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Abstract— This paper addresses real-time decision-making as-
sociated with acoustic measurements for online surveillance of
undersea targets moving over a deployed sensor network. The
underlying algorithm is built upon the principles of symbolic
dynamic filtering for feature extraction and formal language
theory for decision-making, where the decision threshold for
target detection is estimated based on time series data collected
from an ensemble of passive sonar sensors that cover the
anticipated tracks of moving targets. Adaptation of the decision
thresholds to the real-time sensor data is optimal in the sense of
weighted linear least squares. The algorithm has been validated
on a simulated sensor-network test-bed with time series data
from an ensemble of target tracks.

1. INTRODUCTION

Detection of moving targets (e.g., undersea autonomous
vehicles and weapon systems) in spatially-variable and un-
certain environments is of prime importance in intelligence,
surveillance and reconnaissance (ISR) systems. However, the
situational context may prohibit placement of a single fixed
long-term ISR system that can be fine-tuned to maximize per-
formance in the area of interest. In such situations, distributed
fields of passive sensor systems are often called for, as they
allow the coverage of relatively large areas at a moderate
cost [1][2][3]. A distributed system of small sensing nodes
also provides a capacity for rapid deployment (e.g., many
small assets are usually easier to position than a few large
ones). In this context, the underwater target tracking must meet
the demands of rapid deployment and wide area coverage for
surveillance of moving targets in an uncertain environment.

When a large field of passive sensors is deployed for
target tracking, the decision parameters of each sensor can
be tuned according to the situation awareness. In particular,
the sensor decision thresholdD provides a cutoff level on the
received energy of the acoustic signal above which a target
detection is declared. Naturally, lower values ofD provide a
higher sensitivity to noise-induced false alarms, where random
spikes in the background noise would cause a detection to be
erroneously reported. In contrast, larger values ofD reduce
the effective detection range of the sensors, thus causing
some targets to potentially move through the surveillance
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region undetected. By carefully examining the spatio-temporal
sequence of reported detections across the entire field of
sensors, a much lower level of thresholdD may be applied,
since random false alarms will rarely occur in patterns that are
coincident with expected target motion behavior. The usage
of moving target kinematics for multiple sensor detections is
referred to as the track-before-detect strategy, and is commonly
adopted in multi-sensor surveillance of moving targets.

Wettergren [4] presented an application of track-before-
detect strategies to undersea distributed sensor networks. In de-
signing the deployment of a distributed passive sensor network
that employs this track-before-detect procedure, it is impera-
tive that the placement of sensors be commensurate with the
expected detection range. With limited knowledge of expected
target direction and environmental conditions (e.g., sensor
performance variations over space), it is a common practice
to assume uniform likelihoods of target motion direction and
uniform environmental conditions; this assumption leads to a
naturally optimal configuration of sensors in a circular ring
with a small overlap between coverage of individual sensors.
Such a configuration would include a nominal setting of
the decision threshold that is identical for all sensors. As
situational information (e.g., from observation of a target as
sensor time series) is gained from the system, it is desirable to
adaptively improve the detection performance and reduce the
probability of false alarms through adjustment of the decision
threshold for the individual sensors in real time. From these
perspectives, the decision thresholds at individual sensor nodes
are adaptable parameters for maintaining a specified level of
track-before-detect performance.

Given thea priori information: (i) the fixed sensor positions
and (ii) the statistical distributions of expected target trajec-
tories, the objective is to estimate track-dependent decision
thresholds in real time by making robust trade-offs between
minimization of the probability of false search (PFS) and
maximization of the probability of successful search (PSS).
The track-dependent decision thresholds are adapted using
the concept of formal language-theoretic measure [5] in the
setting of probabilistic finite state automata (PFSA). ThePFSA
are constructed from symbol sequences generated from the
observed time series data at each sensor location [6][7]. The
flow chart in Fig. 1 depicts the process of learning and
adaptation to illustrate how the formal language of thePFSA
is derived to select the decision threshold for a real track.

To establish the feasibility ofPFSA-based tools for esti-
mation of sensor detection thresholds, simulation data sets
have been constructed corresponding to a notional undersea
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Fig. 1. Flow chart of the learning and adaptation phases

sensor field surveillance scenario. These sensor data sets
are generated on a simulation test-bed of noisy time series
outputs. The test-bed is built on a typical sensor network that
has been deployed to optimize its ability to track moving
targets. The track-before-detect strategy has been used in a
nominal sensing environment with an acceptable level of false
search. As the target motion track is perturbed, the system
performance degrades relative to the (a priori determined)
optimal condition, which can be adaptively improved.

