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Abstract 

 Robust parameter design (RPD) is implemented in systems in which a user wants 

to minimize the variance of a system response caused by uncontrollable factors while 

obtaining a consistent and reliable system response over time.  Typically, quadratic 

regression is deemed sufficient to specify a process model of model system behavior.  

We propose the use of artificial neural networks (ANNs) to compensate for highly non-

linear problems that quadratic regression fails to accurately model. 

 RPD is conducted under the assumption that the relationship between the system 

response and controllable and uncontrollable variables does not change over time.   Since 

degradation in the system response will almost certainly occur; this assumption will 

inevitably be violated.  We propose a methodology to find a new set of settings that will 

be robust to moderate system degradation while remaining robust to noise variables 

within the system.  An algorithm is presented for this enhanced RPD analysis utilizing 

both quadratic regression and two specific artificial neural network architectures.  

 RPD has been well developed on single response problems.  Sparse literature 

exists on dealing with multiple responses in RPD and most methods utilize a subjective 

weighting scheme.  To account for multiple responses, we examine the use of factor 

analysis on the response data.  Linear combination techniques are also developed in the 

case that more than a single factor is retained in the analysis.   

 All the proposed techniques are applied to textbook applications to demonstrate 

their utility.  An Air Force application problem is then examined to demonstrate the new 
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technique’s potential on a real-world problem that is highly non-linear.  The application 

is a detector developed to detect anomalies within hyper-spectral imagery.   

 The results of this research include successful implementation of artificial neural 

networks in RPD.  These artificial neural networks can be utilized when faced with a 

highly non-linear problem.  Also, new settings are developed that are shown to be 

superior to traditional robust settings when a system is subject to performance 

degradation.  A new methodology of approaching multiple response problems is 

developed which shows promise.  Finally, the anomaly detector is further enhanced 

through the use of artificial neural networks to determine robust settings and alternate 

settings when degradation is expected.       
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NEURAL EXTENSIONS TO ROBUST PARAMETER DESIGN 
 

I.  Introduction 

1.1 General Discussion 

 Robust parameter design (RPD) determines a set of control variable settings that 

minimize the variance of the response caused by different sources of noise in a system 

while satisfying the constraint on the mean (Myers & Montgomery, 2002).  The idea is 

that second order models capture the mean and variance of the system response and that 

these models do not change in time.   

 Many Air Force applications involve modeling systems with a large number of 

control settings outputting multiple responses.  One such application was created by 

Johnson (2008) which is an autonomous global anomaly detector (AutoGAD).  In its 

current version, the detection algorithm implemented in MATLAB® contains eleven 

control variables and four responses.  Davis (2009) first applied RPD on AutoGAD to 

determine robust control settings and promising results were realized.  However, 

ANOVA analysis suggested the use of quadratic regression was inadequate to predict true 

response values.   

 In AutoGAD, RPD assumes that new information will closely resemble the 

training data.  This may not be an appropriate assumption in many applications.  For 

example, the detection algorithm could encounter an image “noisier” than any image in 

its library.  In the case of AutoGAD, such an occurrence corresponds to “system 

degradation.”   
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 The main objective of this research is to determine a new set of control variable 

settings that are not only robust to noise in the system, but also are robust to a moderate 

amount of system degradation.  In mechanical systems, this degradation could be of a 

physical nature.  In software systems, the degradation is represented as being exposed to 

inputs beyond their experience and training.  Other objectives of this research suggest the 

use of artificial neural networks as an alternative to quadratic regression to model the 

process.  Finally, the problem of multiple responses is explored.   

1.2 Motivation 

 The motivation behind this research is to apply appropriate robust settings to the 

detection algorithm to improve its performance.  The detection algorithm is currently 

employed based on the settings suggested by Johnson (2008).  These settings were based 

on the experience of the author and tended to maximize only one of the four available 

responses in detection.  Further, the settings were based on only eight given images, thus 

the author used the same images in the testing set as the training set.  This situation 

typically leads to an overly optimistic view of system performance.     

1.3 Research Goals 

 The first goal of this research was to determine a new set of “doubly robust” 

settings that are robust to noise variables and system degradation.  The algorithm 

constructed in this research was applied to the detection algorithm, AutoGAD, created by 

Johnson (2008).  Comparisons were made from these doubly robust settings to traditional 

RPD settings in the presence of system degradation.   



 17 

 A secondary goal of this research was to examine the use of artificial neural 

networks (ANNs) as a substitute for quadratic regression in RPD.  These ANNs were 

compared with quadratic regression to determine their ability to better fit highly non-

linear models.  Robust and doubly robust settings were also calculated.   

A third goal of this research was to determine a new method of combining 

multiple responses into a single dimension.  Factor analysis was explored as the 

appropriate technique in determining commonalities among various responses.  Finally, if 

more than one factor was retained, linear combination methods were suggested to 

combine multiple factor scores into a single dimension.   

1.4 Proposed Research Contributions 

 An algorithm to determine new “doubly robust” settings that can be applied to 

problems containing control and noise variables was developed in this research.  To solve 

the dual response problem of RPD, one particular methodology was utilized within the 

framework, as suggested by Lin & Tu (1995), but can be extended to include other 

methods (Robinson et al., 2004).  

 Another contribution from this research is the development of ANN approaches to 

RPD, as well as system degradation in RPD.  Radial basis function neural networks and 

generalized regression neural networks were explored in RPD.  Two different methods of 

processing response data generated for RPD research were discussed, which can be 

utilized with combined or crossed array designs.  Successful applications of the neural 

networks and response data processing approaches to highly non-linear problems are 
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presented.  The use of ANNs is appropriate when quadratic regression fails to perform 

well.   

 Finally, the contribution of an alternative method of reducing multiple responses 

to a single dimension was derived.  A non subject-matter expert method utilized linear 

combination techniques that turned multiple response problems into a single dimension 

for easier RPD analysis.    

1.5 Organization of Dissertation 

 The following is the organization of the dissertation.  A summary of current 

literature pertinent to robust parameter design, artificial neural networks, multiple 

responses, and factor analysis is provided in Chapter 2.  The literature provides a basis 

upon which these techniques are expanded and applied to RPD.   

In Chapter 3, an algorithm is developed to determine doubly robust settings in 

RPD and an example problem is provided.  In this chapter, the use of ANNs and 

quadratic regression as applied to RPD problems are contrasted.  Finally, factor analysis 

is applied to the response data to reduce the dimensionality of the responses.  If factor 

analysis yields more than one factor, eight linear combination methods are suggested to 

reduce these factors to a single dimension.   A five response problem is explored to 

demonstrate the use of factor analysis on multiple responses.     

In Chapter 4, the technique of doubly robust settings is applied to a current 

detection algorithm employed by the Air Force.  Also, ANNs are implemented in this 

same detection algorithm to demonstrate their superiority to quadratic regression in 

highly non-linear problems.  Finally, the factor analysis techniques are applied to the four 
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responses produced from the detection algorithm to show their usefulness over simply 

summing the normalized response data.  Results are summarized and discussed for all 

techniques.   

In Chapter 5, the contributions and conclusions of this research are presented.  

Also, recommendations for future work are explored.  
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II. Literature Review 

2.1 Overview 

Topical areas pertinent to this research are highlighted in this chapter.  These 

areas include robust parameter design, neural networks, multiple response problems, and 

factor analysis.  A brief background on each of the specified areas is given to demonstrate 

current knowledge in each of their respective fields thus building a foundation on which 

to further this work into unexplored realms.   

2.2 Robust Parameter Design 

When performing experiments that contain controllable and uncontrollable 

parameters, robust parameter design (RPD) is implemented to obtain a desired output 

value while minimizing the variance caused by the settings of the controls and the various 

noise in the system (Myers et al., 2002).  Genichi Taguchi (1986) first introduced the 

method of RPD to the United States in the 1980s.  Much controversy was raised on 

Taguchi’s approach, but since then, new response surface methods have been developed.  

These methods are more accepted in the statistical and engineering communities.  The 

use of RPD has extended to a wide array of experimental designs and has been 

implemented in the practice of many top companies such as AT&T, Ford, and Xerox 

(Myers & Montgomery, 2002). 

Myers & Montgomery (2002) summarize four different focuses of RPD.  The first 

focus involves designing a system that is fairly insensitive to environmental factors once 

the system becomes operational.  The second focus is to design the system to be 
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insensitive to variability caused when the system becomes operational.  The third focus of 

RPD is to design the system as close as possible to the specifications desired by the user.  

Finally, the conditions of the system should be set to achieve a target value while 

minimizing the variance present around the target value.   

Primarily, RPD is employed based on the fourth focus presented which achieves a 

target value while minimizing the variability.  To perform RPD, one must understand the 

variables involved in the system (Brenneman & Myers, 2003).  Two types of variables 

exist: controllable, denoted by x, and uncontrollable (noise), denoted by z.  The control 

variables of the system are those variables the user is able to set.  Noise variables are 

those variables present that the user cannot control and may be known or unknown.  RPD 

is used if noise variable settings produce different outputs of the system when 

combinations of control settings are selected.  Thus the response, Y, is assumed to be a 

function of the controllable variables and the noise: ( , )Y f x z= .   

The primary interest in the two types of variables lies in the interaction between 

the two.  If the noise variables are independent of the control variables, then the variance 

of the control variables is constant and the need for RPD is moot.  However, if an 

interaction between the two types of variables exists, then RPD is employed to determine 

which settings of the control variables should be utilized to minimize the variance.  

Brenneman & Myers (2003) present Figure 1 below to demonstrate the interaction of 

control and noise.  It is seen that if the control setting is set at “high” then noise has no 

real effect on the control variables thus the variance is constant for this setting.  However, 

at a setting of “low” for the control variable, significant variance exists in the system and 

this setting is not desired since the output will be inconsistent.     
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Figure 1. Control and Noise Variable Interaction Plot 

Two design approaches exist to perform RPD on a process.  The first design, 

developed by Taguchi, utilizes a crossed array design.  The second design, developed by 

the response surface community, utilizes a combined array design.  An in-depth 

examination into the two designs will be presented in this document as well as 

comparisons and contrasts. 

2.2.1 Crossed Array Design 
 

Taguchi suggested an orthogonal array consisting of control variables to be 

crossed with an orthogonal array of noise variables, which generated a crossed array 

design (Myers et al., 2002).  The outer and inner array designs can be full or fractional 

factorial, but an outer array design must be performed at all of the inner array points.  For 

example, an experiment with two control variables and two noise variables, with full 
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fractional designs on both arrays, consists of  2 22 2 16× =  design points.  Figure 2 below 

displays this example of a crossed array design.     

 

Figure 2.  Crossed Array Design (Myers & Montgomery, 2002) 

As another example, a three control and two noise variable problem, with full 

factorials on both the inner and outer arrays, produced a design matrix of size 

3 22 2 32× = .  The number of control variables increased by one and the number of design 

points doubled.  Thus, this design can lead to a large number of runs if there exists 

several control and noise variables or if more than two levels are chosen for each factor.   

Reduced designs, in terms of resolution, can be used on the inner and outer arrays, 

but the issue remains that the outer array must be performed at each inner array design 

point.  This particular design allows the user to understand any control by noise 

interactions that may exist, but limits the ability to understand control by control or noise 

by noise interactions.     
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To analyze the data in an experiment, Taguchi suggests the use of a summary 

statistic on the outer array known as the signal-to-noise ratio (SNR).  SNR values 

summarize the mean and variance into a single statistic.  Taguchi presents four different 

SNRs to use on three different instances.  For development of all of the SNR equations, 

the following quadratic loss function is used (where ( , )y f x z= ): 

            2( )zL E y t= −                            (2.1)  

zE  is the expectation operator on the random variable z and t represents the target 

value on the mean.  The different SNR equations are described in the following section 

and adapted from Myers & Montgomery (2002).  The first instance minimizes the 

response and has a quadratic loss function, 2( 0)zE y − where t is zero due to minimizing 

the response (assuming the response is nonnegative).  This loss function leads to the 

following equation: 

2

(min)
1

10 log
n

i

i

ySNR
n=

= − ∑           (2.2) 

This equation sums the squared errors, divides that number by the number of 

outer array points, and then sends it through a -10 log transformation.  Due to the 

transformation, the maximum SNR is desired.  Using the -10 log (base 10) transformation 

allows the user to maximize the SNR value despite whether the problem is a 

minimization, maximization, or target value problem.   

The second instance maximizes the response and replaces iy  with 1/ iy  in 

Equation (2.2).  This allows the quadratic loss function to approach zero as y increases.  

The resulting SNR is given by the equation: 
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2

(max)
1

1/10log
n

i

i

ySNR
n=

= − ∑           (2.3) 

A target mean value is achieved in the third instance.  Two scenarios exist when 

performing this SNR calculation.  The first scenario involves the response mean and 

variance to be altered independently (Myers & Montgomery, 2002: 541).  The control 

(tuning) factors that have no effect on variance are adjusted to obtain the mean and, thus, 

the variance is not affected.  Once completing this step, the remaining factors are then 

tuned to maximize SNR, thus, minimizing variance in the system.  The resulting SNR 

equation uses only a transformation of sample variance and is given by: 

2
(target ) 10 logSNR s= −           (2.4) 

The second scenario exists when the response variance is related to the response 

mean.  The user desires a linear relationship, but this may not always be the case.  As 

before, the control (tuning) factors are set and the remaining factors utilize a maximized 

SNR value to obtain minimum variance.  The resulting SNR value is given by: 

2

(target ) 210 log ySNR
s

=           (2.5) 

Factor plots can visually assist in the selection of the control variables.  Along 

with plotting the SNR values, the process means can be plotted to determine which 

control settings are best to use.  When performing the analysis, Taguchi’s method 

suggests setting the SNR value at its maximum first, and then choosing the appropriate 

mean value setting.   Using the two plots in conjunction with one another should lead to a 

favorable answer in achieving a target mean while minimizing variance.   
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The use of the SNR statistic has been widely criticized largely due to its inability 

to distinguish between the effects of the mean and variance in the process.  Another 

criticism of the SNR usage is the issue of units.  The only unit-less equation is Equation 

(2.5), 
2TSNR .  Finally, as discussed previously, crossed array designs can become very 

large as more controllable and noise factors are added to the design.   

2.2.2 Combined Array Design 
 

A combined array design utilizes a smaller number of design points than the 

crossed array design while continuing to capture the design space of the variables 

(Montgomery & Myers, 2002).  This differs from crossed array designs because every 

combination of control variables does not need to be tested across every combination of 

noise variables.  Rather, a design is chosen that is intelligent in its construction to test 

different points in the design region which provide appropriate results.  These types of 

designs are smaller in terms of number of runs compared to crossed array designs.   

 Response surface methodology utilizing quadratic regression will be used to solve 

problems with combined array designs.  Therefore, when choosing an experimental 

design for combined array designs, one must consider designs appropriate for second-

order models (Myers & Montgomery, 2002).  Myers & Montgomery (2002: 304) state 

that several important properties are necessary in the selection of designs.  These four 

properties are utilized when selecting designs in this research:   

1. Result in good fit of the model to the data 
2. Give sufficient information for lack of fit 
3. Provide an estimate of “pure” experimental error 
4. Be cost-effective 
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Many second-order designs have been established and variations of these designs 

are continually developed.  This research primarily focuses on the central composite 

design (CCD).  First introduced by Box & Wilson (1951), a CCD with k variables uses F 

factorial points, 2k axial points, and cn  center runs (Myers & Montgomery, 2002).  The 

factorial points allow for an estimation of linear and interaction terms, while the axial 

points estimate quadratic interaction terms and the center points account for estimate of 

error in quadratic terms (test for curvature).  A typical CCD design is depicted in Figure 3 

where the axial distance is equal to one ( 1α = , where α  denotes the axial distance).   

 

Figure 3. Central Composite Design with Axial Points = 1 
 
 Axial points equal to a value of one are shown in Figure 3.  This is a special case 

of CCD known as face-centered.  A face-centered cube is used when the design points 

represent the absolute bounds of the variables settings.  Therefore, lower/higher settings 

than those representing absolute bounds for experimentation cannot be used since 
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unstable results would occur outside these bounds set by alpha.  However, if setting 

values can be tested outside the low/high settings, then axial points greater than one can 

be tested.  The axial distance varies from 1 to k .   

  Other second-order designs exist for use in RPD.  If three levels are practical, a 

3k  factorial design can be employed.  As a special case, the 23  factorial is indeed a face-

centered CCD.  Other designs consist of Box-Behnken, Equiradial, D-Optimal, etc., but 

only CCD or full factorials are utilized in this research due to their efficiency in 

developing good quadratic fits and small design size (with the CCD).    

2.2.3 Response Surface Methodology 
 

Response surface methodology has extended the ideas of Taguchi to be applicable 

to RPD.  Using response surface methodology, an understanding of the relationship 

between process mean and variance becomes useful in choosing more appropriate control 

settings.  Combined array designs, discussed in the previous section, are implemented 

rather than crossed array designs due to their small size and efficiency in providing 

appropriate quadratic regression fits.  However, if the problem is small and inexpensive 

to test, a crossed array design is more beneficial due to increased sampling of the process.   

Two approaches exist to determine the mean and variance models; these are 

known as the “single model” and the “dual model” approaches.  Both methods have been 

shown to be effective and can be used interchangeably (Robinson et al., 2004).  The dual 

model approach develops a mean model and variance model separately based on 

collected or historical data (Myers & Carter, 1973).  The single model approach differs 
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from the dual model in that it develops an overall process model from which the mean 

and variance models are derived.   

In the dual model approach, the mean and variance models are created separately 

from experimental testing.  Data is collected on both the mean and the variance of a 

particular response.  By having these two data types, different models are created 

separately to determine the mean and variance values pertaining to specific control 

settings.  Drawbacks to this approach usually involve the need for a crossed array design, 

thus, a larger number of runs.  However, if the data exists, this approach may prove 

useful in attaining a more appropriate and exact variance model.   

The single model approach applies the response surface methodology technique 

of developing an overall process model based on collected data and then derives the mean 

and variance models from the process model.  Typically, a second order model is applied 

to model the interactions between control variables and noise variables, as well as control 

variables with themselves.  Myers & Montgomery (2002) present the equation for the 

overall process model as: 

0ˆ( , ) ' ' ' 'y x z x x Bx z x zβ β γ ε= + + + + ∆ +    (2.6) 

The x’s represent the control variables (settings) and the z’s represent the noise 

variables.  The symbol β  is a vector of coefficients for the control main effects and γ  is 

the vector of coefficients for the noise main effects.  The matrix of coefficients B is the 

quadratic control effects and ∆  is the matrix of coefficients for the control by noise 

interactions.  Finally, ε  is distributed normally with a mean of zero and variance, 2σ , 

which is estimated by the mean-square error (MSE).  This model is “broken down” to 
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obtain the mean and variance response models.  The mean and variance equations are 

presented below which are adapted from Myers & Montgomery (2002: 563):   

Mean Response Model: ( , ) 0[ ( , )] ' 'zE y x z x x Bxε β β= + +   (2.7) 

Variance Response Model: 2 2
( , )[ ( , )] ( ' ) '( ' )z zV y x z x xε σ γ γ σ= + ∆ + ∆ +  (2.8) 

An assumption is made in the variance response model that the variance-

covariance matrix of the noise variables given as 2cov( ) zz Iσ= .  This assumption allowed 

Myers & Montgomery (2002) to derive the variance response model in Equation (2.8).   

 The mean response model is directly extracted from the overall process model.  

When the control variables are set, the same result will be achieved on the average for 

that particular selection of settings.   

The variance model does not offer quite as a direct interpretation as the mean 

model.  However, the model is only in terms of control variables.  Only the coefficients 

of the noise variables and their interactions are used.  Although most of the derivation is 

fairly straightforward matrix algebra, two components are needed to be explained (Myers 

& Montgomery, 2002).  The variance of the noise, 2
zσ , is related to the coded bounds of 

the noise variables.  Typically this value is assumed to be 1 since the tested bounds of 

noise variables are between [-1,1].  However, this variance can change based on the 

bounds of the noise variables thus attaining a value of 2, 1/2, 3, 2/3, etc.  This issue 

requires further research to determine an optimal setting for 2
zσ .  Finally, 2σ  is directly 

taken as the error for regression given by the overall process model. 

The single model approach allows for the use of a combined array design with 

CCDs.  Typically, for RPD, an optimization program is proposed in choosing the control 
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settings that best achieve the target mean while minimizing variance.  Myers & 

Montgomery (2002) present an optimization problem as suggested by Vining & Myers 

(1990) which is: 

( , )

( , )

min [ ( , )]

. . [ ( , )]

zx D

z

V y x z

s t E y x z m

ε

ε

∈

=
          (2.9) 

 
 This concludes the development of choosing a design, obtaining a mean and 

variance model, and establishing the optimization problem for RPD.  All that remains is 

choosing the control settings that optimize Equation (2.9).  This problem involves solving 

the mean and variance models simultaneously and therefore is a dual response problem.  

Section 2.2.4 addresses different methods proposed in solving the dual response problem 

that have been applied in RPD research. 

2.2.4 Solving the Dual Response Problem 
 

Different versions of Equation (2.9) are used but the general idea is given in the 

optimization problem presented above (Tang & Xu, 2002; Robinson et al., 2004; Shaibu 

& Cho, 2009).  Myers & Montgomery (2002) present a step-wise approach to solving the 

optimization problem that is much like the Taguchi approach for solving the dual 

response problem with SNRs and mean outputs.   

First, all possible combinations of settings (at a given step size) are applied to the 

models, obtaining a response of mean and variance for each combination of settings.  The 

control settings associated with the minimum variance value is chosen, assuming the 

mean response satisfies the constraint in Equation (2.9).  If the constraint is not satisfied, 

the combination of control settings with the next lowest variance value is chosen.  This 
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procedure is repeated until the mean response constraint in Equation (2.9) is satisfied.  

The resultant solution is a unique combination of control variable settings that achieves a 

target mean with minimum variance across noise in the system.    

Myers & Montgomery (2002) also suggest the use of contour plots.  However, 

contour plots are limited to problems consisting of two control variables.  The mean 

contour plot for the two control variables is overlaid with the variance contour plot.  This 

method visually displays the optimal solution if the two are in the same region.  

However, if the optimal solution is not the same region, once can visually assess the 

tradeoffs of mean or variance by searching the control variable space.   

