 1,...,N, is subject to the additive zero-mearinterval. Moreover, we analyze the distribution of a latency

TRACKING



that the localization task may face before having enoughSimilar to derivations in [12], the Fisher Information Matrix

measurements for a well-posed tracking task. (FIM) J for estimation problem (3) is
A. Single snapshot-based trackin J= g 1 0 0, )T 4
. Single snap g —ngu(vm), 4)
k=1 ke

As the first case, we consider a localization based on the
est_imated _bearing measure_ments of one snapshot atttim_@vherev _ [L Lr' Further simplification results in
This case is useful for making fast responses to the tracking OP2(t) 0Py ()
gueries with short deadlines. When a query requests the object Na 1
location at a later time* (t* > t), the snapshot can be J = Z <WA1<> ; (5)
selected either very close t6 which results in high accuracy k=1 \ "1k
localization, or closer tég which results in a faster responsdn which dj, is the relative distance between the object and
to the query. For the case thay > ¢*, the snapshot can sensor nodd; and

be selected close tty. In any case, for # t*, using the sin?(6;,) —sin(fy, ) cos(6,)
available information on the object moving patterns, the objectdr = ( — sin(6y, ) cos(61,) cos?(67,) ) - (6)

location P(i”) at t* can be estimated from the compute(iif C is the localization error covariance of Eg. (3), CRLB can

object location at time, P(t). .
] (t) o .. .be computed by taking inverse of, and therefore we have
In order to have a well-posed localization problem, it i S g1

required to have LoB measurements from at least two Sensogmilar to [14], and with a small notation adaptation, we
nodes non-collinear with the object. Following a query at ' o . P '
. Set the expected localization error metric

time ¢g, due to random wake up schedules, the system may

experience a delay before the object is simultaneously within p(U) =[Cli,1 + [Clae, (7)
the sensing range of two awake sensor nodes. The distribumch is a function of the awake sensor nodes Eet—
of such delay is studied in Section IV-Al. Moreover, at ang

_ Stys---,S1y, }. Here [C]y; and [Cly» are the first and
snapshot, we may have different number of awake sensQlocong diagonal elements of mati® and are the error

nodgs n the_ relative distance &f from the object. In th'§ variances in estimation of the x and y coordinates of the object.
section, we first analyze the localization accuracy of a fixee.q its of Theoren in [14] show that the expected position

number of measurements at the snapshot and then investigaig; for |ocalization based oY, measurements is bounded
the effect of randomness from wake up schedules. from below by

Let V be the total number of sensor nodes in the raRge

N,
the object locatiorP(¢). At any timet due to the randomness ~ 1 -1
> _— =
of wake-up schedules, we may have, (0 < N, < N) p(U) = 4(}; U%kd%k) pr(U); ®)

awake sensor nodes providing, LoB measurements. For _

a feasible localization, we require to havé, > 2 awake confirming that the lower bound of the error decreases as the

sensor nodes. The se,t of awake sensor nodes is denote %mber ofN, available measurements increases. On the other

U — {S; .Sz } where indicesl, In. are sensor a|¥d,the measurements from farther sensor nodes to the object
- 19 Na A a

node IDs. Similar fo [12] and with some notation adaptatiow measurements with larger noise variance, have more impact
increasing the lower bound.

and considering the possible non-equal measurement ndt8 . .
variances, from the Gaussian assumption of the measuremerﬁeXt’ we use the result in (8) to quantify the lower bound

noise, ML localization at snapshotcan be formulated as on the overall expected position error of (3) where, due to the
randomness of wake-up schedules, the valu&/pimay vary

A Ny 1 - even for a fixed3. For the error analysis, we need to consider

P(t) = arg min <—2|ij — 0y, (P(t))|2> . (3) all subsets with at least two amoig sensor nodes. We have
I M = 2N — N — 1 of subsets; with 1 < i < M. With the

duty-cycle 5, the probability of having each sensor node in

In (3), P(t) = {P:(t), P,(t)} is the object location estimate«,» state is3. Therefore, the probability of having the active
attimet, 0y, (¢) is the noisy bearing measurement from sensgg; /. is

_nodeIk, andd;, (P(t)) isits corre_z§por;ding hypothesized bear- PU,B) =p"(1-p)N", 9)

ing computed from (1). In additions7, is the measurement o ) -

noise variance of sensor nodg. Due to the nonlinearity of Wherey = |U;|. Considering all the possible combinations

