

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

 INTERACTIVE VISUALIZATION OF NATIONAL AIRSPACE DATA IN 4D
(IV4D)

Aerospace Computing, Inc. (ACI)

August 2010

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2010-156

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2010-156 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
PETER A. JEDRYSIK JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 2007 – May 2010
4. TITLE AND SUBTITLE

INTERACTIVE VISUALIZATION OF NATIONAL AIRSPACE DATA IN
4D (IV4D)

5a. CONTRACT NUMBER
FA8750-07-C-0050

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Susan Hinton

5d. PROJECT NUMBER
NASA

5e. TASK NUMBER
NG

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Aerospace Computing, Inc. (ACI)
465 Fairchild Drive, Suite 224
Mountain View, CA 94043-2251

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-156

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2010-4567
Date Cleared: 23-Aug-10
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This Final Technical Report discusses the accomplishments of an effort to support NASA and FAA goals for visualization of the
National Airspace System (NAS) to aid the analysis of proposed changes to increase its capacity and meet future needs. The Air
Force Research Laboratory (AFRL) is developing a JView-based visualization tool, known as the Viewer, for visualizing objects and
results from NASA’s ACES (Airspace Concept Evaluation System) simulation application. IV4D (Interactive Visualization in 4-D)
was developed as a plug-in to the Viewer. It employs a combination of heuristics and visualization defaults in order to search for
entities to visualize, and then to display them with minimal user selection. IV4D makes it easy for aeronautics researches and others
to display flight trajectories, airspace boundaries, weather, and more, with data coming from multiple sources, including multiple
software and simulation applications. IV4D is designed to work with most forms of NAS state data, concentrating first on data
representing the most common elements of objects within the NAS – positioned still and moving objects; that is, concentrating on
objects situated by latitude, longitude, elevation, which are present for a defined period of time.
15. SUBJECT TERMS

National Airspace System visualization, airspace visualization, air traffic visualization, air traffic management tools, airspace
analysis tools
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

42

19a. NAME OF RESPONSIBLE PERSON
Peter A. Jedrysik

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

ABSTRACT

When AFRL (Air Force Research Laboratory) offered to use part of a Congressional
earmark, targeted at advancing the Air Force’s JView visualization framework, to consolidate
JView capabilities into an API (application programming interface) layer, now known as the
Viewer, for visualizing objects and results from NASA’s ACES (Airspace Concept Evaluation
System) simulation software application, the idea of a user centered tool for studying both the
current and theoretical use of the NAS (national airspace) was born. Though IV4D (Interactive
Visualization in 4-D) was first conceived of as a way to facilitate the display of data from NASA’s
simulation software application, aeronautics researchers preferred a more generic approach.
Design for IV4D evolved to locate and display two readily assembled types of table data,
comma-delimited and SQL (structured query language), representing positioned still and moving
objects – that is, objects situated by latitude, longitude, and elevation which are present for a
defined period of time. IV4D also needed to be easy to understand and use, and able to
visualize a multitude of airspace polygons along with thousands of flights at a time. Additionally,
it was envisioned that user filtering and specifications be saved as a kind of meta-data so that
subsequent attempts to display similar future data would be accelerated.

 Today IV4D is a flexible, easy to understand and use tool that, along with the AFRL Viewer,
performs well with a high volume of data, and which provides NASA and FAA researchers with
a way to see and understand still and animated NAS data coming from multiple sources.

ACKNOWLEDGEMENTS

 In addition to AFRL, Aerospace Computing, Inc. (ACI) would like to thank developers from
CACI, Inc. who developed the Viewer API layer that supports IV4D, and with whom the ACI
team coordinated during the project. ACI would also like to thank NASA Ames Research Center
for providing office space and facilities for the duration of the project, and for providing beta and
usability testing while using beta and released versions of the tool for research purposes.

ii

TABLE OF CONTENTS

Abstract .. i

Acknowledgements .. i

1 Summary ... 1

2 Introduction ... 3

2.1 Identification and Intended Audience .. 3

2.2 IV4D Application Background and Overview ... 3

2.3 Document Overview .. 4

3 Technical Methods, Assumptions, and Procedures .. 5

3.1 Architectural View .. 5

3.2 Data ... 6

3.2.1 CSV Data ... 6

3.2.2 MySQL Data ... 7

3.2.3 Heuristic Data Search .. 8

3.3 User Interface (UI) ... 9

3.3.1 Create Views .. 10

3.3.2 Apply Views .. 15

3.4 Display Heuristics .. 19

3.5 Display Refinement ... 20

3.6 Persistence (Saved Views) ... 23

3.7 Performance .. 23

4 Organizational Methods, Assumptions, and Procedures .. 24

4.1 Original CMMI-Dev Process .. 24

4.2 “Parallel Play” .. 25

4.3 Final Organizational State ... 26

iii

5 Results and Discussion ... 27

6 Conclusions .. 33

6.1 Technical Results and User Satisfaction ... 33

6.2 Organizational Methods .. 33

List of Acronyms .. 35

iv

LIST OF FIGURES

Figure 1: Architectural view ... 5

Figure 2: First two rows from file with animated polygonal data .. 7

Figure 3: Display of CSV data, with ‘extra’ data for height shown in labels 7

Figure 4: Table columns and rows needed to animate trajectories (heading is optional) 8

Figure 5: Display of both static and animated MySQL table data, together 8

Figure 6: Initial UI on start-up, shows empty Create Views panel .. 10

Figure 7: UI for building visualization from MySQL table data .. 10

Figure 8: Simple selection yields fast, informative display .. 11

Figure 9: Popup dialogs for coloring or filtering sectors .. 12

Figure 10: Selecting alternate Name, sectorName, along with regular expression: 13

Figure 11: Result from using regular expressions with MySQL flight data 14

Figure 12: Select low DFW sectors with flights into and out of Dallas-Fort Worth 14

Figure 13: Low DFW sectors with flight tracks into and out of Dallas-Fort Worth 15

Figure 14: A user creates, and then saves a view, so that flights with Ids starting with ‘4’ are red
and flights with Ids starting with ‘5’ are yellow ... 16

Figure 15: Apply Views shows saved view, from Figure 14 .. 16

Figure 16: User applies view to a new database, and saves result to a new name 17

Figure 17: The flight Ids view is combined with an earlier airspace volumes view 18

Figure 18: Experimental set of airspace sectorization with ARTCC boundaries 20

Figure 19: Viewer UI shows scene graph, on left, and property settings, on right 21

Figure 20: Experimental sectors are easier to see after changes to display properties 22

1

1 SUMMARY
IV4D (Interactive Visualization in 4-D) consists of a set of tools that plug into an API

(application programming interface) layer, called the Viewer, which, in turn, utilizes the AFRL
(Air Force Research Laboratory) JView graphics engine. All of the software, IV4D/Viewer/JView,
is written in Java and is platform independent, meaning that it is able to run on many computing
platforms. IV4D has been tested on computers running Linux, Windows, and OS X operating
systems.

 IV4D was first conceived of as a way to display data from NASA’s ACES (Airspace Concept
Evaluation System) simulation software application. However, aeronautics researchers made it
clear that there are many sources of NAS (national airspace) data, and an application able to
assemble displays from disparate sources would be valuable.

