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the Gap Between Performance and Complexity∗
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Abstract—We propose a new method for reconstruction of
sparse signals with and without noisy perturbations, termed the
subspace pursuit algorithm. The algorithm has two important
characteristics: low computational complexity, comparable to
that of orthogonal matching pursuit techniques, and reconstruc-
tion accuracy of the same order as that of LP optimization
methods. The presented analysis shows that in the noiseless
setting, the proposed algorithm can exactly reconstruct arbitrary
sparse signals provided that the sensing matrix satisfies the
restricted isometry property with a constant parameter. In the
noisy setting and in the case that the signal is not exactly sparse,
it can be shown that the mean squared error of the reconstruction
is upper bounded by constant multiples of the measurement and
signal perturbation energies.

Index Terms—Compressive sensing, orthogonal matching pur-
suit, reconstruction algorithms, restricted isometry property,
sparse signal reconstruction

I. INTRODUCTION

Compressive sensing (CS) is a method closely connected
to transform coding, a compression technique widely used
in modern communication systems involving large scale data
samples. A transform code converts input signals, embedded
in a high dimensional space, into signals that lie in a space of
significantly smaller dimension. Examples of transform coders
include the well known wavelet transforms and the ubiquitous
Fourier transform.

Compressive sensing techniques perform transform cod-
ing successfully whenever applied to so-called compressible
and/or K-sparse signals, i.e., signals that can be represented by
K � N significant coefficients over an N -dimensional basis.
Encoding of a K-sparse, discrete-time signal x of dimension
N is accomplished by computing a measurement vector y
that consists of m � N linear projections of the vector x,
compactly described via

y = Φx.

Here, Φ represents an m × N matrix, usually over the field
of real numbers. Within this framework, the projection basis
is assumed to be incoherent with the basis in which the signal
has a sparse representation [2].

This work is supported by NSF Grants CCF 0644427, 0729216 and the
DARPA Young Faculty Award.
∗At the time of writing this manuscript, the authors became aware of

the related work by J. Tropp, D. Needell and R. Vershynin [1], where
similar reconstruction algorithms are designed. Our results were developed
independently, and we believe that there are significant differences in these
two proposed reconstruction approaches.

Although the reconstruction of the signal x ∈ RN from the
possibly noisy random projections is an ill-posed problem, the
strong prior knowledge of signal sparsity allows for recovering
x using m � N projections only. One of the outstanding
results in CS theory is that the signal x can be reconstructed
using optimization strategies aimed at finding the sparsest
signal that matches with the m projections. In other words,
the reconstruction problem can be cast as an `0 minimization
problem [3]. It can be shown that to reconstruct a K-sparse
signal x, `0 minimization requires only m = K + 1 random
projections when the signal and the measurements are noise-
free. Unfortunately, solving the `0 optimization is known to
be NP-hard. This issue has led to a large body of work in CS
theory and practice centered around the design of measurement
and reconstruction algorithms with tractable reconstruction
complexity.

The work by Donoho and Candès et. al. [2], [4]–[6].
demonstrated that CS reconstruction is, indeed, a polynomial
time problem – albeit under the constraint that more than K+1
measurements are used. The key observation behind these
findings is that it is not necessary to resort to `0 optimization
to recover x from the under-determined inverse problem; a
much easier `1 optimization, based on Linear Programming
(LP) techniques, yields an equivalent solution, as long as the
sampling matrix Φ satisfies the so called restricted isometry
property (RIP) with a constant parameter.

While LP techniques play an important role in designing
computationally tractable CS decoders, their complexity is
still highly impractical for many applications. In such cases,
the need for faster decoding algorithms - preferably operating
in linear time - is of critical importance, even if one has
to increase the number of measurements. Several classes of
low-complexity reconstruction techniques were recently put
forward as alternatives to linear programming (LP) based
recovery, which include group testing methods [7], and al-
gorithms based on belief propagation [8].

Recently, a family of iterative greedy algorithms received
significant attention due to their low complexity and simple
geometric interpretation. They include the Orthogonal Match-
ing Pursuit (OMP), the Regularized OMP (ROMP) and the
Stagewise OMP (StOMP) algorithms. The basic idea behind
these methods is to find the support of the unknown signal
sequentially. At each iteration of the algorithms, one or several
coordinates of the vector x are selected for testing based
on the correlation values between the columns of Φ and
the regularized measurement vector. If deemed sufficiently
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reliable, the candidates are subsequently added to the current
estimate of the support set of x. The pursuit algorithms iterate
this procedure until all the coordinates in the correct support
are in the estimated support. The computational complexity of
OMP strategies depends on the number of iterations needed
for exact reconstruction: standard OMP always runs through
K iterations, and therefore its reconstruction complexity is
roughly O (KmN). This complexity is significantly smaller
than that of LP methods, especially when the signal sparsity
level K is small. However, the pursuit algorithms do not have
provable reconstruction quality of the level of LP methods. For
OMP techniques to operate successfully, one requires that the
correlation between all pairs of columns of Φ is at most 1/2K
[9], which by the Gershgorin Circle Theorem [10], represents
a more restrictive constraint than the RIP. The ROMP algo-
rithm [11] can reconstruct all K-sparse signals provided that
the RIP holds with parameter δ2K ≤ 0.06/

√
logK, which

strengthens the RIP requirements for `1-linear programming
by a factor of

√
logK.

The main contribution of this paper is a new algorithm,
termed the subspace pursuit (SP) algorithm, which exhibits
low reconstruction complexity of matching pursuit techniques,
but has provable reconstruction capability comparable to that
of LP methods. The algorithm can operate both in the noiseless
and noisy regime, allowing for exact and approximate signal
recovery, respectively. For any sampling matrix Φ satisfying
the RIP with a constant parameter independent on K, the
SP algorithm can recover arbitrary K-sparse signals exactly
from its noiseless measurements. When the measurements
are inaccurate and/or the signal is not sufficiently sparse,
the reconstruction distortion is upper bounded by a constant
multiple of the measurement and/or signal perturbation en-
ergy. The computational complexity of the SP algorithm is
upper bounded by O (mNK), but can be further reduced to
O (mN logK) when the nonzero entries of the sparse signal
decay slowly.

The basic idea behind the SP algorithm is borrowed from
sequential coding theory with backtracking, more precisely,
the A∗ order-statistic algorithm [12]. In this decoding frame-
work, one first selects a set of K codewords of highest
reliability that span the codespace. If the distance of the
received vector to this space is deemed large, the algorithm
incrementally removes and adds new basis vectors according
to their reliability values, until a sufficiently close candidate
codeword is identified. SP employs a similar strategy, except
for the fact that at each step, the same number of vectors
is expurgated from the candidate list. This feature is mainly
introduced for simplicity of analysis: one can easily extend
the algorithm to include adaptive expurgation strategies that
do not necessarily work with fixed-sized lists.

In compressive sensing, the major challenge associated with
sparse signal reconstruction is to identify in which subspace,
generated by not more than K columns of the matrix Φ,
the measured signal y lies in. Once the correct subspace is
determined, the non-zero signal coefficients are calculated by
applying the pseudoinversion process. The defining character
of the SP algorithm is the method used for finding the K
columns that span the correct subspace: SP tests subsets of

K columns in a group, for the purpose of refining at each
stage an initially chosen estimate for the subspace. More
specifically, the algorithm maintains a list of K columns of Φ,
performs a simple test in the spanned space, and then refines
the list. If y does not lie in the current estimate for the correct
spanning space, one refines the estimate by retaining reliable
candidates, discarding the unreliable ones while adding the
same number of new candidates. The “reliability property” is
captured in terms of the order statistics of the inner products
of the received signal with the columns of Φ, and the subspace
projection coefficients.

As a consequence, the main difference between ROMP and
the SP reconstruction strategy is that the former algorithm
generates a list of candidates sequentially, without back-
tracing: it starts with an empty list, identifies one or several
reliable candidates during each iteration, and adds them to
the already existing list. Once a coordinate is deemed to be
reliable and is added to the list, it is not removed from it
until terminating the algorithm. This search strategy is overly
restrictive, since candidates have to be selected with extreme
caution. In contrast, the SP algorithm incorporates a simple
method for re-evaluating the reliability of all candidates at
each iteration of the process.

The remainder of the paper is organized as follows. Sec-
tion II introduces relevant concepts and terminology for de-
scribing the proposed CS reconstruction technique. Section III
contains the algorithmic description of the SP algorithm, along
with a simulation-based study of its performance when com-
pared to OMP, ROMP, and LP methods. Section IV contains
the main result of the paper pertaining to the noiseless setting:
a formal proof for the guaranteed reconstruction performance
and the reconstruction complexity of the SP algorithm. Sec-
tion V contains the main result of the paper pertaining to the
noisy setting. Concluding remarks are given in Section VI,
while proofs of most of the theorems are presented in the
Appendix of the paper.

II. PRELIMINARIES

A. Compressive Sensing and the Restricted Isometry Property

Let supp(x) denote the set of indices of the non-zero
coordinates of an arbitrary vector x = (x1, . . . , xN ), and let
|supp(x)| = ‖ · ‖ denote the support size of x, or equivalently,
its `0 norm 1. Assume next that x ∈ RN is an unknown signal
with |supp(x)| ≤ K, and let y ∈ Rm be an observation of x
via M linear measurements, i.e.,

y = Φx,

where Φ ∈ Rm×N is henceforth referred to as the sampling
matrix.

We are concerned with the problem of low-complexity
recovery of the unknown signal x from the measurement y.
A natural formulation of the recovery problem is within an `0
norm minimization framework which seeks a solution to the
problem

min ‖x‖0 subject to y = Φx.

1We interchangeably use both notations in the paper.
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Unfortunately, solving the above `0 minimization problem is
NP-hard and therefore not practical [4], [5].