 Myers & Carter (1973) as well as Vining & Myers (1990) suggest optimizing the 

primary response subject to the secondary response (the constraint) through the use of 

Lagrangian multipliers.  Although the notation is slightly different, the two models (mean 

and variance) are estimated as: 

0

2
0

ˆ ' '

ˆ ' '
y

y

u x x x

x x Cx

β β β

σ γ γ

= + +

= + +
            (2.10) 

A constraint is added, 2'x x ρ= ,  to restrict the possible search area of the optimal 

settings to a sphere (where ρ  represents the radius of the spherical region).  The 

Lagrangian multipliers are then utilized by associating θλ  with the mean or variance 

model and associating ρλ  with the above constraint (spherical region).  Robinson et al. 

(2004) provide an example of solving this optimization problem by minimizing variance 

and keeping the mean response on a target of 500.  Equation (2.11) is minimized over all 
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possible combinations of θλ  and ρλ  to provide x, which is the optimal set of operating 

conditions: 

2 2ˆ ˆ( 500) ( ' )y yL u x xθ ρσ λ λ ρ= − − − −          (2.11) 

Del Castillo & Montgomery (1993) took Equation (2.11) and applied the 

Generalized Reduced Gradient (GRG) algorithm.  GRG is utilized because the 

Lagrangian Multiplier method from Vining & Myers (1990) may not always produce a 

local optima since only equality constraints are used.  GRG allows for the use of 

inequality constraints more suitable for nonlinear problems.  These authors display the 

effectiveness of this algorithm against the cases of maximizing, minimizing, or even 

achieving a target value.  This method is often preferred due to its built in implementation 

in common software such as the Microsoft Excel add-in Solver.   

 Lin & Tu (1995) suggest the incorporation of bias in the primary response in 

order to avoid forcing the estimated mean response to a particular value.  These authors 

propose minimizing the mean squared error in the optimization problem, Equation (2.9).  

The three instances that include minimizing, maximizing, and target value are given 

below respectively (Lin & Tu, 1995; Koksoy, 2008).  In all three cases, the MSE value is 

minimized to provide the solution.   

2 2
min ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]z zMSE u y x z y x zσ= +  

2 2
max ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]z zMSE u y x z y x zσ= − +                (2.12) 

2 2
target ˆ ˆ ˆ ˆ{ [ ( , )] } [ ( , )]z zMSE u y x z T y x zσ= − +  

 Shaibu & Cho (2009) extended the ideas of Lin & Tu (1995) to incorporate target 

variances into the three models.  Lin & Tu assume that a variance of 0 is best in all three 
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situations as is in most situations of experimental designs and systems.  Shaibu & Cho 

(2009) suggest setting a variance value (S) that the user can live with and this target value 

( )ST is added to the variance portion of all three MSE models given above.  These MSE 

equations are: 

( )
( )

( ) ( )

2
min

2
max

2 2
target

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

s

s

s

MSE u x x T

MSE u x x T

MSE u x T x T

σ

σ

σ

= + −

 = − + − 

= − + −

               (2.13) 

 
Copeland & Nelson (1996) point out that the formulation given by Lin & Tu place 

no restriction on the estimated mean response.  Thus, if the estimated mean response 

values are large and the variances are small, the MSE indications could make the 

suggested solution far from the minimum variance value.  These authors suggest placing 

a restriction on the MSE search 2ˆ( ( ) )xσ ε+  with the following constraint (given only for 

the mean target value but applies to minimization/maximization as well):   

ε =   
2ˆ( )

0
yu T −




   if   
2 2

2 2

ˆ( )

ˆ( )
y

y

u T

u T

− > ∆

− ≤ ∆
              (2.14) 

 Tang & Xu (2002) incorporated all these ideas and those of goal programming to 

derive their own all encompassing approach to the dual response problem.  Their 

objective function and constraints take on the form:   

2 2

*

2 *

2

min

ˆ. .

ˆ

'

ux

y u u u

y

l u

s t u w T

w T

and x x or x x x

σ

σ σ σ

δ δ

δ

σ δ

ρ

+

− =

− =

≤ ≤ ≤

     (2.15) 
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The weights (w) are user defined and if a rectangular region is used rather than a 

spherical region, the x’x constraint is swapped out.  *
uT and *Tσ  represent the desired target 

mean and variance values for ˆyu and 2ˆ yσ respectively.  The terms in the objective 

function, 2
uδ  and 2

σδ  represent unrestricted scalar variables.  These terms multiplied by 

the weights introduce slackness.  One can obtain the target values exactly (set equal to 

zero), over shoot (> 1) or under shoot (< 1).   

This new optimization problem incorporates the techniques of Vining & Myers 

(1990), Del Castillo & Montgomery (1993), Lin & Tu (1995), and Copeland & Nelson 

(1996) as special cases depending on the weights of the constraints.  For instance, setting 

uw and wσ equal to 1 and *Tσ  equal to 0, yields the following objective function: 

 ( )22 2 * 2ˆ ˆu y u yu Tσδ δ σ+ = − +     (2.16) 

This objective function is the same objective function derived from Lin & Tu, 

Equation (2.12).  The other methods can also be obtained through specific weights and 

target values.  This formulation allows one to encompass any established method of 

solving the dual response problem, or perform goal programming to determine a new set 

of weights, thus finding a new method of solving this problem.   

 The different approaches taken to solve the dual response problem for RPD are 

summarized in Table 1.  Work in this document will focus primarily on the Lin & Tu 

(1995) approach to solving this dual response model.  However, the choice of approach is 

dependent on the application and, as such; the Lin & Tu approach is not necessarily the 

optimal approach.   
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Table 1. Current Methodologies to Solve Dual Response Problem in RPD 

Author Method Objective Function Constraints Comments 
Myers & 

Montgomery 
 (MM) 

MinimizeVariance, 
Choose Mean 

or Contour Plots 

 
 ( , )min [ ( , )]zx

V y x zε  

 

 

( , )[ ( , )]zE y x z mε =  
- No tradeoff considered 

 
-  Contour Plots limited to 2 

variables 
Vining & Myers 

(VM) 
Lagrangian 
Multipliers 

2 2ˆ ˆ( ) ( ' )y yL u T x xθ ρσ λ λ ρ= − − − −  2'x x ρ=   
Difficult calculations 

Del Castillo & 
Montgomery  

(DM) 

Generalized 
Reduced Gradient 

2 2ˆ ˆ( ) ( ' )y yL u T x xθ ρσ λ λ ρ= − − − −  2'x x ρ≤  
Inequality Constraints 

 
Difficult calculations 

 
 

Lin & Tu 
 (LT) 

 
 

Mean Squared 
Error (MSE) 

2 2
min ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )z zMSE u y x z y x zσ= +

2 2
max ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]z zMSE u y x z y x zσ= − +

2 2
target ˆ ˆ ˆ ˆ{ [ ( , )] } [ ( , )]z zMSE u y x z T y x zσ= − +

 

 
 

none 

 
- Uses tradeoffs 

 
- No restriction on ˆzu  

 
 

Shaibu & Cho  
(SC) 

 
 

MSE with variance 
target value 

( )
( )

( ) ( )

2
min

2
max

2 2
target

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

s

s

s

MSE u x x T

MSE u x x T

MSE u x T x T

σ

σ

σ

= + −

 = − + − 

= − + −

 

 
 

ˆ ( ) sx Tσ ≤  
 

 
 

- Utilizes target value from 
variance 

 
Copeland & Nelson  

(CN) 

 
LT MSE with 

search restriction 

 
2 2

min ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]z zMSE u y x z y x zσ= +
2 2

max ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]z zMSE u y x z y x zσ= − +
2 2

target ˆ ˆ ˆ ˆ{ [ ( , )] } [ ( , )]z zMSE u y x z T y x zσ= − +
 

 
2ˆ( )

0
zu T −




 if 
2 2

2 2

ˆ( )
ˆ( )

z

z

u T
u T
− > ∆

− ≤ ∆
 

 
- Reduces distance ˆzu can 

move from target value 

 
 

Tang & Xu  
(TX) 

 
Quadratic 

Optimization 
Problem 

 
2 2min ux σδ δ+  

 

*

2 *

ˆ

ˆ
y u u u

y

u w T

w Tσ σ σ

δ

σ δ

− =

− =
 

2'x x ρ≤  or l ux x x≤ ≤  

- Encompasses all above 
methods through “special 

cases” 
- Weighting can be 

subjective 
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The settings found to be optimal based on the dual response model should not 

only achieve a desired mean output of the system, but should also be robust to any noise 

properly modeled in the system.  The following section briefly discusses “robustness.”   

2.2.5 Robustness 
 

A robust design is a design that implements a particular set of settings that 

provide good mean performance and is insensitive to uncontrollable sources or variables 

that cause variation (Sanchez, 1994).  The key word in the previous definition is “good.”  

Determining good solutions is difficult due to personal bias and understanding of the 

process or system.  “Robust” will be used in this document to mean control variable 

settings that are insensitive to noise in the system.  This means that the variance of the 

process is relatively low across the noise space under the “robust” settings and that the 

mean is close to its target value.    

Each method in Table 1 presents a solution that is the most robust, according to 

the method’s formulation.  However, although the settings are robust, they may provide 

weaker mean (and variance) responses than desired (unless explicitly expressed as a 

target mean or variance).  Most of the methods “search” the solution space to provide a 

tradeoff between increases in expected mean (assuming maximizing) while maintaining 

little change in variance.  However, the further one moves away from the minimum 

variance value, the less robust the solution set becomes.  The goal of RPD is not to 

necessarily provide the best mean for the given situation, but rather to provide a 

consistent mean for future implementation of the process or system with the existence of 

uncontrollable noise variables (Myers & Montgomery, 2002).   
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2.3 Artificial Neural Networks 

Methodology has been discussed on how to approach an RPD problem, determine 

optimal solutions, and determine robustness using quadratic regression.  The success of 

this analysis is based on how well one is able to fit training data with a regression model 

(achieving significance, denying lack of fit, obtaining high r-squared values, etc.).  

Neural networks can be used to fit the regression models, rather than traditional 

linear/quadratic techniques, allowing for a more nonlinear and hopefully a better fit.   

Artificial neural networks (ANNs) were established with the notion that the 

human brain could be mimicked by an engineering design (Kuncheva, 2004).  These 

ANNs resemble the biological cognitive systems with their ability to “learn” data and 

patterns through the use of supervised training for parameter adjustment in the model.  

Many types of ANNs are employed in practice today, each with different learning rules 

and differences in the calculation of outputs for each specific neural network.   

2.3.1 ANN Classification and Regression 
 

ANNs are used for either classification purposes or regression analysis.  

Loeffelholz et al. (2009) successfully demonstrated the use of four different ANNs to 

classify a winner in an NBA basketball game based simply on box score data.  The 

results obtained from these authors showed remarkable improvement in accuracy over the 

“experts” in the field of basketball while using the simplest form of data collected in the 

sport.  In classification, ANNs can be superior to techniques such as discriminant 

analysis, factor analysis, or principal component analysis due to their ability for non-

linear fits.   
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In this research, rather than determining a two or three class output system, ANNs 

are used to fit regression type models.  Myers & Montgomery (2002) claim that quadratic 

regression will fit most real world application problems but when this is not true, an 

alternative formulation is necessary to model those problems not captured well using 

quadratic regression.  For instance, Davis (2009) applied RPD to a hyper-spectral 

imagery problem consisting of four outputs.  For two of the four outputs, very low 

2R values and significant lack of fit was present through the use of quadratic regression.  

This result warrants the use of an alternate method, such as ANNs, to properly fit data.    

As noted previously, different neural networks have been developed to model 

difficult problems.  The neural networks chosen for this research are Radial Basis 

Function Neural Networks (RBFNNs) and Generalized Regression Neural Networks 

(GRNNs).  These networks were chosen based on their applicability to regression 

analysis as well as a positive personal experience of the author through applying these 

ANNs to real world problems.   

2.3.2 Radial Basis Function Neural Networks 
 
 To begin the discussion on RBFNNs, the architecture will be presented followed 

by the underlying mathematics behind RBFNNs.  The RBFNN is constructed using a 

layer of input nodes, a single hidden layer, and an output layer.  The input layer is related 

to the number of features, or in the case of regression, the number of (functional) 

independent variables.  The number of nodes in the hidden layer is equal to the number of 

training exemplars in the input layer.  For example, if a CCD consisting of 23 runs where 

15 runs were allocated to the training set and the remaining eight were withheld for 
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testing, the hidden layer of the RBFNN would consist of 15 hidden nodes.  Finally, the 

output layer is related to the number of outputs in the system.  In this research of using 

RBFNNs for regression, this output layer will consist of a single node if examining a 

single response problem.  Depending on the formulation of the RBFNN output, two bias 

layers can also exist.  An initial bias layer can be applied on the input and another bias 

layer on the output.   

A RBFNN (biases not shown) is depicted in Figure 4.  iX  represents the input 

features or the variables for regression.  Every exemplar in the input layer is passed to 

each node in the hidden layer.  Each hidden layer node contains a basis function 

( )ih which is weighted ( )iw  to the output node.  The output layer sums ( )∑  all the 

weighted hidden layer values to obtain the output value, y, for each combination of input 

variables.       

 

Figure 4.  RBFNN with Single Output 
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 Typically the Gaussian function is applied to the hidden layer nodes and is given 

by: 

( ) ( )
2( ) exp

2

T
i i

i
i

x x
h x

µ µ
σ

 − − −
 =
 
 

          (2.17) 

 For notational purposes, x represents the exemplar sent through the network, iµ is 

the ith center, and iσ represents the ith spread.  To explain this network in simple terms, 

the classification application is first discussed.  The exemplar is sent through the network 

and its distance from the centers (or trained exemplars) is calculated and those firing 

closest to a particular center score a value closest to that used in training.  For instance, if 

two centers with input values of [1 2] and [4 5] representing class 1 and class 2, 

respectively, are trained in an RBFNN, a new exemplar with input values of [1 2] is most 

likely to fire closest to center [1 2] and be labeled a class 1 node.   

 In terms of regression, the same principle is applied.  Each new input value is 

measured against all trained values (hidden nodes) to determine their “distance” from 

each node.  The new input value is then assigned an output value closely resembling the 

output value for the hidden node with the closest activation.  Bias and weights are 

incorporated to allow the output values to vary around the actual output value of the 

hidden node, thus leading to a function rather than discrete points as used in classification 

purposes.   

 Training in an RBFNN is simpler and quicker than other networks (such as Feed-

Forward).  To train the network, each exemplar is fed through the hidden nodes, one at a 
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time, obtaining an output.  A hidden weight is obtained and the overall weight of the 

network is adjusted.  This is done by the following equation: 

( 1) ( ) ( )i i iw n w n t y zη+ = + −     (2.18) 

 iw represents the weights of the networks, n is the iteration number, η is the step 

size, t acts as the target value, y represents the network output, and finally ( )i iz h x≡ .  

Once again, each exemplar is sent through the network and the weights are updated.  This 

process is continued until an appropriate total error is reached, thus indicating a well 

trained RBFNN.  Since only a linear output layer is used outside the hidden layer, 

Wasserman (1993) notes that the RBF is guaranteed to converge to a global minimum (as 

compared to other networks that can be trapped in local minimums) but the network can 

be extremely large dependent on the number of training exemplars used.   

 Once a RBFNN is trained, new exemplars can be processed through the network 

to obtain an appropriate output value.  In the literature, Duda et al. (2001), Looney 

(1997), and Wasserman (1993) present the following equation to be used in calculating 

an output value for a given input: 

( ) ( ) ( ) 2
2

1 1

1exp ( )
2

p n
i i j

j k k
j kj

z w x µ
σ= =

 
= − −  

 
∑ ∑              (2.19) 

 For exemplar i, this formula assumes that p centers exist for n features (or input 

variables).  ( )i
kx represents the kth input feature/variable of the new exemplar and 

( )j
kµ represents the kth component of the jth center.  The distance of the new exemplar 

from the center of all trained exemplars is calculated.  Here σ  represents the spread and 



 43 

jw is equal to the weight of the jth node.  In regression terms, this will provide the 

expected output value for any given input variable terms.   

 In this research, MATLAB® is employed by making calculations easier for large 

scale problems.  MATLAB® uses a slightly different formulation for determining the 

output value of a RBFNN.  The formulation used is represented as: 

( ) 1 ( ) ( ) 2 2

1 1
exp ( ( ))

p n
i i j

j j k k
j k

z w b x bµ
= =

 
= − − + 

 
∑ ∑           (2.20) 

 In this equation, the initial bias term ( )1
jb represents MATLAB’s® interpretation 

of applying the spread in the equation.  The bias term is calculated as .8326/spread rather 

than using one half the squared values as in Equation (2.19).  Also, a second bias term is 

added on the end of the equation to represent a linear layer bias term.  This simply shifts 

the output value up or down by the specified amount.   

 For a more in-depth examination of RBFNNs, Duda et al. (2001), Looney (1997), 

and Wasserman (1993) are appropriate texts.  These authors also provide deeper insight 

into the origination of RBFNNs, a deeper understanding of the training approach, as well 

as other details of RBFNNs.   

2.3.3 Generalized Regression Neural Networks 

 Generalized Regression Neural Networks (GRNNs) belong in the same class as 

the RBFNNs and are useful in terms of non-linear regression (Wasserman, 1993).  The 

architecture is similar but calculations differ in terms of training.  More specifically, there 

exists no training in the GRNN.  Response values are directly calculated from the 

network with the weights directly related to the response values.  GRNNs are extremely 
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useful compared to other neural networks due to their ability to converge on a function 

with little training data.   

 Specht (1991) applied the ideas of the Normal Distribution to create the 

formulation of the GRNN.  The formula, where 2 ( ) ( )i T i
iD X X X X= − − , is given as: 

2

2
1

2

2
1

exp
2ˆ( )

exp
2

n
i i

i

n
i

i

DY
Y X

D
σ

σ

=

=

 
− 
 =
 
− 
 

∑

∑
      (2.21) 

The scalar function, 2
iD , calculates the distance from the new exemplar (X) from 

the centers of all the “training” exemplars ( iX ).  The spread value, 2σ , remains defined 

as the same for RBFNNs.  Finally, iY represents the weights in the network which is 

extracted from the outputs of the “training” exemplars.  This feature distinguishes the 

GRNN from the RBFNN in that the weights do not need to be calculated or updated in 

the GRNN.   

 To remain consistent with notation in the RBFNN, the GRNN formula can be re-

written as:   

1 ( ) 2

1 1

1 ( ) 2

1 1

exp ( ( ))

exp ( ( ))

p n
j

j j k k
j k

p n
j

j k k
j k

w b x u
z

b x u

= =

= =

 
− − 
 =

 
− − 
 

∑ ∑

∑ ∑
              (2.22) 

The features/variables of the new test point are represented by x with its output as 

z. Weights for each “training” exemplar are represented as w and are taken from the 

response for each feature setting.  The centers of the “training” exemplars are ( )j
kµ  and all 

remaining terms were defined in RBFNNs.  The GRNN based on Equation (2.22) is 
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depicted in Figure 5.  Originally derived from Specht (1991), this figure was modified.  

α represents the numerator whileβ  represents the denominator of Equation (2.22).   

 

Figure 5. Generalized Regression Neural Network 
 

This regression allows for direct application into problems involving numerical 

data (Specht, 1991).  GRNNs calculate quickly since weights do not have to be calculated 

and updated separately.  For more information on the construction of GRNNs, the reader 

is referred to Wasserman (1997) or Specht (1991). 

2.4 Multiple Responses 

Many real-world application problems involve the use of multiple responses 

rather than a single response.  Often the control variables will adjust more than one 

response differently with the same chosen settings for those variables.  Traditional 

research (Myers & Montgomery, 2002; Robinson et al., 2004) focuses on single response 
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problems in RPD.  Several approaches have been taken to solve multiple response RPD 

problems and are presented in the following sections.   

2.4.1 Weighting the Responses 
 
 Perhaps the simplest method of solving the multiple response problems is to 

assign weights to each of the response values to form a linear combination (Koksoy, 

2008), i.e., 
1

ˆ ˆ
m

i i
i

y w y
=

=∑  where iw  is the weight of the thi response of m responses.  Now 

optimization is performed relative to ŷ .  One difficulty with this technique is selecting 

appropriate values for the weights.  The author indicates that expert opinion is usually 

elicited for the weights.  Such methods could lead to ambiguity.   

 Combating this problem, Decision Analysis (Kirkwood, 1997) can be applied 

through the use of value models.  Once again, an expert must be utilized, but 

mathematical procedures are used to obtain appropriate weights for each of the response 

values.  Also, this approach allows the user to change weights and see the changes 

instantly.    

 Kuhnt & Erdbrugge (2004) extend the idea of using weights by applying a loss 

function.  These authors apply the loss function to multi-response problems to minimize 

the overall expected loss when applying different combinations of weights to all the 

responses.  Graphs are utilized to show the expected loss values at different settings of 

the weights.   
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2.4.2 Visualizing the Responses 
 
 For a small number of responses, contour plots can be generated for the response 

functions (Lind et al., 1960).  Overlaying the contour plots of each of the responses 

highlights areas in which the settings of the control variables prove optimal.  This 

approach becomes increasingly difficult when more responses are added to the problem.  

Also, another downside may be the lack of good areas found if the responses differ quite 

dramatically across the setting space of the control variables.   

2.4.3 Desirability Functions 
 
 Desirability functions can be used to determine the optimal settings for the control 

variables.  This approach is similar to weighting the responses.  Derringer & Suich (1980) 

first proposed the idea of desirability functions by converting each response into its own 

desirability function that covers the range of zero to one.  A value of one represents the 

response achieving its goal while a value of zero indicates the response is outside the 

specified acceptable region of interest.  The scores for each response are multiplied 

together and taken to the mth root, where m represents the number of responses.  This is 

represented as: 

1 2
m

mD d d d=           (2.23) 

 The desirability function used can vary (Zandieh et al., 2009; Chang, 2006; 

Derringer & Suich, 1980; Harrington, 1965) depending on the user’s preference.  One 

such function is the exponential function.  Myers & Montgomery (2002) adapt the 

functions presented by Derringer & Suich (1980) creating three desirability functions 

based on maximizing, minimizing, or achieving a middle ground value.  T represents the 
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target value, L and U are the lower and upper limits of the responses, and r represents 

how important achieving the target value is.  A value of r = 1 causes the function to be 

linear, r > 1 places a larger emphasis on achieving the target values while 0 < r < 1 puts 

less emphasis on achieving the target value.  The equations presented represent the 

desirability functions for when one maximizes, minimizes, or finds some target value 

respectively:   

(max)

0

,

1

r

y L
y Ld L y T
T L

y T

 <


− = ≤ ≤ − 
 >

                          (2.24) 

(min)
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0
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y T
U yd T y U
U T

y U
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                            (2.26) 

 Zandieh et al. (2009) utilized Equations (2.24)-(2.26) to construct their 

optimization problem including a constraint.  Zandieh et al. presented their optimization 

problem, for k responses, and obtained the following mathematical model: 

( ) ( )
1 1 2 2max ( ) ( ) ... ( )

. .

k
k kx

h h h

D d y d y d y

s t L x x U x

= × × ×

≤ ≤
  (2.27) 
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These authors suggest optimizing Equation (2.27) through the use of search 

algorithms such as Genetic Algorithms, Tabu Search, and Simulated Annealing.  The 

authors found Simulated Annealing to perform the best in terms of multiple response 

RPD problems.   