This paper addresses real-time adaptation of decision thresh-
olds based on the time series information from sensor network
nodes. Major contributions of this paper are listed below.

• Robust trade-off between probabilities of false search
(PFS) and successful search (PSS) with variations
in the target motion and uncertainties in the ambi-
ent/background noise distribution.

• Online correction of the offline estimate of decision
threshold based on time series of the current track.

• Algorithm validation on a simulated sensor-network test-
bed with time series from an ensemble of target tracks.

2. THE TRACK-BEFORE-DETECT STRATEGY

This section formulates a track-before-detect strategy by
developing a formal language theory-based optimization pro-
cedure for estimation of decision thresholds for off-nominal
undersea target tracks as an alternative to conventional op-
timization methods. To this end, the following assumptions
are made based on the standard characteristics of ocean
environment and undersea sonar sensors [8]:

• Deployment of passive omnidirectional sonar sensors in
the sensor network witha priori known locations;

• Inverse relationship (e.g., inverse square law for deep
water) of the transmission loss of the acoustic signal
energy with respect to the sensor’s distance from the
target due to spherical spreading;

• Signal contamination with multiplicative Gaussian noise;
• Uniform ambient/background noise level for all sensors.
As a target travels across the region, each sensor picks up a

noise-contaminated signal. A sensor that is closer to the target
receives a stronger (i.e., larger magnitude) signal as compared
to a sensor that is located farther away from the target.
Each sensor in the network is modeled with a simple sonar
equation [8], where the temporal positioning of signal energy
is kinematically matched to the location of a moving target
with constant source strength. The sonar equation represents
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Fig. 2. Sensor placement and a target track

the signal power excess (SE) received on the sensor, which
is modeled in decibel (power) units as:

SE(t) = SL − NL − TL(x(t)) + DI (1)

wheret is the time,SL is the level of the source (i.e., target)
energy emission,NL is the ambient noise level,TL is the
(stochastically varying) transmission loss as a function of the
current target positionx(t), andDI is the directivity-induced
noise compensation that accounts for the physical performance
of the signal reception process. Such a performance model is
typically used in naval systems and has been experimentally
validated [9]. The following model parameters have been used
in the simulated scenario of the sensor network, which are
consistent with the existing practice [8].

• Target acoustic energy emission levelSL = 100 db;
• Ambient/background noise levelNL = 70 db;
• Standard deviation of uncertainty inTL = 2 db ;
• ParameterDI = 0 db due to sensor omnidirectionalty.
The decision regarding the presence of a target is made

collaboratively by multiple sensors in accordance with the
track-before-detect paradigm. A target is said to be detected
if, within a specified interval of time, a numberk of sensors
detect a signal that exceeds the specified decision thresholdD;
the length of the time interval is chosen based on the size of
the surveillance region and the speed a typical target. In this
study,k is chosen to be3 following the standard practice [4].
Figure 2 illustrates the conceptual operation of the sensor field.
The sensors are placed in an approximately circular shape, as
shown by ‘o’ markers. In addition, the figure also shows an
arbitrary track that a target may follow.

Identification of an optimal decision thresholdD involves
solution of a bi-objective optimization problem, where the two
(conflicting) objectives are:

1) Maximization of probability of successful search (PSS)
2) Minimization of probability of false search (PFS).
For a given target track,PSS as a function ofD is evaluated

by Monte Carlo simulation. For a given thresholdD, the
simulation of a target moving along a particular track is
repeated 10,000 times. Then,PSS(D) is evaluated as the
fraction of times the target is detected for the givenD. On the
other hand,PFS is analytically evaluated [4] and depends on
the ambient noise characteristics. BothPSS(D) andPFS(D)
are monotonically decreasing functions ofD.

It has been observed that the non-dominated points in the
plot of log(PSS) versuslog(PFS) form a convex curve. Thus,
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a single objective functionJ is constructed by a weighted
linear combination of the objective functionsPSS andPFS .

J(α, D) = α log(PSS(D)) − (1 − α) log(PFS(D)) (2)

whereα is a scalar weight (0 < α < 1). For a given weight
α, the optimal detection thresholdDopt is obtained as:

Dopt(α) = arg max
D

J(α, D) (3)

The family of curves in Fig. 3 show the effects of the chosen
decision thresholdD on the objective functionJ(α, D) at dif-
ferent values of the parameterα for the track in Fig. 2. In this
context, Fig. 4 is constructed to show the receiver operating
characteristics (ROC) curve (i.e., the Pareto front) [10] for
the track in Fig. 2. A point on the ROC curve provides the
information on optimal value of the pair (PFS , PSS) for the
respectiveα. This information is in agreement with the optimal
decision threshold at the peak point of the ROC curve in Fig. 3
corresponding to the given value ofα.