0. (P(t)), Eq. (3) is a nonlinear Least-Squares estimator. for the awake sensor nodes _a_nd their probabilities, we can
The ML estimator in (3) is asymptotically unbiased [13]conclude the foll.owmg Proposition.

and its error covariance is bounded below by the Cramer_Propos_tmn 4.1: If U refers to the_ set of all sensor nodes

Rao Lower Bound (CRLB). In addition, the covariance of min the object_range, fqr a_network with duty-_cy_gﬂe the total

estimator converges to CRLB whé¥, goes to infinity, and for expected object localization errpr (U, 5) satisfies

measurements with high SNR the error variance approaches pr(U,B) > Z P(U;, B)pr(Ui) = prU, B), (10)
the CRLB with smaller values oW, [13]. Usetd



£2¢g cases that “on” states of two sensor nodes have overlaps. For

Case 1 < )
:ff____l T : the sake of not adding an extra parameter, we assume that
i i i the object presents in an area covered\oyodes, each with
. k < Gl a asynchronous duty-cyclé. The probability of having no
BT R intersection of equal to or greater thanis
Case 2 e, BT Py(N, B,¢€) =
oY T 1 < ©
; pN L =T
- . (1-N(B-2)) T<B<ytt
Case 3 £y e 1 — . . .
_____ - s _____ == For g < %, since the maximum overlap size§’, two sensor
! 1 .
! ! i nodes can not have overlaps of size equal or greaterdhan
— - - Fore < 8 < ++<, the probability is computed based on the
: BT fact that for the case of no intersection equal to or greater than

€0 the distance between every two consecutive starting points
Fig. 3. Overlap between “on” states of two different sensatesofor three Of the awake states must be greater tisdh— ¢,. Moreover,
(éifferent C?(ljseS- Caseis aﬂl exar?ple Ofde\f/erlapS f@b/_g“I < B <3+e/T. if we fix the first starting point as the start of the cycle, the
%afre; /‘}n’ 5 are f\fgﬂz o gnetv\s'ggn;eenrte?;r R and Sifitécéﬁeﬁiﬁor distance between the last starting point in the cycle and the
case3. end of the cycle must be greater théi" — €. Now that first

starting point is selected, we are not allowed to put any other

starting point in two intervals of siz87 — ¢y at the first and
where P(U;, 8) and p.(U;) are derived from (9) and (8), end of the cycle. Therefore, all the oth®r— 1 starting points
respectively. In practice, due to the hardware response drale to be located in an interval of size— 2(5T — ¢j). The
sampling delay, a sensor node may experience an initralnimum required distance between the start points of any
activation delay (start-up time), at the beginning of its “on” two (among/N — 1) consecutive awake periods & — «.
state. Thus, whenever applicable, it is more precise to repladeerefore, the total minimum required distance between all
£ in (9) and (10) by —¢y/T. It is also notable that, the lower consecutive pairs i$N — 2)(8T — ey). Having that, we can
bound in (9) is particularly derived for a case that relativeniformly distribute the start ofV — 1 awake states on the
distances between the object and sensor nodes are known. Ténsaining intervall’ — 2(8T — ¢y) — (N — 2)(8T — €p). This
analysis is very useful for designers to estimate the localizatiwiill lead to the second equation in (11). Lastly, for> -+,
error bound for strategic points in the observation region. Thigere is always at least one overlap of size equal or greater
derivation of error lower bound for an unknown object locatiothan .
is the subject of our future work. From (11), the probability of presence of at le@sbut of

Next, in Section IV-Al, we study the delay distribution’V sensor nodes with “on” states overlap size of equal to or

for the period of time that it takes for at least two sens@reater tharg, is
nodes in the range of the object to be awake at the same
time and take measurements with negligible time differences. P(N, B,€0) =1 = Py(N, B, €). (12)

Moreover, in Section IV-B we extend the localization method . . 110 that any sensor node pair with overlag dfe-
from snapshot-based to an interval-based, which increa Ben their “on” states can be considered as a new monitoring

the chance of receiving more samples from network th%%de with a duty cycle/T and a cycleT. The distribution

improving the tracking accuracy. _ of delay, ¢4, of being monitored by such a node is
1) Delay distribution single snapshot tracking response:

To localize a moving object with no extra information on its Fy, (1) = P(tq < 7|overlap size=¢) = — + (13)
characteristics, it is required to have (almost) synchronous LoB T T
measurements from at least two nodes in the object range. Wieere0 < 7 < T —e. The first term in (13) refers to the case
sensitivity level of the localization accuracy to the time difef ¢, = 0, expressing the concurrency of the object presence
ference between the samples from two different sensor nodes the query time) with the overlap of the “on” states. The
depends on the object speed. The faster the moving objsetond term in (13) is the probability of presence of the object
is, the more accurate synchronization between the sampleshe field (or receiving the query) at mosttime unit from
is required. Therefore, to study the delay distribution, it ighe start of the “on” state.
necessary to investigate the probability of overlaps betweerNow, we use the results in (12) and (13) to approximate the
on” states of at least two of the sensor nodes in the ranged#lay distribution in the presence of two sensor nodes. For
the object. £ < B <G =3+ %, the size of the applicable overlaps
Let g be the minimum overlap required between “on” statgsee an example in Fig. 3, casghas a uniform distribution
for a successful localization. Fig. 3 shows three examples @i [ey, 57 with the average = (5T + €y)/2. Accordingly,
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Fig. 4. Comparison of simulated and analytical results for the trackirfgig. 5. Comparison of simulated and analytical results for the tracking

response latency distribution at the presence of two sensor nodes. Témponse latency distribution at the presence of two sensor nodes. The
simulated results are from a Monte Carlo simulation with a sample sisamulated results are from a Monte Carlo simulation with a sample size

200000 for g = 0.1, T =1 and ETU < B <G 200000 for g = 0.1, T =1 and > G.

the distribution of delay, is approximated by: W is selected based on the application requirements and the
€ e T amount of information that we have about the object. Any
P(ta <, T < B < G) ~min {T + 3 1} (1-Py(2,8,¢€0)). information on the object moving pattern such as velocity,
(14) acceleration, and also road map of the object may be used in
The second term in (14) confirms the presence of overlaje modeling of hypothesized bearings of different snapshots
of size equal to or greater thai. The first term has beenin the time framelV. With a proper selection off’, we can
adopted from (13) and refers to the delay distribution for thessume that the object velocity is constant, during each time
average case with overlap sizeThe product of the two terms frame, V' = [V,,V,]. We further assumed that the velocity
in (14) is due to the independency assumption between ttamge is such that the time retardation factor is negligible.
detection process and the overlap occurrence. Far G, For the sake of simplifying the notation, in the remainder
sensor node overlaps are either one or two segments withofithis section, we assume that query timgis the same as
least one segment larger than For type one (see the examplahe timet* that the object location requested. In this case, to
in Fig. 3, case2), the overlap size; is uniformly distributed localize an object at time*, a fusion node processes all the
on[(25 — 1)T, fT] and has an average of = (33 —1)T'/2. received sensor node measurements taken ditfing + W].
For type two (see an example in Fig. 3, c8¥eboth overlaps Consequently, we us¥, (17) to denote the number of samples
together have a fixed size¢ = 257 — T'. Considering these received during this time frame. The ML estimator for this case
two types of overlapping and their occurrence probabilitiés

together with (13), the delay distribution can be approximated Na(W)
i 2(1*) = arg min 16, — 0,2 ) . 26)
e +7 Zw) =\
P(tdST,ﬂ>G):2(1—B)min{ T ,1}-1—
(15) whereZ(t*) = [P(t*), V(t*)] is an estimate of the location

(1 —2(1 — 3)) min {ﬂ, 1} ) and velocity at time*. Indices/, ..., Iy, ) in (16), refer to
T the sensor node IDs of all th¥, (1) received measurements.

To verify the accuracy of the derivation in (14) and (15) wloreover, 6;,, 1 < k < N,(W), is the k" received
perform a Monte Carlo analysis withy = 0.1 and7" = 1. measurement during the time frariié and6;, (Z(t*)) refers
The outcome is reported in Figs. 4 and 5. We note that oi@ the hypothesized LoB measurement. From the constant
approximate is more accurate for the casesof< § < G velocity assumption on the framié’, any object location at
compared to3 > G. It is also notable that, in general, thdime ¢ € [t*,t* + W], is given by
analytical result of the distribution of the tracking for two . . .
sensor nodes can be used as an upper bound for the delay in P(t) = P(t") + (t =)V (7). (17)
networks with more than two sensor nodes. : :