One way to avoid using this computationally intractable for-
mulation is to refer to an `1-regularized optimization settings,
i.e.,

min ‖x‖1 subject to y = Φx,

where

‖x‖1 =
N∑

i=1

|xi|

denotes the `1 norm of the vector x.
The main advantage of the `1 minimization approach is that

it is a convex optimization problem that can be solved effi-
ciently by linear programming (LP) techniques. This method
is therefore frequently referred to as `1-LP reconstruction, and
its reconstruction complexity equals O

(
N3
)

[4], [13].
The reconstruction accuracy of the `1-LP method is de-

scribed in terms of the so called restricted isometry property
(RIP), formally defined below.

Definition 1 (Truncation): Let Φ ∈ Rm×N and let I ⊂
{1, · · · , N}. The matrix ΦI consists of the columns of Φ
with indices i ∈ I . The space spanned by the columns of ΦI

is denoted by span (ΦI).

Definition 2 (RIP): A matrix Φ ∈ Rm×N is said to satisfy
the Restricted Isometry Property (RIP) with parameters (K, δ)
for K ≤ m, 0 ≤ δ ≤ 1, if for all index sets I ⊂ {1, · · · , N}
such that |I| ≤ K and for all q ∈ R|I|, one has

(1− δ) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δ) ‖q‖22 .

We define δK to be the infimum of all parameters δ for
which the RIP holds, i.e.

δK := inf
{
δ : (1− δ) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δ) ‖q‖22 ,

∀ |I| ≤ K, ∀q ∈ R|I|
}
.

Remark 1 (RIP and eigenvalues): If a sampling matrix
Φ ∈ Rm×N satisfies the RIP with parameters (K, δK), then
for all I ⊂ {1, · · · , N} such that |I| ≤ K, it holds that

1− δK ≤ λmin (Φ∗IΦI) ≤ λmax (Φ∗IΦI) ≤ 1 + δK ,

where λmin and λmax denote the minimum and maximum
eigenvalues of Φ, respectively.

Remark 2 (Matrices satisfying the RIP): Most known ex-
amples of matrices satisfying the RIP property with optimal
or near-optimal performance guarantees are random. Examples
include:

1) Random matrices with i.i.d. entries that follow either
the Gaussian distribution, Bernoulli distribution with
zero mean and variance 1/n, or any other distribution
that satisfies certain tail decay laws. It was shown in
[13] that the RIP for a randomly chosen matrix from
such ensembles holds with overwhelming probability
whenever

K ≤ C m

log (N/m)
,

where C is a function of the RIP parameter.

2) Random matrices from the Fourier ensemble. Here, one
randomly selects m rows from the N × N discrete
Fourier transform matrix uniformly at random. Upon
selection, the columns of the matrix are scaled to unit
norm. The resulting matrix satisfies the RIP with over-
whelming probability provided that

K ≤ C m

(logN)6 ,

where C depends only on the RIP parameter.
There exists an intimate relationship between the LP recon-
struction accuracy and the RIP property, first described by
Candés and Tao in [4]. The result in [4] shows that if the
sampling matrix Φ satisfies the RIP with parameters δK , δ2K ,
and δ3K , such that

δK + δ2K + δ3K < 1, (1)

then the `1-LP algorithm will reconstruct all K-sparse signals
exactly.

For our subsequent derivations, we need two results summa-
rized in the lemma below. The first part of the claim, as well
as a related modification of the second claim also appeared
in [4], [11]. For completeness, we include the proof of the
lemma in Appendix A.

Lemma 1 (Consequences of RIP):
1) (Monotonicity of δK) For any two integers K ≤ K ′,

δK ≤ δK′ .

2) (Near orthogonality of columns) Let I, J ⊂ {1, · · · , N}
be two disjoint sets, I

⋂
J = φ. Suppose that δ|I|+|J| <

1. For arbitrary vectors a ∈ R|I| and b ∈ R|J|,

|〈ΦIa,ΦJb〉| ≤ δ|I|+|J| ‖a‖2 ‖b‖2 ,

and
‖Φ∗IΦJb‖2 ≤ δ|I|+|J| ‖b‖2 .

The lemma implies that δK ≤ δ2K ≤ δ3K , which con-
sequently implies that δ3K < 1/3 is a sufficient condition
for exact reconstruction of K-sparse signals. Although this
condition is weaker than the one specified in Equation (1),
we henceforth focus only on characterizing the performance
and complexity of the SP algorithm with respect to this
parameter. Our motivation for slightly weakening this RIP
parameter bound is to simplify the notation used in most of
the proofs, and to provide a fair comparison between different
reconstruction strategies.

In order to describe the main steps of the SP algorithm, we
introduce next the notion of the projection of a vector and its
residue.

Definition 3 (Projection and Residue): Let y ∈ Rm and
ΦI ∈ Rm×|I|. Suppose that Φ∗IΦI is invertible. The projection
of y onto span (ΦI) is defined as

yp = proj (y,ΦI) := ΦIΦ†Iy,

where
Φ†I := (Φ∗IΦI)−1 Φ∗I
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denotes the pseudo-inverse of the matrix ΦI , and ∗ stands for
matrix transposition.

The residue vector of the projection equals

yr = resid (y,ΦI) := y − yp.

We find the following properties of projections and residues
of vectors useful for our subsequent derivations.

Lemma 2 (Projection and Residue):
1) (Orthogonality of the residue) For an arbitrary vector

y ∈ Rm, and a sampling matrix ΦI ∈ Rm×K of full
column rank, let yr = resid (y,ΦI). Then

Φ∗Iyr = 0.

2) (Approximation of the projection residue) Consider a
matrix Φ ∈ Rm×N . Let I, J ⊂ {1, · · ·N} be two
disjoint sets, I

⋂
J = φ, and suppose that δ|I|+|J| < 1.

Furthermore, let y ∈ span (ΦI), yp = proj (y,ΦJ) and
yr = resid (y,ΦJ). Then

‖yp‖2 ≤
δ|I|+|J|

1− δ|I|+|J|
‖y‖2 ,

and (
1−

δ|I|+|J|

1− δ|I|+|J|

)
‖y‖2 ≤ ‖yr‖2 ≤ ‖y‖2 .

The proof of Lemma 2 can be found in Appendix B.

III. THE SP ALGORITHM

The main steps of the SP algorithm can be described as
follows.

Algorithm 1 Subspace Pursuit Algorithm
Input: K, Φ, y
Initialization:

T̂ = {K indices corresponding to the largest abso-
lute values of Φ∗y}.

yr = resid
(
y,ΦT̂

)
.

Iteration:
If yr = 0, quit the iteration; otherwise continue.
T ′ = T̂

⋃
{K indices corresponding to the largest

magnitudes of Φ∗yr}.
Let x′p = Φ†T ′y.
T̃ = {K indices corresponding to the largest ele-

ments of x′p
}

.
ỹr = resid (y,ΦT̃ ) .
If ‖ỹr‖ > ‖yr‖, quit the iteration; otherwise, let

T̂ = T̃ and yr = ỹr, and continue with a new
iteration.

Output:
The estimated signal x̂ satisfies x̂{1,··· ,N}−T̂ = 0

and xT̂ = Φ†
T̂
y.

A schematic diagram of the SP algorithm is depicted in
Fig. 1(b). For comparison, a diagram of OMP-type methods is
also provided in Fig. 1(a). The subtle, but important, difference

(a) Iterations in OMP, Stagewise OMP, and Regularized OMP: in each
iteration, one decides on a reliable set of candidate indices to be added
into the list T̂ ; once a candidate is added, it remains in the list until
the algorithm terminates.

(b) Iterations in the proposed Subspace Pursuit Algorithm: a list of K can-
didates, which is allowed to be updated during the iterations, is maintained.

Figure 1. Description of reconstruction algorithms for K-sparse signals:
though both approaches look similar, the basic ideas behind are quite different.

between the two schemes lies in the approach used to generate
T̂ , the estimate of the correct support set T . In OMP strategies,
during each iteration one decides the algorithm selects one or
several indices that represent good partial support set estimates
and adds them to T̂ . Once an index is added into T̂ , it remains
in this set throughout the remainder of the process. As a result,
strict inclusion rules are needed to ensure that a significant
fraction of the newly added indices belongs to the correct
support T . On the other hand, in the SP algorithm, an estimate
T̂ of size K is maintained and refined during each iteration. An
index, which is considered reliable in some iteration but shown
to be wrong at a later iteration, can be added into or removed
from the estimated support set freely. The expectation is that
the recursive refinements of the estimate of the support set
will lead to subspaces with strictly decreasing distance from
the measurement vector y.

We performed extensive computer simulations in order to
compare the accuracy of different reconstruction algorithms
empirically. In the compressive sensing framework, all sparse
signals are expected to be exactly reconstructed as long as the
level of the sparsity is below a certain threshold. For empirical
testing, we adopt the simulation strategy described in [6] for
simulating the empirical frequency of exact reconstruction.
The steps of the testing strategy are listed below.

1) For given values of the parameters m and N , choose a
signal sparsity level K such that K ≤ m/2;

2) Randomly generate a m × N sampling matrix Φ from
the standard i.i.d. Gaussian ensemble;

3) Select a support set T of size |T | = K uniformly at
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random, and generate the sparse signal vector x by either
one of the following two methods:

a) Draw the elements of the vector x restricted to T
from the standard Gaussian distribution; we refer
to this type of signal as a Gaussian signal. Or,

b) set all entries of x supported on T to ones; we
refer to this type of signal as zero-one signal.

Note that zero-one sparse signals are of spatial interest
for the comparative study, since they represent a partic-
ularly challenging case for OMP-type of reconstruction
strategies.

4) Compute the measurement y = Φx, apply a reconstruc-
tion algorithm to obtain an estimate of x, x̂, and compare
x to x̂;

5) Repeat the process 500 times for each K, and then
simulate the same algorithm for different values of m
and N .

The improved reconstruction capability of the SP method,
compared to that of the OMP and ROMP algorithms, is
illustrated by two examples shown in Fig. 2. Here, the signals
are drawn both according to the Gaussian and zero-one model,
and the benchmark performance of the LP reconstruction
technique is plotted as well.