 IV4D employs a combination of heuristics and visualization defaults in order to search for
entities to visualize, and then to display them with minimal user selection: IV4D makes it easy
for aeronautics researches and others to display flight trajectories, airspace boundaries,
weather, and more, with data coming from multiple sources, including multiple software and
simulation applications. To do this, IV4D is designed to work with most forms of NAS state data,
concentrating first on data representing the most common elements of objects within the NAS –
positioned still and moving objects: That is, concentrating on objects situated by latitude,
longitude, elevation, which are present for a defined period of time. Such objects include
airports, flights, waypoints, airspace boundaries, weather polygons, etc. However IV4D is not
limited to this data, as it is possible to add as many other relevant pieces of data, assembled
with or connected to the state data, as desired. It is also possible to add in, on the fly,
algorithmic metrics that act on the data to produce a result for display.

Since ACES data originally consisted solely of table data, and since many aeronautics
tools read and display table data, and since table data is comparatively easy to assemble, IV4D
and the Viewer were designed to work with forms of table data. (Both also work with a small set
of other types of data.) As a result, IV4D works with both comma-delimited (CSV) and SQL
(structured query language) database data (MySQL), and does not depend upon any single
software application. Additionally, it was envisioned that user filtering and specifications be
saved as a kind of meta-data so that subsequent attempts to display similar future data would
be accelerated.

 Throughout the project there were three main challenges. First, there is a linear set of API
(application programming interface) dependencies as the Viewer depends directly upon JView
and IV4D depends directly on the Viewer, so an obvious challenge involves keeping the APIs
for the applications stable and in synch with each other.

2

 Second, IV4D was developed on the West Coast, at NASA Ames Research Center, where
key users live and work, while the Viewer and JView were being developed on the East Coast,
in Rome, NY at the Air Force Research Laboratory. This meant that planned communications
and at least a modicum of CMMI (Carnegie Mellon’s Capability Maturity Model Integration)
process, targeted at levels 2 to 3, for software development, were necessary. This contrasts
with regular software development at AFRL, which adheres to a deliberately impromptu process
known as agile software development. Agile development assumes constant communication
and access among developers (i.e., working in close proximity).

 Third, with the release of version 1.0, at the end of the first year of development, it became
clear that software performance was a major impediment to successfully displaying a multitude
of airspace polygons and thousands of flights at a time, which are necessary in order to show
flight activity across the entire NAS.

 Challenges 1 and 2 were closely intertwined and were mitigated during the first year by
attempting to follow a streamlined version of NASA’s ACES software development process,
though following the process came more naturally to developers on the West Coast. In following
years, once the Viewer API stabilized, and after East and West Coast developers became more
at ease with each other and with the combined software set, it was possible to ease back from
strict adherence to process. The timing was fortunate, since solving performance issues for all
pieces of the software demanded the attention of the developers on their respective parts of the
puzzle.

 During the past three years, a number of researchers and aeronautical research developers
used both in-development, and released versions of IV4D. Their feedback was essential in
making a successful final product. In addition to reporting bugs, their usability and feature
requests regularly changed the course of development. These included changes such as:
Allowing users to pick the same data source as many times as desired while applying different
filters and display specifications; Keeping the last visualization display up while the user creates
and starts the next one; And, of course, the wringing out of every possible iota of performance,
to meet the explosive growth in aeronautical data begging for display (such as airspace and
weather polygons together). These are only of few of many changes made as a result of user
testing.

 Today IV4D, in conjunction with the AFRL Viewer, forms a successful set of software tools
that are being used by aeronautics researchers at NASA Ames and NASA Langley Research
Centers. Users have found the application to be flexible, easy to use and understand, that
performs well, and provides researchers with a way to study and understand still and animated
NAS data. Furthermore, the IV4D/Viewer combination was considered interesting enough to
cause NASA Ames Research Center to fund a separate plug-in module for the Viewer, the
ACES simulation run-time plug-in.

 There is, however, room for product improvement. For example, a considerable
improvement would involve standardizing IV4D and Viewer persistence data so users can move
more seamlessly between visualizations saved from the Viewer Configuration panel and
visualizations saved from IV4D. Other improvements might include making parts of IV4D
modules more malleable with respect to each other, improving heuristics for default display
results, and new default methods for visually comparing and contrasting sets of data.

3

2 INTRODUCTION
2.1 IDENTIFICATION AND INTENDED AUDIENCE

This is the final technical report for IV4D (Interactive Visualization in 4-D), a visualization
tool that plugs into a layer of software called the Viewer, which consolidates the Air Force’s
JView graphics engine capabilities into an API layer for visualizing the NAS (national airspace).

 It is intended to be read by any software or technical manager or individual interested in
1) building a user centered software application to visualize elements and objects in the NAS, or
2) the experience of working across agencies to build an application for use by researchers at
one agency (i.e., NASA) that depends upon a framework being built by another agency (i.e., the
Air Force).

2.2 IV4D APPLICATION BACKGROUND AND OVERVIEW
IV4D is a visualization tool, built to leverage and enhance work done for the Air Force

Research Laboratory (AFRL) Viewer, and developed over a three-year period for NASA Air
Traffic Management (ATM) researchers. The goal was to produce a tool that is easy to
understand and use, performs well, and provides researchers a way to study and understand
the national airspace using various forms of input and output data, such as data from NASA’s
ACES (Airspace Concept Evaluation System) simulation software.

Though first designed to read ACES data, IV4D is built to work with simple forms of table
data, both comma-delimited (CSV) and SQL database (MySQL) data, and does not depend
upon any single software application. IV4D also makes it possible to visualize flight trajectories,
airspace boundaries, weather, and more, with data that comes from multiple sources, including
multiple software and simulation applications. Finally, it was designed so that user filtering and
specifications are saved as a kind of meta-data, called “views,” so subsequent attempts to
display similar data can be accelerated.

 In order to do this, IV4D is designed to work with most forms of NAS state data,
concentrating on data which represents positioned still and moving objects – that is, on objects
which are situated by latitude, longitude, elevation, and which are present for a defined period of
time. These objects include airports, flights, waypoints, airspace boundaries, weather, etc.

 Throughout the project, all software upon which IV4D depended was evolving while IV4D
evolved: IV4D modules, Create Views and Apply Views, plug into the AFRL Viewer while the
Viewer depends upon another actively evolving piece of software, the AFRL JView graphics
engine. Additionally, NASA’s ACES software application was actively being developed.
Changes to ACES included changes to data in form and type. (Originally IV4D targeted display
of ACES data.) Plus, IV4D was developed on the West Coast, at NASA Ames Research Center
where key users live and work, while the Viewer and JView were being developed on the East
Coast, at AFRL in Rome, NY. Furthermore, AFRL utilizes an agile software development
process, known to work best when developers work in close proximity. When developers belong
to different organizations and are not sitting near each other, agile methodologies become more
difficult to follow. Thus, in addition to technical challenges entailed in synchronizing design in
order to produce useful software, it was important to foster regular communication and
synchrony by defining a process to formalize steps in design and implementation.

4

2.3 DOCUMENT OVERVIEW
The bulk of this document, below, is divided into two parts:

1. The technical description of IV4D and how it evolved

2. A description of the organizational framework designed to synchronize IV4D and the
Viewer, and how that evolved

Following these are sections discussing results and conclusions.