In the next section, we analyze the quality of tracking Witﬁrom (17) and (1), the hypothesized LoB measurement is

time interval measurements. P,(t*) + A, Vy — Sy(Ix)
(2(07) = arctan (AL TR =) ag)

B. Interval-based tracking

As a result of duty-cycling with random schedules, foHere A;, = t;, — t* andt;, is the timestamp of thé*"
some snapshots we may not have enough awake sensor noelegived measurement.
in the object range. Therefore, it is beneficial to extend Next, we present the CRLB for the localization problem
the localization method for single snapshot to fuse all tH&6). Similar to the derivation in (4) and (5), the error
measurements during a time frame. In practice, the frame scmvariance matrix can be computed from the inverse of the



FIM In order to study the latency accuracy tradeoffs for different

N (W) ) A 1A scenarios, in what follows, we present some test cases.
_ Iy, I =y
J= ; of.d3, ( A A, A (Ar)? )’ (19) V. SIMULATION RESULTS
A. Sudy cases

where Ay, , a?k andd, are the same as in (6).

Notice that the localization performance improves with In this section, we study the tradeoffs between the local-

more samplesV, (W) and with the smaller noise varianc%k. ization accuracy and its response latency through some study

Increasing the window siz8/, results in the largeN, (W) at  ¢aS€s. , o ,

the cost of a higher response latency and possibly the violationt) Stafic object and variable duty-cycle 3: Similar to the il-

of the constant velocity assumption in (17). Therefore, it {&Strated scenario in Fig. Iy = 10 sensor nodes are randomly
important to select the proper value féF based on the deployed with a uniform distribution in an observation region
application requirements and constraints. Similar to (8) a/f Size 10 x 10. All the sensor nodes have the same sensing

(10), we can analyze a lower bound for the localization err6@N9€ 0f8. Bearing measurements from all sensor nodes are
in (16) which is the subject of our future work assumed to have a zero-mean Gaussian noise with variance

Due to the important role ofV, (W) in the localization o? = 0.09 unless specified otherwise. It is further assumed all
a

error and the performance bound, we next study the first 1,f§NSOr nodes duty-cycle asynchronously with the saraed
statistics of N, (W) for a fixed duty-cycle. Since different £ - , )

sensor nodes schedule their duty-cycles independently, we calf! this case, we have studied the performance of MLE
start the analysis for the case with only one sensor node in {Rg&lization in (3) for a static object. We sét = 0 as the
field. Let Ny, (W) be the number of provided LoBs by ondime when the_ object appears in the fle_ld. At any snaps_hot
sensor node. Then, from the uniform distribution of the staft= 0. the fusion announces a new estimate for the object

time of the awake period over a cycle the average value of location, utilizing all the received LoBs fronmr to t. The
Ny o (W) is error is defined as the Euclidean distance between the actual
,a

E[N1o(W)] = |BWA,]. (20) and esti_mated object Iocat_ion. Smaller v_alues of the average
' and variance of the error imply, respectively, more accurate
Next, Var[Ny.(W)] = E[N{,(W)] — E[N1,,(W)]* is and less uncertain localization.
used to compute the variance value. The complete derivatiorThe result in Fig. 6 is computed from a Monte Carlo
of E[N},(W)] can be found in Appendix A, and from thatsimulation with a sample siz&00 on the activation schedules
the Viar[Ny,,(W)] is, and confirm the following pointg;l) Due to the chance of re-
ceiving higher number of samples, network with a higher duty-

Var[Ny,,(W)] = . N .

' cycle reaches a higher localization performance in a shorter
NW2(B — 59 = B°) 0< <¢  time;(2) For different activation schedules, a network with a
A2 (TW — 36T — W?) ¢< % <(1-¢)  smaller duty-cycle (e.g3 = 0.2) experiences more variations
NT-WrPE-15X 5% (1-¢) <4 <1 in the set of awake sensor nodes. Active set variations result

(21) in different localizations and, hence, increase the variance.

where ¢ = min(8,1 — §). Since the number of available Average of error Variance of error
samples in a complete cyclE is fixed, the variance has a T T T

D)

P
periodic pattern. Therefore, fdV > T, Var[Ny .(W)] = ) +E§§
Var[Ni o(w'")] whereW = w’ (mod T). 19 +08

Next, to compute the average and variance of availat 15 Moy
samples from all the sensor nodes in the field, we use t * . F
independency assumption between the sensor node sched
For a network with a uniform sensor node topology of densi . 05
p, at any time, the average number of sensor nodesint | k e
relative distanceR of the object ismR2p. Therefore, the 0 01 02 03 04 05 06 07 08 03 0 0L 02 03 04 05 06 07 08 09