Figure 2 depicts the empirical frequency of exact reconstruc-
tion. The numerical values on the x-axis denote the sparsity
level K, while the numerical values on the y-axis represent
the fraction of exactly recovered test signals. Of particular
interest is the sparsity level at which the recovery rate drops
below 100% - i.e. the critical sparsity - which, when exceeded,
leads to errors in the reconstruction algorithm applied to some
of the signals from the given class.

The simulation results reveal that the critical sparsity of
the SP algorithm by far exceeds that of the OMP and ROMP
techniques, for both Gaussian and zero-one inputs. The re-
construction capability of the SP algorithm is comparable to
that of the LP based approach: the SP algorithm has a slightly
higher critical sparsity for Gaussian signals, but also a slightly
lower critical sparsity for zero-one signals. However, the SP
algorithms significantly outperforms the LP method when
it comes to reconstruction complexity. As we analytically
demonstrate in the exposition to follow, the reconstruction
complexity of the SP algorithm for both Gaussian and zero-
one sparse signals is O (mN logK). At the same time, the
complexity of LP algorithms based on interior point methods
is O

(
m2N3/2

)
[14].

IV. RECOVERY OF SPARSE SIGNAL

For simplicity, we start by analyzing the reconstruction
performance of SP algorithms applied to sparse signals in
the noiseless setting. The techniques used in this context, and
the insights obtained are also applicable to the analysis of
SP reconstruction schemes with signal or/and measurement
perturbations.

A sufficient condition for exact reconstruction of arbitrary
sparse signals is stated in the following theorem.

Theorem 1: Let x ∈ RN be a K-sparse signal, and let
its corresponding measurement be y = Φx ∈ Rm. If the
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(a) Simulations for Gaussian sparse signals: OMP and ROMP start to fail
when K ≥ 19 and when K ≥ 22 respectively, `1-LP begins to fail when
K ≥ 35, and the SP algorithm fails only when K ≥ 45.
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(b) Simulations for zero-one sparse signals: both OMP and ROMP starts to
fail when K ≥ 10, `1-LP begins to fail when K ≥ 35, and the SP algorithm
fails when K ≥ 29.

Figure 2. Simulations of the exact recovery rate: compared to OMPs, the
SP algorithm has significantly larger critical sparsity.

sampling matrix Φ satisfies the RIP with parameter

δ3K < 0.06, (2)

then the SP algorithm is guaranteed to exactly recover x from
y via a finite number of iterations.

This sufficient condition is proved by applying Theorems 2
and 6. The computational complexity is related to the number
of iterations required for exact reconstruction, and discussed
at the end of Section IV-C. Before we go to the details, let us
sketch the main ideas behind the proof.

As before, denote the estimate of supp (x) at the beginning
of a given iteration by T̂ , and the estimate of the support set at
the end of the iteration by T̃ , which also serves as the estimate
for the next iteration. Let

x̂0 = xT−T̂ and x̃0 = xT−T̃ .
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Figure 3. Illustration of sets and signal coefficient vectors

Figure 4. After each iteration, a K-dimensional hyper-plane closer to y is
obtained.

The vectors x̂0 and x̃0 represent the residual signals based
upon the estimates of supp(x) before and after a given iteration
of the SP algorithm is completed, respectively (see Fig. 3 for
illustration). Provided that the sampling matrix Φ satisfies the
RIP with constant (2), it holds that

‖x̃0‖2 < ‖x̂0‖2 ,

which implies that at each iteration, the SP algorithm identifies
a K-dimensional space that reduces the reconstruction error
of the vector x. See Fig. 4 for an illustration. We are now
ready to formally state this observation as follows.

Theorem 2: Assume that the conditions of Theorem 1 hold.
For each iteration of the SP algorithm, it holds that

‖x̃0‖2 ≤ cK ‖x̂0‖2 , (3)

and
‖ỹr‖2 ≤

1 + δ3K

1− 2δ3K
cK ‖ŷr‖2 < ‖ŷr‖2 , (4)

where

cK =
√

10δ3K

1− δ3K
.

To prove Theorem 2, we need to take a closer look at the
operations executed during each iteration of the SP algorithm.
During one iteration, two basic sets of computations and com-
parisons are performed: first, given T̂ , K additional candidate
indices for inclusion into the estimate of the support set are
identified; and second, given T ′, K reliable indices out of the
total 2K indices are selected for future testing. This set of
candidate indices is represented by T̃ . In Subsections IV-A
and IV-B, we provide the intuition for choosing to perform
SP support reconstruction according to these rules. Now, let

x′0 = xT−T ′

be the residue signal coefficient vector corresponding to the
support set estimate T ′.

To proceed, we need the following two theorems.
Theorem 3: It holds that

‖x′0‖2 ≤
√

10δ2K

1 + δ2K
‖x̂0‖2 .

The proof of the theorem is postponed to Appendix D.
Theorem 4: The following inequality is valid

‖x̃0‖2 ≤
1 + δ3K

1− δ3K
‖x′0‖2 .

The proof of the result is deferred to Appendix E.
Based on Theorems 3 and 4, one arrives at the result claimed

in Equation (3).
Furthermore, according to Lemmas 1 and 2, we have

‖ỹr‖2 = ‖resid (y,ΦT̃ )‖
2

≤
∥∥ΦT−T̃ x̃0

∥∥
2

≤ (1 + δ3K) cK ‖x̂0‖2 ,

and

‖ŷr‖ =
∥∥resid

(
y,ΦT̂

)∥∥
2

≥ 1− 2δ3K

1− δ3K

∥∥ΦT−T̂ x̂0

∥∥
2

≥ (1− 2δ3K) ‖x̂0‖2 .

Upon combining the two inequalities described above, we
obtain the following upper bound

‖ỹr‖2 ≤
1 + δ3K

1− 2δ3K
cK ‖ŷr‖2 .

Finally, elementary calculations show that when δ3K < 0.06,

1 + δ3K

1− 2δ3K
cK < 1,

which completes the proof of Theorem 2.

A. Why Does Correlation Maximization Work for the SP
Algorithm?

Both in the initialization step and during each iteration
of the SP algorithm, we select K indices that maximize
the correlations between the column vectors and the residual
measurement. Henceforth, this step is referred to as correlation
maximization (CM). Consider the ideal case where all columns
of Φ are orthogonal2. In this scenario, the signal coefficients
can be easily recovered by calculating the correlations 〈vi,y〉 -
i.e., all indices with non-zero magnitude are in the correct sup-
port of the sensed vector. Now assume that the sampling matrix
Φ satisfies the RIP. Recall that the RIP (see Lemma 1) implies
that the columns are locally near-orthogonal. Consequently,
for any j not in the correct support, the magnitude of the
correlation 〈vj ,y〉 is expected to be small, and more precisely,
upper bounded by δK+1 ‖x‖2. This seems to provide a very
simple intuition why correlation maximization allows for exact
reconstruction, but the correct problems in reconstruction arise

2Of course, in this case no compression is possible.
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Figure 5. Correlation maximization works in the SP setting.

due to the following fact. Although it is clear that for all j /∈ T ,
the values of |〈vj ,y〉| are upper bounded by δK+1 ‖x‖, it may
also happen that for all i ∈ T , the values of |〈vi,y〉| are small
as well. Dealing with order statistics in this scenario cannot
be immediately proved to be a good reconstruction strategy.
The following example illustrates this point.

Example 1: Without loss of generality, let
T = {1, · · · ,K}. Let the vectors vi (i ∈ T ) be orthonormal,
and let the remaining columns vj , j /∈ T , of Φ be constructed
randomly, using i.i.d. Gaussian samples. Consider the
following normalized zero-one sparse signal,

y =
1√
K

∑
i∈T

vi.

Then, for K sufficiently large,

|〈vi,y〉| =
1√
K
� 1, for all 1 ≤ i ≤ K.

It is straightforward to envision the existence of a j /∈ T such
that

|〈vj ,y〉| ≈ δK+1 >
1√
K
.

The latter inequality is critical, because achieving very small
values for the RIP parameter is a challenging task.

This example represents a particularly challenging case for
the OMP algorithm. Therefore, one of the major constraints
imposed on the OMP algorithm is the requirement that

max
i∈T
|〈vi,y〉| =

1√
K

> max
j /∈T
|〈vj ,y〉| ≈ δK+1.

To meet this requirement, δK+1 has to be less than 1/
√
K,

which decays fast as K increases.
In contrast, the SP algorithm allows for some j /∈ T to be

such that
max
i∈T
|〈vi,y〉| < |〈vj ,y〉| .

As long as Equation (2) holds, the indices in the correct
support of x, which account for the most significant part of
the energy of the signal, are captured by the CM procedure.
Detailed descriptions of how this can be achieved are provided
in the proofs of the previously stated Theorems 5 and 3.

Let us first focus on the initialization step. By the definition
of the set T̂ in the initialization stage of the algorithm, the set
of the K selected columns ensures that∥∥Φ∗

T̂
y
∥∥

2
=
√∑

i∈T̂

|〈vi,y〉|2 ≥ (1− δ2K) ‖x‖2 . (5)

This is a consequence of the result of Theorem 5. Now, if we
assume that the estimate T̂ is disjoint from the correct support,
i.e., that T̂

⋂
T = φ, then by the near orthogonality property

of Lemma 1, one has∥∥Φ∗
T̂
y
∥∥

2
≤ δ2K ‖x‖2 .

The last inequality clearly contradicts (5) whenever δ2K <
δ3K < 1/2. Consequently,

T̂
⋂
T 6= φ,

and at least one correct element of the support of x is in the set
T̂ . This phenomenon is depicted in Fig. 5 and quantitatively
detailed in Theorem 5.

Theorem 5: After the initialization step, one has∥∥∥xT̂
⋂

T

∥∥∥
2
≥ 1− 3δ2K

1 + δ2K
‖x‖2 ,

and ∥∥xT−T̂

∥∥
2
≤
√

8δ2K + 4δ2
2K

1 + δ2K
‖x‖2 .