 Chang (2006, 2008) follows a similar approach to the desirability functions above 

by implementing the use of a back-propagation network (BPN).  Chang’s procedure 

consisted of modeling the different response models through a BPN, evaluating the 

chosen design space of levels, and using exponential desirability functions and Simulated 

Annealing to determine settings for the parameters.   

2.4.4 MSE and PCA 
 
 Koksoy (2008) utilizes the Lin & Tu (1995) methodology (previously described 

in Section 2.2.4) which involves the use of mean squared error to combine the mean and 

variance models.  However, Koksoy assumes that multiple responses exist; he proposes 

the following optimization problem for 1, 2,...,i r= responses: 

,( )

0

min ( )

. . ( ) ( )

j i jx R

i i

MSE x

s t MSE x MSE x

≠∈

=
                                     (2.28) 

                
 Previously, the region (R) was defined as 2'x x ρ= , which applies here as well if 

a spherical region is used.  This method optimizes the appropriate objective function, 

,( )( ) j i jMSE x ≠ , while setting the values for the remaining MSE functions ( )0( )iMSE x .  

Koksoy presents a two response problem and solves this by incrementing 20( )MSE x  at 

fixed iterations and optimizing 1( )MSE x  at each iteration.  This approach leads to a table 

of alternative solutions, or a portfolio of solutions, allowing the user to examine tradeoffs 
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of choosing one pair of settings over another in terms of changes in the different MSE 

values.  Koksoy (2008) solves this new optimization problem through the use of the 

Generalized Reduced Gradient (GRG) method developed in nonlinear programming.   

 Su & Tong (1997) apply Principal Component Analysis (PCA) to examine 

correlation among responses and utilize the component scores rather than raw responses.  

These authors apply PCA to the crossed array design approach as suggested by Taguchi 

(1986).  The raw responses are transformed into principal component scores and those 

scores kept are based on eigenvalues scoring higher than one.  Factor plots are used on 

the component scores (much like the factor plots in SNR) to determine optimal settings 

for each control factor in the experiment.  This method proved to reduce the 

dimensionality of the problem and decrease the impact of its complexity.   

 Ideas from these two methods will be applied in Chapter 3 and 4 to formulate a 

new way of examining multiple response problems.  First, in a similar fashion to Koksoy 

(2008), the Lin & Tu (1995) methodology will be applied to various single and multiple 

response problems in RPD.  Also, much like the PCA approach of Su & Tong (1997), 

Factor analysis will be implemented and used in a combined array design rather than the 

Taguchi method of SNRs and crossed array designs.  The next section details factor 

analysis and how it is applied in this research.   

2.5 Factor Analysis 

Factor analysis is a data reduction technique that attempts to discover underlying 

factors that link two or more variables with one another (Dillon & Goldstein, 1984).  This 

analysis takes seemingly unrelated variables and finds some linear combination to 
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combine them, thus determining commonalities between factors.  In classification 

problems, factor analysis helps group similar classes with one another allowing for easier 

differentiation between classes.  Factor analysis allows one to work in a much smaller 

dimensioned set by working with factor scores as opposed to raw data sets.   

2.5.1 Factor Analysis and PCA 
 
 Factor analysis and principal component analysis (PCA) are similar with one key 

difference.  That key difference is the explanation of the variance.  PCA assumes that the 

total variance of the variables is included in the components which allows for no error 

variance.  With factor analysis, an error variance is assumed since the commonalities are 

estimated.  Factor analysis looks for common or shared variation rather than attempting 

to account for all the total variation (Dillon & Goldstein, 1984).   

2.5.2 Mathematical Model of Factor Analysis 
 
 To mathematically represent factor analysis, the following algebraic 

representation is used: 

1 1(1) (1) 1(2) (2) 1( ) ( ) 1

2 2(1) (1) 2(2) (2) 2( ) ( ) 2

(1) (1) (2) (2) ( ) ( )

...

...

...

m m

m m

p p p p m m p

X v CF v CF v CF e
X v CF v CF v CF e

X v CF v CF v CF e

= + + + +

= + + + +

= + + + +


  (2.29) 

This representation assumes that one has m common factors on p variables.  The 

number of common factors must be less than the number of variables (m < p).   
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2.5.3 Extracting Factors 
 
 Several methods exist for extracting factors from the data set.  Dillon & Goldstein 

(1984) summarize several of the given methods which are presented in the Table 2.  The 

primary difference between the methods is that different factor solutions are obtained 

based on the method used.  Therefore, the authors describe that certain methods should be 

utilized based on the sample size, number of variables, and variation among variables.   

Table 2.  Types of Factor Extraction Methods 

Principal Components 

Principal Factor 

Minimum Residual 

Image 

Alpha 

Maximum Likelihood 

Canonical Maximum Likelihood 

 

 The research presented in this document will use the principal components 

method for obtaining factors and calculating factor scores.  This method maximizes the 

variance accounted for, which is set by the user.  The eigenvalues are used to explain the 

amount of total variation by each factor.   

2.5.4 Factor Rotation and Factor Scores 
 
 Along with factor analysis, a varimax rotation is often applied to the data set to 

obtain a simpler structure for the factors.  Thurstone (1947) presented the idea of factor 
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rotation to allow for easier interpretation, particularly graphically.  The varimax rotation 

takes the variance of the squared factor loadings and attempts to maximize their sum.  

The primary use of factor rotation is simple interpretability (Dillon & Goldstein, 1984; 

Anderson, 2003).   

 Factor (rotated) scores are estimated and represent the location of the observation 

in terms of the space projected by the factors (Dillon & Goldstein, 1984).  These scores 

allow for a graphical representation of how the different observations lie on a coordinate 

axis, allowing one to find clusters or links between observations visually.  Once the 

scores are estimated, they can be used as the new response data for the design matrix.   

2.5.5 Summary 
 

Factor analysis is utilized in this research to reduce the dimensionality of multiple 

response problems.  Rather than examining the independent variables, the responses are 

examined in attempt to find common factors to allow for grouping of different responses.  

This grouping assists in reducing the dimensionality of the multiple responses.  Also, 

factor scores are obtained for each of the new factors which are interpreted as new 

responses to be analyzed.  Performing this analysis allows the user to understand 

underlying correlations or similarities between different responses that may not have 

otherwise been seen in the problem.    
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III. Methodology 

3.1 Overview  

Methodology employed in this research is covered in this chapter.  First, RPD is 

demonstrated using the Lin & Tu (1995) methodology for choosing optimal settings in 

problems containing noise variables.  Next, a new methodology is developed to 

determine alternative settings designed to guard against possible system degradation in 

the future.  These are known as “doubly robust” settings.   

Artificial neural networks (ANNs) are introduced as an alternative to quadratic 

regression in RPD for more complex (non-linear) situations.  Two examples are provided 

to compare/contrast settings obtained through quadratic regression and ANNs.   

Following this, a framework is developed to determine doubly robust settings using 

ANNs.   

Finally, factor analysis is implemented for multi-response problems to reduce 

dimensionality of the outputs to a single dimension without the use of subject matter 

experts.   

3.2 Robust Parameter Design 

As discussed in Chapter 2, RPD is performed using a crossed array design 

combined with signal to noise ratio values (Taguchi, 1990) or by implementing a 

combined array design and using response surface methodology (Myers & Montgomery, 

2002).  Both crossed array and combined array designs were utilized in this research but 

focused on response surface methodology techniques due to their ability to obtain control 
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by control variable interactions.  These interactions allowed for better understanding of 

the true nature of the design space’s effects on the solution space.   

 To conduct RPD, the single model approach was used to create an overall 

response model, also known as a process model.  For a problem with p control variables 

(x) and q noise variables (z), this equation is:  

0ˆ( , ) ' ' ' 'y x z x x Bx z x zβ β γ ε= + + + + ∆ +           (3.1) 

β  are the coefficients of the control variables, γ  are the coefficients of the noise 

variables, B is the matrix of coefficients for control by control interactions and ∆  is the 

matrix of coefficients for control by noise interactions.  Finally, ε  represents the error 

and is distributed normally with a mean of zero and variance, 2σ , which is estimated by 

the mean squared error. This process model is obtained through simple regression.  For 

the coefficients (assuming 'X X  is invertible), the formula 1( ' ) ( ' )X X X Y− is 

implemented where X represents the design matrix (from the crossed or combined array) 

of both the control and noise variables and Y represents the responses obtained during 

experimentation.  From this process model, the mean and variance models can be 

computed directly.  These two models are given by:  

( , ) 0ˆ[ ( , )] ' 'zE y x z x x Bxε β β= + +     (3.2) 

2 2
( , ) ˆ[ ( , )] ( ' ) '( ' )z zV y x z x xε σ γ γ σ= + ∆ + ∆ +         (3.3) 

 After computing these two models, an optimization problem is solved to minimize 

the variance subject to achieving a target mean.  Solving this dual response problem 

requires choosing an approach outlined in Table 1.  The Lin & Tu (1995) method was 

selected for this research, which henceforth will be known as the LT solution.  As a 
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reminder, the LT solution is obtained in using one of three different objective functions in 

a minimization framework, depending on the problem type.  

 A minimization problem (min) requires the response to be nonnegative since the 

mean segment of the MSE equation is squared.  An assumption is made that a response 

which equals zero is desired.  For maximization problems (max), the response must also 

be nonnegative with no restriction on its upper bound.  If the response can be negative or 

a specific value other than zero (for min) or infinity (for max) is desired, target value 

problems need to be implemented.    

2
min ( , ) ( , )

2
max ( , ) ( , )

2
target ( , ) ( , )

ˆ ˆ{ [ ( , )]} [ ( , )]

ˆ ˆ{ [ ( , )]} [ ( , )]

ˆ ˆ{ [ ( , )] } [ ( , )]

z z

z z

z z

MSE E y x z V y x z

MSE E y x z V y x z

MSE E y x z T V y x z

ε ε

ε ε

ε ε

= +

= − +

= − +
  (3.4) 

 
 This concludes the discussion of a standard methodology for finding the optimal 

robust settings.  The robust settings obtained here represent settings that are hopefully 

insensitive to the noise variables in the system and obtain the target mean.  The next 

section presents a small example problem to demonstrate the RPD methodology.   

3.2.1 RPD Example Problem 
 

To demonstrate the RPD methodology, a small textbook problem was adapted 

from Myers & Montgomery (2002: 566).  The problem involved a Semiconductor 

process which contained two controllable variables and three noise variables.  It was 

desired that the system response be minimized.  All settings are presented as coded terms 

since their natural values are of no interest in this demonstration.  The text used a 



 57 

fractional CCD consisting of 23 runs, including center points to allow for estimation of 

curvature.  Table 3 displays the problem data. 

Table 3. Semiconductor Example Problem 
Run Number x1 x2 z1 z2 z3 y

1 -1 -1 -1 -1 1 44.2
2 1 -1 -1 -1 -1 30
3 -1 1 -1 -1 -1 30
4 1 1 -1 -1 1 35.4
5 -1 -1 1 -1 -1 49.8
6 1 -1 1 -1 1 36.3
7 -1 1 1 -1 1 41.3
8 1 1 1 -1 -1 31.4
9 -1 -1 -1 1 -1 43.5

10 1 -1 -1 1 1 36.1
11 -1 1 -1 1 1 22.7
12 1 1 -1 1 -1 16
13 -1 -1 1 1 1 43.2
14 1 -1 1 1 -1 30.3
15 -1 1 1 1 -1 30.1
16 1 1 1 1 1 39.2
17 -2 0 0 0 0 46.1
18 2 0 0 0 0 36.1
19 0 -2 0 0 0 47.4
20 0 2 0 0 0 31.5
21 0 0 0 0 0 30.8
22 0 0 0 0 0 30.7
23 0 0 0 0 0 31  

 Quadratic regression was performed on the data in Table 3 to obtain the process 

model, Equation (3.5), with each coefficient estimate rounded to the second decimal.  

The error term for regression was calculated as ~ (0, .9526)Normalε .   

2 2
1 2 1 2 1 2 1 2

3 1 1 1 2 1 3 2 1 2 2 2 3

ˆ( , ) 30.37 2.92 4.13 2.6 2.18 2.87 2.73 2.33
2.33 0.27 0.89 2.58 2.01 1.43 1.56

y x z x x x x x x z z
z x z x z x z x z x z x z ε

= − − + + + + −
+ − + + + − + +

   (3.5) 

Computing Equations (3.2) and (3.3) based on Equation (3.5) yielded the 

following mean and variance models: 

2 2
( , ) 1 2 1 2 1 2ˆ[ ( , )] 30.37 2.92 4.13 2.6 2.18 2.87zE y x z x x x x x xε = − − + + +           (3.6) 

2 2
( , ) 1 2 1 2 1 2ˆ[ ( , )] 19.26 6.4 24.9 7.52 8.52 4.42zV y x z x x x x x xε = + + + + +           (3.7) 

The overall process model required the response to be minimized thus the LT 

equation used is: 
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2
min ( , ) ( , )ˆ ˆ{ [ ( , )]} [ ( , )]z zMSE E y x z V y x zε ε= +    (3.8) 

 Due to the small number of control variables, all possible setting combinations 

between -1 and 1 with a step size of .01 were tested.  Recall, these values were in coded 

terms.  All possible combinations were applied to Equation (3.8) to produce an LT 

solution for each combination.  The minimum LT value was chosen and the associated 

control variable settings represented the optimal robust pair of settings for this problem, 

as shown in Table 4.   

Table 4.  LT Settings and Solution to Semiconductor Problem 
x1 x2 Est. Mean Est. Std Dev Est. LT

0.13 0.71 28.463 6.53 852.74  
 

 The results obtained using the LT formulation differ from results obtained by 

Myers & Montgomery (2002).  As shown in Table 1, these authors suggest minimizing 

the variance and then choosing the associated mean value or using contour plots to locate 

an appropriate optimal solution.  Figure 6 displays the contour plot for the mean model 

and Figure 7 depicts the contour plot of the variance model (in terms of standard 

deviation).  Figure 8 overlays these two plots showing the region of settings (highlighted 

oval) for the control variables, as suggested by Myers & Montgomery.  These authors 

solved the optimization problem of minimizing the variance subject to the mean response 

being less than or equal to 30.  Their optimal point was in the region centered around 

[0.25 , 0].  The LT solution is compared to the Myers & Montgomery solution in Table 5. 

Table 5. M&M Solution and LT Solution to Semiconductor Problem 
Approach x1 x2 Est. Mean Est. Std Dev Est. LT

M & M 0.25 0 29.797 4.62 909.22
LT 0.13 0.71 28.463 6.53 852.74  
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Figure 6. Mean Contour Plot 
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Figure 7. Variance Contour Plot 
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Figure 8. Overlay Contour Plot 

 
The LT solution achieved a smaller mean (28.46) at the cost of a slightly higher 

variance (standard deviation of 6.5).  Both solutions represented “good” solutions by 

maintaining low variance while satisfying the constraint on the mean value.  Multiple 

approaches that may lead to different optimal solutions based on tradeoffs inherent in 

their methodologies were presented in Table 1.   

 This concludes a review on calculating robust optimal control settings using the 

LT formulation.  In the next section, an approach is developed to find control variable 

settings that guard against future system degradation.  A new robust solution will be 

developed to counteract the possibility of the system degrading quickly.   
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3.3 Robust Parameter Design and System Degradation 

RPD assumes that the process model properly fits the system and that the 

relationships between the system response, control variables, and noise variables do not 

change with time.  Ideally, after performing RPD, the system would work as predicted.  

However, as stated by the second law of thermodynamics (Carnot et al., 2005), the 

quality of matter/energy will deteriorate over time.  Hence, it would be desirable to 

develop modifications to RPD to account for the fact that physical systems will tend to 

degrade over time, thus reducing the performance of the systems.  The performance of 

software systems can also be degraded by being exposed to inputs beyond the experience 

of their design and training.  If left unconsidered, this inevitable degradation can be an 

expensive cost.  In this research, system degradation is modeled to obtain new settings 

that continue to remain robust to noise variables (traditional RPD) while becoming robust 

to changes in the system that diminish performance.   

 3.3.1 Guarding Against System Degradation 
 

In RPD, the mean performance and the variance of the performance are 

approximated by low order polynomials.  One method of finding a robust solution is to 

combine these expressions into a composite expression for MSE (LT).  This expression 

becomes an objective function in a minimization problem.  This philosophy was 

presented in Sections 2.2.4 and 3.2.1.   

If the system is suffering from performance degradation over time, it seems 

reasonable to assume that the relationship between the control variables and the system’s 
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mean performance and the variance of that performance will change.  This, in turn, 

suggests that estimated coefficients in the MSE (LT) composite would also change.   

 Loeffelholz & Bauer (2009) examined this phenomenon by performing an 

experimental design (DOE) on the coefficients of the mean and variance models which 

contained two control variables and two noise variables.  These authors re-sampled data 

in the Semiconductor Example problem based on Equation (3.5).  A mean and variance 

model was calculated, similar to those constructed in Equation (3.6) and (3.7).  A full two 

level factorial was performed on the mean and variance models and the results were 

“crossed” with one another resulting in 64 128 8192× =  total runs.  The high and low 

coefficient settings (coded as -1 and 1) for each run were calculated as a constant 

percentage change ( )δ  in each coefficient for the mean ( )ˆ ˆ( )β β δ β= ± and variance 

( )ˆ ˆ( )γ γ δ γ= ±  models.  Each new set of coefficients, β  and γ , populated an ensemble of 

mean models and variance models, respectively.  Some of these models exhibited 

performance improvements, while others exhibited degraded performance.   

An LT solution was calculated for all 8192 control variable coefficient 

combinations.  This resulted in LT values that were either higher or lower than the 

original optimal solution.  Only the combination of coefficients that yielded LT values 

greater (worse) than the original optimal solution were considered as possible candidate 

coefficient sets that reflected system degradation.  The authors chose the coefficient 

settings which resulted in the worst LT value and obtained new optimal settings that were 

designed to be more robust to the noise variables in the system as well as certain 

perturbations in the system causing degradation.   
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To test these “doubly robust” settings, the system was tested under both normal 

operating conditions and degraded conditions.  Under normal conditions, the original 

RPD settings outperformed the doubly robust settings, but the difference did not appear 

significant.  When the system was tested under various conditions that caused system 

degradation, the doubly robust settings outperformed the original RPD settings 

significantly.  This method appeared effective, but the change in coefficients were 

required to be constant for every term in the model which led to a situation where the 

actual system degradation, as measured in increase MSE (LT), was unpredictable 

(Loeffelholz & Bauer, 2009).   

There are numerous locations in the coefficient space of the mean and variance 

models that result in a decrease in performance (increased LT value).  A method is 

desired to guard against conditions where the LT criterion has increased to some preset 

percentage of its optimum value.  One way to find such conditions is to follow the 

direction of maximum change in the LT function (in terms of the coefficients, given the 

optimal control settings) until this percentage increase is realized.  This is accomplished 

in the coefficient space by using a simple gradient search, as seen in Figure 9.  
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Figure 9. Gradient Search for New Solution 
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Figure 9 depicts the optimal RPD settings as *x , which correspond to the optimal 

LT value ( )*Y at the appropriate coefficients, C∈ , where   is the coefficient space.  

The optimal LT value can also be represented as ( )* *
( ) ( )C CY Y x= .  A gradient search, based 

upon Y
C
∂ 

 ∂ 
, is performed in   until a specified percentage increase in LT ( )**Y is 

realized.  This percentage increase in LT is calculated as ** *1
100

xY Y = + 
 

.  Prior to the 

gradient search, initialC C= , and at the culmination of the gradient search, deg radeC C= .  

The LT problem is then resolved at this point ( )deg radeC  to obtain the doubly robust 

settings, **x .   

For notational purposes, several terms are defined.  Given the mean and variance 

models in Equations (3.2) and (3.3), the general form of the LT (Y) function for a 

minimization problem is: 

2
( , ) ( , )ˆ ˆ{ [ ( , )]} [ ( , )]z zY E y x z V y x zε ε= +             (3.9) 

Equation 3.9 can be can be rewritten as (assuming 2 1zσ = ): 

}{ 2 2
0 ' ' ( ' ) '( ' )Y x x Bx x xβ β γ γ σ= + + + + ∆ + ∆ +       (3.10) 

For differentiating purposes, Equation (3.10) can be rewritten as: 

Y = Φ +Ψ      (3.11) 

 For p control variables and q noise variables, the elements of Equation (3.11) are 

defined in Equation (3.12) and (3.13).  jkβ  represent the coefficients of the B matrix 

previously defined as the control by control interaction coefficients.  jiδ  represent the 
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coefficients of the ∆ matrix previously defined as the control by noise interaction 

coefficients.   