. . t,Time t,Time
average and variance of available number of samples from (@) (b)

all sensor nodes in the range are Fig. 6. (a) Average of error vs. localization response latency, (b) Variance of
_ 2 error vs. localization response latency for a fixed noise variartce= 0.09,
E[Na(W)] - (WR p)E[Nla“(W)]’ and (22) T = 1, and different duty-cycles. The results are based on a Monte Carlo
simulation with a sample siz¢000 and with fixed locations for the object

Var[N,(W)] = (rR?*p)?Var[Ny .(W)].
and sensor nodes.

From (21) and (22)Var[N,(nT)] = 0 for integer values
of n, which results in the minimum variation for the overall 2) Satic object and variable noise variance 2: The goal
localization error of (16). Also the variance value in (22) andf this case is to study the effect of noise variance on
therefore the localization performance variation are maximizélue static object tracking accuracy. For this purpose, a similar
for W = nT/2, wheren is an odd integer. scenario as in casewith a fixed duty-cycle3 = 0.5 and three



3]

different noise levelsr? € {0.04,0.09,0.16} is considered.

As seen from Fig. 7, to guarantee a minimum localizatic = & | #:02 trown seocty
. . . . = =0.4 Known Veloci
accuracy, a system with higher noise level experiences a lar K 4 —+-B=0.6 Known Velocity
response latency. O ||-#-B=0.8 Known Velocity
%3 —+ =1 Known Velocity
; @ ||-*-B=0.2, Unknown Velocity
2 | AYerE\ige\ of‘err‘or 15 ; Vgrlqncg Of error 0>-> 21 -+ -B=0.4 Unknown Velocity
+0=004 +0=004 <L ||-+-B=0.6 Unknown Velocity
=009 =009 1/{~* -B=0.8 Unknown Velocity
1y =016 ] =01 -+-B=1 Unknown Velocity

Il Il Il Il
00 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9

05 Fig. 9. Average of the interval-based localization error with= 0.4 sec
for a moving object and with a noise varianeé = 0.09. The results are
— from a Monte Carlo simulation with a sample siz@000, fixed sensor node

304 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09 locations, and random wake-up schedules.

01 02 0

S

t,Time t,Time
(@) (b)
Fig. 7. (a) Average of error vs. localization response latency, (b) Variance o 8 ‘ ‘ ‘ ‘ ‘
error vs. localization response latency for a fixed duty-cytle 0.5, T = 1, O |[—+-B=0.2, Known Velocity
and different variances. The results are based on a Monte Carlo simulat @ || ~*B=0.4 Known Velocity
with a sample sizet000 and fixed object and sensor node locations. 45 || *B=0.6 Known Velocity
© ||™B=0.8 Known Velocity
. . . . . 2 ||=B=1 Known Velocity
3) Satic object and variable scheduling cycle T In this & |-+ -=0.2, Unknown Velocity
case, we study the effect of schedule cydesn the accuracy & Egg urionn ze:m’?g
. . . . . . . . =+ -p=0. nknown Velocl
of a static obje_ct trac_kmg. Again, a similar scenario as | 21 =08 Unknown Velocity 1
Section V-Al with a fixed duty-cyclés = 0.5 but different -+ -B=1 Unknown Velocity fee g
T values is considered. At any time instance, the parame R T S Y B Y-Sy S Sy Sy
T does not affect the availability of each sensor node and t.._ t,Time

prObat.)mty of any sensor nOde. bemg awakengAS a result, Eea 10. Variance of of interval-based localization error with = 0.4
Chan_gmgT does not make a d|ﬁer_ence in the snapsho_t—b:_:\s for a moving object and with noise varianeé = 0.09. The results are
localization. Furthermore, for an interval-based localizatiofiom a Monte Carlo simulation with a sample size000, fixed sensor node
to achieve the same accuracy level, networks with largi@fations, and random wake-up schedules.

scheduling cycles experience higher latency. Results in Fig.