The proof of the theorem is postponed to Appendix C.
To study the effect of correlation maximization during each

iteration, one has to observe that correlation calculations are
performed with respect to the vector

yr = resid
(
y,ΦT̂

)
instead of being performed with respect to the vector y.
As a consequence, to show that the CM process captures a
significant part of residual signal energy requires an analysis
including a number of technical details. These can be found
in the Proof of Theorem 3.

B. Identifying Indices Outside of the Correct Support Set

Note that there are 2K indices in the set T ′, among which
at least K of them do not belong to the correct support set T .
In order to expurgate those indices from T ′, or equivalently,
in order to find a K-dimensional subspace of the space
span (ΦT ′) closest to y, we need to estimate these K incorrect
indices.

Define ∆T = T ′ − T̃ . This set contains the K indices
which are deemed incorrect. If ∆T

⋂
T = φ, our estimate of

incorrect indices is perfect. However, sometimes ∆T
⋂
T 6= φ.

This means that among the estimated incorrect indices, there
are some candidates that actually belong to the correct support
set T . The question of interest is how often these correct
indices are erroneously removed from the support estimate,
and how quickly the algorithm manages to restore them back.

First, we claim that the reduction in the ‖·‖2 norm induced
by such erroneous expurgation is small. The intuitive expla-
nation for this claim is as follows. Let us assume that all the
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Figure 6. The projection coefficient vector x′p is a smeared version of the
vector xT

⋂
T ′ .

indices in the support of x have been successfully captured, or
equivalently, that T ⊂ T ′. When we project y onto the space
span (ΦT ′), it can be shown that its corresponding vector x′p
satisfies

x′p = xT ′ ,

and that it contains at least K zeros. Consequently, the K
indices with smallest magnitude - equal to zero - are clearly
not in the correct support set.

However, the situation changes when T * T ′, or equiva-
lently, when T − T ′ 6= φ. After the projection, one has

x′p 6= xT ′ .

The projection vector x′p can be viewed as a smeared version
of xT ′ (see Fig. 6 for illustration): the coefficients indexed
by elements outside the support of x may become non-zero;
the coefficients indexed by elements in the support set T may
experience changes in their magnitudes. Fortunately, the level
of this smear is proportional to the norm of the residual signal
x′0, which can be proved to be small according to the analysis
accompanying Theorem 3. As long as the smear is not severe,
the largest projection coefficients still serve as good estimates
of the correct signal coefficients restricted to T ′, and the
correct support set T . This intuitive explanation is formalized
in the previously stated Theorem 5.

C. Convergence of the SP Algorithm

In this subsection, we upper bound the number of iterations
needed to reconstruct an arbitrary K-sparse signal using the
SP algorithm.

Given an arbitrary K-sparse signal x, we first arrange its
elements in decreasing order of magnitude. Without loss of
generality, assume that

|x1| ≥ |x2| ≥ · · · ≥ |xK | > 0,

and that xj = 0, ∀ j > K. Define

ρmin :=
|xK |
‖x‖2

=
min

1≤i≤K
xi√∑K

i=1 x
2
i

.

Let nit denote the number of iterations of the SP algorithm
needed for exact reconstruction of x. Then the following
theorem upper bounds nit in terms of cK and ρmin. It can be
viewed as a bound on the complexity/performance trade-off
for the SP algorithm.

Theorem 6: The number of iterations of the SP algorithm
is upper bounded by

nit ≤ min
(
− log ρmin

− log cK
+ 1,

1.5 ·K
− log cK

)
.

This result is a combination of Theorems 7 and 8, described
below.

Theorem 7: One has

nit ≤
− log ρmin

− log cK
+ 1.

Theorem 8: It can be shown that

nit ≤
1.5 ·K
− log cK

.

The proof of Theorem 7 is intuitively clear and presented
below, while the proof of Theorem 8 is more technical and
postponed to Appendix F.

Proof of Theorem 7: This theorem is proved by a contra-
diction. Let T̃ be the estimate of T after

− log ρmin

− log cK
+ 1

iterations. Suppose that T * T̃ , or equivalently, T − T̃ 6= φ.
Then ∥∥xT−T̃

∥∥
2

=
√ ∑

i∈T−T̃

x2
i

≥ min
i∈T
|xi| = ρmin ‖x‖2 .

However, according to Theorem 2,∥∥xT−T̃

∥∥
2
≤ (cK)nit ‖x‖2
= cKρmin ‖x‖2 < ρmin ‖x‖2 ,

where the last inequality follows from the assumption that
cK < 1. This contradiction completes the proof.

A drawback of Theorem 7 is that it sometimes overestimates
the number of iterations, especially when ρmin � 1. The
example to follow illustrates this point.

Example 2: Let K = 2, x1 = 210, x2 = 1, x3 = · · · =
xN = 0. Suppose that the sampling matrix Φ satisfies the RIP
with

cK =
√

10δ3K

1− δ3K
=

1
2
.

Noting that ρmin . 2−10, Theorem 6 implies that

nit ≤ 11.

Indeed, if we take a close look at the steps of the SP algorithm,
we can verify that

nit ≤ 1.

After the initialization step, by Theorem 5, it can be shown
that
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‖x̂0‖2 ≤
√

4δ2K + 8δ2
2K

1 + δ2K
≤ cK ‖x‖2 ≤

‖x‖2
2

.

As a result, the estimate T̂ must contain the index one and
‖x̂0‖2 ≤ 1. After the first iteration, since

‖x̃0‖2 ≤
1
2
‖x̂0‖2 ≤

1
2
< min

i∈T
|xi| ,

we have T ⊂ T̃ .

This example suggests that the upper bound in Equation (7)
can be tightened when ρmin � 1. Based on the idea behind
this example, another approach to upper bounding nit is
described in Theorem 8 and its validity proved in Appendix
F.

It is clear that the number of iterations required for exact
reconstruction depends on the values of the entries of the
sparse signal itself. We therefore focus our attention on the
following three particular classes of sparse signals.

1) Zero-one sparse signals. As explained before, zero-
one signals are in the most challenging reconstruction
category for the well-known OMP algorithm. However,
this class of signals has the best upper bound on the
convergence rate of the SP algorithm. Elementary cal-
culations reveal that ρmin = 1/

√
K and that

nit ≤
logK

2 log(1/cK)
.

2) Sparse signals with power-law decaying entries (also
known as compressible sparse signals). Signals in this
category are defined via the following constraint

|xi| ≤ cx · i−p,

for some constants cx > 0 and p > 1. This type of
signals has been widely considered in the CS literature,
since most practical and naturally occurring signals
belong to this class [13]. It follows from Theorem 7
that in this case

nit ≤
p logK

log(1/cK)
(1 + o (1)) ,

where o (1)→ 0 when K →∞.
3) Sparse signals with exponentially decaying entries. Sig-

nals in this class satisfy

|xi| ≤ cx · e−pi,

for some constants cx > 0 and p > 0. Theorem 6 implies
that

nit ≤

{
pK

log(1/cK) (1 + o (1)) if 0 < p ≤ 1.5
1.5K

log(1/cK) if p > 1.5
,

where again o (1)→ 0 as K →∞.
Simulation results, shown in Fig. 7, indicate that the above
analysis gives the right order of growth in complexity with
respect to the parameter K. To generate the plots of Fig.
7, we set m = 128, N = 256, and run simulations for
different classes of sparse signals. For each type of sparse
signal, we selected different values for the parameter K, and
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Figure 7. Convergence of the subspace pursuit algorithm for different signals.

for each K, we selected 200 different randomly generated
Gaussian sampling matrices Φ and as many different support
sets T . The plots depict the average number of iterations
versus the signal sparsity level K, and they clearly show that
nit = O (log (K)) for zero-one signals and sparse signals
with coefficients decaying according to a power law, while
nit = O (K) for sparse signals with exponentially decaying
coefficients.

With the bound on the number of iterations required for
exact reconstruction, the computational complexity of the
complete SP algorithm can be easily estimated. In each
iteration, CM requires mN computations, while the projec-
tions can be computed with marginal cost O (Km) by the
Modified Gram-Schmidt (MGS) algorithm [15]. Therefore,
the total complexity of the SP algorithm is O (mN logK)
for compressible sparse signals, and it is upper bounded by
O (mNK) for arbitrary sparse signals.

The complexity of the SP algorithm is comparable to that of
OMP-type algorithms. For the standard OMP algorithm, exact
reconstruction always requires K iterations. The correspond-
ing complexity is O (KmN). For the ROMP and StOMP algo-
rithms, the challenging signals in terms of convergence rate are
the sparse signals with exponentially decaying entries. When
p is sufficiently large, it can be shown that both ROMP and
StOMP also need O (K) iterations for reconstruction, which
implies computational complexity of the order of O (KmN).

One advantage of the SP algorithm is that the complexity is
reduced to O (mN logK) when compressible sparse signals
are considered. For this class of sparse signals, to the best of
the author’s knowledge, there is no known formal proof that
allows one to bound the complexity of the ROMP and StOMP
algorithm.

V. RECOVERY OF APPROXIMATELY SPARSE SIGNALS
FROM INACCURATE MEASUREMENTS

We consider first a sampling scenario in which the signal
x is K-sparse, but the measurement vector y is subjected to
an additive noise component, e. The following theorem gives
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a sufficient condition for convergence of the SP algorithm in
terms of the RIP parameter δ3K , as well as an upper bounds on
the recovery distortion that depends on the energy (l2-norm)
of the error vector e.

Theorem 9 (Stability under measurement perturbations):
Let x ∈ RN be such that |supp(x)| ≤ K, and let its
corresponding measurement be y = Φx + e, where e denotes
the noise vector. Suppose that the sampling matrix satisfies
the RIP with parameter

δ3K < 0.03. (6)

Then the reconstruction distortion of the SP algorithm satisfies

‖x− x̂‖2 ≤ c
′
K ‖e‖2 ,

where
c′K =

1 + δ3K

δ3K (1− δ3K)
.