2

0
1 1

p p p

j j j jk k
j j k j

x x xβ β β
= = =

 
Φ = + + 

 
∑ ∑∑           (3.12) 

2

1 1

q p

i ji j
i j

xγ δ
= =

 
Ψ = + 

 
∑ ∑            (3.13) 

A gradient search, at small steps, is conducted over the   space to locate the set 

of coefficients that lead to a preset percentage degradation in LT performance.  Since the 

gradient is used, the degradation is achieved in the quickest possible fashion.  The 

gradient of each coefficient in the LT function is calculated.  In general, differentiating 

Φwith respect to its coefficients yields: 

2

0 0
1 1 1 10 0

2
p p p p p p

j j j jk k j j j jk k
j j k j j j k j

x x x x x xβ β β β β β
β β = = = = = =

   ∂Φ ∂
= + + = + +   ∂ ∂    

∑ ∑∑ ∑ ∑∑      (3.14) 

2

0 0
1 1 1 1

2
p p p p p p

j j j jk k j j j jk k j
j j k j j j k jj j

x x x x x x xβ β β β β β
β β = = = = = =

   ∂Φ ∂
= + + = + +   ∂ ∂    

∑ ∑∑ ∑ ∑∑   (3.15) 

2

0 0
1 1 1 1

2
p p p p p p

j j j jk k j j j jk k j k
j j k j j j k jjk jk

x x x x x x x xβ β β β β β
β β = = = = = =

   ∂Φ ∂
= + + = + +   ∂ ∂    

∑ ∑∑ ∑ ∑∑  (3.16) 

In general, differentiating Ψ with respect to its coefficients yields: 

2

1 1 1

2
q p p

i ji j i ji j
i j ji i

x xγ δ γ δ
γ γ = = =

   ∂Ψ ∂
= + = +   ∂ ∂    

∑ ∑ ∑                      (3.17) 

2

1 1 1

2
q p p

i ji j i ji j j
i j jji ji

x x xγ δ γ δ
δ δ = = =

   ∂Ψ ∂
= + = +   ∂ ∂    

∑ ∑ ∑                  (3.18) 
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 Therefore, differentiating Equation (3.10) relative to the original coefficients (C) 

of Y yields the vector: 

0 1 11

, , , , , , , ,
'

pp q qp

Y Y Y Y Y Y YY
C β β γ γ δ δ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
∇ = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

                     (3.19) 

There are 
2 3 2

2
p p+ + coefficients due to the mean model and q pq+ coefficients 

due to the variance model.  Therefore, the gradient vector, Y∇ contains r partial 

derivatives: 

( )
2 3 2

2
p pr q pq + +

= + + 
 

                                         (3.20) 

For a small step size ξ  and oldC C= , the gradient search has the form: 

( )new oldC C Yξ= + ∇              (3.21) 

After each small step of the gradient search, the LT problem containing the new 

perturbed coefficients needs to be resolved:  

arg minnew

x D
x

∈
=  ( ),newY C x                         (3.22) 

where D is the design space for x.  Figure 9 depicts the gradient search in   space as 

well as the mirrored sequence of optimal settings in the control variable space.  This 

process is repeated until the preset percentage degradation of LT performance ( )**Y  is 

realized.  At this point, the LT problem is resolved a final time to determine the final 

optimal control settings.  Figure 9 depicts these doubly robust settings as **x , whereas the 

original LT optimal settings are *x .  Figure 10 summarizes the algorithm used to find a 

doubly robust solution.   
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Figure 10.  Algorithm for Finding a Doubly Robust Operating Point 
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3.3.2 Doubly Robust Solution Example 
 

To demonstrate the doubly robust algorithm described in Section 3.3.1, the 

previous Semiconductor Manufacturing example was implemented.  To test the doubly 

robust solution, a Truth Model was necessary to perform confirmatory trials.  Therefore, 

the process model from Equation (3.5) was used as the Truth Model.  For convenience, 

Equation (3.5) was reproduced as Equation (3.23) below: 

2 2
1 2 1 2 1 2 1 2

3 1 1 1 2 1 3 2 1 2 2 2 3

( , ) 30.37 2.92 4.13 2.6 2.18 2.87 2.73 2.33
2.33 0.27 0.89 2.58 2.01 1.43 1.56

y x z x x x x x x z z
z x z x z x z x z x z x z ε

= − − + + + + −
+ − + + + − + +

  (3.23)
  
 

The variance of the error term remained 0.9526, in order to obtain a different 

process model during each re-sampling of ( , )y x z .  The same 23 run CCD was 

implemented to create new response values.  Quadratic regression was performed to 

obtain the following process model, where ~ (0, 1.01)Nε :   

2 2
1 2 1 2 1 2 1 2

3 1 1 1 2 1 3 2 1 2 2 2 3

ˆ( , ) 29.95 3.16 4.099 2.895 2.33 2.72 2.67 2.497
2.38 0.37 1.06 2.79 2.04 1.38 1.85

y x z x x x x x x z z
z x z x z x z x z x z x z ε

= − − + + + + −
+ − + + + − + +

  (3.24) 

From ˆ( , )y x z , the mean model and variance models were computed as:  
 

2 2
( , ) 1 2 1 2 1 2ˆ[ ( , )] 29.95 3.16 4.099 2.895 2.33 2.72zE y x z x x x x x xε = − − + + +          (3.25) 

( ) ( )
( )

2 2
( , ) 1 2 1 2

2
1 2

ˆ[ ( , )] 2.67 0.37 2.04 2.497 1.06 1.38

2.38 2.79 1.85 1.01

zV y x z x x x x

x x

ε = − + + − + −

+ + + +
         (3.26) 

This problem remained a minimization problem, thus, using Equation (3.9) to calculate 

LT values for every combination of control settings.  This equation was: 
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( )
( ) ( )
( )

22 2
1 2 1 2 1 2

2 2
1 2 1 2

2
1 2

29.95 3.16 4.099 2.895 2.33 2.72

2.67 0.37 2.04 2.497 1.06 1.38

2.38 2.79 1.85 1.01

LT x x x x x x

x x x x

x x

= − − + + + +

 − + + − + −
 
 + + + + 

     (3.27) 

The optimal (minimum) LT value selected yielded control settings [0.22, 0.60].  

These settings are similar to the settings presented in Table 4, thus verifying the approach 

taken with re-sampling data and performing quadratic regression on the model. 

A gradient search was then applied to Equation (3.27), where Y=LT, to determine 

doubly robust settings.  Equation (3.27) was derived from Equation (3.10) which is given 

again as Equation (3.28): 

}{ 2 2
0 ' ' ( ' ) '( ' )Y x x Bx x xβ β γ γ σ= + + + + ∆ + ∆ +       (3.28) 

For this particular example problem, two control variables and three noise variables were 

used.  Recall the gradient search calculates the partial derivatives for every term in Y with 

respect to C.  A partial derivative is taken for each coefficient in C, thus yielding a single 

vector of partial derivatives.  Note that each partial derivative is a scalar.  Therefore, for r 

terms in C, the general form of the partial derivatives in Equation (3.28) is: 
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This particular example contained ( )

22 (3)(2) 2 3 (2)(3) 15
2

r + +
= + + =  partial 

derivatives.  After calculating all the partial derivatives, the coefficients in Equation 

(3.27) were used as the starting point for the gradient search.  Small step sizes ( ).001ξ =  

were implemented.  Following the completion of a single step, the new LT (Y) problem 

was solved to obtain optimal control settings.  As outlined in Figure 10, this process was 

repeated until ** 1023.28Y =  was achieved, which is defined as a 20 percent increase in 

LT.  This example ended the gradient search with doubly robust settings, 

[ ]** 0.24,0.33x = .   

A summary of the original LT settings ( )*x  and doubly robust settings ( )**x  is 

provided in Table 6.   

Table 6. Original and Doubly Robust Settings 
Settings x1 x2
Original 0.22 0.6

Doubly Robust 0.24 0.33  

 The settings were quite different from one another (in terms of coded values), due 

to the LT contour space in this problem being relatively flat around the original optimal 

settings.  Figure 11 depicts the LT contour plot for this problem across control settings of 

[-1 , 1] for each control variable.  The large oval, centered around [0.22 , 0.60] indicates 

the settings within this region contain LT values very close to one another.  This provides 

some rationale as to why the doubly robust solution exhibits good performance under 

nominal (non-degraded) operating conditions.      
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Figure 11. LT Contour Plot for Semiconductor Example Problem 
 

To validate the doubly robust settings, an experiment was conducted in which 

0β and 2
zσ  were varied in Equation (3.27).  Varying these terms increases the responses 

of the mean and variance models respectively, thus causing degraded performance.  At 

normal operating conditions, these values were 29.95 and 1.0 respectively.  These values 

were increased, thus increasing the LT value which in turn displays system degradation.  

A range of [ ]0,10 was chosen for 0β and 2
zσ .  For 0β , the range represented a constant 

added to the normal operating condition values of the mean response.  For 2
zσ , the range 

represented a multiplicative effect (1 + increase) on the variance only for values greater 

than one, thus increasing the variance. 

Figure 12 displays the LT contours over the variation of the intercept term and 

sigma value for the original LT settings, [ ]0.22,0.60 .  Figure 13 displays the LT contours 
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for the doubly robust settings, [ ]0.24,0.33 .  As expected, as 0β and 2
zσ  increased, the LT 

solution at the given settings increased as well.  

 

Figure 12. LT Contours for Original LT Settings 

 
Figure 13. LT Contours for Doubly Robust Settings 
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To determine the validity of the doubly robust settings, the LT values shown in 

Figures 12 and 13 were compared.  Specifically, the calculation ( ) ( )** *LT x LT x−  was 

performed.  A positive number demonstrated that the Original settings ( )*x  outperform 

the doubly robust settings ( )**x  and a negative number proposed opposite results.  The 

difference of LT contours between the two sets of settings is given in Figure 14.   

The dashed line in the figure represents the boundary which separates regions 

where the two solutions are preferred.  Above the dashed line (positive values) represents 

the Original settings obtain a lower value and below the dashed line (negative values), 

doubly robust settings achieve lower LT values.  Since the contours change very little 

when the intercept term was adjusted, the intercept appeared to have little effect on 

straying from the Original solution.  However, once the 2
zσ  value was increased, thus 

increasing the variance of the system, the doubly robust settings were preferred.   

An important note to make is the scale of the contours, located on the z-axis of the 

figure.  Although below the dashed line the Original settings were preferred, the doubly 

robust settings were not far behind.  The largest difference in which the Original settings 

were preferred is by 13, which occurred by inflating the intercept term well beyond a 

necessary boundary.  However, when increasing the sigma value in small steps, the 

doubly robust settings drastically moved further away, in terms of LT value, from the 

Original settings.   
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Figure 14. LT(x**) - LT(x*) Contour Plot 
 

These results verify the algorithm employed to determine doubly robust settings.  

Not only are the settings robust to noise variables, they are also robust to perturbations in 

the system causing degradation in performance.  The doubly robust settings prove 

invaluable if a user is uncertain as to whether the system being employed will remain 

perfectly functional or if over time things may unknowingly occur reducing performance.  

This research assumes those changes in the system are unknown, because if known, RPD 

can be re-evaluated to obtain new settings reflecting the changed system.   

3.3.4 RPD Summary 
 

Section 3.3 provided methodology on utilizing gradient analysis in a quadratic 

regression framework to guard against system degradation.  In terms of minimal or severe 



 77 

degradation, the doubly robust settings proved to be more robust than the original LT 

settings.  Also, under normal operating conditions, the doubly robust settings proved 

competitive.   

Much of the literature cited in Chapter 2 addresses different issues in RPD such as 

solving the dual response problem.  However, little in the literature suggests alternative 

methods for deriving mean and variance models other than the use of quadratic 

regression.  Myers & Montgomery (2002: 562) state “we do not mean to rule out the use 

of interaction in noise or higher than quadratic terms…however, the model [in Section 

2.2.3] will accommodate many real-life situations.”  An alternative is explored in Section 

3.4 as artificial neural networks are implemented when quadratic regression poorly fits 

the given data or significant lack of fit is realized.   

3.4 Artificial Neural Networks 

 Some problems may be highly non-linear in nature and cannot be accurately 

modeled by quadratic regression.  In addition, standard RPD methodologies do not model 

interactions between noise variables which may be important.  Properly applied, artificial 

neural networks (ANNs) allow for the modeling of higher order terms and/or noise 

variable interactions, thus providing the flexibility to fit non-linear data.  Therefore, the 

use of ANNs to model the process model and/or the mean and variance models appears 

appropriate.   

 Radial Basis Function Neural Networks (RBFNNs) and Generalized Regression 

Neural Networks (GRNNs) were selected for this research.  These ANNs are 

computationally efficient relative to training.  However, if quadratic regression can model 
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the process model accurately, it should be utilized rather than ANNs due to its parsimony 

and broader level of familiarity to the typical practitioner.   

3.4.1 ANNs and RPD 
 
 Two approaches were developed to apply ANNs in RPD.  In one approach the 

ANN performs “post-processing” and the other, it performs “pre-processing” of the input 

data.    The former uses control and noise variables as inputs and the latter only inputs 

control variables.  “Pre-processing” ANNs perform quicker but require the use of a 

crossed array design to collect appropriate variance values.  The “post-processing” ANNs 

work well with either crossed or combined array designs.  To aid in demonstration, a 

notional crossed array design matrix containing two control, x, and two noise variables, 

{ }1 2,Z z z= , ( 2 23 2× ) with response, y, was created.   

Table 7. Notional Design Matrix 
z1 -1 -1 1 1
z2 -1 1 -1 1

x1 x2
-1 -1 47 13 10 30
-1 0 44 93 81 91
-1 1 53 66 37 58
0 -1 93 55 39 96
0 0 68 34 71 28
0 1 26 23 50 66
1 -1 74 23 34 13
1 0 7 3 50 94
1 1 63 28 80 78  

 The first ANN developed uses a neural network with a single response as the 

output, where postA A= : 

( );y A x z=                     (3.30) 
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The entire dataset in Table 7 was implemented by using the control and noise 

variables as the inputs.  The output response was averaged across all noise variable 

combinations (N) for each unique combination of control settings.  This value represents 

the expected value for each combination of control settings, as denoted in Equation 

(3.31):   

( ) ( )1ˆ ;
i

y i
z Z

u x N A x z−

∈

= ∑           (3.31) 

Variance values are calculated in the same manner by determining the variance 

across all noise variable combinations for every control setting as denoted in Equation 

(3.32):   

                                          ( )
( ) ( )

( )

2
2

2

; ; /
ˆ

1
i i

i i
z Z z Z

y

A x z A x z N
x

N
σ ∈ ∈

 
−   
 =
−

∑ ∑
      (3.32) 

In this example, the result would be nine control variable combinations, each with 

an expected value and variance value.  
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Figure 15. Approach 1 to Develop ANN for RPD
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 The previous approach requires a large number of inputs into the ANN due to the 

inclusion of noise variables.  To account for this, “pre-processing” can be done to reduce 

the number of inputs but this approach requires a crossed array design.  The next ANN 

( )preA  constructed takes a single neural network and provides two outputs: mean and 

variance.  Prior to executing the ANN, the mean (Equation (3.31)) and variance 

(Equation (3.32)) of each row in Table 7 was calculated, which represents the “pre-

processing” stage.  The unique control settings were used as the inputs of each model 

with their respective outputs.  This notional data is displayed in Table 8.   

Table 8. Pre-Processed Data for Mean and Variance 
x1 x2 y (mean) y (variance)
-1 -1 25 300
-1 0 77 520
-1 1 54 153
0 -1 71 800
0 0 50 497
0 1 41 433
1 -1 36 701
1 0 39 1833
1 1 62 578  

 
 This network is efficient due to the small number of input variables.  However, 

one drawback is the requirement of sufficient data to accurately model the variance, 

suggesting the use of a crossed array design; since, if only one combination of noise 

variable settings is taken for each set of control setting combinations, insufficient data 

exists for variance estimation.  This ANN has two outputs.  Alternatively, two networks 

with one output could also be used.   
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Figure 16. Approach 2 to Develop ANN for RPD
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3.4.2 Semiconductor Extended Example Using ANNs in RPD 
 
 The example applied in Section 3.2.1 was adjusted to represent a more difficult 

non-linear problem.  Terms were added to the model to include third and fourth order 

terms as well as interactions between noise variables.  The following model was used as 

the Truth Model:   

2 2
1 2 1 2 1 2

3 1 1 1 2 1 3 2 1 2 2 2 3
4 4 3 2 2 2 3
1 2 1 1 2 1 2 1 2
2 2
1 2

( , ) 30.37 2.92 4.13 2.6 2.18 2.73 2.33
2.33 0.27 0.89 2.58 2.01 1.43 1.56

3.8094 2.163 2.9954 4.8661 3.4496 2.0059

0.0085 3.56

y x z x x x x z z
z x z x z x z x z x z x z

x x x x x x x x x
z z

= − − + + + −
+ − + + + − +

+ + + + + +

− + 2 4
3 2 1 2 2 32.8541 1.3269 2.624 4.5689z z z z z z ε+ + + − +

    (3.33) 

 

( )0, 0.9536Normalε =  

 To determine the true optimal settings for the Truth Model, an exhaustive search 

was performed between all possible combinations of control variables and noise variables 

at a step size of .01, using coded levels.  For each combination of control variables 

settings, the response was averaged (mean) and the variance obtained across all noise 

variable settings was calculated.  These values were then applied to the LT formulation 

for a minimization problem (Equation (2.12)).  This process was replicated 100 times and 

the optimal LT settings are given in Figure 17.  After obtaining 100 control settings and 

associated LT values, the results were averaged and are reported in Table 9.  These 

optimal settings provide a basis for comparison of results obtained through ANNs versus 

quadratic regression.   
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Figure 17. Scatterplot of Optimal LT Settings over 100 Replications 

 

Table 9. True Optimal Settings for Equation (3.27) 

x1 x2 Actual LT
0.24 0.48 1382.4  

 To re-sample data from the Truth Model (Equation 3.33), a 2 33 2× crossed array 

design was utilized to support both ANN approaches outlined in this research.  After 

obtaining response values for each treatment row in the crossed array design, quadratic 

regression was performed to fit a process model.  The mean and variance models were 

computed thus allowing for calculation of LT values for all control settings between 

[ ]1,1− .  Quadratic regression yielded optimal control variable settings of [1, 0.31].  The 

actual LT value of these control settings were obtained from the exhaustive search 
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performed on the Truth Model.  These settings corresponded to an LT value of 2108 

which is 52.5 percent larger than the LT value of the true optimal settings.  

 To understand how well quadratic regression performs, Table 10 displays the 

ANOVA table for this example.  The ANOVA table displays a very large p-value, thus 

making the current quadratic model not significant.  The desired p-value is typically 

denoted as 0.10α = or 0.05α = .   

Table 10. ANOVA for Semiconductor Extended Example 
Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 1525.40 14 108.96 0.77 0.6988 not significant

Residual 8096.91 57 142.05
Cor Total 9622.31 71  

 The coefficient of determination, or 2R , provides insight into the amount of 

variability of the data set captured by the model (Montgomery et al., 2004).  Along with 

adjusted 2R , these value determine how well the model fits the given data.  This 

particular model obtained an 2 0.1585R = , indicating a poor fit.   

 To demonstrate how poor the quadratic regression fits the given data, since the 

Truth Model is known, the predicted model can be explored.  Table 11 provides the 

coefficients for the predicted model when sampling data from Equation (3.33), as well as 

the true coefficients.  These estimated coefficients are drastically different than the true 

coefficients. 
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Table 11. Coefficients for Semiconductor Extended Example 
Factor Estimate Truth

Intercept 46.27 30.37
x1 -0.10 -2.92
x2 -1.10 -4.13
z1 -1.19 2.73
z2 2.08 -2.33
z3 0.94 2.33

x1x2 -0.24 0.00
x1z1 1.82 -0.27
x1z2 -2.60 0.89
x1z3 2.18 2.58
x2z1 0.17 2.01
x2z2 0.01 -1.43
x2z3 2.15 1.56
x1^2 -0.11 2.60
x2^2 1.84 2.18
x1^4 0.00 3.81
x2^4 0.00 2.16
x1^3 0.00 2.99

(x1^2)(x1^2) 0.00 4.86
(x1^2)(x1) 0.00 3.45
(x1)(x1^3) 0.00 2.01

z1^2 0.00 -0.01
z2^2 0.00 3.56
z3^2 0.00 2.85
z2^4 0.00 1.32
z1z2 0.00 2.62
z2z3 0.00 -4.57  

 Along with the ANOVA table and summary statistics, several residual plots were 

examined.  Figure 18 presents the normal probability plot for this example.  The plot 

shows a light tailed distribution on the ends.  This could indicate several outliers 

“pulling” the least squares estimates from their true values.     



 87 

 

    

  

N
o

rm
a

l 
%

 P
ro

b
a

Normal Plot of Residuals

-1.86 -0.77 0.32 1.42 2.51

1

5

10

20

30

50

70

80

90

95

99

 

Figure 18. Normal Probability Plot for Semiconductor Extended Example 
 
 The plot for predicted values versus actual values is displayed in Figure 19.  This 

plot helps determine the model’s predictability, given new observations.  This plot allows 

a visual interpretation of the predicted 2R  value.  As seen in Figure 19, this model poorly 

predicts new observations.   
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Figure 19. Predicted vs Actual for Semiconductor Extended Example 
 
 Analysis in Tables 10-11 and Figures 18-19 indicate that the robust optimal 

settings obtained through quadratic regression may not truly represent the optimal 

settings.  In fact, according to Table 9 which gives the optimal settings for the 

Semiconductor Extended example, the quadratic regression settings are nowhere near the 

optimal.  Thus, this analysis indicates that the use of ANNs may be appropriate to better 

model Equation (3.33).   

When developing an ANN, a spread parameter must be defined.  Section 2.3.2 

and 2.3.3 defined the spread parameter as it is pertinent to RBFNNs and GRNNs.  

MATLAB® calculates this parameter as 0.8326/spread, where spread is user preference 

(typically a default of 0.1 for RBFNNs and 1.0 for GRNNs).  Prior to analysis, a small set 

of the data was withheld to optimize this value for the optimal spread, which could 

change based on the holdout dataset.  Once the spread was determined for both the 
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RBFNN and GRNN, the two ANN approaches (1=post-processing , 2= pre-processing) 

were applied to the full dataset to determine robust settings, assuming a minimum LT 

existed.  Table 12 reports the true optimal and quadratic regression settings as well as the 

ANN results.  As seen in Table 12, the ANNs outperform quadratic regression regardless 

of the approach or type of neural network used.  In fact, the RBFNNs obtain the true 

optimal in each instance.  These results demonstrate the potential of ANNs when 

quadratic regression fails to properly model the problem.   

Table 12.  ANN Results on Semiconductor Extended Example 
x1 x2 Actual LT

Actual 0.24 0.48 1382
QR 1 0.31 2108

RBFNN 0.24 0.48 1382
GRNN 0.18 0.52 1383

RBFNN 0.24 0.48 1382
GRNN 0.24 0.48 1382

Method

ANN 1

ANN 2
 

3.4.3 Koksoy Problem Using ANNs in RPD 
 
 The Semiconductor Extended example in Section 3.4.2 used a crossed array 

design thus providing more data points.  This crossed array design used was tailored for 

ANN approach 2.  An example was adapted from Koksoy (2008) that uses a combined 

array design for three control variables and two noise variables.  A CCD was used 

consisting of 25 runs and response values were provided for two outputs.  1Y  needed to 

achieve a target value of 1.0 while 2Y was to be minimized ( )0≥ .  Table 13 displays the 

design and responses for this example problem.   
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Table 13. Example Problem 2 (Koksoy, 2008) 

 

 The two responses, 1Y  and 2Y , were treated as separate problems simply to 

demonstrate the ANNs’ ability to model problems with combined array designs.  Optimal 

settings were not provided in Koksoy (2008), but can be estimated by examining Table 

13.  Table 14 provides the estimated optimal robust settings for the two problems.   

Table 14. Estimated Optimal Settings for Koksoy Example 
Response x1 x2 x3 Est. Mean

Y1 1 0 0 1.03
Y2 -1 -1 1 1.07  

Although both ANN methods were performed on Example 2, this problem is 

more suitable for approach 1.  Results are shown from approach 1 which uses a single 

neural network with one response.  The mean and variance is extracted from responses of 

control settings across noise variables.  Quadratic regression was also performed for 

comparison.   
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 The results obtained from the ANNs (RBFNNs and GRNNs obtained the same 

results) and quadratic regression for the two responses are displayed in Table 15.  RPD 

was performed to create both a mean model and variance model, thus calculating the LT 

value, but only the estimated mean is reported in Table 15.  The ANN achieved the 

optimal settings for both problems even though a small combined array design was 

implemented.  Quadratic regression was further from the optimal solution; this was 

further evidence supporting the use of ANNs even in the presence of small data sets.      