8 confirm the above two points at~ 0 andt¢ > 0. ) )
case, the variabl&Z, is replaced byP,. The Monte Carlo

Variance of error simulation results under both assumptions are presented in
‘ ‘ " [+ Figs. 9 and 10. Each point with> 0.4 sec in Fig. 9 reflects
.. the error average of the interval-based localization over the
1\ time frame[t— W, t]. Similarly, Fig. 10 reflects the localization
error variance. As the results in both figures confirm, higher
duty-cycles 5 experience less localization error. Moreover,
comparing error averages in Fig. 9, we experience less error
when the velocity is known. Furthermore, it is notable that a
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 3 network with a smalles (e.g.,8 = 0.2) experiences more
0'1 %‘f—,—ime“ e nm boou O'Zt’-nmo‘é “ % variations in the localization error at different times. This is
(a) (b) a consequence of smalle¥, (W) and larger sensitivity of
Fig. 8. (a) Average of error vs. localization response latency, (b) Varian€8€ localization to the randomness of the awake sensor nodes
of2 error vs. localization response latency for a fixed duty-cygle= 0.5, set. Lastly, our localization with an unknown velocity has
A 0.09, and different cycle value'. These results are based on a Montgyigher yariation compared to the one with known velocity as
arlo simulation with a sample siz&00 and fixed object and sensor node <. . ' - " . 4
locations. estimating the velocity, in addition to the location, requires
larger number of samples.
4) Moving object and variable duty-cycle 3: For this study,  5) Error bound for static object with variable duty-cycle
the scenario parameters are similar to those of previous cageand noise variance ¢2: In this case, we study the re-
and a moving object with constant veloci%y = [10, —10] is lationship between the expected localization error and the
considered. The interval-based localization approach descrilsedhlytical derived lower bound in (10). A tracking scenario
in Section IV-B is implemented withl” = 0.4 and considering with parameters from Section V-Al is considered. The error
both conditions of known and unknown velocities. We uss defined as the square of the Euclidean distance and the

MLE in (16) for both conditions, where for the known velocityaverage error is computed by a Monte Carlo simulation on

Average of error

=P
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Fig. 11. Expected localization errgor (U4, 8) vs. error lower bound Fig. 13. (a) Average of error vs. time fg8 = 0.5, T = 20 sec, and
pr (U, B) for different bearing measurement noise variances and differedifferent window sizesiV. The results are from a Monte Carlo simulation

3 values. with a sample sizel00 on sensor node schedules.
a . x10°
E 4.3698| ) ’5 % {
% 4.3697 7 % 251 |
Z 4.36961 ° ° B y— ——p=1 Snapshot-based
~ 3608 ] O 5ol ——B=0.5 Snapshot-based
% . - [} ——B=0.25 Snapshot-based
S assear J glsf B=1 Interval-based, W=5
E 436931 . - B — ——B=0.5 Interval-based, W=5
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g 4.3692 Bl % 10+ p=0. »
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Fig. 12. Sensor array positions and tracked vehicle trajectory in the univero.. time (sec)

transverse mercator (UTM) coordinates.
Fig. 14. Localization accuracy fdI' = 20 sec, W = 5 sec, andg €

{0.25,0.5,1}. The results are from a Monte Carlo simulation with a sample
size 400.
the sensor node wake-up schedules. Fig. 11 shows the average

error from the simulation and the analytical lower bound
from (10) when different values gf ando? are considered. on quality metrics for tracking techniques in (3) and (16), we
The results in Fig. 11 confirm the following pointst) For have selected three different duty-cycles {0.25,0.5,1} and
larger 5 values, a larger number of sensor nodes are awakecegated duty-cycled patterns with random wake-up times for
any snapshot resulting in a smaller localization performana# the six sensor nodes. The duty-cycle frame dizis set to
variability, smaller error variance, and closer average error 20 sec and the tracking performance for different frame sizes
its lower bound;(2) For smaller measurement noise variancé®” is studied. Fig. 13 shows the average error for different
o2, the localization accuracy is higher and the error variégsame size and suggests that, for this tracking problem, the
less by increasing the number of measurements. Therefamgrval-based tracking with’ = 5 sec outperforms other
by increasing3, the average error for a smallef has less studied time frames. Each point in Fig. 13 is the average
change and is closer to the error lower bound. error computed from a Monte Carlo simulation on the interval-
based localization with random wake-up schedules. The error
is defined as the Euclidean distance between the estimated
In this section we test the localization techniques describeehicle location and its ground truth. Fig. 14 shows the average
in Section IV on the collected data at Aberdeen Provingsror for both snapshot and interval-based tracking for different
Ground, Maryland, by the Army Research Lab in June 2002. values. The results in Fig. 14 confirm that using higher
During the field experiment, six microphone arrays werguty-cycles and applying the interval-based localization highly
deployed in &.5 Km by 2.5 Km field to collect the acoustic improves the accuracy.
signature of some vehicles, see Fig. 12. The diameter of each
sensor array wasfeet and consists af microphones arranged
in a circular configuration. The data was collected at eachlin this paper, we study the effect of random duty-cycling
sensor in the array at the rate Bf24 samples per second. on the accuracy and response latency of bearings-only object
In this section, we have used the data from a period trfcking. In order to investigate the tradeoffs between response
time (60 sec) in the deployment where a tracked vehicle latency and its accuracy, a set of closed-form formulas and ap-
traversing a path (shown in Fig. 12) from the north to soufiroximations are derived. Extensive simulations are conducted
of the field. Each sensor node data is processed to obtairstudy the validity and applicability of the analysis both on
LoB using the MVDR method [3]. At the training phasethe synthetic and real data. The provided analytical results in
having the LoB measurements and exploiting the availaltlés paper are of high importance for energy efficient sensor
ground truth on the vehicle trajectory, the noise level of eactetwork designs with multi-attribute Quality of Information
sensor node is estimated. To study the effect of duty-cyclifi@ol) design metrics. Designers can apply these results to