The proof of this theorem is sketched in Section V-A.
We also study the case where the signal x is only approx-

imately K-sparse, and the measurements y is contaminated
by a noise vector e. To simplify the notation, we henceforth
denote by xK the vector obtained from x by maintaining the
K entries with largest magnitude and setting all other entries
in the vector to zero. In this setting, a signal x is said to be
approximately K-sparse if x − xK 6= 0. Based on Theorem
9, we can upper bound the recovery distortion in terms of the
`1 and `2 norms of x− xK and e, respectively, as follows.

Corollary 1: (Stability under signal and measurement per-
turbations) Let x ∈ RN be approximately K-sparse, and let
y = Φx + e. Suppose that the sampling matrix satisfies the
RIP with parameter

δ6K < 0.03.

Then

‖x− x̂‖2 ≤ c
′
2K

(
‖e‖2 +

√
1 + δ6K

K
‖x− xK‖1

)
.

The proof of this corollary is given in Section V-B.
Theorem 9 and Corollary 1 provide analytical upper bounds

on the reconstruction distortion of the noisy SP version of
the SP algorithm. In addition to these theoretical bounds, we
performed numerical simulations to empirically estimate the
reconstruction distortion. In the simulations, we first select
the dimension of the signal x to N , and the number of
measurements m. We then choose a sparsity level K such
that K ≤ m/2. Once the parameters are chosen, an m × N
sampling matrix with standard i.i.d. Gaussian entries is gen-
erated. For a given K, the support set T of size |T | = K
is selected uniformly at random. A zero-one sparse signal is
constructed as in the previous section. Finally, either signal or
a measurement perturbations are added as follows:

1) Signal perturbations: the signal entries on T are kept
unchanged but the signal entries out of T are perturbed
by i.i.d. Gaussian N

(
0, σ2

s

)
samples.

2) Measurement perturbations: the perturbation vector e is
generated from a Gaussian distribution with zero mean
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Figure 8. Reconstruction distortion under signal or measurement perturba-
tions: both perturbation level and reconstruction distortion are described via
the `2 norm.

and covariance matrix σ2
eIm, where Im denotes the m×

m identity matrix.
We execute the SP decoding reconstruction process on y, 500
times for each K, σ2

s and σ2
e . The reconstruction distortion

‖x− x̂‖2 is obtained via averaging over all these instances,
and the results are plotted in Fig. 8. Consistent with the
findings of Theorem 9 and Corollary 1, we observe that the
recovery distortion increases linearly with the `2-norm of
measurement errors. Even more encouraging is the fact that the
empirical reconstruction distortion is typically much smaller
than the corresponding upper bounds. This is likely due to
the fact that, in order to simplify the expressions involved,
many constants and parameters used in the proof were upper
bounded.

A. Recovery Distortion under Measurement Perturbations

The first step towards proving Theorem 9 is to upper bound
the reconstruction error for a given estimated support set T̂ ,
as succinctly described in the lemma to follow.

Lemma 3: Let x ∈ RN be a K-sparse vector, ‖x‖0 ≤ K,
and let y = Φx + e be a measurement for which Φ ∈ Rm×N

satisfies the RIP with parameter δK . For an arbitrary T̂ ⊂
{1, · · · , N} such that

∣∣∣T̂ ∣∣∣ ≤ K, define x̂ as

x̂T̂ = Φ†
T̂
y,

and
x̂{1,··· ,N}−T̂ = 0.

Then

‖x− x̂‖2 ≤
1

1− δ3K
‖x̂0‖2 +

1 + δ3K

1− δ3K
‖e‖2 .

The proof of the lemma is given in Appendix G.
Next, we need to upper bound the norm ‖x̂0‖2. To achieve

this task, we describe in the theorem to follow how ‖x̂0‖2
depends on the noise energy ‖e‖2.
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Theorem 10: Let x̂0 = xT−T̂ , x′0 = xT−(T̂
⋃

T ′) and x̃0 =
xT−T̃ . Suppose that

‖e‖2 ≤
δ2K

1− δ2
2K

‖x̂0‖2 . (7)

Then

‖x′0‖2 ≤
4
√
δ2K

1 + δ2K
‖x̂0‖2 , (8)

and

‖x̃0‖2 ≤

(
4
√
δ3K

1− δ3K
+

2δ3K

(1− δ3K)2

)
‖x̂0‖2 . (9)

Furthermore, if

δ3K < 0.03,

one has

‖ỹr‖2 < ‖yr‖2 .

Proof: The upper bounds in Inequalities (8) and (9)
are proved in Appendix H and I respectively. To complete
the proof, we make use of Lemma 2 stated in Section II.
According to this lemma, we have

‖ỹr‖2 = ‖resid (y,ΦT̃ )‖
2

≤
∥∥ΦT−T̃ xT−T̃

∥∥
2

+ ‖e‖2
≤ (1 + δ3K) ‖x̃0‖2 + ‖e‖2

≤
(

(1 + δ3K) c′K +
δ3K

1− δ2
3K

)
‖x̂0‖2 ,

and

‖yr‖2 =
∥∥resid

(
y,ΦT̂

)∥∥
2

≥ 1− 2δ3K

1− δ3K

(∥∥ΦT̂ x̂0

∥∥− ‖e‖2)
≥ 1− 2δ3K

1− δ3K

(
(1− δ3K) ‖x̂0‖2 −

δ3K

1− δ2
3K

‖x̂0‖2

)
≥
(

1− 2δ3K −
δ3K

1− δ2
3K

)
‖x̂0‖2 .

Elementary calculation reveal that as long as δ3K < 0.03, we
have ‖ỹr‖ < ‖yr‖. This completes the proof of the theorem.

Based on Theorem 10, we conclude that when the SP
algorithm terminates, the inequality (7) is violated and we
must have

‖e‖2 >
δ3K

1− δ2
3K

‖x̂0‖2 .

Under this assumption, it follows from Lemma 3 that

‖x− x̂‖2 ≤
(

1
1− δ3K

1− δ2
3K

δ3K
+

1 + δ3K

1− δ3K

)
‖e‖2

=
1 + δ3K

δ3K (1− δ3K)
‖e‖2 ,

which completes the proof of Theorem 9.

B. Recovery Distortion under Signal and Measurement Per-
turbations

The proof of Corollary 1 is based on the following two
lemmas, which are proved in [16] and [17], respectively.

Lemma 4: Suppose that the sampling matrix Φ ∈ Rm×N

satisfies the RIP with parameter δK . Then, for every x ∈ RN ,
one has

‖Φx‖2 ≤
√

1 + δK

(
‖x‖2 +

1√
K
‖x‖1

)
.

Lemma 5: Let x ∈ Rd be K-sparse, and let xK denote the
vector obtained from x by keeping its K entries of largest
magnitude, and by setting all its other components to zero.
Then

‖x− xK‖2 ≤
‖x‖1
2
√
K
.

To prove the corollary, consider the measurement vector

y = Φx + e

= Φx2K + Φ (x− x2K) + e.

By Theorem 9, one has

‖x̂− x2K‖2 ≤ C6K (‖Φ (x− x2K)‖2 + ‖e‖2) ,

and invoking Lemma 4 shows that

‖Φ (x− x2K)‖2

≤
√

1 + δ6K

(
‖x− x2K‖2 +

‖x− x2K‖1√
6K

)
.

Furthermore, Lemma 5 implies that

‖x− x2K‖2 = ‖(x− xK)− (x− xK)K‖2
≤ 1

2
√
K
‖x− xK‖1 .

Therefore,

‖Φ (x− x2K)‖2

≤
√

1 + δ6K

(
‖x− xK‖1

2
√
K

+
‖x− x2K‖1√

6K

)
≤
√

1 + δ6K
‖x− xK‖1√

K
,

and

‖x̂− x2K‖2 ≤ c
′
2K

(
‖e‖2 +

√
1 + δ6K

‖x− xK‖1√
K

)
,

which completes the proof.

VI. CONCLUSION

We introduced a new algorithm, termed subspace pursuit,
for low-complexity recovery of sparse signals sampled by ma-
trices satisfying the RIP with a constant parameter δ3K . Also
presented were simulation results demonstrating that the re-
covery performance of the algorithm matches, and sometimes
even exceeds, that of the LP programming technique; and,
simulations showing that the number of iterations executed
by the algorithm for zero-one sparse signals and compressible
signals is of the order O(log K).
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APPENDIX

We provide next detailed proofs for the lemmas and theo-
rems stated in the paper.

A. Proof of Lemma 1

1) The first part of the lemma follows directly from the
definition of δK . Every vector q ∈ RK can be extended
to a vector q′ ∈ RK′

by attaching K ′ −K zeros to it.
From the fact that for all J ⊂ {1, · · · , N} such that
|J | ≤ K ′, and all q′ ∈ RK′

, one has

(1− δK′) ‖q′‖22 ≤ ‖ΦJq′‖22 ≤ (1 + δK′) ‖q′‖22 ,

it follows that

(1− δK′) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δK′) ‖q‖22
for all |I| ≤ K and q ∈ RK . Since δK is defined as
the infimum of all parameter δ that satisfy the above
relationship, δK ≤ δK′ .

2) The inequality

|〈ΦIa,ΦJb〉| ≤ δ|I|+|J| ‖a‖2 ‖b‖2
obviously holds if either one of the norms ‖a‖2 and
‖b‖2 is zero. Assume therefore that neither one of them
is zero, and define

a′ = a/ ‖a‖2 , b
′ = b/ ‖b‖2 ,

x′ = ΦIa, y′ = ΦJb.

Note that the RIP implies that

2
(
1− δ|I|+|J|

)
≤ ‖x′ + y′‖22

=
∥∥∥∥[ΦiΦj ]

[
a′

b′

]∥∥∥∥2

2

≤ 2
(
1 + δ|I|+|J|

)
, (10)

and similarly,

2
(
1− δ|I|+|J|

)
≤ ‖x′ − y′‖22

=
∥∥∥∥[ΦiΦj ]

[
a′

−b′

]∥∥∥∥2

2

≤ 2
(
1 + δ|I|+|J|

)
.

