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Abstract— This paper addresses real-time decision-making as- region undetected. By carefully examining the spatio-temporal
sociated with acoustic measurements for online surveillance of sequence of reported detections across the entire field of
undersea targets moving over a deployed sensor network. The gangors a much lower level of threshdidmay be applied,
underlying algorithm is built upon the principles of symbolic . . .
dynamic filtering for feature extraction and formal language s'n_ce.random false alarms will rarely _occur n p{;\tterns that are
theory for decision-making, where the decision threshold for coincident with expected target motion behavior. The usage
target detection is estimated based on time series data collectedof moving target kinematics for multiple sensor detections is
from an ensemble of passive sonar sensors that cover thereferred to as the track-before-detect strategy, and is commonly
anticipated tracks of moving targets. Adaptation of the decision 4qopted in multi-sensor surveillance of moving targets.
thrgsholds.to the real-time sensor data is optimal in the sense of Wettergren [4] presented an application of track-before-
weighted linear least squares. The algorithm has been validated . T
on a simulated sensor-network test-bed with time series data detect strategies to undersea distributed sensor networks. In de-
from an ensemble of target tracks. signing the deployment of a distributed passive sensor network

that employs this track-before-detect procedure, it is impera-
tive that the placement of sensors be commensurate with the
1. INTRODUCTION expected detection range. With limited knowledge of expected

Detection of moving targets (e.g., undersea autonomotgsget direction and environmental conditions (e.g., sensor
vehicles and weapon systems) in spatially-variable and yserformance variations over space), it is a common practice
certain environments is of prime importance in intelligenceo assume uniform likelihoods of target motion direction and
surveillance and reconnaissance (ISR) systems. However, dinéform environmental conditions; this assumption leads to a
situational context may prohibit placement of a single fixenaturally optimal configuration of sensors in a circular ring
long-term ISR system that can be fine-tuned to maximize pevith a small overlap between coverage of individual sensors.
formance in the area of interest. In such situations, distribut€dich a configuration would include a nominal setting of
fields of passive sensor systems are often called for, as thiey decision threshold that is identical for all sensors. As
allow the coverage of relatively large areas at a moderadieuational information (e.g., from observation of a target as
cost [1][2][3]. A distributed system of small sensing nodesensor time series) is gained from the system, it is desirable to
also provides a capacity for rapid deployment (e.g., mamylaptively improve the detection performance and reduce the
small assets are usually easier to position than a few layg®bability of false alarms through adjustment of the decision
ones). In this context, the underwater target tracking must meeteshold for the individual sensors in real time. From these
the demands of rapid deployment and wide area coverage jjerspectives, the decision thresholds at individual sensor nodes
surveillance of moving targets in an uncertain environmentare adaptable parameters for maintaining a specified level of

When a large field of passive sensors is deployed ftrack-before-detect performance.
target tracking, the decision parameters of each sensor caiven thea priori information: (i) the fixed sensor positions
be tuned according to the situation awareness. In particuland (ii) the statistical distributions of expected target trajec-
the sensor decision threshaldl provides a cutoff level on the tories, the objective is to estimate track-dependent decision
received energy of the acoustic signal above which a targketesholds in real time by making robust trade-offs between
detection is declared. Naturally, lower valuesofprovide a minimization of the probability of false searciPfs) and
higher sensitivity to noise-induced false alarms, where randenmaximization of the probability of successful seardps¢).
spikes in the background noise would cause a detection toTtiee track-dependent decision thresholds are adapted using
erroneously reported. In contrast, larger valueslofeduce the concept of formal language-theoretic measure [5] in the
the effective detection range of the sensors, thus causiwting of probabilistic finite state automaRHSA. ThePFSA
some targets to potentially move through the surveillaneg@e constructed from symbol sequences generated from the

observed time series data at each sensor location [6][7]. The
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Fig. 1. Flow chart of the learning and adaptation phases Fig. 2. Sensor placement and a target track

sensor field surveillance scenario. These sensor data $RES signal power excess £) received on the sensor, which
are generated on a simulation test-bed of noisy time serigsnodeled in decibel (power) units as:

outputs. The test-bed is built on a typical sensor network that SE(t)=SL— NL—TL(z(t)) + DI (1)

has been deployed to optimize its ability to track moving _ _ ) )
targets. The track-before-detect strategy has been used iff1¥gret is the time,SL is the level of the source (i.e., target)

nominal sensing environment with an acceptable level of fal§9€r9y emissionN'L is the ambient noise level'L is the
search. As the target motion track is perturbed, the systéﬁliOChaSt'Ca"y vary_lng) transm|sspn loss asa funs:uon of the
performance degrades relative to the riori determined) CUTeNttarget position(t), and DI is the directivity-induced
optimal condition, which can be adaptively improved. noise compensation that accounts for the physical performance

This paper addresses real-time adaptation of decision threSht€ signal reception process. Such a performance model is

olds based on the time series information from sensor netwdYRically used in naval systems and has been experimentally
nodes. Major contributions of this paper are listed below. validated [9]. The following model parameters have been used

« Robust trade-off between probabilities of false searc':H the simulated scenario of the sensor network, which are

(Prs) and successful searchP4s) with variations consistent with thg existing pra<.:t|c?e [8I]. . _
in the target motion and uncertainties in the ambi- * Target acoustic energy emission level, = 1_00 db;
ent/background noise distribution. « Ambient/background noise levé& L = 70 db;

« Online correction of the offline estimate of decision ° Standard deviation o;uncertamtyihL = %_db;_ |
threshold based on time series of the current track. « Paramete)] = 0 db due to sensor omnidirectionalty.

« Algorithm validation on a simulated sensor-network test- 1h€ decision regarding the presence of a target is made
bed with time series from an ensemble of target track<ollaboratively by multiple sensors in accordance with the
track-before-detect paradigm. A target is said to be detected

2. THE TRACK-BEFOREDETECT STRATEGY if, within a specified interval of time, a numbérof sensors
This section formulates a track-before-detect strategy bigtect a signal that exceeds the specified decision threghold
developing a formal language theory-based optimization prgre length of the time interval is chosen based on the size of
cedure for estimation of decision thresholds for off-nominahe surveillance region and the speed a typical target. In this
undersea target tracks as an alternative to conventional efidy, % is chosen to b& following the standard practice [4].
timization methods. To this end, the following assumptiorsigure 2 illustrates the conceptual operation of the sensor field.
are made based on the standard characteristics of ocgae sensors are placed in an approximately circular shape, as

environment and undersea sonar sensors [8]: shown by ‘o’ markers. In addition, the figure also shows an
» Deployment of passive omnidirectional sonar sensors ambitrary track that a target may follow.
the sensor network wita priori known locations; Identification of an optimal decision threshald involves

« Inverse relationship (e.g., inverse square law for deeplution of a bi-objective optimization problem, where the two
water) of the transmission loss of the acoustic signé&tonflicting) objectives are:
energy with respect to the sensor’s distance from thel) Maximization of probability of successful searchsfs)
target due to spherical spreading; 2) Minimization of probability of false searchPgs).
« Signal contamination with multiplicative Gaussian noise; For a given target trackPs s as a function ofD is evaluated
« Uniform ambient/background noise level for all sensorgy Monte Carlo simulation. For a given threshald, the
As a target travels across the region, each sensor picks ugiraulation of a target moving along a particular track is
noise-contaminated signal. A sensor that is closer to the targgpeated 10,000 times. The®ss(D) is evaluated as the
receives a stronger (i.e., larger magnitude) signal as compafiedttion of times the target is detected for the giveénOn the
to a sensor that is located farther away from the targether handPrs is analytically evaluated [4] and depends on
Each sensor in the network is modeled with a simple sonifie ambient noise characteristics. Bdths (D) and Prg(D)
equation [8], where the temporal positioning of signal energye monotonically decreasing functions iof
is kinematically matched to the location of a moving target It has been observed that the non-dominated points in the
with constant source strength. The sonar equation represgitd of log(Pss) versuslog(Prs) form a convex curve. Thus,



3. REVIEW OF UNDERLYING MATHEMATICAL CONCEPTS

This section reviews the concepts of symbolic dynamic
filtering (SDF) [6][7] and formal language measure [5] that
are used to compute decision thresholds for online surveillance
of undersea targets moving over a deployed sensor network.