The above discussion evinces that, for a givenα, the optimal
decision thresholdDopt in Eq. (3) is dependent on the current
track of the target. Although the information on the current
track is not knowna priori, an ensemble of time series
data generated from the deployed sensor network is available.
While the detection thresholds for feasible target tracks are
determined offline to obtain ana priori expected valueD̄,
the problem at hand is to identify the decision thresholdDopt

online from the time series of the current target track.

3. REVIEW OF UNDERLYING MATHEMATICAL CONCEPTS

This section reviews the concepts of symbolic dynamic
filtering (SDF) [6][7] and formal language measure [5] that
are used to compute decision thresholds for online surveillance
of undersea targets moving over a deployed sensor network.

A. Symbolic Dynamic Filtering (SDF)

TheSDFgenerates state probability vectors from probabilis-
tic finite state automata (PFSA) to represent the evolving sta-
tistical patterns of the dynamical system. The performance of
SDF relative to other classes of pattern recognition tools, such
as Bayesian Filters and Artificial Neural Networks, has been
reported in [11] from the perspectives of performance (e.g.,
capability for early detection of anomalies) and computational
efficiency (e.g., execution time and memory requirements).

The PFSA are constructed via analytic signal space par-
titioning (ASSP ) [7] of the observed time series data for
symbol sequence generation, which is an essential ingredient
of SDF . A brief review of Hilbert-transform-basedASSP
follows.

1) Analytic Signal Space Partitioning:Hilbert transform of
a real-valued signalx(t) is obtained by the convolution:

x̃(t) , H[x](t) = x(t) ∗
( 1

π t

)
(4)

The (complex-valued) analytic signal [12] of the real-valued
signalx(t) is defined as:

X (t) , x(t) + i x̃(t) (5)

Given a set of real-valued time series data, its Hilbert
transform yields a pseudo-phase plot that is constructed from
the analytic signal by a bijective mapping of the complex field
onto R

2, i.e., by plotting the real and the imaginary parts
of the complex-valued signal on the abscissa and ordinate,
respectively. The time-dependent analytic signal in Eq. (5) is
now represented as a (one-dimensional) trajectory in the two-
dimensional pseudo-phase space [7].

Let Ξ be a compact region in the pseudo-phase space, which
encloses the trajectory. The objective here is to partitionΞ
into finitely many mutually exclusive and exhaustive segments,
where each segment is labeled with a symbol; and the resulting
set of symbols is called an alphabetΣ. The segments are
determined by magnitude and phase of the analytic signal
and also from density of data points in these segments. That
is, if the magnitude and phase of a data point lies within a
segment or on its boundary, then that data point is labeled with
the corresponding symbol. This symbol generation process is
called analytic signal space partitioning (ASSP) [7].

One possible way of partitioning the regionΞ is to divide
the magnitude and phase of the time-dependent analytic signal
in Eq. (5) into uniformly spaced segments between their
minimum and maximum values. This is called uniform parti-
tioning. An alternative method, known as maximum entropy
partitioning [7], maximizes the entropy of the partition, which
imposes a uniform probability distribution on the symbols. In
this partitioning, parts of the state space with rich information
are partitioned into finer segments than those with sparse
information. TheASSPalgorithm makes use of either one or
both of these partitioning methods.
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The space of the complex-valued analytic signal is parti-
tioned in the angular and radial directions by either the uniform
or the maximum entropy partitioning technique [7]. If|ΣR|
and|ΣA| are the number of segments in the radial and angular
directions, respectively, then the total number of symbols in
the alphabetΣ is given by the product:|Σ| = |ΣR||ΣA|.

2) Construction of PFSA:Given a symbol sequence derived
from ASSP of observed time series data, the concept of
d-Markov Machine [6] is adopted for construction of the
PFSAwith the stochastic matrixΠ of state transitions being
irreducible and acyclic [13]. (Note: The algorithm used for
construction of thePFSA could be non-unique because it re-
lies on the symbol sequence that is obtained by partitioning of
the time series data, where symbolization may not be achieved
through a generating partition [6].) Thed-Markov machine
has a state-space structure where the states of the machine are
represented by blocksσiσi+1σi+2...σi+d−1 of d consecutive
symbols from the alphabetΣ. Thus, with cardinality|Σ| of
the alphabet and depthd of a symbol string of a state, the
total maximum number of states in thed-Markov machine
is given by |Σ|d. Thus, the state machine moves from one
state to another upon occurrence of a symbol. All symbol
sequences that have the same lastd symbols represent the
same state. The states of thed-Markov machine at different
time epochs should have identical probability distribution in
the time scale in which the dynamical system is assumed to
be (quasi)stationary.