B. Simulation on the real data

VI. CONCLUSION



predict the tracking performance in advance of costly deploy
ments. Using the procedure of this work, and according to the
detection requirements of the system, they can make decisions
on design parameters of the system (e.g., paramgtarsl T’

for duty-cycle scheme).

To the best of our knowledge, this is the first study of
its kind for object tracking that relates Qol performance
metrics with duty-cycled sensor networks. It, thus, makes a
significant contribution towards gaining deeper understanding
of the relationship between system energy efficient parameters
and achievable tracking performance.

APPENDIXA
To derive the mean oN? (W), we consider all possible Fig.

scenarios for the overlap of an awake state of a node with
the time interval[t*,t* + W]. In Fig. 15, we have selected

Case 1 BT
L1 10 11,
—> |
61T
ﬁse2 BT 8, T,
T
Case 3 BT
1] ull |
t =0 tr+ W 2T
15. Different cases of overlaps between the awake tintk the

monitoring interval[t*, t* + W], whereW < T.

different colors to illustrate some examples of these overlagherep = min(3,1 — 3), andX =T — W.

scenarios fol < T. For simplification, and without loss of
generality, we set* as the start of the frame*(= 0). From

Fig. 15, casel refers to the circumstances where the intervall]
[t*,t* + W] either includes one complete awake state (e.g 2]
the 5, T awake state in Fig. 15) or completely overlaps with
an awake state (e.g., th&T awake state in Fig. 15). Case

2 refers to the situations in which the awake state partiaII)(S]
overlaps with the interval*, t* + W] and the sensor node is
awake either at the start of the intervab{" example) or at the
end of it (3,7 example). Cas& also refers to the situations
that the awake state has two overlapping segments with ths
interval [t*, t* + W].

We now formulate E[N7 ,(W)] with the following two
assumptionsi(1) To simplify the study of the statistics of
Nﬁa(W), we approximate the analysis by replacing the nonk]
negative discrete random variab¥ , (W) with a continuos
random variable;(2) We neglect the effect of the sensor (g
node start-up delay and this is justified by the assumption
that the sensor node sampling ratgis large enough. If we
consider all the three cases in Fig. 15 and their probabilitigg)
of occurrence respectively, théf[ N7 ,(W)] for 0 < W < T
is

(4

(6]

o [W = BT
T +

2dx
2=+

E[N? ,(W)] = (a1)s) [10]

/0:1 (xAs)

wherea; = min(S7T, W) anday = max(W — (1 — 5)T,0). 12]
The first term on the right hand side of (23) corresponds to the
casel in Fig. 15, where it consider&/? , (W) for this case
multiplied by its probability. Similarly, the second and third3!
terms in (23) refer to the caseand3 in Fig. 15. Simplifying [14)
the terms in (23)E[N? ,(W)] for 0 < W < T'is,

Lz (23)

(@2As) [11]

E[N} ,(W)] =
NW2(B -+ %) 0<W <o
NgH(TW — LoT?) p<W<(1-9)
NXPB-1X )+ 82w (1-¢) <% <1

—
N
N

=
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