A. Symbolic Dynamic Filtering (SDF)

The SDFgenerates state probability vectors from probabilis-
tic finite state automataPESA to represent the evolving sta-
tistical patterns of the dynamical system. The performance of
SDF relative to other classes of pattern recognition tools, such
as Bayesian Filters and Artificial Neural Networks, has been
| reported in [11] from the perspectives of performance (e.g.,
1 12 13 14 15 capability for early detection of anomalies) and computational

Decision Threshold B (in d8) efficiency (e.g., execution time and memory requirements).
Fig. 3. Effect of Threshold on the objectiv& «, D) for the track in Fig. 2 The PFSAare constructed via analytic signal space par-
titioning (ASSP) [7] of the observed time series data for
symbol sequence generation, which is an essential ingredient
of SDF. A brief review of Hilbert-transform-baseASSP
follows.

1) Analytic Signal Space PartitioningHilbert transform of
a real-valued signat(t) is obtained by the convolution:
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-0.4 The (complex-valued) analytic signal [12] of the real-valued
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log | (Pe) Given a set of real-valued time series data, its Hilbert
Fig. 4. Receiver operating characteristics for the track in Fig. 2 transform yields a pseudo-phase plot that is constructed from

the analytic signal by a bijective mapping of the complex field
onto R?, i.e., by plotting the real and the imaginary parts
of the complex-valued signal on the abscissa and ordinate,
J(a, D) = alog(Pss(D)) — (1 — a)log(Prs(D)) (2) respectively. The time-dependent analytic signal in Eq. (5) is
now represented as a (one-dimensional) trajectory in the two-
dimensional pseudo-phase space [7].

Let= be a compact region in the pseudo-phase space, which

D°P'(a)) = argmax J(a, D) (3) encloses the trajectory. The objective here is to partifion
D into finitely many mutually exclusive and exhaustive segments,

The family of curves in Fig. 3 show the effects of the chosemhere each segment is labeled with a symbol; and the resulting
decision threshold on the objective functiod («, D) at dif- set of symbols is called an alphabEt The segments are
ferent values of the parameterfor the track in Fig. 2. In this determined by magnitude and phase of the analytic signal
context, Fig. 4 is constructed to show the receiver operatingd also from density of data points in these segments. That
characteristics (ROC) curve (i.e., the Pareto front) [10] fas, if the magnitude and phase of a data point lies within a
the track in Fig. 2. A point on the ROC curve provides theegment or on its boundary, then that data point is labeled with
information on optimal value of the paiPgs, Pss) for the the corresponding symbol. This symbol generation process is
respectiveyr. This information is in agreement with the optimakalled analytic signal space partitioningSH [7].
decision threshold at the peak point of the ROC curve in Fig. 30ne possible way of partitioning the regia@his to divide
corresponding to the given value of the magnitude and phase of the time-dependent analytic signal

The above discussion evinces that, for a giwethe optimal in Eqg. (5) into uniformly spaced segments between their
decision threshold°?? in Eq. (3) is dependent on the currenminimum and maximum values. This is called uniform parti-
track of the target. Although the information on the currerioning. An alternative method, known as maximum entropy
track is not knowna priori, an ensemble of time seriespartitioning [7], maximizes the entropy of the partition, which
data generated from the deployed sensor network is availalifeposes a uniform probability distribution on the symbols. In
While the detection thresholds for feasible target tracks attd@s partitioning, parts of the state space with rich information
determined offline to obtain aa priori expected valueD, are partitioned into finer segments than those with sparse
the problem at hand is to identify the decision threshBf® information. TheASSPalgorithm makes use of either one or
online from the time series of the current target track. both of these partitioning methods.

a single objective function/ is constructed by a weighted
linear combination of the objective functiod%;s and Prg.

wherea is a scalar weight()( < a < 1). For a given weight
«, the optimal detection threshold°?? is obtained as:



The space of the complex-valued analytic signal is parfl'hef[-matrix is defined agﬁjk =7(g;,0%),49; € Q, 01 € X.
tioned in the angular and radial directions by either the uniform Definition 3.3: The probabilistic state transition map of the
or the maximum entropy partitioning technique [7].|Ez| PFSAis defined as a function : Q@ x @ — [0, 1] such that
and|X 4| are the number of segments in the radial and angular .