B. Language Measure for Decision Threshold Computation

The PFSAconstructed from a symbol sequence acts as a
language generator and is represented asG , (Q, Σ, δ, Π̃),
whereQ is the finite set of states with cardinality|Q| = n;
Σ is the symbol alphabet and the Kleene closure ofΣ is
denoted asΣ? that is the set of all finite-length strings of
symbols including the empty stringε; the (possibly partial)
function δ : Q × Σ → Q represents state transitions and
δ? : Q × Σ? → Q is an extension ofδ; and Π̃ is the
symbol generation probability matrix, also called the morph
matrix, which specifies the probability of symbol generation
conditioned on individual states. The state transition matrixΠ

is derived fromΠ̃ andδ. If Π is an irreducible matrix, then
p is the (1 × n) state probability vector which is the (sum-
normalized) left eigenvector ofΠ corresponding to its unique
unity eigenvalue [13] and each element ofp is strictly positive.

A signed measure of the language[5] is obtained by assign-
ing a weight to each of the states of thePFSA.

Definition 3.1: The state weight vectorχ : Q → R assigns
a signed real weight to each stateqi, i = 1, 2, . . . , n. The
(1 × n) state weight vector is denoted as:

χ = [χ1 χ2 · · · χn] where χj , χ(qj) (6)

Definition 3.2: The symbol generation probabilities are
specified as̃π : Σ? × Q → [0, 1] such that∀qj ∈ Q, ∀σk ∈
Σ, ∀s ∈ Σ?,

(1) π̃[σk, qj ] , π̃jk ∈ [0, 1];
∑

k π̃jk = 1;
(2) π̃[σk, qj ] = 0 if δ(qj , σk) is undefined; and̃π[ε, qj ] = 1;
(3) π̃[σks, qj ] = π̃[σk, qj ] π̃[s, δ(qj , σk)].

TheΠ̃-matrix is defined as:̃Πjk = π̃(qj , σk), qj ∈ Q, σk ∈ Σ.
Definition 3.3: The probabilistic state transition map of the

PFSAis defined as a functionπ : Q × Q → [0, 1] such that

π(qj , qk) =






0 if {σ ∈ Σ : δ(qj , σ) = qk} = ∅

∑
σ∈Σ: δ(qj , σ)=qk

π̃(σ, qj) , πjk otherwise

(7)
The Π-matrix is defined asΠ , [πjk].

Definition 3.4: The language measure [5] of aPFSAwith
respect to a given state weight vectorχ is defined as:

ν̄(θ) = θ [I − (1 − θ)Π]−1
χ

T (8)
where the scalar parameterθ ∈ (0, 1) ensures invertibility of
the matrix on the right hand side of Eq. (8) and implies a
terminating automaton. Asθ → 0+, the terminating automaton
converges to a non-terminating automaton. The following
propositions are reported in [5] along with their proofs.

Proposition 3.1:The limiting measure vector̄ν(0) ,
limθ→0+ ν̄(θ) exists and is bounded from above such that
||ν̄(0)||∞ ≤ ||χ||∞.

Proposition 3.2:Given an irreducible and acyclic state tran-
sition matrix Π, the measure vector in Eq. (8) reduces to:
ν̄(0) = ν1, where1 , [1 1 . . . 1]T . Then, the scalar measure
ν is denoted as:ν = p χ

T , wherep is the(1×n) state prob-
ability vector which is the (sum-normalized) left eigenvector
of Π corresponding to its unique unity eigenvalue [13].

4. ADAPTATION OF THE DECISION THRESHOLD

While the optimum thresholdDopt can be computed for a
known track, the goal here is online adaptation of the threshold
D for a priori unknown tracks, based on the in-situ sensor time
series data. The decision threshold is computed as a positive
real measure of the language of thePFSAgenerated from a
symbol sequence obtained by partitioning of the time series.
The language measure is derived in terms of the track-invariant
state weight vectorχ of the PFSA, as described below.