5

3 TECHNICAL METHODS, ASSUMPTIONS, AND PROCEDURES
IV4D is a user-centered piece of software, designed for use by aeronautical researchers

and consumers of aeronautical data. It allows users to quickly take advantage of esoteric and
complex functionality supplied by underlying layers of AFRL supplied software. It does this first
by hiding, to a great degree, the complexity upon which it relies, and second by creating its own
intermediary layer, based on a series of heuristics, to call upon and use the underlying software.

To build on this statement, IV4D is a set of plug-in modules whose forte relies primarily
upon understanding the composition of aeronautical data – or at least a broad swath of it – and
on familiarity with aeronautical research at NASA, and familiarity with and access to researchers
and aeronautical developers. It does not strongly rely upon software design breakthroughs or on
cleverness in manipulating scene graphs, compos able software elements, or underlying 3-D to
2-D transformative algorithms. These last areas are well advanced by the AFRL JView graphics
engine and by the AFRL Viewer.

One can think of IV4D as second generation software built on top of a set of premier first
generation visualization capabilities. IV4D is a highly flexible tool that allows aeronautical
researchers to quickly and accurately visualize aeronautical state data and associated
elements, while, if desired, employing on-the-fly metrics.

3.1 ARCHITECTURAL VIEW
Below (Figure 1) is a view of the basic architectural design showing how IV4D makes use

of AFRL’s JView software application capabilities. JView is a graphics engine, invented by
AFRL that allows rapid development of highly accurate 3D and 4D platform independent
visualizations. The Viewer forms a subsequent layer, consolidating JView capabilities into an
API for visualizing objects in the NAS. The Viewer also employs a plug-in framework, allowing
independent modules, such as the IV4D modules Create Views and Apply Views, or the
separate ACES run-time visualization module, to plug into and to utilize collected functionalities.

Figure 1: Architectural view

6

3.2 DATA
 IV4D depends upon aeronautical data, and this section describes the data that IV4D
utilizes. Specifically, IV4D looks for data that can be visualized, and then uses a series of
heuristics for deciding how to display the data.

 Though IV4D was first conceived of as a way to facilitate the display of data from NASA’s
ACES simulation software application, aeronautics researchers preferred a more generic
approach. Design for IV4D evolved to locate and display two readily assembled types of table
data, comma-delimited (CSV) data and SQL (structured query language) data, representing
positioned still and moving objects – that is, on objects situated by latitude, longitude, and
elevation that are present for a defined period of time.

In addition to the general forms described below, IV4D recognizes XML ACES airspace
boundaries, and a more specialized ACES SQL table containing airport location.

3.2.1 CSV Data
 IV4D/Viewer reads comma-delimited data in two static forms and in one dynamic form.
Though originally the forms represented sector or center airspace volumes, data in these
formats have been used to represent sub-sectors, dynamic sectors and sub-sectors, and
dynamic weather events.

 All CSV data must have a commented Header line at the start of the file (Figure 2). The
Header represents the table schema and, for each object being represented, all forms of CSV
data must include

1) A unique Id string

2) A base altitude and a top altitude

3) A space-delimited set of latitude/longitude vertices that describe a closed polygon

4) If animated, there must be a column for time, in milliseconds, seconds, minutes, or
hours, in regular, incremented intervals.

Since the scene is redrawn at every time interval, each maintained volume must have
a row for every time step at which it is visible. In other words, if a polygonal shape is
present for 4 hours and time advances every minute, there will be 240 rows (60
minutes x 4 hours). Id will be maintained, but base altitude, top altitude, and the closed
polygonal shape can change at each time interval.

5) Other, optional, columns may also be present, and the optional data can be included
in the display. Viewer specific functionality makes this possible. Once the scene is
drawn, users can choose to use Viewer specific functionality either to display aspects
of the additional data or to script on-the-fly code snippets In order to manipulate the
data for display.

7

**Sector(string id),Time,AltitudeMin(feet),AltitudeMax(feet),Boundary(lat/lon),
2974,1153999230000,0,25294.827600192595,39.3386/-87.6004 39.3386/-87.5070 39.3386/-87.4603 39.3386/-
87.4136 39.3386/-87.3670 39.3386/-87.3203 39.3386/-87.2736

Figure 2: First two rows from file with animated polygonal data

Figure 3: Display of CSV data, with ‘extra’ data for height shown in labels

3.2.2 MySQL Data
IV4D/Viewer reads MySQL database tables containing columns for flightId (or other string

ending with the sub-string of ‘Id’ or ‘Name’), simulation Time, latitude, longitude, altitude, init
(Boolean), and heading (an optional column). As with CSV data (Figure 2) there may be other
columns as well.

Additional columns, by default, are ignored, though users can choose to employ
functionality provided either by IV4D or by the Viewer to access and either display aspects of
‘extra’ columns or to add on-the-fly code snippets to manipulate data for display. IV4D allows
users to filter and manipulate the data through SQL queries, regular expressions, or simple
listings while, along with other mechanisms, the Viewer allows users to add short code snippets
to manipulate the data during visualization. More is written below on the user interface in section
User Interface.

As with CSV data, MySQL data is assumed to represent either static or animated objects.
Static objects are drawn as lines, though lines can be connected to represent runways,
taxiways, etc., or entire trajectories or other objects. Animated objects are assumed to be flight
objects and are represented by models resembling paper airplanes, though users can use
functionality provided by the Viewer to select or draw alternate shapes.

8

Figure 4: Table columns and rows needed to animate trajectories (heading is
optional)

Figure 5: Display of both static and animated MySQL table data, together

3.2.3 Heuristic Data Search
Because locating data is a repetitive and predictable process, which therefore can be

automated, as much as possible IV4D tries to locate viewable table data for the user. (The goal
is to relieve users of unnecessary tedium.)

Viewable data contains data for columns mentioned previously, in sections CSV Data and
MySQL Data. In some circumstances, IV4D goes further, looking for the most appropriate Id or
attempting to associate appropriate latitude, longitude, and altitude columns with each other
when there are multiple choices.

Heuristics are particularly helpful when looking at SQL data, since a database can contain
tables with and tables without viewable data.

9

IV4D looks for ‘the most likely’ Id candidate column name in the following heuristic order (an
Id name consists of an alpha-numeric string):

1) flightId

2) Anything containing ‘flightId’, such as ‘uniqueFlightId’ or ‘etmsFlightId’ or ‘airlineFlightId’
(pick the first found, if there is more than one)

3) etmsId

4) airlineFlightNumber

5) The first column name that ends in “id”, such as “AIRPORT_ID” or “airportId”

6) The first column name that ends in “name”, such as “fixedWIngName”

 The other columns that may have a varying column name are: column names indicating
latitude, longitude, or altitude. Each should include the appropriate case-ignored sub-string of
‘latitude’, ‘longitude’, or ‘altitude’, for example IV4D would find all of the following:
reference_latitude, altitudeFeet, westernHemiLongitude. If there is more than one column with
appropriate sub-strings, IV4D tries to choose those which seem to go together – for example if
there is a latitude_1, latitude_2, longitude_1, longitude_2, IV4D would, by default, use latitude_1
with longitude_1. However, the user interface (UI) allows users to select them differently.

 In addition to the rules above, IV4D utilizes other heuristics specifically for ACES data. For
example, an Id may be connected to latitude, longitude, altitude columns spread across several
tables loosely coupled with each other through ACES table naming conventions.