We thus have

〈x′,y′〉 ≤
‖x′ + y′‖22 − ‖x′ − y′‖22

4
≤ δ|I|+|J|,

−〈x′,y′〉 ≤
‖x′ − y′‖22 − ‖x′ + y′‖22

4
≤ δ|I|+|J|,

and therefore
|〈ΦIa,ΦJb〉|
‖a‖2 ‖b‖2

= |〈x′,y′〉| ≤ δ|I|+|J|.

Now,

‖Φ∗IΦJb‖2 = max
q: ‖q‖2=1

‖q∗ (Φ∗IΦJb)‖2

≤ max
q: ‖q‖1=1

δ|I|+|J| ‖q‖2 ‖b‖2

= δ|I|+|J| ‖b‖2 ,

which completes the proof.

B. Proof of Lemma 2

1) The first claim is proved by observing that

Φ∗Iyr = Φ∗I
(
y −ΦI (Φ∗IΦI)−1 Φ∗Iy

)
= Φ∗Iy −Φ∗Iy = 0.

2) To prove the second part of the lemma, let

yp = ΦIxp, and y = ΦJx.

By Lemma 1, we have

|〈yp,y〉| ≤ δ|I|+|J| ‖xp‖2 ‖x‖2

≤ δ|I|+|J|
‖yp‖2√
1− δ|I|

‖y‖2√
1− δ|J|

≤
δ|I|+|J|

1− δ|I|+|J|
‖yp‖2 ‖y‖2 .

Since
〈yp,y〉 = 〈yp,yp + yr〉 = ‖yp‖22 ,

we have
‖yp‖2 ≤

δ|I|+|J|

1− δ|I|+|J|
‖y‖2 .

Furthermore, since

‖yr‖2 = ‖y − yp‖2 ≥ ‖y‖2 − ‖yp‖2
and since

‖yr‖2 = ‖y − yp‖2 ≤ ‖y‖2 + ‖yp‖2 ,

one can show that

1−
δ|I|+|J|

1− δ|I|+|J|
≤ ‖yr‖
‖y‖

≤ 1 +
δ|I|+|J|

1− δ|I|+|J|
.

Observing that

‖yr‖22 + ‖yp‖22 = ‖y‖22 ,

we finally show that(
1−

δ|I|+|J|

1− δ|I|+|J|

)
‖y‖2 ≤ ‖yr‖2 ≤ ‖y‖2 .

C. Proof of Theorem 5

The first step consists in proving Inequality (5), which reads
as ∥∥Φ∗

T̂
y
∥∥

2
≥ (1− δ2K) ‖x‖2 .

By assumption, |T | ≤ K, so that

‖Φ∗T y‖2 = ‖Φ∗T ΦT x‖2 ≥ (1− δ2K) ‖x‖2 ,

which provides the desired proof. According to the definition
of T̂ , ∥∥Φ∗

T̂
y
∥∥

2
= max
|I|≤K

√∑
i∈I

|〈vi,y〉|2

≥ ‖Φ∗T y‖2 ≥ (1− δ2K) ‖x‖2 .

The second step is to partition the estimate of the support
set T̂ into two subsets: the set T̂

⋂
T , containing the indices
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in the correct support set, and T̂ − T , the set of incorrectly
selected indices. Then∥∥Φ∗

T̂
y
∥∥

2
≤
∥∥∥Φ∗

T̂
⋂

T
y
∥∥∥

2
+
∥∥∥Φ∗

T̂−T
y
∥∥∥

2

≤
∥∥∥Φ∗

T̂
⋂

T
y
∥∥∥

2
+ δ2K ‖x‖2 ,

where the last inequality follows from the near-orthogonality
property of Lemma 1.

Furthermore,∥∥∥Φ∗
T̂
⋂

T
y
∥∥∥

2
≤
∥∥∥Φ∗

T̂
⋂

T
ΦT̂

⋂
T xT̂

⋂
T

∥∥∥
2

+
∥∥∥Φ∗

T̂
⋂

T
ΦT−T̂ xT−T̂

∥∥∥
2

≤ (1 + δ2K)
∥∥∥xT̂

⋂
T

∥∥∥
2

+ δ2K ‖x‖2 .

Combining the two inequalities above, one can show that∥∥Φ∗
T̂
y
∥∥

2
≤ (1 + δ2K)

∥∥∥xT̂
⋂

T

∥∥∥
2

+ 2δ2K ‖x‖2 .

By invoking Inequality (5) it follows that

(1− δ2K) ‖x‖2 ≤ (1 + δ2K)
∥∥∥xT̂

⋂
T

∥∥∥
2

+ 2δ2K ‖x‖2 .

Hence, ∥∥∥xT̂
⋂

T

∥∥∥
2
≥ 1− 3δ2K

1 + δ2K
‖x‖2 .

To complete the proof, we observe that∥∥xT−T̂

∥∥ =

√
‖x‖22 −

∥∥∥xT̂
⋂

T

∥∥∥2

2

≤
√

8δ2K + 4δ2
2K

1 + δ2K
‖x‖2 .

D. Proof of Theorem 3

The proof of this theorem heavily relies on the following
technical (and tedious) notation, some of which has been
previously described in the paper, but is repeated in this section
for completeness:

yr = resid
(
y,ΦT̂

)
, denotes the residue of the projec-

tion of y onto the space span
(
ΦT̂

)
;

xr is the coefficient vector corresponding to yr, i.e.,
yr = ΦT

⋃
T̂ xr;

ŷ0 = ΦT−T̂ xT−T̂ , is the component of the measure-
ment which has not been captured by the set T̂ ;

x̂0 = xT−T̂ , denotes the part of the signal not captured
by T̂ ;

ŷ0,p = proj
(
ŷ0,ΦT̂

)
denotes the projection of ŷ0 onto

span
(
ΦT̂

)
;

x̂0,p is used to denote the projection coefficient vector
corresponding to ŷ0,p, i.e., ŷ0,p = ΦT̂ x̂0,p;

T ′′ denotes the set of K residual indices with maximum
correlation magnitudes |〈vi,yr〉|;

y′c = ΦT
⋂

T ′′xT
⋂

T ′′ denotes the component of the
measured vector included through the set T ′′.

x′c = xT
⋂

T ′′ , denotes part of the sample signal sup-
ported on T ′′.

y′0 = ΦT−T ′xT−T ′ , corresponds to the part of the
measurement vector not captured by T ′ = T̂

⋃
T ′′.

Figure 9. Illustration of sets and signal coefficient vectors for Theorem 3

x′0 = xT−T ′ , is the part of the signal not captured by
T ′.

For clarity, some of the sets and vectors in the list above are
depicted in Fig. 9 .

With the above notation, the main step of the proof is to
show that CM allows for capturing a significant part of the
residual signal power, that is,

‖x′0‖2 ≤ c1 ‖x̂0‖2

for some constant c1. Note that x̂0 is composed of x′0 and x′c,
i.e.,

x̂0 =
[
(x′0)∗ , (x′c)∗

]∗
,

so that
‖x′0‖

2
2 = ‖x̂0‖22 − ‖x

′
c‖

2
2 .

The most difficult part of our demonstration is to upper bound
‖x′c‖2.

The roadmap of the proof can be formed by establishing
the validity of the following four claims.

1) If we write

ΦT
⋃

T̂ =
[
ΦT−T̂ ΦT̂

]
,

then
yr = ΦT

⋃
T̂ xr,

where
xr =

[
x̂∗0,−x̂∗0,p

]∗
.

We claim that

‖x̂0,p‖2 ≤
δ2K

1− δ2K
‖x̂0‖2 .

2) It holds that

‖Φ∗T ′′yr‖2 ≥ (1− 2δ2K) ‖x̂0‖2 .

3) The corresponding upper bound reads as

‖Φ∗T ′′yr‖2 ≤ (1 + δ2K) ‖x′c‖2 +
2δ2K − δ2

2K

1− δ2K
‖x̂0‖2 .

4) Finally,

‖x′0‖2 ≤
√

10δ2K

1 + δ2K
‖x̂0‖2 .

Proof: The claims can be established as demonstrated
below.
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1) It is clear that

yr = resid
(
y,ΦT̂

)
= resid

(
ŷ0,ΦT̂

)
= ŷ0 −ΦT̂

((
Φ∗

T̂
ΦT̂

)−1
Φ∗

T̂
ŷ0

)
= ΦT−T̂ x̂0 −ΦT̂ x̂0,p

=
[
ΦT−T̂ ,ΦT̂

] [ x̂0

−x̂0,p

]
.

As a consequence of the RIP,

‖x̂0,p‖2 =
∥∥∥(Φ∗

T̂
ΦT̂

)−1
Φ∗

T̂

(
ΦT−T̂ x̂0

)∥∥∥
2

≤ 1
1− δK

δ2K ‖x̂0‖2 ≤
δ2K

1− δ2K
‖x̂0‖2 .

This proves the stated claim.
2) Note that

yr = resid
(
y,ΦT̂

)
∈ span

(
ΦT

⋃
T̂

)
,

and that yr is orthogonal to ΦT̂ . We therefore have∥∥∥Φ∗
T−T̂

yr

∥∥∥
2

=
∥∥∥Φ∗

T
⋃

T̂
yr

∥∥∥
2

=
∥∥∥Φ∗

T
⋃

T̂

(
ΦT

⋃
T̂ xr

)∥∥∥
2

≥ (1− δ2K) ‖xr‖2
≥ (1− δ2K)

(
‖x̂0‖2 − ‖x̂0,p‖2

)
≥ (1− 2δ2K) ‖x̂0‖2 .