Table 15. Settings for ANN and QR for Example 2 
Method x1 x2 x3 Est. Mean
QR-Y1 1 0 -1 0.972

ANN-Y1 1 0 0 1.03

QR-Y2 -1 -1 -1 1.11
ANN-Y2 -1 -1 1 1.07  

3.4.4 Doubly Robust Operating Points Using ANNs 
 
 Methodology was covered in Sections 3.3.2 and 3.3.3 to guard against system 

degradation by utilizing a gradient search in the coefficient space.  Settings were 

calculated which were robust against noise variables and robust against perturbations in 

the system causing performance degradation.  These points are called “doubly robust” 

operating points.  In this section, gradient analysis is applied to ANNs when quadratic 

regression is unsuitable.   

 The ANNs developed in Section 3.4.1 output a mean and variance value for 

control settings.  For gradient analysis, it is necessary to construct an ANN that outputs 

LT values based on control settings as inputs.  Therefore, an extra step is taken to 
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transform the results of the ANNs outputting mean/variance values to construct a new 

ANN ( )LTA , outputting LT values.   

After obtaining the mean ( )( )ˆyu x  and variance ( )( )2ˆ y xσ  values, regardless of the 

ANN approach (pre/post) utilized, the LT values are calculated for the control settings.  

The control settings become the inputs for the new ANN ( )LTA  with the LT values as the 

expected response.  Gradient analysis is now appropriate.
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Figure 20. LT ANN for Gradient Analysis
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For quadratic regression, the gradient of the LT (Y) function was found with 

respect to the coefficients of the mean model and variance model.  ANNs are 

parameterized by weights rather than regression coefficients as found in the quadratic 

models.   Figure 20 depicts the ANN to solve for the robust optimal settings ( )*x  in the 

design space (D) of x, under normal operating conditions ( )initialw .  This involves 

solving: 

* arg min
x D

x
∈

=  ( ),initialz w x        (3.34) 

 After solving for the robust optimal settings in Equation (3.34), a gradient search 

is then performed.  To follow the gradient of an ANN, partial derivatives of the output 

with respect to the weights, z
W
∂ 

 ∂ 
, need to be calculated.  Obtaining these partial 

derivatives allows one to follow the procedure outlined in Figure 23 where zz
W
∂ ∇ =  ∂ 

.  

The original weights ( )initialw  are used as the starting point and reassigned as oldw .    For 

a small step size,ξ , the gradient search is written as: 

( )new oldw w zξ= + ∇           (3.35) 

Following a step in the gradient direction, the optimal control settings are solved: 

** arg min
x D

x
∈

=  ( ),newz w x                      (3.36) 
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  This process is repeated until a preset percent increase in LT ( )**z  is realized.  

The final result yields control settings ( )**x  that are robust to noise variables and robust 

to perturbations in the system causing performance degradation.   

 Herein RBFNNs and GRNNs are examined as neural network options.  In the 

following section, the gradient vector is derived for both the gradient of a RBFNN and 

then a GRNN.   

Recall in Section 2.3.2, the formulation for RBFNNs  to calculate an output (z) 

was:  

1 ( ) 2 2

1 1
exp ( ( ))

p n
j

j j k k
j k

z w b x u b
= =

 
= − − + 

 
∑ ∑    (3.37) 

 To recap, p centers exist for n features (or input variables).  kx  represents the kth 

input feature/variable of the new exemplar and ( )j
kµ represents the kth component of the 

jth center.  jw is equal to the weight of the jth node.  The initial bias term ( )1
jb represents 

MATLAB’s® interpretation of applying the spread in the equation, which is calculated as 

0.8326/spread.  Also, a second bias ( )2b  term is appended to represent a linear layer bias 

term.  Figure 21 represents the RBFNN as outlined in Equation (3.37).  The ph nodes 

represent each hidden layer node in Equation (3.37).   
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Figure 21. RBFNN with Single Output (LT) 
 

For gradient analysis, the response (z) is the LT value for given input control 

settings, x .  To follow the gradient of an RBFNN, partial derivatives of the output with 

respect to the weights, z
W
∂ 

 ∂ 
 where 1 2, ,..., pW w w w =   , need to be calculated.  This 

results in a vector of  j=1, 2, …, p partial derivatives with respect to the output (LT).  To 

calculate the partial derivatives, Equation (3.37) is rewritten as: 

2

1

p

j j
j

z w c b
=

= +∑          (3.38) 

where 

1 ( ) 2

1
exp ( ( ))

n
j

j j k k
k

c b x u
=

 
= − − 

 
∑    (3.39) 
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Equation (3.38) simplifies the problem by assigning jc and 2b as constants.  Thus, the 

partial derivative of the output (Equation (3.38)) with respect to the weights reduces to: 

1 2, ,..., p
z c c c

W
∂  =  ∂

                                         (3.40) 

  Similar analysis is applied to GRNNs.  Recall in Section 2.3.3, the formulation to 

calculate an output (z) for a GRNN in MATLAB® was: 

1 ( ) 2

1 1

1 ( ) 2

1 1

exp ( ( ))

exp ( ( ))

p n
j

j j k k
j k

p n
j

j k k
j k

w b x u
z

b x u

= =

= =

 
− − 
 =

 
− − 
 

∑ ∑

∑ ∑
                 (3.41) 

Notation remains similar to the RBFNN where for n features/variables exist for 

the input x with its output as z.  The initial bias term is calculated the same as in the 

RBFNN.  Figure 22 represents the GRNN outlined in Equation (3.41), where α denotes 

the numerator and β  denotes the denominator.   

 
Figure 22. GRNN with Single Output (LT) 
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For gradient analysis, Equation (3.41) can be rewritten as: 

1

1

p

j j
j

p

j
j

w c
z

c

=

=

=
∑

∑
      (3.42) 

where 

1 ( ) 2

1
exp ( ( ))

n
j

j j k k
k

c b x u
=

 
= − − 

 
∑    (3.43) 

The partial derivative of z with respect to the weights, z
W
∂ 

 ∂ 
, is calculated as: 

1 2

1 1 1

, ,..., p
p p p

j j j
j j j

cc cz
W c c c

= = =

 
 ∂  =
 ∂
 
 
∑ ∑ ∑

                  (3.44) 

After obtaining the partial derivatives for RBFNNs, Equation (3.40), and GRNNs, 

Equation (3.44), gradient analysis can be conducted as outlined in Figure 23 and 

Equations (3.35)-(3.36).  
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Figure 23.  Algorithm for System Degradation in ANNs
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Recall that in the Semiconductor Extended example in Section 3.4.2, the system 

response was defined as: 

2 2
1 2 1 2 1 2

3 1 1 1 2 1 3 2 1 2 2 2 3
4 4 3 2 2 2 3
1 2 1 1 2 1 2 1 2
2 2
1 2

( , ) 30.37 2.92 4.13 2.6 2.18 2.73 2.33
2.33 0.27 0.89 2.58 2.01 1.43 1.56

3.8094 2.163 2.9954 4.8661 3.4496 2.0059

0.0085 3.56

y x z x x x x z z
z x z x z x z x z x z x z

x x x x x x x x x
z z

= − − + + + −
+ − + + + − +

+ + + + + +

− + 2 4
3 2 1 2 2 32.8541 1.3269 2.624 4.5689z z z z z z ε+ + + − +

    (3.45) 

( )0, 0.9536Normalε =  

 The optimal settings obtained for this problem using RBFNNs and GRNNs was 

[0.24 , 0.48] with an associated LT value of 1382.4.  The weights associated with these 

ANNs were extracted and implemented as the starting point ( )initialw  for the gradient 

search.  Steps of size .01 in the gradient direction were taken until a 20 percent 

degradation in LT ( )**z  was realized, which computes as 1659.   

 Following the algorithm outlined in Figure 23, doubly robust settings ( )**x  were 

calculated.  These settings corresponded to [ ]0.18,0.58  for the RBFNNs and [ ]0.20,0.58  

for the GRNNs.  Since a fourth order model was utilized, it was difficult to test the 

doubly robust conditions under system degradation.  For the quadratic regression, one 

was able to adjust the intercept of the mean model and multiply a constant to the 

variance.  However, literature is scarce as to how to obtain mean and variance models for 

situations greater than quadratic.   

Therefore, these settings were tested against the original settings under normal 

operating conditions (Equation (3.45)).  The solutions for the original settings and their 

actual LT values are reported in Table 12.  This table is extended to include the doubly 
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robust settings and their actual LT values under normal operating conditions.  This is 

displayed in Table 16. 

Table 16. ANN Doubly Robust Settings under Normal Operating Conditions 
x1 x2 Actual LT

Actual 0.24 0.48 1382
QR 1 0.31 2108

RBFNN 0.24 0.48 1382
GRNN 0.18 0.52 1383

RBFNN 0.24 0.48 1382
GRNN 0.24 0.48 1382

RBFNN 0.18 0.58 1386
GRNN 0.2 0.58 1390

ANN 1

ANN 2

Method

Doubly 
Robust  

The LT values of the doubly robust settings for RBFNNs and GRNNs computed 

to only a 0.29 and 0.33 percent increase, respectively, in expected LT value from the 

original settings under normal system operation.  This result indicated that selecting 

doubly robust settings maintained near optimal results under normal conditions.  As seen 

with system degradation in quadratic regression, these settings should have been more 

robust to system degradation, within the specified LT increase bound.  ANNs proved 

useful in fitting non-linear problems and their use has been adapted to guard against 

system degradation.   

3.5 Multiple Responses 

 Real world problems often involve measuring multiple responses.  Difficulties 

arise when the optimal choice of settings for each response are different.  For example, 

the Koksoy (2008) example in Section 3.4.3 involved two responses and the optimal 

settings for each response were on different ends of the spectrum in terms of settings.  
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This issue becomes increasingly difficult given more response variables.  Section 2.4 

discussed approaches to multiple response problems, but most involve subject matter 

expertise for weighting or subjective decision making based on contour plots.  To account 

for this problem, factor analysis (FA) is implemented to discover if the responses can be 

projected into a meaningful subspace.   

3.5.1 Factor Analysis for Multiple Responses 
 
 Traditionally, factor analysis is performed on features to determine commonalities 

for feature reduction.  In this research, the same idea is applied to the responses rather 

than the features (input variables).  Applying factor analysis reduces the number of 

responses to reflect common factors (responses).  The factor scores generated represent 

the new response variable(s).  Furthermore, reduction to a single factor allows quadratic 

regression or ANNs to be applied to find the optimal settings for control variables.   

 However, factor analysis may only reduce the problem to two or more factors 

rather than a single factor.  The number of responses may have been reduced, but the 

issue of multiple responses remains.  To combat this problem, linear combination 

techniques are employed to combine factor scores from multiple dimensions into a single 

dimension.  Rotated factor scores were also created using the MATLAB® function 

rotatefactors.   

 The simplest method to combine the multiple (rotated) factor scores is by 

addition/subtraction.  Signs are attached to the factor scores appropriately to minimize the 

overall response.  For example, if a high factor score is desirable for a particular factor, a 

negative sign is placed on the factor.  Equation (3.46) summarizes this technique for n 
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factors, where f  represents the factor score for factor i and ( )Rf represents the rotated 

factor score for rotated factor i as:  

1

n

i
i

Y f
=

=∑     or      ( )

1

n
R

i
i

Y f
=

=∑    (3.46) 

 The second linear combination technique applies weights to the (rotated) factor 

scores.  As opposed to subjective weights, eigenvalues contain information on factor 

importance.  The eigenvalues are normalized to represent a value between 0 and 1.  Each 

(rotated) factor is then multiplied by its normalized eigenvalue to produce weighted 

(rotated) factor scores.  Equation (3.47) depicts this method where iλ  represents the 

weight (normalized eigenvalue) for factor i as:  

1

n

i i
i

Y fλ
=

=∑     or      ( )

1

n
R

i i
i

Y fλ
=

=∑    (3.47) 

 The third method considers adjusting the (rotated) factor scores to reflect the same 

scale.  To achieve this, the (rotated) factor scores are normalized.  Equation (3.48) 

outlines methodology to normalize a particular (rotated) factor score, j, within factor i as: 

( )
( ) ( )

min
max min

ij i

i i

f f
f f
−

−
           (3.48) 

This normalized score is then added/subtracted similarly to method one (Equation 

(3.46)).  The % symbol represents the normalized (rotated) factor score: 

%

1

n

i
i

Y f
=

=∑     or      
%( )

1

n
R

i
i

Y f
=

=∑        (3.49) 
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 The final method combines methods two and three into a single statistic.  

Normalized (rotated) factor scores are calculated and these new scores are weighted by 

their normalized eigenvalues, as shown in Equation (3.50):  

%

1

n

i i
i

Y fλ
=

=∑     or      
%( )

1

n
R

i i
i

Y fλ
=

=∑          (3.50) 

 Table 17 summarizes the methods created using factor analysis.  These methods 

are only applied if factor analysis reduces the problem to two or more factors.  If factor 

analysis suggests the use of a single factor, these linear combination methods become 

unnecessary.  This single dimension problem permits the use of quadratic regression or 

ANNs to compute optimal robust settings or doubly robust settings.   
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Table 17. Summary of (Rotated) Factor Score Reductions 

Sum Factor Scores Sums factor scores appropriately 

1

n

i
i

Y f
=

=∑  

Sum Weighted Factor Scores Weight factors by the eigenvalues (normalized to 1) and sum 
appropriately 

1

n

i i
i

Y fλ
=

=∑  

Sum Normalized Factor Scores Normalize factor score and sum appropriately %

1

n

i
i

Y f
=

=∑  

Sum Weighted Norm. 
 Factor Scores 

Normalize factor scores, weight factors by eigenvalue, and sum 
appropriately 

%

1

n

i i
i

Y fλ
=

=∑  

Sum Rot. Factor Scores Sums rotated factor scores appropriately ( )

1

n
R

i
i

Y f
=

=∑  

Sum Weighted 
 Rot. Factor Scores 

Weight rotated factor scores by the eigenvalues (normalized)  
and sum appropriately 

( )

1

n
R

i i
i

Y fλ
=

=∑  

Sum Normalized  
Rot. Factor Scores 

Normalize rotated factor scores and sum appropriately %( )

1

n
R

i
i

Y f
=

=∑  

Sum Weighted Norm.  
Rot. Factor Scores 

Normalize rotated factor scores, weight rotated factors by eigenvalue, 
and sum appropriately 

%( )

1

n
R

i i
i

Y fλ
=

=∑  
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3.5.2 Factor Analysis Problem 
 
 To demonstrate factor analysis on a multiple response problem, a simple five 

response problem was created.  The five responses, 1 2 3 4 5, , , ,y y y y y , required the first 

three minimized and last two maximized.  The problem was constructed to reflect 

different optimal solutions among several responses.  Two control variables and two 

noise variables were utilized.  To re-sample data for each response, a 2 23 2×  crossed 

array design, resulting in 36 runs, was implemented.  An error term of 

( )~ 0, 0.9Normalε  was applied to each model to allow for variation in re-sampling of 

data.  Equations (3.51)-(3.55) represent the true regression models for the five responses. 

2 2
1 1 2 1 2 1 2

1 2 1 1 1 2 2 1 2 2

( , ) 4.2 1.21 0.92 0.05 0.07 1.11 0.88
1.97 0.35 0.54 0.22 0.85

y x z x x z z x x
x x x z x z x z x z ε

= + − − + + +
+ + − − − +

    (3.51) 

2 2
2 1 2 1 2 1 2

1 2 1 1 1 2 2 1 2 2

( , ) 4 1.2 1.00 0.05 0.1 1.00 1.00
2 0.55 0.65 0.18 0.90

y x z x x z z x x
x x x z x z x z x z ε

= + − + + + +
+ + − − − +

    (3.52) 

2 2
3 1 2 1 2 1 2

1 2 1 1 1 2 2 1 2 2

( , ) 20 2.4 2.1 1.00 0.79 2.79 1.66
0.94 1.00 0.01 1.31 0.11

y x z x x z z x x
x x x z x z x z x z ε

= + − + + + −
+ + + − + +

    (3.53) 

2 2
4 1 2 1 2 1 2

1 2 1 2 2 1 2 2

( , ) 21 4.2 2 0.60 0.90 1.1 0.90
0.02 0.06 0.11 0.15

y x z x x z z x x
x x x z x z x z ε

= − − − + + +
+ − + + +

               (3.54) 

2 2
5 1 2 1 2 1 2

1 2 1 1 1 2 2 1

( , ) 19 3.9 2 1.21 1.57 1.22 1.00
2.03 0.88 0.84 1.2

y x z x x z z x x
x x x z x z x z ε

= − − + − − +
+ − + − +

               (3.55) 

 The true optimal robust settings for each response were calculated by using a full 

five level ( )45  factorial design.  This design was replicated 100 times to collect a 

generous amount of data for accuracy.  A mean and variance value was calculated across 
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all noise variable combinations for each unique control setting combination.  Finally, an 

LT value was computed based on the response being a minimum or maximum.  The 

minimum LT value was selected in all instances, with the corresponding control settings 

representing the optimal robust settings.  The true optimal settings for each response 

problem is given in Table 18. 

Table 18. Optimal Settings for Five Response Problems 
Response x1 x2 Optimal LT

Y1 -1 1 5.9
Y2 -1 1 4.33
Y3 -0.5 1 237.18
Y4 -1 -1 -855.48
Y5 -1 -1 -695.8  

 Individually, the settings for the first three responses were similar.  Also, the final 

two responses possessed identical optimal robust settings.  Quadratic regression and 

ANNs were applied to the five responses individually to demonstrate their capability in 

accurately modeling the problems.  As a side note, RBFNNs and GRNNs obtained 

similar results.  Table 19 displays the results, which show accurate modeling was 

performed using either technique.  This was expected for quadratic regression because 

the true models are quadratic in nature.       

Table 19. Settings from QR and ANN for Five Responses 

Response x1 x2 x1 x2
Y1 -1 1 -1 1
Y2 -1 1 -1 1
Y3 -0.5 1 -0.5 1
Y4 -1 -1 -1 -1
Y5 -1 -1 -1 -1

Quadratic Regression ANNs

 

Factor analysis was applied to the five responses.  A factor loadings matrix was 

constructed to determine which responses could be grouped together.  Table 20 displays 
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the factor loadings matrix which shows two important factors.  The first factor grouped 

the minimized responses while the second grouped the maximized responses.  These two 

factors explained 92% of the variance.   

Table 20. Factor Loadings Matrix 
Factor 1 Factor 2

Y1 0.9224 0.3041
Y2 0.9179 0.3205
Y3 0.8017 0.0741
Y4 -0.4531 0.7675
Y5 -0.3422 0.8367  

 The MATLAB® function, rotatefactors, was applied to this data to determine the 

rotated factors loadings matrix.  Three different factors were suggested when rotating the 

factors.  The first two responses was Factor 1, the maximized responses were Factor 2, 

and the third minimized response corresponded to its own factor.  Table 21 displays the 

rotated factors loadings matrix and the corresponding responses.   

Table 21. Rotated Factors Loadings Matrix 
Rot. Factor 1 Rot. Factor 2 Rot. Factor 3

Y1 0.9613 -0.0691 -0.2503
Y2 0.9601 -0.0514 -0.2561
Y3 0.4202 -0.1395 -0.8861
Y4 -0.1767 0.8968 -0.0113
Y5 0.0645 0.8868 0.1803  

 Factor analysis reduced the five responses into a more manageable two or three 

response problem depending on whether rotation was utilized.  The issue of multiple 

responses remained evident.  Different techniques to handle problems with more than one 

factor were give in Table 17.  All eight techniques were applied for comparison.   

 Quadratic regression and ANNs were applied to the (rotated) factor scores for 

modeling.  This approach differed from examining factor plots to choose optimal settings.  
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For simplicity purposes, a step size of .5 was utilized on each control variable.  The 

results are summarized in Table 22, including “General” which simply added/subtracted 

the standardized response data (Davis, 2009). The table reports the factor analysis method 

performed, its mathematical notation, and the optimal settings obtained through quadratic 

regression and ANNs.    

Table 22. Robust Solutions for (Rotated) Factor Reduced Methods 

X1 X2 X1 X2

Sum Factors -1 -1 -1 -1

Sum Weighted 
Factors

-1 1 -1 1

Sum Norm. 
Factors

-1 -1 -1 -1

Sum Weighted 
Norm. Factors

-1 1 -1 1

Sum Rot. Factors -1 1 -1 1

Sum Weighted 
Rot. Factors

-1 1 -1 1

Sum Norm. Rot. 
Factors

-1 1 -1 1

Sum Weighted 
Norm. Rot. 

Factors

-1 1 -1 1

General 0.5 0.5 0.5 0.5

Quad. Reg. ANNsMethod Math

1 2 3 4 5R R R R R+ + − −

1 2F F−

1 1 2 2F Fλ λ−

% %
1 2F F−

% %
1 1 2 2F Fλ λ−

( ) ( ) ( )
1 2 3

R R RF F F− −

( ) ( ) ( )
1 1 2 2 3 3

R R RF F Fλ λ λ− −

% % %( ) ( ) ( )
1 2 3

R R RF F F− −

% % %( ) ( ) ( )
1 1 2 2 3 3

R R RF F Fλ λ λ− −
 

 
 Quadratic regression and ANN were identical in results obtained.  All of the 

results with exception of “General”, summing the factor scores, and summing the 

normalized factor scores suggested robust settings of [-1 , 1].  To determine how “good” 
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these solutions were, the true LT values for each response was examined given each 

particular combination of settings, given in Table 23.  The highlighted cell in each 

response column represents the optimal LT for that particular response, as shown in 

Table 18.    