3.3 USER INTERFACE (UI)
Though IV4D tries, as much as possible, to automatically find and display data, there are

decisions that remain best made by a user. The IV4D user interface is the mechanism by which
users make these decisions.

Researchers working on difficult problems are time constrained. Therefore a key goal for
IV4D was to make it as simple as possible to quickly produce a useful visualization – defined as
one that may not be as polished as possible but which clearly illustrates desired elements in as
esthetically pleasing a way as possible. This meant IV4D needed a user interface requiring 1)
little time to learn, but which 2) allows users to pick, choose, save, and reuse data as desired,
and 3) which displays immediate results that can be fine-tuned afterward, i.e., interactively.

While aeronautical researchers use a number of software applications, including
MATLAB, SPSS, scripting languages, and others, nearly everyone uses Microsoft Excel: The
main point is that researchers are used to looking at data in rows and columns, and at
applications displaying data in rows and columns. Where reasonable, therefore, IV4D presents
data selection and filtering mechanisms in lists or with rows and columns. Other selection and
filtering UI elements were designed after considering and choosing the most straightforward
standard UI practices: Possibly this makes the UI look somewhat boring (Figures 6 and 7), but it
allows users to create useful visualizations very quickly – often on the first attempt.

10

Figure 6: Initial UI on start-up, shows empty Create Views panel

Figure 7: UI for building visualization from MySQL table data

IV4D UI is split into two modules: Create Views, for creating visualizations, and Apply
Views, for reusing visualizations and for mixing visualizations together.

3.3.1 Create Views
The Create Views UI, which allows users to build visualization, is divided into two parts:

One for building visualizations of airspace volumes, such as sectors or weather, and one for
building visualizations of flights, trajectories, and for line drawings, such as airport taxiways,
runways, etc. Visualization can be built from either or both parts.

11

3.3.1.1 Airspace Volumes
Once appropriate CSV or ACES XML airspace boundary files are selected from a

standard Java File Chooser dialog, users can add data from each file one or many times, and
then filter, label, and choose colors for each data row.

For example to see Figure 8, below, a user would

1) Select low sector data twice

2) Filter for two sets of sectors, one set with Id names starting with “ZID,” the Indianapolis
ARTCC (Air Route Traffic Control Center), and the other set from ARTCCs surrounding ZID

3) Give separate colors to each set

4) Turn on labels for ZID

5) Click Run

Figure 8: Simple selection yields fast, informative display

To choose a filter or color, the user clicks the cell in the row and column to filter (see
Figure 9, below). For example, to pick the yellow color, a user clicks on the 2nd cell down from
the column header Color; or to select a set of Id name filters, the user clicks on the appropriate
cell under the column header Name.

12

Figure 9: Popup dialogs for coloring or filtering sectors

Most popup dialogs have multiple ways for users to refine their process. For example, in
the Boundary File popup above, a user can enter a regular expression into the Search Range
text box, or a user can scroll through the list of Id names and click on those to display. This
helps to ensure that every user, for example users who are not familiar with regular
expressions, will be able to make a useful selection.

3.3.1.2 Flights, Trajectories, Line Drawing
The first step in selecting table data from a database is to connect to the database server

and then to select a database. If the database server is on an IV4D user’s system, the user
simply clicks Connect; otherwise a user enters an appropriate IP Address and clicks Connect.

IV4D then searches for tables in the database that contain the appropriate, necessary
columns – see previous section Heuristic Data Search for more information. As with earlier
CSV data, users can add data from each table one or many times, and then filter, label, and
choose colors for each data row. In addition, for animated data users can filter by Start and Stop
times.

Since there are more columns available in IV4D for MySQL data, users are able to click
on more cells and, when there are other appropriate choices, filter more finely.

Normally, as in the example in Figure 10, under column header Name, one would expect
to see ‘flightId’, but here a user has clicked on the cell and made an alternate selection,
‘sectorName’. Then, after clicking on another cell under column header Search Range/Query,
the user has entered the following regular expression: ^ (ZOB|ZAU|ZKC|ZME|ZTL|ZDC) This
expression causes flights that are in sectors beginning with particular ARTCC identifiers (such
as ‘ZOB’) to be selected.

13

Figure 10: Selecting alternate Name, sectorName, along with regular expression:
^ (ZOB|ZAU|ZKC|ZME|ZDC)

 Using the Search Range/Query popup, users can create filters in the most appropriate
mode for the task at hand. For example using a SQL statement allows a user to include data
from other columns, or other tables – including those with non-visualizable data. The Search
Range option is best when a user knows exactly what he or she wants to see, for example
‘ZID78 – ZID99.’

 In the example above, which results in the display seen in Figure 11, flights appear with
green or yellow tails depending upon whether they are currently in ZID or in a surrounding
airspace. This is similar to an earlier example showing a result from using regular expressions
for airspace volumes, along with color (see above section Airspace Volumes).

14

Figure 11: Result from using regular expressions with MySQL flight data

And, of course, users can select flight data and airspace volumes together. Selections shown in
Figure 12 result in the display pictured in Figure 13.

Figure 12: Select low DFW sectors with flights into and out of Dallas-Fort Worth

15

Figure 13: Low DFW sectors with flight tracks into and out of Dallas-Fort Worth

3.3.2 Apply Views
 Data saved from the Create Views panel can be replayed or combined with other saved
data from the Apply Views panel. In addition to combining visualizations, Applied Views allows
users to review settings made in Create Views, and to apply those settings to other data with a
similar scope.

 A simple example is shown in Figure 14. From Create Views, a user builds and saves
visualization. In the case below, flights (from database “job_1_ldc…”) with Id names starting
with the number 4 are shown in red, while flights with Id names starting with the number 5 are
shown in yellow. Labels are turned on.

16

Figure 14: A user creates, and then saves a view, so that flights with Ids starting
with ‘4’ are red and flights with Ids starting with ‘5’ are yellow

 Later, from Apply Views (Figure 15), a user picks and loads the view saved above, from a
list. The Apply Views UI is designed to echo the Create Views look, making it easy for users to
recall the settings. If desired, a user can ‘Browse’ to apply the view to a new database.

Figure 15: Apply Views shows saved view, from Figure 14

17

 If the new database contains appropriate data, a user can save, or save and immediately
run, the new view (Figure 16). In the case below, the user applies the view created for the
original database to a new database named “job_9_ldc…” (The original database started
“job_1…”)

Figure 16: User applies view to a new database, and saves result to a new name

 This makes it easy to quickly use the same settings over and over again for, say, a series of
related simulations, or for simulations that may not be at all related.

 A user can also use Apply Views to put two or more views together. The picture in Figure
17 shows the result from putting together the flight Ids view with an earlier airspace volumes
view (see earlier section Airspace Volumes). This means that data from entirely differing
sources can be quickly visualized together. For example a user might choose to show animated
weather polygons from one day or one experiment with flight data from an entirely different
source or time.

18

Figure 17: The flight Ids view is combined with an earlier airspace volumes view

19

3.4 DISPLAY HEURISTICS
 The JView graphics engine allows nearly unlimited visual configurations, while the Viewer
allows users to set hundreds of display options.