Since the set T ′′ is chosen so as to maximize the
correlations with the residual vector, we can show that

‖Φ∗T ′yr‖2 ≥
∥∥∥Φ∗

T−T̂
yr

∥∥∥
2
≥ (1− 2δ2K) ‖x̂0‖2 ,

which completes the proof.
3) Using the decomposition

yr =
[
ΦT−T̂ ,ΦT̂

] [
x̂∗0,−x̂∗0,p

]∗
,

we can show that

‖Φ∗T ′′yr‖2 ≤
∥∥Φ∗T ′′ΦT−T̂ xT−T̂

∥∥
2

+
∥∥Φ∗T ′′ΦT̂ x̂0,p

∥∥
2

≤
∥∥Φ∗T ′′ΦT−T̂ xT−T̂

∥∥
2

+
δ2
2K

1− δ2K
‖x̂0‖2 .

(11)

Since T̂
⋂
T ′′ = φ, we can partition the set T − T̂ as

T − T̂ =
(
T
⋂
T ′′
)⋃(

T − T̂ − T ′′
)
.

Then∥∥Φ∗T ′′ΦT−T̂ xT−T̂

∥∥
2

≤
∥∥∥Φ∗T ⋂T ′′ΦT−T̂ xT−T̂

∥∥∥
2

+
∥∥∥Φ∗

T−T̂−T ′′ΦT−T̂ xT−T̂

∥∥∥
2

≤
∥∥∥Φ∗T ⋂T ′′ΦT

⋂
T ′′xT

⋂
T ′′

∥∥∥
2

+
∥∥∥Φ∗T ⋂T ′′ΦT−T̂−T ′′xT−T̂−T ′′

∥∥∥
2

+ δ2K ‖x̂0‖2
≤ (1 + δ2K)

∥∥xT
⋂

T ′′
∥∥

2
+ δ2K ‖x̂0‖2 + δ2K ‖x̂0‖2 .

(12)

Upon substituting Inequality (12) into (11), we obtain

‖Φ∗T ′′yr‖2 ≤ (1 + δ2K)
∥∥xT

⋂
T ′′
∥∥

2
+

2δ2K − δ2
2K

1− δ2K
‖x̂0‖2 .

4) Combining the second and the third claims of the proof,
we find that

‖x′c‖2 =
∥∥xT

⋂
T ′′
∥∥

2

≥ 1
1 + δ2K

(
1− 2δ2K −

2δ2K − δ2
2K

1− δ2K

)
‖x̂0‖2

=
1− 5δ2K + 3δ2

2K

1− δ2
2K

‖x̂0‖2 .

Based on this inequality, we can show that

‖x′0‖2 =
√
‖x̂0‖22 − ‖x′c‖

2
2

≤ ‖x̂0‖2

√
1−

(
1− 5δ2K + 3δ2

2K

1− δ2
2K

)2

.

To make this result more tractable for subsequent anal-
ysis, we observe that(

1− δ2
2K

)2 − (1− 5δ2K + 3δ2
2K

)2
≤
(
1− δ2

2K

)2 − (1− 5δ2K + δ2
2K

)2
= 10δ2K − 29δ2

2K + 10δ3
2K

≤ 10δ2K (1− δ2K)2
,

so that

‖x′0‖2 ≤
√

10δ2K

1 + δ2K
‖x̂0‖2 ,

as claimed.

E. Proof of Theorem 4

As in the previous subsection, we first introduce the notation
followed in this part of the manuscript:

y′0 = ΦT−T ′xT−T ′ denotes the part of the measurement
vector not captured by T ′;

x′0 = xT−T ′ denotes part of the signal x not captured
by T ′;

y′0,p = proj (y′0,ΦT ′) denotes the projection of y′0 onto
span (ΦT ′);

x′0,p denotes the projection coefficient vector correspond-
ing to y′0,p, i.e., y′0,p = ΦT ′x′0,p;

y′p = proj (y′,ΦT ′) denotes the projection of y onto
span (ΦT ′);

x′p stands for the projection coefficient vector corre-
sponding to y′p, i.e., y′p = ΦT ′x′p;

T̃ denotes the estimate of the K indices in T upon
completion of an iteration (i.e., the set of those K
indices that are deemed sufficiently reliable);

∆T = T ′ − T̃ consists of the set of indices estimated to
be incorrect;

∆x0 = xT
⋂

∆T denotes the signal component erro-
neously removed from the list at the given iteration;

x̃0 = xT−T̃ , denotes the signal component not captured
by T̃ .

As for the previous proof, the sets and signal coefficient vec-
tors introduced above are illustrated in Fig. 10. The previously
studied concept of the smear of a vector is also depicted in
the same figure.
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Figure 10. Illustration of sets and signal coefficient vectors for Theorem 4

To prove the theorem, we again proceed with establishing
the validity of four different claims, listed below.

1) It can be shown that∥∥x′0,p

∥∥
2
≤ δ3K

1− δ3K
‖x′0‖2 .

2) For any index i ∈ T̂
⋃
T ′′,(

x′p
)
i

=

{
xi +

(
x′0,p

)
i

if i ∈ T(
x′0,p

)
i

if i /∈ T
.

3) One has
‖∆x0‖2 ≤ 2

∥∥x′0,p

∥∥
2
.

4) And, finally,

‖x̃0‖2 ≤
1 + δ3K

1− δ3K
‖x′0‖2 .

Proof: The proofs proceed as follows.
1) To prove the first claim, we only need to note that∥∥x′0,p

∥∥
2

=
∥∥∥(Φ∗T ′ΦT ′)−1 Φ∗T ′ (ΦT−T ′x′0)

∥∥∥
2

≤ 1
1− δ2K

δ3K ‖x′0‖2 ≤
δ3K

1− δ3K
‖x′0‖2 .

2) This claim is proved by partitioning the entries of the
sampling matrix as follows. First, we write

ΦT ′ =
[
ΦT

⋂
T ′ ,ΦT−T ′

]
.

Then, we observe that

ΦT
⋂

T ′xT
⋂

T ′

=
[
ΦT

⋂
T ′ ,ΦT−T ′

] [ xT
⋂

T ′

0

]
= ΦT ′

[
xT

⋂
T ′

0

]
.

Consequently,

x′p = (Φ∗T ′ΦT ′)−1 Φ∗T ′y

= (Φ∗T ′ΦT ′)−1 Φ∗T ′

(
ΦT

⋂
T ′xT

⋂
T ′
)

+ (Φ∗T ′ΦT ′)−1 Φ∗T ′ (ΦT−T ′xT−T ′)

= (Φ∗T ′ΦT ′)−1 Φ∗T ′ΦT ′

[
xT

⋂
T ′

0

]
+ x′0,p

=
[

xT
⋂

T ′

0

]
+ x′0,p,

which establishes the stated result.

3) As described before, if T ⊂ T ′, then ∆T
⋂
T = φ and

‖∆x0‖2 = 0. However, if T − T ′ 6= φ, the projection
coefficients x′p is a smeared version of xT ′ . By the
second claim of this proof, the smear is simply x′0,p

and its energy equals
∥∥x′0,p

∥∥
2
.

In what follows, we first show that the energy of the
projection vector x′p restricted to ∆T is smaller than
the energy of the smear, i.e.,∥∥∥(x′p)∆T

∥∥∥
2
≤
∥∥x′0,p

∥∥
2
.

Consider an arbitrary index set ∆T ′′ ⊂ T ′ of cardinality
K that is disjoint from T , ∆T ′′

⋂
T = φ. Such a set

∆T ′′ exists because |T ′ − T | ≥ K. By the second claim
in this proof,∥∥∥(x′p)∆T ′′

∥∥∥
2

=
√ ∑

i∈∆T ′′

(
x′p
)2
i

=
√ ∑

i∈∆T ′′

(
x′′0,p

)2
i
≤
∥∥x′0,p

∥∥
2
.

Since ∆T is chosen to contain the K projection coeffi-
cients with the smallest magnitudes,∥∥∥(x′p)∆T

∥∥∥
2
≤
∥∥∥(x′p)∆T ′′

∥∥∥
2
≤
∥∥x′0,p

∥∥
2
.

Next, we decompose the vector
(
x′p
)

∆T
into a signal

component and a smear component. Then∥∥∥(x′p)∆T

∥∥∥
2

=
∥∥∥x∆T +

(
x′0,p

)
∆T

∥∥∥
2

≥ ‖x∆T ‖2 −
∥∥∥(x′0,p

)
∆T

∥∥∥
2
.

We also have

‖∆x0‖2 = ‖x∆T ‖2 ≤
∥∥∥(x′p)∆T

∥∥∥
2

+
∥∥∥(x′0,p

)
∆T

∥∥∥
2

≤ 2
∥∥x′0,p

∥∥
2
,

which completes this part of the proof.
4) This claim is proved by combining the first three parts,

and it results in

‖x̃0‖2 ≤ ‖∆x0‖2 + ‖x′0‖2
≤ 2

∥∥x′0,p

∥∥
2

+ ‖x′0‖2

≤ 2δ3K

1− δ3K
‖x′0‖2 + ‖x′0‖2

=
1 + δ3K

1− δ3K
‖x′0‖2 .

F. Proof of Theorem 8

Without loss of generality, assume that

|x1| ≥ |x2| ≥ · · · ≥ |xK | > 0.

The following iterative algorithm is employed to generate a
partition of the support set T that will establish the correctness
of the claimed result.
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Algorithm 2 Partitioning of the support set T
Initialization:

Let T1 = {1}, i = 1 and j = 1.
Iteration:

If i = K, quit the iterations; otherwise, continue.
If ∥∥x{i+1,··· ,K}

∥∥
2
≥ 1

2
|xi| ,

then we set Tj = Tj

⋃
{i+ 1}; otherwise, we

have ∥∥x{i+1,··· ,K}
∥∥

2
<

1
2
|xi| ,

and we set j = j + 1 and Tj = {i+ 1}.
Let i = i+ 1. Continue with a new iteration.

Suppose that after the iterative partition, we have

T = T1

⋃
T2

⋃
· · ·
⋃
TJ ,

where J ≤ K is the number of the subsets in the partition.
Let sj = |Tj |, j = 1, · · · , J . It is clear that

J∑
j=1

sj = K.