. . . . 0 ¥ 0(qg = =
directions, respectively, then the total number of symbols in if {oe (9, o) = ar} =0

the alphabek is given by the producty| = |Sx||Z 4. (g5, ar) = - A .
2) Construction of PFSAGiven a symbol sequence derived e (a0 o) =an (0, 4;) = mjx otherwise
from ASSPof observed time series data, the concept of (7

d-Markov Machine [6] is adopted for construction of theThe IT-matrix is defined adI = [ry].

PFSAwith the stochastic matrifI of state transitions being Definition 3.4: The language measure [5] of RESAwith
irreducible and acyclic [13]. (Note: The algorithm used forespect to a given state weight vectpris defined as:
construction of the®? 'S A could be non-unique because it re- B T

lies on the symbol sequence that is obtained by partitioning of p(O) =0 [I - (1-)II"x . - (8)

the time series data, where symbolization may not be achie\)'éaere the scalar paramet@re (0,1) ensures invertibility of
through a generating partition [6].) ThitMarkov machine "€ matrix on the right hand i'de of Eq. (8) and implies a
has a state-space structure where the states of the machind&jfa!nating automaton. A@_ﬁ 0%, the terminating automaton
represented by blocks; o 10110...0414 1 Of d consecutive converges to a non-term_matmg automaton._The following
symbols from the alphabet. Thus, with cardinality|s| of propositions are reported in [5] along with their proofs.A

the alphabet and deptth of a symbol string of a state, the

Proposition 3.1: The limiting measure vectoiw(0) =
total maximum number of states in tieMarkov machine 6o+ ”<(9) exists and is bounded from above such that
is given by |£|%. Thus, the state machine moves from on&?(Ollee = lIx][s-

state to another upon occurrence of a symbol. All symbol Proposition 3.2: Given an irreducible and acyclic state tran-

sequences that have the same ssymbols represent thesnion matrix IT, theA measure v:;ector in Eg. (8) reduces to:
same state. The states of tHeMarkov machine at different V(.O)d: vl, \(/jvhereiz [1T1 vh . ._Th(;n, ihe scalar measbure
time epochs should have identical probability distribution iK 'S denoted asz =px, wherep is t e(1 x n) state prob-

the time scale in which the dynamical system is assumed pility vector which is the (sum-normalized) left eigenvector
be (quasi)stationary of IT corresponding to its unique unity eigenvalue [13].

‘ o hreshold ) 4. ADAPTATION OF THE DECISION THRESHOLD
B. Language Measure for Decision Threshold Computation While the optimum threshold°?* can be computed for a

The PFSAconstructed from a symbol sequence acts ask@own track, the goal here is online adaptation of the threshold
language generator and is representedzas (Q,%,4,II), D for a priori unknown tracks, based on the in-situ sensor time
where @ is the finite set of states with cardinalitf)| = n; series data. The decision threshold is computed as a positive
¥ is the symbol alphabet and the Kleene closureibis real measure of the language of tRESAgenerated from a
denoted ast* that is the set of all finite-length strings ofsymhol sequence obtained by partitioning of the time series.
symbols including the empty string the (possibly partial) The language measure is derived in terms of the track-invariant
function : @ x ¥ — @ represents state transitions andtate weight vectoy of the PFSA as described below.
6"+ @ x ¥* — @ is an extension ofy; and II is the  The time series data collected from sensors are partitioned
symbol generation probability matrix, also called the morp@sgp) for conversion into a symbol sequence[7]. Then, by
matrix, which specifies the probability of symbol generatiofp|lowing the procedure outlined in Section 3, BFSA
conditioned on [ldIVIduaI states. The state transition mdikix is constructed from the concatenated Symb0| sequences [6]
is derived fromII and$. If II is an irreducible matrix, then obtained from the relevant sensors. TRé'SA hasn states,

p is the (1 x n) state probability vector which is the (sum-where n is a positive integer, and is characterized by an
normalized) left eigenvector dil corresponding to its unique (5, x n) state transition matrifI that is an irreducible acyclic
unity eigenvalue [13] and each elementpa$ strictly positive. stochastic matrix [13] by construction apds the associated