Table 23. LT Values for Factor Analysis Problem 
x1 x2 Y1 Y2 Y3 Y4 Y5
-1 -1 78.61 73.99 481.43 -855.48 -695.80
-1 -0.5 42.18 37.67 468.17 -759.50 -559.49
-1 0 21.27 17.73 421.02 -692.68 -459.23
-1 0.5 10.50 8.07 345.55 -651.79 -388.05
-1 1 5.90 4.33 251.48 -634.68 -340.73

-0.5 -1 56.09 53.44 424.91 -692.08 -595.19
-0.5 -0.5 31.95 28.81 421.37 -606.28 -492.14
-0.5 0 18.59 15.75 385.28 -546.99 -418.94
-0.5 0.5 12.24 9.89 321.02 -510.89 -370.30
-0.5 1 10.51 8.61 237.18 -495.92 -342.40

0 -1 45.22 43.06 428.35 -572.06 -475.09
0 -0.5 29.51 26.59 433.90 -494.47 -403.77
0 0 21.64 18.61 406.12 -441.26 -356.60
0 0.5 19.42 16.49 348.23 -409.18 -329.74
0 1 22.06 19.36 267.61 -396.00 -321.11

0.5 -1 43.32 40.60 492.01 -487.45 -345.12
0.5 -0.5 34.19 30.48 507.99 -416.28 -302.19
0.5 0 31.75 27.52 487.78 -367.77 -278.11
0.5 0.5 35.38 30.82 433.38 -338.68 -270.60
0.5 1 45.92 41.27 350.98 -326.88 -279.02
1 -1 49.96 45.52 628.01 -432.27 -217.37
1 -0.5 47.58 41.71 657.77 -365.55 -197.54
1 0 52.51 45.44 646.34 -320.38 -191.76
1 0.5 65.75 57.60 594.52 -293.43 -199.21
1 1 89.71 80.79 507.33 -282.65 -220.71  

 Table 23 contains LT values based on different ranges depending on the response.  

To account for this, a percentage from optimal value was taken on each response.  This 

was calculated by taking each LT value (in a particular response), and determined the 

percentage distance this value was from the optimal value (highlighted cell).  Table 24 

displays the percentage from optimal values.  A column is appended on Table 24 to 

represent the average percentage distance a particular setting is from the optimal values.  
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Finally, this Table 24 is sorted on this column to represent the suggested true optimal 

settings for this problem.    

Table 24. Percentage From Optimal LT Values 
x1 x2 Y1 Y2 Y3 Y4 Y5 Average
-1 1 0.00 0.00 6.03 25.81 51.03 16.57

-0.5 1 78.07 98.95 0.00 42.03 50.79 53.97
-1 0.5 77.93 86.30 45.69 23.81 44.23 55.59

-0.5 0.5 107.42 128.39 35.35 40.28 46.78 71.64
-0.5 0 215.16 263.77 62.44 36.06 39.79 123.44

0 0.5 229.10 280.74 46.82 52.17 52.61 132.29
-1 0 260.48 309.40 77.51 19.03 34.00 140.08
0 1 273.89 347.08 12.83 53.71 53.85 148.27
0 0 266.80 329.74 71.23 48.42 48.75 152.99
0 -0.5 400.16 514.19 82.94 42.20 41.97 216.29

-0.5 -0.5 441.49 565.46 77.66 29.13 29.27 228.60
0.5 0 438.07 535.49 105.66 57.01 60.03 239.25
0.5 -0.5 479.46 604.04 114.18 51.34 56.57 261.12
0.5 0.5 499.73 611.79 82.72 60.41 61.11 263.15
-1 -0.5 614.86 769.93 97.39 11.22 19.59 302.60

0.5 -1 634.19 837.57 107.44 43.02 50.40 334.52
0.5 1 678.29 853.07 47.98 61.79 59.90 340.21
0 -1 666.49 894.48 80.60 33.13 31.72 341.28
1 -0.5 706.38 863.20 177.33 57.27 71.61 375.16
1 -1 746.74 951.30 164.78 49.47 68.76 396.21
1 0 790.05 949.46 172.51 62.55 72.44 409.40

-0.5 -1 850.74 1134.12 79.15 19.10 14.46 419.51
1 0.5 1014.47 1230.23 150.66 65.70 71.37 506.49
-1 -1 1232.44 1608.80 102.98 0.00 0.00 588.84
1 1 1420.53 1765.87 113.90 66.96 68.28 687.11  

 According to the results of the final column in Table 24, it was suggested that the 

settings [-1 , 1] were the true optimal settings for all five responses.  Using these settings 

achieved the least difference from the optimal solutions for any response.  According to 

Table 22, most of the derived factor analysis linear combinations determined these exact 

results.   

The un-weighted factor scores, settings corresponding to  [-1 , -1], were the only 

methods unable to obtain the optimal solution.  This was most likely due to the fact that 

responses 4 and 5 should not have been held at the same weight as the other three.  

Finally, the “General” settings, [0.5 , 0.5], corresponded to the “middle of the road” 

suggested settings.  For this example, using this method never achieved an optimal 
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solution for any response, but attempted to avoid performing consistently bad in any 

situation.  

Although factor analysis was unable to reduce the five responses into a single 

dimension, the linear combination techniques proved useful.  Therefore, it is suggested 

the use of factor analysis (and the linear combination techniques) as a mathematical 

approach to reducing high dimension response problems into a single dimension is 

superior to simply summing standardized response data (Davis, 2009).    
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IV. Application 

4.1 Overview 

 In Chapter 3, research methodology was discussed.  Examples of three different 

areas of research relating to robust parameter design were presented.  The first area 

involved a search for new control variable settings that guard against system degradation.  

The second area utilized artificial neural networks rather than quadratic regression to fit 

highly nonlinear problems.  Finally, factor analysis was implemented to reduce the 

dimensionality of multiple response problems.   

 These three techniques were applied to a computer algorithm developed by 

Johnson (2008).  The computer algorithm, an autonomous global anomaly detector 

known as AutoGAD, has demonstrated usefulness in locating targets (anomalies) in 

hyper-spectral imagery (HSI).  AutoGAD is currently employed using control settings 

suggested by Johnson, which were derived through experience.  This research determined 

more robust (and doubly robust) settings than those currently implemented or previously 

researched, as in Davis (2009).   

 A background on hyper-spectral imagery, an explanation of AutoGAD, and 

results obtained from applying the new techniques to AutoGAD will be provided in this 

chapter.   

4.2 Hyper-spectral Imagery 

 Hyper-spectral images are taken of an object or area of interest much like a digital 

photograph.  The primary difference between the hyper-spectral images and digital 
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photographs lies within the region where the electromagnetic (EM) spectrum of the 

image is taken.  The EM spectrum is displayed in Figure 24 for reference.  The typical 

photograph produced from a common camera uses the visible part of the spectrum.  This 

consists of a small number of bands; possibly just one band if dealing with black and 

white photographs.  HSI utilizes the region from ultraviolet to infrared, as highlighted in 

Figure 25.  The highlighted area consists of hundreds of bands, thus allowing for more 

information to be obtained about the object/area of interest.     

 

Figure 24. Electromagnetic Spectrum (Pabich, 2002) 
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Figure 25.  HSI range in EM spectrum (Landgrebe, 2003) 
 

The capabilities of the HSI sensors are presented in detail by Pabich (2002).  HSI 

sensors collect some form of reflected natural light, such as sunlight, from different 

objects.  The energy of the reflected light is summarized into wavelength bins of the EM 

spectrum.  Information given by the reflectance of objects allows for detection and 

identification.   

Once the images are taken, a three dimensional HSI data cube is constructed, as 

seen in Figure 26.  Viewing the cube from the spatial dimensions (two dimensional: i and 

j) is the same as viewing a photograph on a piece of paper.  The spectral dimension (k) 

acts much like a stack of photographs on a table; each photograph is the same image but 

represents a different band of the EM spectrum.  A representation of the spectral 

dimension (k) of a data cube is given in Figure 27.   
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Figure 26.  HSI Cube Example (Shaw et al., 2002) 
 

 

Figure 27. Layers of Data in Spectral Dimension (Miller, 2009) 
 

To analyze the HSI data cube, the data in each image is converted into a two-

dimensional matrix (Smetek, 2007).  Suppose data from a hyper-spectral image that is 
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100 pixels wide by 75 pixels long contains 300 bands.  This results in 7500 pixels with 

300 spectral data points.  Each pixel across the 300 spectral bands (7500 pixels) is 

converted into a single column in a new data matrix.  The final data matrix size is 300 

rows by 7500 columns, where each column represents a single pixel in the original image 

across all 300 spectral bands.  This matrix is transposed to perform multivariate analysis.  

The process of transforming the HSI images into a matrix that can be utilized in numeric 

calculations (Miller, 2009) is depicted in Figure 28.   

 

Figure 28. Transforming HSI Cube into Data (Miller, 2009) 
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4.3 AutoGAD 

 Johnson (2008) developed an autonomous global anomaly detector (AutoGAD) 

algorithm which provides information on the location of possible targets (anomalies) in 

real time.  This computer algorithm utilizes the data matrix obtained from HSI data cubes 

to quickly and accurately locate possible targets within an image (Johnson, 2008; Davis, 

2009; Miller, 2009).  AutoGAD is written in MATLAB® and inputs HSI data to provide 

a resultant image of where targets are located.  For testing purposes, AutoGAD has the 

capability to take “truth” images to determine the performance of the algorithm.  A small 

discussion is provided on how AutoGAD works, and for a more complete understanding, 

the reader is referred to Johnson (2008).  

 After converting the HSI data into a two-dimensional matrix, as seen in Section 

4.2, the algorithm was employed to assist the user in finding targets within the images, as 

depicted in Figure 29 (Johnson, 2008).   

 

Figure 29.  AutoGAD Algorithm 

The first step applied principal components analysis (PCA) to the data in order to 

reduce the dimensionality.  Once the dimensionality was reduced, the data was centered 

and scaled around zero with unit variance, which is known as whitening.  Johnson (2008) 

proposed a Maximum Distance Secant Line (MDSL) to ascertain the amount of variance 

that should be retained in the dimensionality reduction following the whitening stage.   
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The second step sent the reduced data matrix through a process known as 

independent components analysis (ICA).  ICA is not discussed here and the reader is 

referred to Johnson (2008) and its appropriate references.   

Step three, feature selection, determined which objects were possible targets.  A 

key assumption of AutoGAD is that the targets are rare in occurrence and are truly 

anomalies.  Histograms were constructed to determine the frequency of the potential 

targets.  Also, signal-to-noise ratio (SNR) statistics were employed to distinguish the 

targets from background noise.  Thresholds were set to determine the pixels that fell out 

of the range of the background pixels.  Miller (2009) extended this work which refined 

the thresholds for faster and better classification of potential targets.   

The final step identified which pixels were indeed targets.  If some target pixels 

were very close to what is referred to as the “zero bin,” an iterative adaptive noise (IAN) 

filtering technique was utilized by the algorithm for better distinguishing between the 

targets and background.   

4.3.1 AutoGAD Outputs   

The typical output for AutoGAD is a dark image with highlighted spots in 

different colors which represent the targets, or anomalies.  Then, the user can distinguish 

where these targets were located by comparing the outputted images to the original 

images inputted into AutoGAD.   

Alternatively, if the user possesses a “truth mask” to accompany the images, four 

outputs can be obtained from AutoGAD to determine the capability of the algorithm in 

detecting anomalies within images.  The first output is “time,” which is measured in 
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seconds.  This reflects the amount of time it takes for the algorithm to complete its 

“search” through the image.  “True Positive Fraction” (TPF) is the second output which 

compares how well AutoGAD predicted detecting the anomalies against the “truth 

mask.”  This value is obtained by taking the ratio of the number of pixels that AutoGAD 

correctly called targets (“T”) to the number of real target pixels (T) in the truth image 

or (" "/ )P T T .  The truth value is in the denominator while the percentage of correct 

pixels identified by AutoGAD is in the numerator.  TPF will always be a value between 

zero and one.  The third output, “False Positive Fraction” (FPF), is computed by dividing 

the number of pixels incorrectly labeled targets (“T”) by the true number of non-target 

pixels (F) or (" "/ )P T F .  Again, this value ranges between zero and one.  Finally, 

“Target Fraction Percent” (TFP) is the ratio of true positives to the sum of true positives 

and false positives.   

The objective of the algorithm is to accurately detect all anomalies in a quick 

manner (Johnson, 2008).  Within AutoGAD, different settings have to be selected by the 

user which influences the four outputs of the algorithm.  Specific combinations of 

settings cause increases/decreases in detection performance as well as processing time for 

different images.  Different images also have an effect on the outputs as the optimal 

combination of settings for a particular image is not uniform for all images.  Thus, robust 

parameter design (RPD) is desired to determine the best settings.  

4.3.2 AutoGAD Control Variables   

AutoGAD contains eleven controllable variables that need to be set prior to 

running the algorithm.  Table 25 displays the control variable name, type, and range.  For 
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detail on how each control variable works in AutoGAD, the reader is referred to Johnson 

(2008).   

Table 25. Control Variables in AutoGAD 
Control Variable Type Range
Dimension Adjust Discrete [-2 , 2]

Max Score Threshold Continuous [6 , 14]
Bin Width SNR Continuous [0.01 , 0.1]

PT SNR Threshold Continuous [1 , 6]
Bin Width Identify Continuous [0.01 , 0.1]

Smooth Iterations High Discrete [50 , 150]
Smooth Iterations Low Discrete [5 , 45]

Low SNR Continuous [4 , 14]
Window Size Discrete [3 , 11]

Threshold Both Sides Discrete [0 , 1]
Clean Signal Discrete [0 , 1]   

4.3.3 AutoGAD Noise Variables   

AutoGAD was a good candidate for RPD application not only because of the 

eleven control variables, but also because of the possibility of noise in the system.  Davis 

(2009) first attempted to capture the noise within AutoGAD by stating the images 

themselves were noise.  This was a reasonable suggestion since it is unknown what image 

will be sent through AutoGAD for detection purposes.  Davis suggested that the noise 

variables were categorical.  Although research exists for dealing with categorical noise 

variables (Brenneman & Myers, 2003), constructing the mean and variance models 

became complicated and involved prior probabilities.  Here, an alternative method of 

modeling noise was considered in which continuous noise variables were implemented.   

Three new noise variables were constructed for the AutoGAD algorithm by 

Mindrup et al. (2010).  The noise variables required a “truth mask” to determine the 

appropriate output values for an image.  The percentage of target pixels within each 
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image was considered as the first noise variable.  This was calculated by taking the ratio 

of number of target pixels to the number of background pixels.   

A Fisher’s ratio was calculated for the second noise variable.  Lohninger (1999) 

described the Fisher’s ratio as a measure for the discriminating power of a particular 

variable.  It attempted to portray the overlap of two distributions through mean ( )µ and 

variance ( )2σ .  Class 1 was considered the target class and class 2 was the background 

class, as shown in Equation (4.1):    

2 2
1 2
2 2
1 2

f µ µ
σ σ

−
=

+
         (4.1) 

The final noise variable considered was the number of clusters in a given image.  

AutoGAD employed an X-means clustering algorithm recommended by Williams (2007) 

which determined the number of clusters by partitioning observations into different 

clusters based on their mean values.  These three noise variables were developed to 

provide characteristics of an image rather than examining the image as a categorical 

variable.  All three noise variables developed were continuous in nature allowing for a 

traditional RPD.   

4.3.4 AutoGAD Setup Summary   

A RPD was performed on AutoGAD to determine settings for the eleven control 

variables based on the three suggested noise variables.  Eight images, as well as their 

“truth masks,” were provided to the author for research on AutoGAD.  To obtain more 

data, each of the eight images was divided in half allowing for 16 images to be analyzed.  

When performing RPD, eight half-images were used for training (quadratic regression or 
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artificial neural networks) and the other eight for testing, verification, and validation.  

This method allowed for a holdout set which determined how results would look if the 

RPD settings were implemented on images never before seen, thus providing more real-

life scenario results. 

This method differed from Johnson (2008) and Davis (2009) who each developed 

control variable settings based on knowledge of all 16 half-images.  This can color the 

results since no new information was presented in AutoGAD to determine its robustness 

to new images.  This research combated this problem through utilizing the holdout 

method discussed above.     

4.4 AutoGAD and RPD 

 As explained in Section 4.3.1, AutoGAD contained four different output values 

for detection:  Time, TPF, FPF, and TFP.  This constituted a four response problem in 

which traditional quadratic regression and ANNs were applied to the AutoGAD data sets 

to derive mean and variance models for each output.  These results were then compared 

to demonstrate the benefit of using ANNs when quadratic regression fails to model the 

problem appropriately.   

As will be shown, all four responses did not share the same combination of 

optimal robust settings.  This warranted the use of RPD with multiple responses to 

combine the four responses into a single dimension.  A discussion is provided in Section 

4.5 on the techniques used to formulate a model(s) which considered all four responses 

simultaneously in AutoGAD.     
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4.4.1 AutoGAD RPD Design   

To conduct a RPD, an appropriate design was constructed to intelligently collect 

data from AutoGAD.  A full factorial design with 11 control variables and three noise 

variables was too large of a design to choose due to the time required to collect data.  As 

shown in the example problems of Chapter 3, combined array designs were appropriate 

when constructed correctly.  Two methods of performing ANNs that involved “pre-

processing” and “post-processing” were presented in Section 3.4.1.  The former required 

a crossed array design to determine appropriate mean and variance values across noise 

settings.  Therefore, a central composite design (CCD) on the control variables was 

crossed with a 32  factorial design on the noise variables.  The resultant design contained 

2160 CCD runs crossed with eight noise runs resulting in 17280 design points.   

In the CCD, nine of the control variables were varied over five levels:  One center 

point, one at the plus and minus factorial points, and one at the plus and minus face-

centered points (same as the factorial).  These nine control variables were tested at each 

plus and minus factorial point of the remaining two control variables, since only a range 

of [0,1] was utilized on these two controls.  This CCD allowed an appropriate number of 

samples taken from the large design space of the control variables.  A sample segment of 

the CCD is given in Appendix B.  This design was large, but since the AutoGAD 

algorithm operated relatively quickly, collecting this amount of data was not too costly in 

terms of time or money.  Finally, this design allowed for adequate comparison of 

quadratic regression versus the ANNs.    

For this research, all settings were in terms of coded values.  This resulted in 

every control or noise variable setting to range from [-1 , 1].  To code natural (uncoded) 
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values, Equation (4.2) was used (Myers & Montgomery, 2002), where ξ  represented the 

ith natural setting of the jth variable to obtain the coded (x) setting.  Below, ( )max jξ⋅  

represented the maximum value for the jth variable across all rows (i) of natural settings:     

( ) ( )

( ) ( )

. .

. .

max min
2

max min
2

j j
ij

ij
j j

x

ξ ξ
ξ

ξ ξ

 +
 −
 
 =

 −
 
 
 

    (4.2) 

 Following the analysis of RPD, the optimal settings were calculated in coded 

terms.  These values were then converted back to their natural settings by applying 

Equation (4.3):   

( ) ( ) ( ) ( ). . . .max min max min
2 2

j j j j
ij ijx

ξ ξ ξ ξ
ξ

    − +
    = ∗ +

        
 (4.3) 

4.4.2 AutoGAD Quadratic Regression RPD   

Once the CCD was set up, data was collected in AutoGAD based on the design 

points for all four response values for each run.   At this point, AutoGAD was separated 

into four different problems, one for each response.  Box-Cox (Myers & Montgomery, 

2002) analysis was applied to the resultant response values which determined the need 

for any transformations.  A lambda value, which represents the power to which the 

response data is raised based on the Box-Cox transformation, was obtained and response 

values were re-calculated.  This transformed data raised the 2R statistic and provided a 

better fit.   
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Quadratic regression was applied to each of the four outputs separately and an 

overall process model for each response was calculated.  The overall process model was 

derived by calculating 1( ' ) ( ' )X X X Y− where X represented the design with a column of 

ones added to the beginning and Y represented the response examined.  This process 

model became quite large containing one intercept term, 11 control main effects, 11 

control quadratic effects, 55 control by control interaction effects, three noise main 

effects, and 33 control by noise interaction effects, totaling 114 terms.  As previously 

discussed, no noise by noise interactions were considered, based on suggestions by Myers 

& Montgomery (2002).  However, including the noise by noise interaction would have 

increased the 2R  values and provided better fits.   

Many of the 114 terms were insignificant according to the Analysis of Variance 

(ANOVA) table; therefore, a backward stepwise regression approach was employed to 

reduce the model.  Once the full model was obtained, an ANOVA analysis was 

performed and the term with the highest p-value (assuming a p-value > 0.10) was 

removed from the model.  The process model was then recalculated to obtain new 

coefficients and the term with the highest p-value was removed.  This process was 

continued until a reduced model was developed that contained only significant terms (p-

value <= 0.10).  As a side note, the control main effects and the noise main effects were 

never removed to maintain hierarchy and to establish mean and variance models for 

analysis.  If a main effect was removed, this meant that the settings for that particular 

control variable would have no effect on the overall response or variance of the response.  

Due to the sizes of the reduced models, the models are not presented in this document.         
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Once the reduced model was obtained, it was then separated into its appropriate 

mean and variance models as shown in Equations (2.7) and (2.8).  These two equations 

were employed as dual responses in an effort to minimize the variance and satisfy 

constraints on the mean.  Also, it is important to note that this research assumed 

continuous control and noise variables.  This dual response problem was solved using the 

LT formulations in Equation (4.4):  

2 2
min

2 2
max

2 2
arg

ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]

ˆ ˆ ˆ ˆ{ [ ( , )]} [ ( , )]

ˆ ˆ ˆ ˆ{ [ ( , )] } [ ( , )]

z z

z z

t et z z

MSE u y x z y x z

MSE u y x z y x z

MSE u y x z T y x z

σ

σ

σ

= +

= − +

= − +

               (4.4) 

 Time and FPF responses were minimized while TPF and TFP were maximized.  

All instances in Equation (4.4) required the function to be minimized.  To search for the 

optimal LT value and its settings, a complete enumeration of integer control variables and 

a coarse discretization of the remaining control variables was performed.  This resulted in 

320,000,000 combinations of the 11 control variables.  MATLAB® calculated LT values 

of this enumeration set in less than two hours.  Other, possibly quicker, methods could be 

employed; however, this enumeration technique was utilized to avoid falling into local 

minimum solutions.   

 After obtaining the LT values for all possible combinations, the control settings 

associated with the minimum LT value were chosen to represent the robust parameters.  