Then Theorem 8 is proved by invoking the following lemma.
Lemma 6:
1) For a given j, let |Tj | = s, and let

Tj = {i, i+ 1, · · · , i+ s− 1} .

Then,

|xi+s−1−k| ≤ 3k |xi+s−1| , for all 0 ≤ k ≤ s−1, (13)

and therefore

|xi+s−1| ≥
2
3s

∥∥x{i,··· ,K}∥∥2
. (14)

2) Let

nj =
⌈

log 2− sj log 3
log cK

⌉
, (15)

where d·e denotes the ceiling function. Then for any
1 ≤ j0 ≤ J , after

j0∑
j=1

nj

iterations, the SP algorithm has the property that
j0⋃

j=1

Tj ⊂ T̃ . (16)

More specifically, after
J∑

j=1

nj ≤
1.5 ·K
− log cK

(17)

iterations, the SP algorithm guarantees that T ⊂ T̃ .

Proof: Both parts of this lemma are proved by mathemat-
ical induction as follows.

1) By the construction of Tj ,∥∥x{i+s,··· ,K}
∥∥

2
≤ 1

2
|xi+s−1| .

On the other hand,
1
2
|xi+s−2| ≤

∥∥x{i+s−1,··· ,K}
∥∥

2

≤
∥∥x{i+s,··· ,K}

∥∥
2

+ |xi+s−1|

≤ 3
2
|xi+s−1| .

It follows that

|xi+s−2| ≤ 3 |xi+s−1| .

Now suppose that for any 1 < k0 ≤ s− 1,

|xi+s−1−k| ≤ 3k |xi+s−1| for all 1 ≤ k ≤ k0 − 1.

Then,
1
2
|xi+s−1−k0 | ≤

∥∥x{i+s−k0,··· ,K}
∥∥

≤ |xi+s−k0 |+ · · ·+ |xi+s−1|
+
∥∥x{i+s,··· ,K}

∥∥
≤
(

3k0−1 + · · ·+ 1 +
1
2

)
|xi+s−1|

≤ 3k0

2
|xi+s−1| .

This proves Equation (13) of the lemma. Inequality (14)
then follows from the observation that∥∥x{i,··· ,K}∥∥2

≤ |xi|+ · · ·+ |xi+s−1|+
∥∥x{i+s,··· ,K}

∥∥
2

≤
(

3s−1 + · · ·+ 1 +
1
2

)
|xi+s−1|

≤ 3s

2
|xi+s−1| .

2) From (15), it is clear that for 1 ≤ j ≤ J ,

c
nj

K ≤
2

3sj
.

According to Theorem 2, after n1 iterations,

‖x̃0‖2 ≤
2

3s1
‖x‖2 .

On the other hand, for any i ∈ T1, it follows the first
part of this lemma that

|xi| ≥ |xs1 | ≥
2

3s1
‖x‖ .

Therefore,
T1 ⊂ T̃ .

Now, suppose that for a given j0 ≤ J , after
∑j0−1

j=1 nj

iterations, we have
j0−1⋃
j=1

Tj ⊂ T̃ .

Let T0 =
⋃j0−1

j=1 Tj . Then

‖x̃0‖2 =
∥∥xT−T̃

∥∥
2
≤ ‖xT−T0‖2 .
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Denote the smallest coordinate in Tj0 by i, and the
largest coordinate in Tj0 by k. Then

|xk| ≥
2

3sj0

∥∥x{i,··· ,K}∥∥2
=

2
3sj0
‖xT−T0‖2 .

After nj0 more iterations, we obtain T̃ ′ and x̃′0. Conse-
quently,

‖x̃′0‖2 ≤
2

3sj0
‖x̃0‖2 ≤

2
3sj0
‖xT−T0‖2 ≤ |xk| .

As a result, we conclude that

Tj0 ⊂ T̃

after
∑j0

j=1 nj iterations, which proves inequality (16).
Now in order to ensure that T ⊂ T̃ , the SP algorithm
needs at most

J∑
j=1

nj ≤
J∑

j=1

si log 3− log 2 + 1
− log cK

≤ K log 3 + J (1− log 2)
− log cK

≤ K (log 3 + 1− log 2)
− log cK

≤ K · 1.5
− log cK

iterations. This completes the proof of the last claim.

G. Proof of Lemma 3

The claim in the lemma is established through the following
chain of inequalities.

‖x− x̂‖2 ≤
∥∥∥xT̂ −Φ†

T̂
y
∥∥∥

2
+
∥∥xT−T̂

∥∥
2

=
∥∥∥xT̂ −Φ†

T̂
(ΦT xT + e)

∥∥∥
2

+
∥∥xT−T̂

∥∥
2

≤
∥∥∥xT̂ −Φ†

T̂
(ΦT xT )

∥∥∥
2

+
∥∥∥Φ†

T̂
e
∥∥∥

2
+
∥∥xT−T̂

∥∥
2

≤
∥∥∥xT̂ −Φ†

T̂

(
ΦT

⋂
T̂ xT

⋂
T̂

)∥∥∥
2

+
∥∥∥Φ†

T̂
ΦT−T̂ xT−T̂

∥∥∥
2

+
√

1 + δK
1− δK

‖e‖+
∥∥xT−T̂

∥∥
2

≤ 0 +
(

δ2K

1− δK
+ 1
)∥∥xT−T̂

∥∥+
√

1 + δK
1− δK

‖e‖2

≤ 1
1− δ2K

∥∥xT−T̂

∥∥
2

+
√

1 + δK
1− δK

‖e‖2 .

Note that the next to last inequality is a consequence of the
fact that ∥∥∥xT̂ −Φ†

T̂

(
ΦT

⋂
T̂ xT

⋂
T̂

)∥∥∥
2

= 0.

By relaxing the upper bound in terms of replacing δ2K by
δ3K , we obtain

‖x− x̂‖2 ≤
1

1− δ3K

∥∥xT−T̂

∥∥
2

+
1 + δ3K

1− δ3K
‖e‖2 .

This completes the proof of the lemma.

H. Proof of Inequality (8)

Following the same notations outlined in Section D, we have

‖Φ∗T ′yr‖2 ≥
∥∥∥Φ∗T ′ΦT

⋃
T̂ xr

∥∥∥
2
− ‖Φ∗T ′e‖2

≥
∥∥∥Φ∗

T−T̂
ΦT

⋃
T̂ xr

∥∥∥
2
−
√

1 + δK ‖e‖2
≥ (1− 2δ2K) ‖x̂0‖2 −

√
1 + δK ‖e‖2

≥ (1− 2δ2K) ‖x̂0‖2 −
(

1 +
1
2
δ2K

)
‖e‖2 .

On the other hand,

‖Φ∗T ′yr‖2 ≤
∥∥∥Φ∗T ′ΦT

⋃
T̂ xr

∥∥∥
2

+ ‖Φ∗T ′e‖2

≤ (1 + δ2K)
∥∥xT

⋂
T ′
∥∥

2
+

2δ2K − δ2
2K

1− δ2K
‖x̂0‖2

+
(

1 +
1
2
δ2K

)
‖e‖2 .

By combining these two bounds we obtain∥∥xT
⋂

T ′
∥∥

2
≥ 1− 5δ2K + 3δ2

2K

1− δ2
2K

‖x̂0‖2 −
2 + δ2K

1 + δ2K
‖e‖2

≥ 1− 5δ2K + 3δ2
2K

1− δ2
2K

‖x̂0‖2 − 2 ‖e‖2 .

Recall next the result in Inequality (7), stating that

‖e‖2 ≤
δ2K

1− δ2
2K

‖x̂0‖2 .

The two above inequalities imply that∥∥xT
⋂

T ′
∥∥

2
≥ 1− 7δ2K + δ2

2K

1− δ2
2K

‖x̂0‖2 .

Therefore,

‖x′0‖2 ≤

√
(1− δ2

2K)2 − (1− 7δ2K + δ2
2K)2

1− δ2
2K

‖x̂0‖2

=

√
14δ2K

(
1−

(
7
2 + 2

7

)
δ2K + δ2

2K

)
1− δ2

2K

‖x̂0‖2

≤
√

16δ2K (1− 2δ2K + δ2
2K)

1− δ2
2K

‖x̂0‖2

=
4
√
δ2K

1 + δ2K
‖x̂0‖2 ,

as claimed.

I. Proof of Inequality (9)

We start by first upper bounding the norm
∥∥x′0,p

∥∥
2

as
outlined below.∥∥∥Φ†

T̂
⋃

T ′

(
ΦT−T̂

⋃
T ′x′0 + e

)∥∥∥
2

≤
∥∥∥Φ†

T̂
⋃

T ′ΦT−T̂
⋃

T ′x′0
∥∥∥

2
+
∥∥∥Φ†

T̂
⋃

T ′e
∥∥∥

2

≤ δ3K

1− δ3K
‖x′0‖2 +

√
1 + δ3K

1− δ3K
‖e‖2

≤ δ3K

1− δ3K
‖x′0‖2 +

1 + 1
2δ3K

1− δ3K
‖e‖2 .
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Then, similar type of arguments as those used in Section E,
establish that

‖x̃0‖2 ≤ 2
∥∥x′0,p

∥∥
2

+ ‖x′0‖2

≤ 1 + δ3K

1− δ3K
‖x′0‖2 +

2 + δ3K

1− δ3K
‖e‖2

≤ 4
√
δ3K

1− δ3K
‖x̂0‖2 +

2 + δ3K

1− δ3K
‖e‖2 .

Recalling the assumption in (7), we arrive at

‖x̃0‖2 ≤
4
√
δ3K

1− δ3K
‖x̂0‖2 +

2 + δ3K

1− δ3K

δ3K

1− δ2
3K

‖x̂0‖2

≤ 4
√
δ3K

1− δ3K
‖x̂0‖2 +

2δ3K

(1− δ3K)2 ‖x̂0‖2 ,

thereby proving the claimed result.
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