 To help users of IV4D obtain fast results, IV4D allows users perhaps a dozen ways to filter
objects to visualize (e.g. by name, using regular expressions, using SQL queries, by time
interval, etc.), but deliberately offers next to no display options: Users can turn labels on or off,
and users can pick colors for visualized objects. This is done for two reasons:

1) Aeronautics researchers are not graphic artists, and most have no desire to become
graphic artists. They want to focus on their research and their research results.

2) Aeronautics researchers want to see something fast. If it takes too long to produce a
result or otherwise takes a researcher away from research, he or she is not likely to
keep using the tool.

 This is not to say that researchers do not want to see a visual display or that they do not
want graphically good pictures. The opposite is true: They often make statements saying they
want clear, accurate, and easy ways to view displays. But they do not want to spend time
making them.

 Of course, because a “good” or a pretty visual display often has a number of refinements
necessary for the display to be considered pleasing or easy to view, this presents a challenge
for the software developer. IV4D attempts to meet this challenge by making assumptions about
what the user wants to see, given the data that the user has selected. In other words, IV4D
employs a set of heuristics to try to match a reasonable visual display to the data.

 Essentially IV4D employs two types of display heuristics. One is global, and is applied as a
default for every display launched by IV4D: Because IV4D assumes that researchers are
interested in NAS-wide flight behavior, i.e., airspace volumes and flights over the continental
U.S., IV4D always includes a map showing continental U.S. state boundaries. IV4D also
exaggerates altitude by a scale of 10:1, displays animated flight objects using a model that
resembles a paper airplane, adds a 5 minute history trail behind each animated flight object,
specifies label height and font, and uses a graduated pin to connect the label to a flight or to a
waypoint. Complete trajectories are drawn as solid lines that connect waypoints along a
trajectory’s path. The default playback time-step is 1 minute. Airspace volumes are lit, have
translucent fill, solid lines, and completely transparent shelves. There is more, but mainly the
idea is to assume that the best view is of the forest rather than the trees.

 The second set of heuristics attempts to decode rows of MySQL data: As mentioned
earlier, animated objects must have unique Ids. For animated objects there should be a single
row at each appropriately incremented time interval. Otherwise, when an object Id appears in
multiple rows, all with an identical time, it’s assumed that the collected set should be
represented as a trajectory. Sometimes there are odd cases, with object Ids sometimes
appearing multiple times and at other times appearing in single instances. In these cases, IV4D
attempts to resolve the differences, by drawing each instance as a sphere, as though each point
was a waypoint. Finally, IV4D recognizes one ACES specific database table that pinpoints a
single latitude and longitude point for an airport. These are drawn as airport towers.

20

3.5 DISPLAY REFINEMENT
The current set of display heuristics (see above section Display Heuristics) works pretty

well, in that users see something quickly and, if they want to try something different, tinkering
with Create View and displaying the next result is as quick or quicker. Also, the Viewer and
JView provide a wealth of functionality for playing an animation, pausing, running in reverse,
zooming in and out, spinning the scene around, etc.

 But sometimes a user can spin and zoom the display to his or her heart’s content and
not obtain the view he or she would like. In Figure 18 is an example of a display which, though it
adequately shows airspace volumes with respect to each other, could be made better: The U.S.
map is unnecessary and the orange ARTCC volumes make it harder to see the sectors, though
one would like to see how the sectors fit within the overall scheme.

Figure 18: Experimental set of airspace sectorization with ARTCC boundaries

 Fortunately, in this case, a user has options – in fact perhaps too many. The Viewer
comes with a powerful UI of its own which, though less intuitive for most people, allows users to
alter and tweak hundreds of settings.

21

 The Viewer represents the internal workings of the graphics software with a “scene graph.”
Though using the Viewer UI to build a scene graph from scratch can be challenging, even for
software experts, student interns have been able to alter an existing scene graph with a little
practice. IV4D causes the scene graph to be built and displayed in the Composition panel when
it tells the Viewer to create a display.

 The picture in Figure 19 shows the Composition panel scene graph that was created when
the user clicked the Run button for the display above. On the lower left is a graph that depicts
how data was filtered, and then rendered for the display shown above the graph. The Polygons
renderer, circled at the bottom of the scene graph, is currently highlighted (i.e., a user clicked on
the Polygons icon causing the icon color to change to a more saturated blue). The right side of
the Composition panel contains a list of buttons that expand or contract when clicked. Currently
the Property Editor section is expanded and shows settings for the highlighted Polygons
renderer icon. Users can use these settings to modify the current display.

Figure 19: Viewer UI shows scene graph, on left, and property settings, on right

22

Figure 20 shows the improved display, made by editing as follows:

1) The Polygon renderer for the U.S. map was deleted, removing the U.S. map from the
scene

2) The Center Boundary altitude settings were set to zero (0), so the ARTCCs appear as
flat, and on the ground

3) The orange fill color for the ARTCCs was made transparent, so only the orange outlines
remain

4) The Super Sector fill color was made less transparent, so the top plane is easier to spot

5) The High Sector shelves (vertical walls for airspace volumes) color was made less
transparent, so sector height, in turquoise, is easier to see

Figure 20: Experimental sectors are easier to see after changes to display
properties

23

3.6 PERSISTENCE (SAVED VIEWS)
As mentioned earlier, user filtering and specifications set up in the Create Views panel

can be saved as a kind of meta-data. The meta-data can later be loaded from the Applied Views
panel to

1) Replay a display created in Create Views

2) Apply meta-data to new datasets, in order to quickly assemble a new display of
previously un-visualized data

3) Replay multiple displays, created in Create Views, together

4) Apply multiple sets of meta-data to multiple new datasets, in order to quickly assemble
a new display of previously un-visualized sets of data

A current limitation is that, because Create Views meta-data does not capture changes
made by the user from the Composition panel (see the previous section Display Refinement),
the new displays may need to be updated from the Viewer Composition panel, once they
appear. From the Composition panel, users can save a visualization that contains all display
refinements. However, this form of saved visualization cannot be combined with other displays.
(It can be applied to other data, but the process for doing so is prolonged, and is neither easy
nor straightforward.)

To learn more about how Applied Views works, see the earlier section Applied Views.

3.7 PERFORMANCE
Displaying a growing body of data continues to challenge display software applications,

and IV4D is no exception. While a large portion of the planned functionality for IV4D was in
place at the end of the first year of development, trying to visualize larger amounts of data
resulted in a sluggish response and, eventually, out of memory errors.

Ultimately, in order to satisfactorily display a multitude of airspace polygons along with
thousands of flights at a time, fixes and re-engineering needed to take place at all levels of the
combined JView/Viewer/IV4D software application. JView developers were working on a long-
term set of changes for tracking and drawing polygons. In the Viewer and in IV4D, memory
errors were fixed and memory handling was improved. New open source packages were put
into place, by the Viewer, and employed for handling comma delimited table data by both the
Viewer and IV4D. An older persistence mechanism, Hibernate, was replaced with JDBC specific
code and, over time, quite a bit of JDBC support code was added to the Viewer and to IV4D.
The types and number of JDBC queries made by IV4D were expanded and reworked. In many
cases broad queries made by IV4D were split into a series of more narrowly targeted queries
with, in a number of instances, resulting data being put back together afterward. Finally, many
pieces of code, generally, were reworked to provide faster processing with more efficient
memory usage.