A signed measure of the language[5] is obtained by assigiiate probability vector. Then, there existd an) state weight
ing a weight to each of the states of tRESA vectory such that the (scalar) language measure ofthes A

Definition 3.1: The state weight vectoy : @ — R assigns s obtained by Proposition 3.2 as=p x~.

a signed real weight to each stajgi = 1,2,...,n. The  Let D be the expected value of the track-dependent decision

(1 x n) state weight vector is denoted as: thresholds (as obtained using Eq. (3)) over the distribution of
— o xn]  where x; 2 v(q;) ©6) target tracks. Let the state weight vecprbe assigned such
X=Xz Xn Xi = X\ that the residueld; — D) of the detection threshold for the

Definition 3.2: The symbol generation probabilities are” track is identically equal to the language measyref the
specified asr : ¥* x Q — [0, 1] such thatvg; € Q,Vo, € PFSAof the corresponding track. Then, the detection threshold
¥, Vs € ¥F, D; for the i*" track is obtained as:

(1) 7Flow,q;) = T € [0,1]; X 7 = 1; D=y o AT 4T

(2) Flow.q)] = 0'ff 3(q;. o4) is Undefined: ande, ;] = 1; Di=D=vi = Di=px +D ©)

(3) 7loks,q;] = T[ok, q;] 7[s,(q;,0%)]. wherep; is the state probability vector for th&" track.



The sets of track data generated from the simulation test 2000
bed are divided into two mutually disjoint subsets - a training 1800 1"'
set and a test set. The estimgteof the (track-invariant) 1600]
state weight vectory is computed from the ensemble of 1400}
training data in terms of the respective decision thresholds
for individual tracks in thea priori known training set.

Let /;.q4in be the number of tracks in training set. An

1200+

o

o

1000 /0
/0

800} Sensors

location (Meters)

(Lrain X m) matrix P is constructed from the training set as wl % °
N T T T 400+
PEprp; P (10) 200] Numbered
where the (I x n) state probability vectorsp,, i € % 500 1000 1500 2000
{1,2,3,--+ ,Lirain} are respectively obtained from tig.,;, tocation (Meters)

tracks in the training set. If the number of tracks in thE'9- 5 Setof testtracks across a sensor field

training set is larger than the number of states in RI&FA . . . . .
(i.e. £ynnin > ) and if there is sufficient variety in the set ofS94ares and is data driven in the absence of additional pertinent
b raimn

training tracks such that the matiixhas the full column rank information such as a model of the underlying physical process
n, then the 6 x n) matrix (PT]P) is invertible and statistics of the environmental noise. Should this informa-

tion be available, it is envisioned that combined model-based
and data-driven algorithms for (possibly nonlinear) estimation
of the state weight vectagy could be constructed for real-time
(11) execution on individual nodes in a sensor network.

» ) Remark 4.2:The estimated state weight vect®y is a
where the positive scala®;, i € {1,2,3, ..., lsrqin}, are the linear functional in the spac®&" becausey : R" — R

thresholds for the respective tracks in the training set apd; |inear map, as seen in Egs. (9) and (15). If the scalar
D is the average detection threshold, which are compated,arameter of decision threshaldl is replaced by a parameter
priori. Accordingly, a measurement model of t-qin X 1) yector of dimensionn < n, thenx will become a linear
threshold residue vectah is formulated as: transformation fromR™ onto R™. In a more general case,
A=PxT t¢ (12) a non!inegr transformation .shc_)uld. be sought to addres_s this
identification problem. That is, it might be necessary to find a
where the measurement error vectors additive zero-mean homeomorphism between the range spacg aid the space