The time series data collected from sensors are partitioned
(ASSP) for conversion into a symbol sequence[7]. Then, by
following the procedure outlined in Section 3, aPFSA

is constructed from the concatenated symbol sequences [6]
obtained from the relevant sensors. ThePFSA hasn states,
where n is a positive integer, and is characterized by an
(n×n) state transition matrixΠ that is an irreducible acyclic
stochastic matrix [13] by construction andp is the associated
state probability vector. Then, there exists a(1×n) state weight
vectorχ such that the (scalar) language measure of thePFSA

is obtained by Proposition 3.2 asν = p χ
T .

Let D̄ be the expected value of the track-dependent decision
thresholds (as obtained using Eq. (3)) over the distribution of
target tracks. Let the state weight vectorχ be assigned such
that the residue (Di − D̄) of the detection threshold for the
ith track is identically equal to the language measureνi of the
PFSAof the corresponding track. Then, the detection threshold
Di for the ith track is obtained as:

Di − D̄ = νi ⇒ Di = pi χ
T + D̄ (9)

wherepi is the state probability vector for theith track.



5

The sets of track data generated from the simulation test
bed are divided into two mutually disjoint subsets - a training
set and a test set. The estimateχ̂ of the (track-invariant)
state weight vectorχ is computed from the ensemble of
training data in terms of the respective decision thresholds
for individual tracks in thea priori known training set.

Let `train be the number of tracks in training set. An
(`train × n) matrix P is constructed from the training set as

P ,
[
pT
1 pT

2 · · · pT
`train

]
(10)

where the (1 × n) state probability vectorspi, i ∈
{1, 2, 3, · · · , `train} are respectively obtained from the`train

tracks in the training set. If the number of tracks in the
training set is larger than the number of states in thePSFA
(i.e. `train > n) and if there is sufficient variety in the set of
training tracks such that the matrixP has the full column rank
n, then the (n × n) matrix

(
P

T
P
)

is invertible.
A threshold residue vector∆ consisting of the detection

threshold for each track in the training set is defined as:

∆ ,
[
D1 − D̄ D2 − D̄ · · · D`train

− D̄
]T

(11)

where the positive scalarsDi, i ∈ {1, 2, 3, ..., `train}, are the
thresholds for the respective tracks in the training set and
D̄ is the average detection threshold, which are computeda
priori . Accordingly, a measurement model of the(`train × 1)
threshold residue vector∆ is formulated as:

∆ = P χ
T + ε (12)

where the measurement error vectorε is additive zero-mean
and the (positive definite) error covariance matrix isR.

An estimateχ̂ of the track-invariant (1 × n) vector χ is
obtained by the (weighted) linear least square method based
on the information obtained from the training set. This task
requires orthogonal projection of the(`train × 1) threshold
residue vector∆ onto the column space ofP such that

χ̂ =
( [

P
T
R

−1
P
]−1

P
T
R

−1
∆

)T

(13)

Note thatχ̂ is an unbiased estimate ofχ and if the measure-
ment noiseε in Eq. (12) is jointly Gaussian, then̂χ is also
the minimum-variance estimate ofχ.

If the information on the measurement noise covariance
matrix is not available, it is logical to assume (e.g., for iden-
tical sensors) that the measurement error covariance matrix
R ∼ I`train×`train

. In that case, Eq. (13) reduces to

χ̂ =
( [

P
T

P
]−1

P
T
∆

)T

(14)

In the deployment phase, following Eq. (14), a probabilistic-
state-machine-based estimate of the threshold residue vector
∆ is obtained in terms of the estimatêχ of the track-invariant
state weight vector as:

∆̂ = P χ̂
T ⇔ D̂i = pi χ̂

T + D̄, i ∈ {1, 2, · · · , `test} (15)

Remark 4.1:The algorithm in Eq. (15) for estimation of
decision threshold is sufficiently fast for real-time execution
on (limited memory) sensor nodes. In the present form, the
algorithm is formulated based on the principle of linear least
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squares and is data driven in the absence of additional pertinent
information such as a model of the underlying physical process
and statistics of the environmental noise. Should this informa-
tion be available, it is envisioned that combined model-based
and data-driven algorithms for (possibly nonlinear) estimation
of the state weight vectorχ could be constructed for real-time
execution on individual nodes in a sensor network.