24

4 ORGANIZATIONAL METHODS, ASSUMPTIONS, AND PROCEDURES
IV4D was developed on the West Coast, at NASA Ames Research Center where key

users live and work, while the Viewer and JView were developed on the East Coast, at AFRL in
Rome, NY. Also, because IV4D modules Create Views and Apply Views plug into and utilize
Viewer and JView functionalities, development of IV4D depended directly upon development
being done at AFRL.

Normally developers at AFRL utilize an agile software development process, known to
work best when developers work in close proximity, i.e., sitting nearby, while developers for this
project were situated on opposite coasts. It therefore seemed like a good idea to introduce an
alternate process, with a more methodical set of expectations than is typical for agile
development.

This part of the report describes the process that was proposed and accepted, how the
process changed over time, and lessons learned from this effort.

The goal is not to exhaustively describe pieces of the process, but rather to describe how
adopting the process worked, or didn’t, how it changed over time, and to suggest possible
improvements.

4.1 ORIGINAL CMMI-DEV PROCESS
When developers belong to different organizations and are not sitting near each other,

agile methodologies become difficult to follow. Since IV4D developers had experience working
on ACES, a large, successful software project with as many as 20 people distributed across
organizations and across the country, adapting and downsizing the ACES development process
seemed like a good place to start.

The goal was to set up a process in line with CMMI (Carnegie Mellon’s Capability Maturity
Model Integration) process, targeted loosely between level 2, characterized as “Repeatable” –
i.e., some processes are repeatable, with hopefully consistent results – and level 3,
characterized as “Defined” – i.e., defined, documented standard processes have been
established, and are subject to improvement over time.

The resulting process involved writing an Engineering Design Document (EDD), a
Software Design Document (SDD), and a Software Test Document (STD), coupled with a
defined set of test data. These documents were based on template documents produced for the
ACES development project. The templates are abbreviated, annotated documents that can be
filled in and completed by following the annotated directions. All documents are connected in
that requirements entered into and described in the EDD form the basis for both software design
in the SDD, and for testing in the STD. (A copy of the templates was passed to AFRL at the
outset of the project. Interested parties may contact ACI for a copy of the template documents.)
The IV4D development team was responsible for writing these documents.

25

Additionally, developers kept in touch through weekly teleconferences, email, and planned
and impromptu code and document exchanges. A bug database was set up, and bugs and
enhancement requests were entered and tracked. Also, during project development,
researchers and aeronautical research developers had access to and made use of in-
development, as well as released versions of IV4D. Their on-going feedback formed an
essential step leading to a successful final product. In addition to reporting bugs, their usability
and feature requests regularly changed the course of development. (Changes included, but
were not limited to: Allowing users to pick the same data source as many times as desired
while applying different filters and display specifications; Keeping the last visualization display
up while the user creates and starts the next one; And, of course, insisting on improvements in
performance.)

 The Principal Investigator (PI) for IV4D acted as Project Manager for the project. The PI
was responsible for setting up teleconferences and meetings, producing agendas and minutes
for teleconferences, arranging document and code exchanges, arranging and encouraging user
testing, formulating and incorporating responses to user requests and suggestions, entering and
tracking bugs, editing and finalizing document production, and generally coordinating and
shepherding progress on the project. The PI acted, therefore, as keeper of the process.

Regarding documents for project progress, the most useful turned out to be the
Engineering Design Document and subsequent addendum, along with the Software Test
Document, though the Software Design Document was useful for initial planning, actual design
for the Viewer and IV4D changed quite a bit between planning and final execution. Given that
the project did not require strict adherence to plan documents this was not, in itself, an issue.
Also, keeping track of bugs and requests with a bug database was critical.

During the first year of three, IV4D developers fully embraced the software development
process, though a Viewer API that evolved semi-independently lessened effectiveness of the
overall process. The rapidly changing API meant that in addition to lagging Viewer development
– IV4D modules plug into the Viewer software and therefore, depends directly upon the Viewer
API – some stretches of IV4D code were repeatedly rewritten to match the API of the moment.
(For this reason another developer, working on a separate effort to connect ACES simulation
software during run-time to the Viewer, chose to work with an older, stable, version of the
Viewer rather than try to keep up with the most current version.)

4.2 “PARALLEL PLAY”
During the second year the Viewer API stabilized somewhat and the process became

looser, while the development emphasis shifted from initial design and implementation of
planned features to improving performance.

Unlike the first year, it was possible for quite a bit of Viewer and IV4D implementation to
progress independently, and API changes were more limited, more planned in advance, and
there was more overall communication on how to properly use new APIs. During the second
year, as a result, software development was consistent with what teachers of younger children
call “parallel play” where youngsters play sociably, but independently, next to each other, with
occasional interaction.

26

At the beginning of this period the EDD was updated through an addendum, and the
testing document, rather than being expanded, was used for regression testing. Throughout the
performance upgrade period existing tests were run with successively larger sets of data.

4.3 FINAL ORGANIZATIONAL STATE
Improved performance encouraged new users to use IV4D, which, in turn, led to useful

feedback concerning feature enhancement and direction for the final, and third, IV4D software
release. The final seven to eight months of development focused on the user experience,
streamlining the user selection interface and adding more flexibility in filtering objects for
display.

However the kind of independent development, between IV4D and the Viewer, that
worked well for performance improvements did not work as well once development resumed in
standard mode. Though the Viewer API did not change as much as during the first year of
development, underlying Viewer design, including support for the Viewer and IV4D GUI, was
being altered drastically and the Viewer, therefore, was not stable for a prolonged time. This
made it difficult to properly upgrade and test IV4D since, as mentioned previously, IV4D
depends directly upon the Viewer and does not run independently.

Also, returning fully to the original agreed upon CMMI process (i.e., stepping back to plan
and upgrade EDD, SDD, and STD documents before taking up shared implementation) would
have slowed both ongoing, independently planned (by AFRL) Viewer changes and final IV4D
development. In an ideal setting, the development period would have been stretched to make
room for shared planning but, in reality, IV4D development had a final deadline that could not be
moved.

 Through extensive end-of-project testing and bug fixing, Viewer functionality stabilized and
version 3.0 was released. There remain, however, specific operations, when performed
repetitively, that are known to cause a memory leak. It is hoped there may eventually be a 3.01
release of the Viewer to address this situation. Fortunately most users of IV4D and the Viewer
are not likely to run into this issue, and release 3.0 is being used successfully at NASA Ames
and NASA Langley Research Centers.

27

5 RESULTS AND DISCUSSION
In Table 1 is the original list of requirements from the Engineering Design Document. Of

the 53 entries, 7 are “stretch goals,” which are goals that, once others are completed, may
become a regular goal. Stretch goals are generally acknowledged as being more difficult.
Nonetheless, two of the stretch goals were implemented. Additionally, as mentioned earlier, a
number of user requests, not listed below, were implemented, and, though not added to the
requirements list, some were added to the EDD Addendum. The addendum described a set of
changes, implemented during the 2nd year, to improve performance for large data sets.

Of the regular 46 entries (non stretch goals), 37 have been fully implemented, 4 have
been partially implemented, and 5 have not been implemented.

Notes on the partially implemented features can be found in the list below. Three of the
five not implemented features belong to the category “Query Views.” These were intended to
comprise a third plug-in module to the Viewer, along with Create Views and Apply Views.
Query Views were meant to be a group of already assembled sets of Applied Views – In other
words, a group of Applied Views that a user would not need to create, but that would be ready
to be applied to most ACES data sets. Though it would have been desirable to complete this
module, users are able to create sets of Applied Views, and it is therefore possible say these
are partially – indirectly – present.