The optimal control settings for the four different outputs tested are reported in Table 26, 

as well as the expected mean, variance, and LT values.  These control settings should 

prove robust to new images introduced into AutoGAD.  
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Table 26. Optimal Settings for 4 Responses Suggested by QR 
Control Time TPF FPF TFP

DA 2 -2 -2 -2
MST 6 6 6 6

BWSNR 0.01 0.01 0.01 0.08
PTSNR 1 1 1 5

BWI 0.1 0.01 0.01 0.1
TBS 0 0 0 0
CS 1 0 0 1
SIH 150 50 50 150
SIL 45 45 5 5

LSNR 14 14 4 14
WS 3 3 5 11

Outputs
Pred. Mean 3.05 1.102 0.13 1.12

Pred. Var 12.033 0.189 0.45 0.398
Pred. LT 21.34 -1.026 0.4669 -0.8659  

 As seen in Table 26, none of the four responses shared the same optimal robust 

settings.  More importantly, the four responses only agreed on the same setting for one of 

the eleven control variables: MST.  The mean results for TPF and TFP indicated values 

higher than one, which was infeasible.  This indicated the lack of fit qualities these 

quadratic models possessed.  To test the validity of the results in Table 26, these settings 

were applied to the eight untested images.  The results for each respective response were 

averaged across the eight images to establish a mean and variance.  Finally, to maintain 

consistency with the selection of the settings, the LT values were calculated.  The results 

when the suggested optimal settings utilizing quadratic regression were tested are 

presented in Table 27.   



 

 129 

Table 27. Testing Results for Optimal Settings in QR 
Mean Variance LT

Time 39.0214 1590.1000 3112.80
TPF 0.9752 0.0004 -0.9507
FPF 0.1180 0.0030 0.0170
TFP 0.8739 0.0431 -0.7207  

 Prior to explanation of the results in Table 27, it is important to note that the LT 

values for TPF and TFP were negative.  This result was expected due to the construction 

of a maximized response LT problem in Equation (4.4).  The designation of a negative 

sign on the mean-squared term of the LT drove the LT values into the negative response 

realm.  The LT value was still minimized; therefore, the settings with the largest negative 

value were optimal.    

The results given in Table 27 appear to be appropriate.  TPF and TFP obtained 

rather large mean values while maintaining low variance.  The mean of FPF was higher 

than desired, but contained a very small variance value.  Finally, time appeared to do well 

in terms of mean but calculated an extremely large variance value.   

To aid in understanding the reasons time and FPF did not achieve great results, all 

four ANOVA tables and residual plots were examined.  Table 28 - Table 31 display the 

ANOVA tables for each response.  As seen in the tables, each model was significant; 

however, lack of fit was prevalent.  The strong significance in the lack of fit indicated the 

quadratic regression model did not accurately fit the data, which led to false conclusions.   

A coefficient of determination, or 2R , and its derivatives were utilized to assist in 

the explanation of ANOVA.  2R , the amount of variability accounted for in the data, was 

calculated as (Montgomery et al., 2004): 
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where ESS  was the sum of squares of residuals, TSS  was the total sum of squares, iy  

represented the true response values, and ˆiy  the fitted response values for n treatment 

rows (sample size). 

 The 2R  statistics increased as more terms were added to the model.  Another 

statistic, the adjusted 2R , only increased if the added terms to the model reduced the 

MSE value.  This statistic, for p terms (regressors), was calculated as: 
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 Finally, a predicted 2R  statistic was utilized which gave an indication on how 

well the model predicted new response data.  This is similar to 2R , except for each 

residual (i), the model was fit to the remaining n-1 sample, thus taking out the ith 

residual.  This type of residual analysis is known as the PRESS residual and is denoted as 

( )ˆ iy .  This predicted 2R  was computed as: 
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   These three 2R  statistics were examined in the ANOVA tables of each 

response.  In terms of time (Table 28), an 2R value of 0.37 was obtained.  This value was 

extremely low, which may help to explain the poor results reported in Table 27.  The 
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other three responses obtained 2R  values around 0.61 or 0.69.  These values indicated 

some ability quadratic regression had in fitting the given data.  Their predicted 2R values 

fell in the same general range, thus allowing for decent prediction of optimal control 

settings given new data.  However, great results were not expected due to the lack of fit 

significance.   

Table 28. ANOVA for Time 
Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 340.70 36 9.46 285.5 < 0.0001 significant
Residual 571.70 17246 0.03
Lack of Fit 570.01 16950 0.03 5.873 < 0.0001 significant
Pure Error 1.69 296 0.01
Cor Total 912.41 17282

R-Squared 0.3734
Adj R-Squared 0.3721
Pred R-Squared 0.3708  

Table 29. ANOVA for TPF 
Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 1435.25 60 23.92 451.40 < 0.0001 significant
Residual 912.90 17227 0.05
Lack of Fit 911.84 16931 0.05 14.95 < 0.0001 significant
Pure Error 1.07 296 0.00
Cor Total 2348.15 17287

R-Squared 0.6112
Adj R-Squared 0.6099
Pred R-Squared 0.6086  
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Table 30. ANOVA for FPF 
Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 9105.15 72 126.46 537.95 < 0.0001 significant
Residual 4046.90 17215 0.24
Lack of Fit 4046.36 16919 0.24 130.79 < 0.0001 significant
Pure Error 0.54 296 0.00
Cor Total 13152.05 17287

R-Squared 0.6923
Adj R-Squared 0.6910
Pred R-Squared 0.6899  

Table 31. ANOVA for TFP 
Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 1840.41 62 29.68 438.30 < 0.0001 significant
Residual 1166.56 17225 0.07
Lack of Fit 1166.07 16929 0.07 41.17 < 0.0001 significant
Pure Error 0.50 296 0.00
Cor Total 3006.97 17287

R-Squared 0.6120
Adj R-Squared 0.6107
Pred R-Squared 0.6095  

 Figure 30 displays the normal probability plots for each response: Time (top-left), 

TPF (top-right), FPF (bottom-left), and TFP (bottom-right).  As seen in the first plot 

(time), there was a heavy-tailed distribution.  This phenomenon caused the low 2R value 

and significant lack of fit.  Quadratic regression was not suggested for this response.  The 

normal probability plots for the other three responses all indicated a light-tailed 

distribution, which indicated a slight diversion from the normality assumption crucial to 

ANOVA.  However, the residuals fell near the line and decent 2R values were 

maintained.  
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Figure 30. Residual Plots for Time, TPF, FPF, TFP 
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4.4.3 AutoGAD ANN RPD   

Traditional RPD methodology was demonstrated on single response problems 

using quadratic regression, as shown in Section 4.4.2.  As discussed in the previous 

section, the 2R values were low and the lack of fit was significant for all four responses.  

Therefore, quadratic regression failed to properly fit the data, which produced possible 

non-optimal robust settings as a result.  Artificial neural networks (ANNs) were instituted 

at this juncture to provide better fits to these seemingly nonlinear problems.   

In order to construct the ANN to fit the data, the ANN needed to be trained 

properly.  To train the neural network, a hold-out method was utilized.  This method 

withheld one-third of the data for testing of the neural network and employed two-thirds 

for training (Kuncheva, 2004).  Withholding data from training allowed for the spread 

parameter of the network to be adjusted appropriately to its optimal setting.  The withheld 

data was tested at each spread increment and the root mean square error (RMSE) was 

calculated on the test set.  The spread value with the lowest RMSE was chosen and the 

network was considered trained.  An example spread versus RMSE plot is given in 

Figure 31.  Since two outputs (mean and variance) were calculated, a spread value and 

RMSE was attributed to each output.  Typically, the optimal spread was the same for 

each output; however, if they differed, a tradeoff assessment was necessary.  The plot in 

Figure 31 displays the spread versus RMSE for mean and variance for the output TPF.  

The optimal spread value was 0.85 for this response. 
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Figure 31. Spread vs. RMSE for TPF 

 
The hold-out method employed caused the ANNs to be at a disadvantage with 

respect to quadratic regression.  When training the network, ANNs only utilized two-

thirds of the data; whereas, quadratic regression utilized the entire data set for training.  

Although at a disadvantage, better results were obtained using ANNs.   

Since a crossed array design was implemented on AutoGAD, the “pre-

processing” ANN approach was employed due to its ability to fit a network in less time 

than the “post-processing” approach in the absence of noise variables as inputs.  This 

reduced the number of inputs from 14 to 11, which decreased the network calculation 

time.  As depicted previously in Figure 16, only the control variables were inputted and 

mean and variance values were outputted for every control variable combination.  For 
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each mean and variance value with respect to each unique combination of control 

variable settings, an LT statistic was calculated.  

In Section 4.4.2, a summary of the enumerated search performed on the setting 

space to determine optimal LT solutions was provided.  The same principle was applied 

at this point, but due to the construction of the MATLAB® code for neural networks, a 

coarser and reduced discretized data set was utilized.  The testing set was reduced to 

4,000,000 possible combinations as a result; however, an appropriate number of settings 

was tested for each control variable.    

Implementing the smaller exhaustive search placed the ANN at another 

disadvantage compared to quadratic regression.  First, the neural network used less data 

(only two-thirds) to train and fit appropriate mean and variance models.  Now, fewer 

possible combinations were searched in the LT space due to time restrictions.  However, 

the example problem tested in Section 3.4.2 employed the same hold-out principle and 

reduced enumerated search, yet yielded superior results to quadratic regression.   

The four response problems were examined separately and optimal robust settings 

were obtained for each response.  The results obtained using RBFNNs are reported in 

Table 32 and the optimal robust settings obtained using GRNNs are reported in Table 33.  

Along with the settings, the predicted mean, variance, and LT values are displayed from 

training the ANNs.    
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Table 32. Optimal Settings for Four Responses (RBFNN) 
Control Time TPF FPF TFP

DA -2 0 -2 -2
MST 14 6 6 6

BWSNR 0.1 0.07 0.1 0.1
PTSNR 6 3.5 6 6

BWI 0.01 0.04 0.1 0.1
TBS 0 1 0 0
CS 1 1 1 1
SIH 50 83 150 150
SIL 45 25 45 45

LSNR 4 11 14 14
WS 3 3 11 11

Outputs
Pred. Mean 6.9526 0.9933 0.0003 0.9058

Pred. Var 82.438 0.0002 6.278E-07 0.0529
Pred. LT 130.77 -0.9865 7.238E-07 -0.7676  

  

Table 33. Optimal Settings for Four Responses (GRNN) 

Control Time TPF FPF TFP
DA -2 2 -2 -2

MST 14 6 14 6
BWSNR 0.1 0.01 0.1 0.1
PTSNR 1 6 1 6

BWI 0.01 0.01 0.1 0.1
TBS 1 1 0 1
CS 0 0 1 1
SIH 150 50 50 150
SIL 45 5 45 45

LSNR 4 4 14 14
WS 11 11 11 11

Outputs
Pred. Mean 6.61 0.9864 0.0007 0.9154

Pred. Var 83.625 0.001 3.68E-06 0.0479
Pred. LT 127.31 -0.972 4.212E-06 -0.7901  

To determine the validity of using ANNs over quadratic regression, the settings in 

Table 32 and Table 33 were tested in AutoGAD on the 8 un-trained images.  Mean and 

variance were calculated for each combination of settings across all images tested.  From 
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the mean and variance, the LT statistic was calculated.  The LT statistic was employed to 

maintain consistency since it was used to determine the optimal robust settings.  The 

results for RBFNNs are reported in Table 34 and GRNN results are displayed in Table 35 

for the four responses. 

Table 34. Testing Results for Optimal Settings using RBFNN 
Mean Variance LT

Time 29.4 742.9 1606.5
TPF 0.9644 0.0019 -0.9282
FPF 0.0005 0.0000 0.0000
TFP 0.9158 0.0226 -0.8161  

Table 35. Testing Results for Optimal Settings using GRNN 
Mean Variance LT

Time 24.1 662.7 1245.7
TPF 0.9806 0.0010 -0.9606
FPF 0.0002 0.0000 0.0000
TFP 0.9074 0.0232 -0.8002  

 As seen in Table 34 and Table 35, appropriate results were obtained.  To measure 

the “goodness” of these results, they were compared to those obtained using quadratic 

regression.  A comparison of the settings for quadratic regression and the ANNs is shown 

in Table 36.  The results obtained when testing the robust settings when quadratic 

regression and ANNs were used are displayed in Table 37 - Table 40.   

Table 36. Optimal Settings for QR and ANNs 

Control QR RBFNN GRNN QR RBFNN GRNN QR RBFNN GRNN QR RBFNN GRNN
DA 2 -2 -2 -2 0 2 2 -2 -2 -2 -2 -2

MST 6 14 14 6 6 6 6 6 14 6 6 6
BWSNR 0.01 0.1 0.1 0.01 0.07 0.01 0.01 0.1 0.1 0.08 0.1 0.1
PTSNR 1 6 1 1 3.5 6 1 6 1 5 6 6

BWI 0.1 0.01 0.01 0.01 0.04 0.01 0.01 0.1 0.1 0.1 0.1 0.1
TBS 0 0 1 0 1 1 1 0 0 0 0 1
CS 1 1 0 0 1 0 0 1 1 1 1 1
SIH 150 50 150 50 83 50 50 150 50 150 150 150
SIL 45 45 45 45 25 5 45 45 45 5 45 45

LSNR 14 4 4 14 11 4 14 14 14 14 14 14
WS 3 3 11 3 3 11 3 11 11 11 11 11

Time TPF FPF TFP
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Table 37. Testing Results for QR and ANNs on Time 

Mean Variance LT
QR 39.02 1590.1 3112.8

RBFNN 29.39 742.9 1606.5
GRNN 24.15 662.7 1245.7

Time

  

Table 38. Testing Results for QR and ANNs on TPF 

Mean Variance LT
QR 0.9752 0.0004 -0.9507

RBFNN 0.9644 0.0019 -0.9282
GRNN 0.9806 0.0010 -0.9606

TPF

 

Table 39. Testing Results for QR and ANNs on FPF 

Mean Variance LT
QR 0.1991 0.0070 0.0466

RBFNN 0.0005 0.0000 0.0000
GRNN 0.0002 0.0000 0.0000

FPF

 

Table 40. Testing Results for QR and ANNs on TFP 

Mean Variance LT
QR 0.8739 0.0431 -0.7207

RBFNN 0.9158 0.0226 -0.8161
GRNN 0.9074 0.0232 -0.8002

TFP

 

 As seen in Table 36, extremely different settings were obtained using quadratic 

regression and ANNs, with the possible exception of TFP.  This indicated that the two 

methods of modeling the mean and variance were quite different.   

 In terms of time (Table 37), ANNs outperformed quadratic regression.  The 

ANNs reduced the average time by nearly 15 seconds and cut the variance value in half.  

GRNNs obtained a better result than the RBFNNs by obtaining a 22.5 percent reduction 

in LT value with respect to the LT obtained in quadratic regression.  These results 
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suggested that ANNs were clearly preferred to quadratic regression, especially since an 

2R  value of 0.37 was obtained.   

 TPF displayed the only possible scenario where quadratic regression was 

competitive.  As seen in Table 38, quadratic regression obtained a lower (higher 

negative) LT value than RBFNNs, but GRNNs were still preferred by obtaining the 

lowest LT value.  Although RBFNNs performed the worst in this scenario, their results 

remained competitive since they achieved similar means with slightly larger variances.   

 FPF conveyed strong results for ANNs as shown in Table 39.  An LT value of 

almost zero was obtained when either ANN was used, which provided a nearly perfect 

LT value.  Quadratic regression maintained low variance, but the mean value ballooned 

to 0.11, which indicated the presence of multiple false positive identifications.   

 Finally, the results shown in Table 40 represent superior results, in general, for 

ANNs as compared to quadratic regression for TFP.  Compared to quadratic regression, 

the RBFNNs and GRNNs saw an increased mean of 4.8 and 3.8 percent, respectively, 

while the variance was reduced.  This resulted in lower LT values for each ANN.     

 The results presented in Table 37 – Table 40 provided strong evidence in the 

usefulness of ANNs when quadratic regression fails to properly fit the data.  The extreme 

case was seen with time, since an 2R value of 0.37 was obtained.  However, the other 

three responses achieved an 2R  value in the range of 0.60-0.70, yet ANNs still performed 

better or the same as quadratic regression.  When dealing with problems containing 

highly nonlinear responses, as suggested in the AutoGAD problem, ANNs should be 

considered as an alternative to traditional quadratic regression.   
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4.5 AutoGAD and System Degradation 

 Optimal robust settings for the four responses of AutoGAD using quadratic 

regression and ANNs were presented in Sections 4.4.2 and 4.4.3.  These settings were 

expected to be robust under normal operating conditions of the algorithm.  However, new 

robust settings were necessary to guard against system degradation.  In this section, the 

performances of doubly robust settings are examined.    

As explained in Section 3.3, system degradation in software can be represented by 

being exposed to inputs beyond its experience and training.  In AutoGAD, this equated to 

a new image considered to be noisier than any image on which training was performed.  

A signal-to-noise ratio (SNR) was calculated for all eight available images.  The image 

with the largest SNR value was selected as the “noisiest” image.  This corresponded to 

Image 6 of the available images.  If this image was withheld from AutoGAD training, it 

was expected that AutoGAD would perform relatively poorly with respect to this image.  

That is to say, degraded performance was expected.  It is important to note that although 

this image was the “noisiest” it was not necessarily much noisier than the other images.  

In other words, it was not truly an outlier compared to the other seven images.  As a side 

note, all analysis performed in the previous sections contained both halves of Image 6 in 

the testing set; therefore, the same training data was utilized in this section.     

For simplicity, only two responses were utilized to test AutoGAD under system 

degradation using both quadratic regression and ANNs.  TPF and TFP were chosen as the 

responses, since both quadratic regression and ANNs performed well in determining their 

appropriate optimal settings.  Time was not considered due to the substantial lack of fit 
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that quadratic regression displayed for this response.  Also, FPF was not chosen since 

values of zero were obtained for nearly every image.     

4.5.1 Doubly Robust Settings in Quadratic Regression   

Quadratic regression was presented in Section 4.4.2 in which optimal robust 

settings for TPF and TFP, as given in Table 26, had associated LT values of * -0.9507Y =  

and * -0.7207Y = , respectively.  Recall, these values were negative due to both responses 

being maximized.  To determine the doubly robust settings, the algorithm outlined in 

Figure 10 was employed.   

The doubly robust algorithm was conducted until ** 0.7605Y = −  and 

** 0.5766Y = −  was realized, which was a 20 percent increase in LT.  *x was equal to the 

settings given in Table 26 corresponding to TPF and TFP.  The coefficients ( )oldC  to 

begin the gradient search corresponded to the coefficients used to construct the LT 

statistic to solve for *x .  Once the coefficients were obtained, the derivative of LT (Y) 

was taken with respect to these coefficients (C), 
lo dC

YY
C
∂

∇ =
∂

.  A step was then taken in 

the gradient direction and the new dual response problem was solved to find the 

minimum LT statistic and its corresponding control variable settings.  This process was 

repeated until **Y was realized.  The optimal control variable settings associated with 

**Y were considered to be doubly robust settings.  These settings should prove robust to 

noise variables as well as robust to system degradation.   

The doubly robust settings and original optimal robust settings were tested against 

Image 6 which represented system degradation in AutoGAD.  Eight replications of the 
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two combinations of settings were tested against both halves of Image 6 to obtain a mean, 

variance, and LT value.  The original robust settings as well as the doubly robust settings 

for output TPF are displayed in Table 41.  The results of these settings in TPF against 

Image 6 are reported in Table 42.   

Table 41. Original and Doubly Robust Settings for TPF 

Control Original Doubly Robust
DA -2 -2

MST 6 7
BWSNR 0.01 0.09
PTSNR 1 3

BWI 0.01 0.01
TBS 0 1
CS 0 0
SIH 50 150
SIL 45 45

LSNR 14 8
WS 3 3

TPF

 

Table 42. Image 6 Results for TPF Settings 

Mean Variance LT
Original 0.9627 0.0005 -0.9263

Doubly Robust 0.9634 0.0004 -0.9278

TPF - Quadratic Regression

 

 The results shown in Table 42 validated the use of doubly robust settings in the 

presence of system degradation.  By moving to a 20 percent increase in LT, the doubly 

robust settings guarded against images that caused degradation.  The doubly robust 

settings obtained a larger mean (desired) and smaller variance than the original robust 

settings for Image 6.  Recall, Image 6 was not necessarily a very noisy image, which 

indicates why the results did not differ as much as possibly expected.  This however 

changed when ANNs were examined. 
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 The same analysis was performed on TFP, with a slight change in the gradient 

step.  Originally, a 20 percent increase in LT was utilized, but this step size was deemed 

too large of an increase for this problem.  A substantial increase (not desired) in LT value 

was obtained with the doubly robust settings.  This step size will vary from problem to 

problem.  Therefore, instead of a 20 percent increase in LT, a five percent increase in LT 

was examined.  The settings for both the original and doubly robust with respect to TFP 

are displayed in Table 43 and the results obtained when these settings were applied to 

Image 6 are reported in Table 44.  Recall that eight replications were performed on Image 

6 to calculate a mean, variance, and LT statistic for each combination of settings.   

Table 43. Original and Doubly Robust Settings for TFP 

Control Original Doubly Robust
DA -2 -2

MST 14 14
BWSNR 0.1 0.1
PTSNR 6 6

BWI 0.08 0.09
TBS 0 0
CS 1 1
SIH 150 150
SIL 5 5

LSNR 14 14
WS 3 11

TFP

 

Table 44. Image 6 Results for TFP Settings 

Mean Variance LT
Original 0.9206 0.0110 -0.8365

Doubly Robust (5%) 0.9934 0.0004 -0.9864

TFP - Quadratic Regression

 

 Once again, the results portrayed that doubly robust settings were superior to 

original robust settings when faced with system degradation.  In fact, applying doubly 
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robust settings to Image 6 in terms of TFP yielded almost perfect results and increased 

the LT value significantly.  These results demonstrated the utility of doubly robust 

settings over typical robust settings to guard against system degradation.  The same 

analysis using ANNs rather than quadratic regression was applied to system degradation, 

as explained in the next section.     

4.5.2 Doubly Robust Settings in ANNs   

ANNs were shown to be the preferred choice over quadratic regression in Section 

4.4.3.  In what follows, doubly robust settings were also calculated using the gradient 

method outlined in Figure 23.  The same responses, TPF and TFP, were examined to 

determine doubly robust settings for RBFNNs and GRNNs.  Also, the same 20 percent 

increase in LT for TPF and five percent LT increase for TFP were maintained.   

Gradient analysis was applied to RBFNNs on the response TPF.  The original 

robust settings and the doubly robust settings are displayed in Table 45 for comparison.  