A threshold residue vectoA consisting of the detection
threshold for each track in the training set is defined as:

A2[D;—-DDy-D - Demm_mT

and the (positive definite) error covariance matrixs of the decision threshold vector that replaces the sdalar
An estimatey of the track-invariant{ x n) vector x is
obtained by the (weighted) linear least square method based 5. RESULTS AND DISCUSSION

on the information obtained from the training set. This task
requires orthogonal projection of th&;..., x 1) threshold
residue vectoA onto the column space d@f such that

This section presents the results of the proposed method
of detection threshold estimation as applied to simulated data
generated for a notional undersea sensor network. The nominal
B 7 ! . . : )
5 = ([PTR”]P’} I]P’TR”A) (13) sensor configuration foII_ows an apprOX|mat_er C|rf:ular ring
pattern, where the spacing between two neighboring sensors

Note thaty is an unbiased estimate gf and if the measure- iS Sét to be approximately one half of the expected detection
ment noises in Eq. (12) is jointly Gaussian, theg is also range. Such a spacing provides multiple detection opportuni-
the minimum-variance estimate &f ties for targets that transit along paths near the center of the

If the information on the measurement noise covarianéécular ring, even under somewhat noisy circumstances. The
matrix is not available, it is logical to assume (e.g., for iderfensor characteristics, environment and target models are the
tical sensors) that the measurement error covariance maf@ime as described in Section 2.

R ~1y, .. xe.....In that case, Eq. (13) reduces to The ensemble of time series data is obtained from a set
R - of 20 sensors in the given sensor network of the simulation
X = ( [PTP} - ]pTA) (14) test bed for each of 21 different tracks. The optimal decision

threshold for each target track corresponds to the cost weight
In the deployment phase, following Eq. (14), a probabilisti¢y and is track-specific (see Eq. (3)). The objective here is
state-machine-based estimate of the threshold residue vegtogemonstrate the efficacy 6fFSAbased estimation of the
A is obtained in terms of the estimateof the track-invariant detection threshold for individual tracks. Data from 10 out of
state weight vector as: the 21 tracks have been used for training and the parameter
N N ST A vectory is estimated according to Eq. (14). The performance
A=PX & Di=p X +D, i€ {12, liest} (15) is then tested on the remaining 11 tracks. These 11 tracks are
Remark 4.1:The algorithm in Eqg. (15) for estimation of numbered as depicted in Fig. 5.
decision threshold is sufficiently fast for real-time execution Figures 6(a) and 6(b) present comparisons of the optimal
on (limited memory) sensor nodes. In the present form, tllecision threshold°P* and the respective estimated values
algorithm is formulated based on the principle of linear least the11 test conditions fore=0.95 anda=0.9 respectively,



track, which is robust relative to variations in the target mo-
tion and uncertainties in the environmental noise distribution.
The proposed probabilistic finite state autom&bk$A-based
algorithm is optimal in the sense of weighted linear least
squares. The algorithm has been tested with sensor data from
several tracks on a simulated sensor field. The results suggest
that thePFSAbased approach is feasible for online estimation
of decision thresholds, as needed for tracking of undersea
targets. However, the proposed track-before-detect algorithm
must be validated with rich experimental data to establish its
efficacy for online surveillance of undersea targets.

As an extension ofPFSAbased decision-making, future
research is recommended in the following areas:

« Track-dependent estimation of decision threshold for dy-
namic adaptation in a large sensor fieldhe optimal
decision threshold should be determined based on the
local placement of sensors, where the size of the local
region depends on the target speed and the time interval
within which multiple sensors must detect the target.
Sensor placement for online tracking of target move-
ments There is a need for development of a mathemat-
ically rigorous and computationally inexpensive formal-
language-theoretic algorithm that will support the opti-
mization objectives related to sensor placement. Once
calibrated with the existing optimization algorithms, the
proposedPFSAbased algorithm is expected to provide
solutions to the online sensor placement problem for
modest perturbations in the nominal target statistics and
be locally executable on individual nodes of a sensor
network in the undersea environment.
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