The other two features not implemented were requirements for the Viewer: One is directly
related to a partially implemented feature having to do with jumps in time during visualization,
while the other involves an ‘Undo/redo’ feature. Though it was originally thought that an undo
feature would be highly important, editing a display has turned out to be so flexible that no user
has thought to ask for an ‘Undo/redo’ button. Additionally, users can save their display in
several ways, and at any time, again, mitigating the need for ‘Undo/redo.’

To summarize, IV4D is a user-centered piece of software created to help users study
aeronautical research data. IV4D plugs into an AFRL API layer, the Viewer with JView, for
visualizing the NAS. Responding to user needs, preferences, and requests, and incorporating
Viewer and JView changes took precedence. The AFRL technical representative concurred with
the work emphasis, and it always made sense to follow up on as many user requests as could
be accommodated.

Key:

• White – Completed goal, or a stretch goal
• Yellow – Completed stretch goal
• Light Grey – Partially completed
• Purple – Not completed. Primarily “Query Views”

28

Table 1: IV4D Requirements

ID IV4D View Requirements

1 It shall be possible to name, load, edit, use, and save ‘views’ of selected data and
groups of views. Views are filters for pulling out specific viewable data.

2 There shall be named views and time views.

3 Named views shall reference position elements, such as latitude, longitude, and
altitude.

4
It shall be possible to apply a named view to any ACES database or ACES

boundary data file that contains data appropriate for the view. (Other data types may be
added later.)

5 Time views shall be secondary to, and applied in combination with, named views.

6

A time view shall capture time slice and time segment data.

A time slice is defined as having both a start time, which is => simulation start
time, and an end time, which is <= simulation end time. (A moment in time is a time slice
with the same start and end time.)

A time segment is defined as a repeating unit of time, such as 5 minutes or 2
hours, and shall be <= an associated time slice. (A time segment for a time slice of a
moment in time must also be a moment in time.)

7
Time shall be displayed as Days: Hours: Minutes: Seconds.Fraction from

simulation starts time. For example 0:00:00:10.0 is 10 seconds after start time and
00:22:30:00.0 is 22 1/2 hours after start time.

8
The software shall track time in relation to simulation start time. The format will

keep Hours, Minutes, Seconds, and Fraction of a second (e.g. Milliseconds) from
simulation start time.

9

It shall be possible to apply a time view to any ACES database or supported
ACES data file that contains timed data appropriate for the view.*

(*Timed CSV polygon data can be saved and applied in a view, though users
cannot specify time slices less than the full start to stop time.)

10 Any part of a time view may remain unspecified. When the user does this

• A start time in a time view shall be applied as follows: One or more named

29

views are applied to data and the earliest simulation time from the data becomes
the start time for the time view.

• A stop time in a time view shall be applied as follows: One or more named views
are applied to data and the latest simulation time from the data becomes the
stop time for the time view.

• A time segment in a time view shall default to the length of the time slice.

11 It shall be possible to combine named and time views into a nameable group of
views.

12

When time views are grouped a single new time view is created with rules similar to, but
not the same as, requirement 10 above:

• The time slice start time shall be the earliest start time from the views.
• The time slice end time shall be the latest stop time from the views.
• The time segment shall be the smallest time segment from the views.

13
When applying a named view it shall be possible to select specific table-column_names,
such as KSYR or flightIds 2121, 320, 854 or specific boundary names, such as ZFW or
ZSE3201M1 through ZSE3201M5.

14
Stretch Goal: IV4D shall read ACES text input files other than boundary files that
contain either latitude, longitude, and altitude or altitude plus a series of latitude and
longitude points (such as in a Flight Data Set file).

ID IV4D Query View Requirements

15
Users shall be able to name, load, edit, use, and save a specific type of combined

name and time view, called a ‘Query View’. The purpose of a Query View (QV) is to
display answers to questions frequently posed by users.

16 This QV shall be supported: Given a boundary object A, show those selected
objects (table:name:lat/lon/alt) which were in or at A during time slice X.

17 This QV shall be supported: Given boundary object A, time slice X, and selected
objects L which were in A during X, show where and when selected objects L originated.

18
This QV shall be supported: Given boundary object A, time slice X, and selected

objects L which were in A during X, show where selected objects L were at time T,
before or after X.

19 Stretch Goal: There shall be one or more QV for displaying flight delay
Visualization. NOTE: FlightTimeDataMessage.

30

ID IV4D View Auto fill Requirements

20 Users shall select an ACES database or ACES boundary file to start the view
creation process.

21

When an ACES MySQL database is selected for view creation, the application
shall automatically look for tables and sets of similarly named tables (i.e., the first part of
each table in a set of tables is identically named) that contain the tokens “latitude”,
“longitude”, and “altitude”. The appropriate table names will be stored for later
presentation to the user.

22 The user shall be able to select from a list of table names that have been found to
contain “latitude”, “longitude”, and “altitude”.

23 For each table name selected by the user, the user shall pick a column name to
associate with “latitude”, “longitude”, and “altitude”.

24 The application shall create time views that are attached to and saved with each
named views or group of named views.

25
For time views, the user shall have the following options: leaving the time fields in

an unspecified state, having the application automatically find time slice start, stop, and
time segment values, or the user can enter values into the fields.

26

When the application automatically looks for time slice and time segment values,
the application shall find the earliest time in the tables or set of tables for the time slice
start value, the latest time in the tables or set of tables for the time slice stop value, and
shall set the time segment length to the length of the time slice.

27

The application shall prevent the user from entering time slice start values before
0:00:00:00.0 or time slice stop values after the simulation stop time or time segments
larger than the difference between the time slice stop and start times.*

(*One can enter a stop time that exceeds the data stop time. Display playback,
however, will not continue past the actual data stop time.)

ID ACES Viewer Scene Configuration Requirements

28 View instances passed to the scene configuration shall consist of tables.

29 One or more scene configuration Data Source classes shall be available for tables
produced by IV4D

30 One or more Renderer classes shall be available for tables produced by IV4D

31

31 One or more Control classes shall be available for tables produced by IV4D

32 The Property Editor shall be available for renderers which use tables produced by
IV4D.

33
It shall be possible to see appropriate scene configuration visualization for view

instances passed to appropriate IV4D scene configuration renderers, data sources,
controls, transforms, and property editor.

34
Tables produced by IV4D for visualization shall include selected name, position or

positions (in the case of a trajectory, line, or polygon), and time slice. Other elements
may also be included.

35 It shall be possible to name, load, edit, use, and save scene configurations.

ID ACES Viewer Visualization Requirements

36
When IV4D tables are properly passed to the appropriate scene configuration

renderers, data sources, controls, transforms, and property editor, the user shall see an
appropriate Visualization.

37 Visualization shall include a ‘frozen’ scene, where table elements in a time slice
are seen.

38 Visualization shall include a moving scene, where objects appear, disappear, and
move as appropriate during the time slice (i.e., like a movie).

39

Visualization shall include sequential time segments, where each segment is
displayed in a sequence of contiguous, equal size Frozen instances, such as twelve 5
minute segments across an hour, i.e., like a slide show.*

(*The time control Step-forward and Step-backward buttons allow users to step
through a series of regular time jumps, but the time control Play or Reverse-play buttons
will not automatically play back a series of regular time jumps that are not in the data.)