Remark 4.2:The estimated state weight vector̂χ is a
linear functional in the spaceRn becauseχ̂ : R

n → R

is a linear map, as seen in Eqs. (9) and (15). If the scalar
parameter of decision thresholdD is replaced by a parameter
vector of dimensionm ≤ n, then χ̂ will become a linear
transformation fromR

n onto R
m. In a more general case,

a nonlinear transformation should be sought to address this
identification problem. That is, it might be necessary to find a
homeomorphism between the range space ofχ̂ and the space
of the decision threshold vector that replaces the scalarD.

5. RESULTS AND DISCUSSION

This section presents the results of the proposed method
of detection threshold estimation as applied to simulated data
generated for a notional undersea sensor network. The nominal
sensor configuration follows an approximately circular ring
pattern, where the spacing between two neighboring sensors
is set to be approximately one half of the expected detection
range. Such a spacing provides multiple detection opportuni-
ties for targets that transit along paths near the center of the
circular ring, even under somewhat noisy circumstances. The
sensor characteristics, environment and target models are the
same as described in Section 2.

The ensemble of time series data is obtained from a set
of 20 sensors in the given sensor network of the simulation
test bed for each of 21 different tracks. The optimal decision
threshold for each target track corresponds to the cost weight
α and is track-specific (see Eq. (3)). The objective here is
to demonstrate the efficacy ofPFSA-based estimation of the
detection threshold for individual tracks. Data from 10 out of
the 21 tracks have been used for training and the parameter
vectorχ is estimated according to Eq. (14). The performance
is then tested on the remaining 11 tracks. These 11 tracks are
numbered as depicted in Fig. 5.

Figures 6(a) and 6(b) present comparisons of the optimal
decision thresholdDopt and the respective estimated valuesD̂

at the11 test conditions forα=0.95 andα=0.9 respectively,
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(a) Scalar weightα = 0.95 in objective functionJ in Eq. (2)
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(b) Scalar weightα = 0.90 in objective functionJ in Eq. (2)

Fig. 6. Comparison of Optimal Decision Threshold and Estimation

where track numbers in both figures correspond to those in
Fig. 5. These results are based on the information (i.e.,χ̂)
generated in the training phase and are obtained by partitioning
the space of complex-valued analytic signals (see Eq. (5))
with a symbol alphabetΣ having cardinality|Σ| = 6, where
|ΣR| = 6 and |ΣA| = 1 (see Section. 3-A.1). A probabilistic
finite state automaton (PFSA) is then constructed from the
generated symbol series. In this case, thePFSA has 6
states [6]; consequently, the vectorχ lies in R

6.
In both Figs. 6(a) and 6(b), the mean of the estimation

error is negligibly small relative to the mean value of the
optimal decision threshold, which implies that the estimate is
practically unbiased. Therms value of the error (Dopt− D̂) is
0.3 db. If the threshold is assumed to bēD instead ofD̂ (i.e.,
no adaptation), the resultingrms error increases to1.6 db.

6. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

This paper addresses online surveillance of undersea targets
as a real-time track-before-detect problem. As the target moves
across the sensor field, each sensor collects time series data;
the sensors that are closer to the path of the target capture
stronger signals. A track-before-detect algorithm has been
formulated to estimate the track-dependent decision threshold
based on the ensemble of time series data from the sensor
field. The objective here is to obtain an optimal trade-off
between the probabilities of false search and successful search
as well as adaptation to online time series data of the current

track, which is robust relative to variations in the target mo-
tion and uncertainties in the environmental noise distribution.
The proposed probabilistic finite state automata (PFSA)-based
algorithm is optimal in the sense of weighted linear least
squares. The algorithm has been tested with sensor data from
several tracks on a simulated sensor field. The results suggest
that thePFSA-based approach is feasible for online estimation
of decision thresholds, as needed for tracking of undersea
targets. However, the proposed track-before-detect algorithm
must be validated with rich experimental data to establish its
efficacy for online surveillance of undersea targets.

As an extension ofPFSA-based decision-making, future
research is recommended in the following areas:

• Track-dependent estimation of decision threshold for dy-
namic adaptation in a large sensor field: The optimal
decision threshold should be determined based on the
local placement of sensors, where the size of the local
region depends on the target speed and the time interval
within which multiple sensors must detect the target.

• Sensor placement for online tracking of target move-
ments. There is a need for development of a mathemat-
ically rigorous and computationally inexpensive formal-
language-theoretic algorithm that will support the opti-
mization objectives related to sensor placement. Once
calibrated with the existing optimization algorithms, the
proposedPFSA-based algorithm is expected to provide
solutions to the online sensor placement problem for
modest perturbations in the nominal target statistics and
be locally executable on individual nodes of a sensor
network in the undersea environment.
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