40 Visualization shall include animated time segments, where each segment is
animated in a fashion similar to a time slice (i.e., like a series of short movies).

41
It shall be possible to associate a time range with every scene element, including

boundary points, lines, and polygons. (This will lead to animated boundary elements at a
later time.)

42 Stretch Goal: It shall be possible to display animated (moving) boundary data.

43 Stretch Goal: It shall be possible to display popup visualizations, such as a graph

32

or object list.

44 Stretch Goal: It shall be possible to display sequential time segments in a slide
tray style Visualization

ID ACES Viewer Visualization User Interaction Requirements

45 Users shall be able to save comma delimited plain text output from the tables
associated with the Visualization. (Other text formats may be supported later.)

46 Visualization of the scene configuration shall be kept in synchronization with the
scene configuration

47
Users shall be able to show/hide scene elements on-screen, and saved comma

delimited output from tables associated with the visualization will reflect what the user
sees.

48
Users shall be able to edit specified scene elements on-screen: Supported editing

shall include adding, removing, and changing boundary points, lines, and polygons.
(Other elements may become editable later.)

49 Users shall be able to undo, redo, or reset their edits. Reset will revert the
visualization to the original state.

50 Users shall be able to select and pivot around an anchor point on-screen.

51

Users shall be able to sequentially play time segments either manually (forward
one at a time), or automatically (the ‘slide’ changes every few seconds). The segments
themselves may be in a ‘frozen’ or ‘animated’ mode. NOTE: combo of Transform and
Control.*

(*See the comment for Requirement 39.)

52 Stretch Goal (follow on to initial effort): keep track of user boundary changes in
order to produce timed/boundary data files

53
Stretch Goal: When user saves content from tables associated with Visualization,

the UI shall allow user to rearrange column order and show/hide columns for output.
(Not for internal representation, just a filter for table output.)

33

6 CONCLUSIONS
IV4D and the Viewer form a successful set of software tools that are being used by

aeronautics researchers at both the NASA Ames and the NASA Langley Research Centers.
Additionally, IV4D was considered interesting enough to cause NASA Ames Research Center to
fund a separate plug-in module for the Viewer, the ACES simulation run-time plug-in.

6.1 TECHNICAL RESULTS AND USER SATISFACTION
The goal was to produce a tool that is easy to understand and use, performs well, and

provides researchers a way to study and understand national airspace (NAS) using various
forms of input and output data, such as data from NASA’s ACES (Airspace Concept Evaluation
System) simulation software.

To date, IV4D has helped visualize portions of the NAS using data from ACES and CTAS
(software applications from NASA Ames), SAHITL ASTOR (human-in-the-loop simulation
software from NASA Langley), ASDI (Aircraft Situation Display to Industry) data from the FAA,
and weather data modified from various NOAA formats. Users regard the application as a
flexible, easy to understand, and easy to use tool, that performs well. It provides researchers
with a way to observe and understand both still and animated NAS data.

IV4D functionality has plenty of room for growth. For example, a considerable
improvement would involve standardizing IV4D and Viewer data so users are able to move
more seamlessly between visualizations saved from the Viewer Configuration panel and
visualizations saved from IV4D. Other possible improvements include allowing users to perform
simple edits – such as changing colors – in the Apply Views panel, making Create Views and
Apply Views modules more malleable with respect to each other, improving heuristics for default
display results, and adding new default methods to visually compare and understand one set of
data with respect to another.

6.2 ORGANIZATIONAL METHODS
 Development of IV4D, which plugs into the AFRL Viewer, is dependent upon the Viewer

API. Unfortunately for IV4D, the Viewer API was stable only intermittently. It was hoped, at the
outset of the project, that deciding upon and following a CMMI process, would enforce shared
planning and synchronize development during the project. But this was not the case because,
while IV4D developers followed the process closely, at least during the first year, Viewer
developers continued their existing practice (i.e., agile development, known to work best when
developers are in close proximity).

The main benefit of the adopted process, which was a downsized and streamlined version
of NASA’s ACES development process, was that IV4D and Viewer developers did have a
written, shared understanding of IV4D goals. This helped foster development of Viewer
functionality needed by IV4D. The process also helped IV4D developers to rationally design
(i.e., think about) the initial effort.

34

Had the Viewer kept a stable API there is no doubt that IV4D would have progressed
more rapidly. Instead, especially during the first year, IV4D developers found themselves
needing to repeatedly rewrite some stretches of code to meet a changing API. In spite of this,
users were enthusiastic about the first release and about follow-on releases.

The best model for developing modules for the Viewer made an appearance when, as a
result of user enthusiasm for IV4D, NASA funded a new, separate effort to connect the ACES
application to the Viewer during ACES run-time. (IV4D works with non run-time data.) For the
new effort, NASA stated it wanted a product that, once working initially, would continue to run
while new features were being added. This necessitated development with a stable version of
the Viewer and, in fact, development was done with a version of the Viewer that did not contain
later performance-enhancements. This meant that the developer for the new plug-in was forced
to add performance-enhancing features in order to work around Viewer/JView performance
issues. This also meant that the best developer for this work was a senior graphics developer
rather than an aeronautics developer, as a senior graphics developer was able to read through
Viewer/JView code while devising workarounds for known issues.

While the IV4D development team continues to believe that a shared CMMI process could
work for a shared East-West Coast development cycle, especially since other projects have
been successful in this fashion, such a model does not appear to be best for the current project.
In the event of a follow-on effort, we recommend that CMMI development be abandoned – at
least as far as trying to use CMMI with developers hewing to a non-CMMI model – in favor of
having IV4D developers work with an older, known to be stable, version of the Viewer.
Upgrades to newer versions of the Viewer would occur once the Viewer was thoroughly tested
and declared stable.

35

LIST OF ACRONYMS

ACES – NASA software application, Airspace Concept Evaluation System, for simulating
activity, such as flights and control of flights, in the NAS

ACI – Aerospace Computing, Inc.

AFRL – Air Force Research Laboratory

AFRL Viewer – AFRL JView application for visualizing NAS data (originally) from ACES

API – Application programming Interface

ASDI – Aircraft Situational Display for Industry, FAA flight data

ARTCC – Air Route Traffic Control Center, sometimes referred to simply as a Center

ATM – Air Traffic Management

CMMI – Carnegie Mellon’s Capability Maturity Model Integration, a process improvement
approach for software and systems engineering projects

CPU – Central Processing Unit, an essential part of a digital computer

CSV – Comma Separated Values, a data format delimited by commas

FAA – Federal Aviation Administration

GUI – Graphical User Interface

IV4D – GUI plug-in to the AFRL Viewer, created for NAS researchers

JView – Extensive visualization library created by AFRL

MySQL – A semi-open source (see licensing for MySQL) implementation of SQL

NAS – National Airspace

NASA – National Aeronautics and Space Administration

NOAA – National Oceanic and Atmospheric Administration

PI – Principal Investigator

SAHITL ASTOR – NASA simulation software, Separation Assurance Human-in-the-Loop
Aircraft Simulation for Traffic Operations Research

SQL – Structured Query Language, used to access data from relational databases

UI – User Interface

Waypoint – An intermediate point, marked by latitude and longitude, along a route