The results obtained when these two settings were applied to both halves of Image 6 over 

eight replications are reported in Table 46.  As seen in this table, the doubly robust 

settings achieved a better LT value.  Approximately a one percent increase was seen in 

the mean while a slight reduction of variance was observed, which led to the lower LT 

statistic collected with the doubly robust settings.  This further warranted the use of 

doubly robust settings in the presence of possible system degradation.   
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Table 45. RBFNN Original and Doubly Robust Settings for TPF 

Control Original Doubly Robust
DA 0 0

MST 6 6
BWSNR 0.07 0.07
PTSNR 3.5 3.5

BWI 0.07 0.04
TBS 0 0
CS 1 1
SIH 83 83
SIL 25 25

LSNR 11 11
WS 3 3

TPF

 

Table 46.  RBFNN Image 6 Results on TPF 

Mean Variance LT
Original 0.9649 0.0005 -0.9304

Doubly Robust 0.9774 0.0004 -0.9549

TPF - RBFNN

 

 Gradient analysis was then applied to GRNNs on TPF.  The settings for the 

original robust settings and doubly robust settings types are displayed in Table 47 and the 

results when applied to Image 6 are reported in Table 48.  This was one of the only 

instances in which the doubly robust settings failed to outperform the original settings.  

As depicted in Table 48, the original robust settings were nearly perfect in determining 

all targets within the image.  This situation made it difficult for any possible new settings 

to outperform the original settings.  Although the doubly robust settings failed to 

outperform the original robust settings, their difference was minimal.  Less than a one 

percent difference was observed between the means of each solution and the LT statistic 

of each solution.  Therefore, either combination of these settings were deemed 

appropriate for this new image.   
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Table 47. GRNN Original and Doubly Robust Settings on TPF 

Control Original Doubly Robust
DA 2 -2

MST 6 6
BWSNR 0.1 0.1
PTSNR 6 1

BWI 0.01 0.01
TBS 0 1
CS 1 1
SIH 150 50
SIL 5 5

LSNR 14 14
WS 3 3

TPF

 

Table 48. GRNN Image 6 Results on TPF 

Mean Variance LT
Original 0.9941 0.0000 -0.9881

Doubly Robust 0.9891 0.0000 -0.9782

TPF - GRNN

 

 As in quadratic regression, only TPF and TFP were examined.  Time resulted in 

large variance values and a significant lack of fit with quadratic regression.  FPF 

consistently maintained a mean value near zero for all images, making degradation 

difficult to capture.  Therefore, to remain consistent with quadratic regression, the 

response TFP was the only other response examined.  First, RBFNN gradient analysis 

was applied to this response.  The original robust settings and doubly robust settings for 

TFP are presented in Table 49.  The results when these settings were tested against Image 

6, with eight replications performed, are given in Table 50.  As seen in Table 50, a 

significant increase in performance was obtained using doubly robust settings as 

compared to the original robust settings.  The mean value increased nearly two percent 
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and the LT statistic raised about four percent.  Also, the variance reduced by two-thirds 

through the use of doubly robust settings.   

Table 49. RBFNN Original and Doubly Robust Settings on TFP 

Control Original Doubly Robust
DA -2 -2

MST 6 6
BWSNR 0.1 0.1
PTSNR 6 6

BWI 0.1 0.1
TBS 0 1
CS 1 1
SIH 150 150
SIL 45 45

LSNR 14 14
WS 11 11

TFP

 

Table 50. RBFNN Image 6 Results on TFP 

Mean Variance LT
Original 0.9641 0.0012 -0.9283

Doubly Robust 0.9879 0.0004 -0.9756

TFP - RBFNN

 

 GRNN gradient analysis was also applied to TFP.  The two combinations of 

settings are displayed in Table 51 and the results when replicated on Image 6 are 

presented in Table 52.  As seen with GRNNs in TPF, doubly robust settings were unable 

to perform better than the original robust settings.  The original robust settings already 

performed near perfect which made the probability of a different combination of settings 

to outperform the original settings nearly impossible.  However, the doubly robust 

settings remained competitive.  
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Table 51. GRNN Original and Doubly Robust Settings on TFP 

Control Original Doubly Robust
DA 2 -2

MST 6 6
BWSNR 0.1 0.1
PTSNR 6 1

BWI 0.1 0.1
TBS 0 0
CS 1 1
SIH 150 150
SIL 45 5

LSNR 14 14
WS 11 11

TFP

 

Table 52. GRNN Image 6 Results on TFP 

Mean Variance LT
Original 0.9716 0.0009 -0.9431

Doubly Robust 0.9613 0.0007 -0.9235

TFP - GRNN

 

 The results reported in this section, as well as Section 4.5.1, validated the use of 

doubly robust settings to guard against system degradation.  The image utilized in 

AutoGAD to demonstrate system degradation was not the optimal choice of the author in 

terms of “noisiness,” but proved useful in validating the proposed technique of 

determining new doubly robust settings in RPD.  If new images were produced in the 

future with “noisier” situations, better results would be expected by using these doubly 

robust settings, especially with GRNNs.             

4.6 AutoGAD and Factor Analysis 

 In Sections 4.4 and 4.5, methodology was presented on AutoGAD with each 

response as its own problem.  This resulted in different optimal settings for each 
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response.  However, the user was interested in optimizing all four responses with one 

combination of settings.  Ideally, this meant detecting all targets with no false positives in 

as little time as possible.  Possessing a fast algorithm with poor detection abilities or 

running a very good detection algorithm at the cost of large amounts of time was 

undesirable.  Therefore, it was necessary to determine settings in which solving for 

simultaneous responses yields results that were appropriate for all four responses given 

any image.   

 To circumvent the need for subject matter experts or simple adding/subtracting of 

response values, factor analysis was employed to reduce the four responses into a single 

dimensional response.  Eight different linear combination methodologies were presented 

in Table 17 in Section 3.5.1 which reduced the factor scores into a single dimension if 

multiple factors were retained.     

 Prior to conducting factor analysis, two of the responses were transformed to 

allow for simpler analysis.  First, an inverse transformation was applied to time in order 

to make it a maximized response.  Second, a (1-FPF) was applied to FPF which also 

made it a maximized response.  Therefore, all four responses were maximized, thus 

making analysis of the factor scores easier to understand.   

 To begin factor analysis, eigenvalues were calculated which determined the 

amount of variation explained by different factors.  Determining these eigenvalues 

through principal component analysis allowed for a designation of the number of factors 

which were retained.  Three popular methods were considered when factors were 

retained:  Kaiser Criterion, scree plots, and variance explained by factors (Dillon & 

Goldstein, 1984).   
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 The Kaiser Criterion eliminated all factors that had an associated eigenvalue 

below one.  This method can underestimate the number of factors necessary if 

eigenvalues of other factors score near one.  Scree plots counteracted this phenomenon by 

examining a plot of eigenvalues versus factors.  A cutoff point was selected when a 

noticeable drop in eigenvalue occurred, which retained some factors that scored close to 

one.  Finally, the number of factors retained was related to the minimum amount of 

variance the user deemed necessary to explain.  For instance, if 80 percent of the variance 

was necessary, factors were added until this 80 percent explanation of variance was 

achieved.  These approaches were applied in this research to choose the appropriate 

number of factors and their overall results.   

 The eigenvalues for response data in AutoGAD is displayed in Table 53.  Also 

displayed is the amount of variance explained by each factor (according to its 

eigenvalue).  According to Kaiser’s Criterion, only two factors were retained.  This 

amounted to approximately 66 percent of the variance explained.   

Table 53. Eigenvalues of Factors for AutoGAD 
Factor 1 Factor 2 Factor 3 Factor 4

Eigenvalue 1.5006 1.1612 0.9069 0.4314

Var. Explained 0.3752 0.2903 0.2267 0.1078  

 As seen in Table 53, two eigenvalues were greater than one.  However, the 

eigenvalue related to Factor 3 was 0.9069, which was very close to one.  Retaining this 

factor allowed for nearly 90 percent of the variance to be explained, which was suggested 

by a scree plot since a noticeable drop occurred between Factor 3 and Factor 4.  The scree 

plot also coincided with the third method in which an appropriate amount of variance was 
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explained.  Therefore, Kaiser’s Criterion retained two factors and scree plots retained 

three factors, thus both set of factors were examined.    

Following the selection of the appropriate number of factors, a factors loadings 

matrix was calculated.  These loadings provided insight into responses that could be 

grouped together into a single factor.  A varimax rotation was applied to the response 

data for easier interpretation of the factors.  This rotation pushed the loadings further 

apart which allowed for a better understanding of which response belonged to which 

factor/component.  The factors loadings matrix with two retained factors is displayed in 

Table 54 and the rotated factors loading matrix for two factors is given in Table 55.   

Table 54. Factors Loadings Matrix for 2 Factors 
Factor 1 Factor 2

Time 0.4912 0.2192
TPF -0.0489 0.9217
FPF -0.82 -0.3071
TFP -0.7646 0.4113  

Table 55. Rotated Factors Loadings Matrix for 2 Factors 
Rot. Factor 1 Rot. Factor 2

Time 0.5338 0.0664
TPF 0.2221 0.8959
FPF -0.8739 -0.0546
TFP -0.6113 0.6164  

 When examining the factors loadings matrix, each response was designated to the 

factor in which it scored highest, regardless of the sign.  For two factors in AutoGAD, 

Time, FPF, and TFP were combined into one factor and TPF remained its own factor.  

For rotated factors, Time and FPF were grouped together while TPF and TFP were 

combined into a single factor.   
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 The same analysis was conducted when three factors were retained.  The factors 

loadings matrix for three factors is given in Table 56 and the rotated matrix is presented 

in Table 57.   

Table 56. Factors Loadings Matrix for 3 Factors 
Factor 1 Factor 2 Factor 3

Time 0.4912 0.2192 0.836
TPF -0.0489 0.9217 -0.2507
FPF -0.82 -0.3071 0.2402
TFP -0.7646 0.4113 0.2955  

Table 57. Rotated Factors Loadings Matrix for 3 Factors 
Rot. Factor 1 Rot. Factor 2 Rot. Factor 3

Time 0.0839 -0.013 0.9905
TPF -0.0202 0.9561 -0.0176
FPF -0.8168 -0.3382 -0.2071
TFP -0.8505 0.3409 0.0378  

Regardless of using factors or rotated factors, Table 56 and Table 57 both 

indicated that time and TPF was its own factor and that FPF and TFP was grouped into a 

common factor.   

Following the determination of the number of factors to retain, factor (and 

rotated) scores were calculated.  These scores represented a meaningful subspace of the 

original response data.  Once these scores were obtained, the proposed linear combination 

techniques were applied to determine single dimensional response data for the AutoGAD 

problem.  For reference, the eight linear combination techniques applied are summarized 

in Table 58.   
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Table 58.  Summary of Linear Combinations on Factor Scores 
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 Once the single dimensional response data was calculated, modeling approaches 

were conducted on the data.  A quadratic regression model and an ANN was applied to 

the response data by utilizing the same CCD used on the responses separately, as seen in 

Section 4.4 and Appendix B.  This resulted in eight different quadratic models and eight 

different ANNs for each set of factors (either two or three).  After the appropriate 

quadratic models and well-trained ANNs were calculated, a search was performed which 

determined the optimal LT value and its corresponding settings. 

 To measure how well factor analysis performed, an alternate method of 

combining the response data into a single dimension was examined.  This involved 

appropriately summing the standardized response data into a single dimension (Davis, 
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2009).  This is the current method utilized in AutoGAD to combine the four responses 

into a single dimension.  The final output was calculated as: 

( ) ( ) ( ) ( )st st st stCombined Time TPF FPF TFP= − + −     (4.8) 

 Equation (4.8) was applied to the response data and a quadratic regression model 

was used to fit the resultant data.  The LT search was applied to the model and optimal 

settings were calculated, as shown in Table 59.   

Table 59.  LT Settings for Combined Response Data 
DA MST BWSNR PTSNR BWI TBS CS SIH SIL LSNR WS

Combined -2 6 0.01 6 0.03 0 0 50 5 14 3  

 The optimal LT settings when quadratic regression was applied to the two factor 

AutoGAD problem is displayed in Table 60.  The optimal LT settings for ANNs on the 

same two factor problem are given in Table 61.  As seen in the two tables, settings among 

the different linear combinations varied little.  In addition, several techniques shared the 

same optimal settings.  However, modeling through quadratic regression differed from 

modeling using ANNs in terms of optimal LT settings.     

Table 60. LT Settings for Two Factors using Quadratic Regression 
DA MST BWSNR PTSNR BWI TBS CS SIH SIL LSNR WS

FA1 -2 14 0.01 6 0.06 0 0 50 45 14 3

FA2 -2 14 0.01 6 0.07 0 0 50 35 14 3

FA3 -2 14 0.01 5 0.06 0 0 50 45 14 3

FA4 -2 14 0.01 6 0.07 0 0 50 35 14 3

Rot-FA1 -2 14 0.01 4 0.07 0 0 50 45 14 3

Rot-FA2 -2 14 0.01 6 0.07 0 0 50 45 14 3

Rot-FA3 -2 14 0.01 5 0.07 0 0 50 45 14 3

Rot-FA4 -2 14 0.01 6 0.07 0 0 50 45 14 3  



 

 156 

Table 61. LT Settings for Two Factors using ANNs 
DA MST BWSNR PTSNR BWI TBS CS SIH SIL LSNR WS

FA1 -2 6 0.1 6 0.1 1 1 50 5 14 3

FA2 -2 6 0.1 6 0.1 0 1 50 5 14 3

FA3 -2 6 0.1 6 0.01 0 1 50 45 14 3

FA4 -2 6 0.1 1 0.1 1 1 50 5 14 3

Rot-FA1 -2 6 0.1 6 0.01 1 1 150 5 14 3

Rot-FA2 -2 6 0.1 6 0.1 1 1 50 5 14 3

Rot-FA3 -2 6 0.1 6 0.01 1 1 150 5 14 3

Rot-FA4 -2 6 0.1 1 0.1 0 1 50 5 14 3  

 To measure the performance of these settings versus the combined settings 

calculated in Equation (4.8), the settings were applied to the untrained images, as done in 

Section 4.4.  Each combination of settings was applied to each of the eight images.  The 

results under each of the four responses were averaged, variance calculated, and an LT 

statistic was also calculated.   

 As seen in Table 62, all factor analysis methods outperformed the combined 

setting results in terms of FPF and TFP.  Also, most of the methods were superior in 

terms of time.  Only two of the rotated factor methods were better than the combined 

settings in terms of TPF.  From these results, a strong case can be made that using factor 

analysis techniques to reduce the data set was preferred over simply summing the 

standardized response data.  No one factor (rotated) method clearly outperformed 

another, but rather all outperformed the combined settings three out of the four available 

responses almost every time.     
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Table 62. LT Results for Two Factors 
Method Time TPF FPF TFP

Combined 1456.387 -0.83286 0.002415 -0.01681

FA1 1334.624 -0.57549 1.58E-05 -0.48553
FA2 1555.191 -0.55978 9.41E-06 -0.54581
FA3 1551.976 -0.57082 2.2E-05 -0.45629
FA4 1465.315 -0.56009 1.02E-05 -0.54023

Rot-FA1 1400.619 -0.55851 1.05E-05 -0.52534
Rot-FA2 1555.191 -0.55978 9.41E-06 -0.54581
Rot-FA3 1447.621 -0.56272 1.17E-05 -0.51857
Rot-FA4 1555.191 -0.55978 9.41E-06 -0.54581

FA1 1474.466 -0.69037 2.66E-05 -0.52894
FA2 1522.444 -0.67242 1.49E-05 -0.63267
FA3 1721.981 -0.81845 0.000914 -0.29161
FA4 1441.736 -0.69715 4.25E-05 -0.49343

Rot-FA1 1779.229 -0.84474 0.002124 -0.09883
Rot-FA2 1474.466 -0.69037 2.66E-05 -0.52894
Rot-FA3 1779.229 -0.84474 0.002124 -0.09883
Rot-FA4 1350.419 -0.69106 3.09E-05 -0.56769
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The same analysis was conducted using three retained factors to see if any 

performance was gained by adding another factor.  The optimal LT settings using 

quadratic regression when three factors were retained are given in Table 63.  Also, the LT 

settings for the same three factors using ANNs are presented in Table 64.  Once again, 

little variation among the settings within each approach occurred, although there was 

more variation compared to settings in Table 60 and Table 61.    
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Table 63. LT Settings for Three Factors using Quadratic Regression 
DA MST BWSNR PTSNR BWI TBS CS SIH SIL LSNR WS

FA1 -2 8 0.01 6 0.1 0 0 50 5 14 3

FA2 -2 9 0.01 6 0.1 0 0 50 5 14 3

FA3 -2 13 0.01 6 0.1 0 0 50 45 14 3

FA4 -2 14 0.1 1 0.1 0 1 150 5 4 3

Rot-FA1 -2 14 0.01 6 0.07 0 0 50 45 14 3

Rot-FA2 -2 14 0.01 6 0.07 0 0 50 35 14 3

Rot-FA3 -2 14 0.01 4 0.07 0 0 50 45 14 3

Rot-FA4 -2 10 0.1 6 0.1 0 0 150 5 14 3  

Table 64. LT Settings for Three Factors using ANNs 
DA MST BWSNR PTSNR BWI TBS CS SIH SIL LSNR WS

FA1 -2 6 0.1 6 0.01 0 1 50 5 14 3

FA2 -2 6 0.1 6 0.1 0 1 50 5 14 3

FA3 -2 6 0.1 6 0.1 1 1 50 5 14 3

FA4 -2 6 0.1 6 0.1 1 1 50 5 14 3

Rot-FA1 -2 6 0.1 6 0.01 0 1 150 45 4 3

Rot-FA2 -2 6 0.1 6 0.1 0 1 50 5 14 3

Rot-FA3 -2 6 0.1 6 0.01 0 1 50 5 14 3

Rot-FA4 -2 6 0.1 6 0.1 1 1 50 5 14 3  

 These settings were applied to the eight untrained images and their appropriate 

statistics were collected.  As seen in Table 65, stronger results were obtained when three 

factors were retained, as compared to two.  Once again, all methods outperformed the 

combined settings in terms of FPF and TFP.  In fact, the margin between the two was 

calculated as much larger with comparison to two factors retained.  TPF for the combined 

settings remained superior, but the gap was reduced when using three factors.  Finally, 

half of the factor analysis methods outperformed the combined settings in terms of time, 
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while the other half remained competitive.  Overall, the factor (rotated) methods were 

preferred over the combined settings, regardless of the approach utilized, due to the 

substantial reduction of LT values for FPF and TFP, while remaining better or 

competitive in terms of time and TPF.   

Table 65. LT Results for Three Factors 
Method Time TPF FPF TFP

Combined 1456.387 -0.83286 0.002415 -0.01681

FA1 1470.449 -0.61335 3.36E-05 -0.46849
FA2 1444.256 -0.61528 3.33E-05 -0.45931
FA3 1561.006 -0.61244 2.56E-05 -0.52579
FA4 1540.971 -0.57881 2.11E-06 -0.73797

Rot-FA1 1555.191 -0.55978 9.41E-06 -0.54581
Rot-FA2 1465.315 -0.56009 1.02E-05 -0.54023
Rot-FA3 1400.619 -0.55851 1.05E-05 -0.52534
Rot-FA4 1528.943 -0.62177 2.84E-05 -0.53144

FA1 1532.336 -0.84592 0.001098 -0.15453
FA2 1522.444 -0.67242 1.49E-05 -0.63267
FA3 1474.466 -0.69037 2.66E-05 -0.52894
FA4 1474.466 -0.69037 2.66E-05 -0.52894

Rot-FA1 1602.298 -0.82344 0.00084 -0.30052
Rot-FA2 1522.444 -0.67242 1.49E-05 -0.63267
Rot-FA3 1721.981 -0.81845 0.000914 -0.29161
Rot-FA4 1474.466 -0.69037 2.66E-05 -0.52894
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 The results reported in this section using factor analysis were strong in terms of 

their use over simply summing standardized response data.  Although superior 

performance was not achieved in terms of all four outputs simultaneously, factor analysis 

typically had improved results in three of the four outputs.  Also, the difference in LT 

scores for FPF and TFP was quite large when using factor analysis over simple 

summation.  Also, ANNs provided a better fit to the data over quadratic regression, but 

this situation could change depending on the nature of the problem being examined.   
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V. Contributions and Future Research 

5.1 Overview 

 A summary of the contributions made to the field of applied statistics and design 

of experiments through the research conducted and presented in this document is 

provided in this chapter.  A list of potential areas for further investigation related to this 

research is also provided. 

5.2 Research Contributions 

 Several contributions in the fields of applied statistics and design of experiments 

were made in this research.  Each contribution is summarized.       

5.2.1 Doubly Robust Settings 

A gradient analysis was applied to the coefficients of derived process models.  

This gradient search determined the worst possible system degradation that could occur, 

through perturbations in the coefficients.  Solving for robust control settings along this 

gradient search allowed for future protection against unfavorable results due to 

degradation.  These doubly robust settings maintained their consistency in being robust to 

noise in the system, as modeled in traditional RPD.  A gradient search was developed 

using quadratic regression, RBFNNs or GRNNs.  This gradient analysis is applicable to 

any process model involving control and noise variables.   
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5.2.2 Artificial Neural Networks in RPD 

Methods for utilizing ANNs in RPD were discussed in this dissertation.  Two 

methods, depending on available data, were derived to model the mean and variance 

models necessary for RPD.  Experiments confirmed the usefulness of ANNs when 

quadratic regression failed to fit highly non-linear models.   

A gradient search algorithm was developed based upon the weights of the ANNs 

to determine doubly robust settings if quadratic regression is inappropriate.  The doubly 

robust settings in ANNs proved as effective, if not more so, than those obtained using 

quadratic regression.   

5.2.3 Factor Analysis in RPD 

An alternative set of methods was derived to reduce multiple response problems 

to a single dimension.  Ideally, factor analysis would retain only one factor; however, if 

multiple factors still remained, linear combinations were applied to reduce the application 

to a single response.  Reduction to a single response allowed for RPD to be performed in 

the traditional sense.  Factor analysis was shown to be more effective than simply a 

summation of standardized response data.   

5.3 Recommendations for Future Research 

 Several areas of continued research are suggested.   

5.3.1 Robust Parameter Design 

Throughout this research, Lin & Tu (1998) methodology was applied to RPD and 

doubly robust RPD.  Table 1 presented alternative methods of solving the dual response 
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problem in RPD and LT was selected as the author’s choice.  Other methods could have 

provided more appropriate results depending on the problem.  The difference between 

utilizing the different methods is left to be explored.     

5.2.2 Artificial Neural Networks 

RBFNNs and GRNNs were selected as the neural networks applied in this 

research.  However, the Feed Forward neural network (FFNN) is another widely used 

ANN in research.  Typically used for classification purposes, this ANN can be tested for 

its validity in RPD.  Also, a gradient analysis could be conducted on the weights of the 

FFNN to determine doubly robust settings.   

5.2.3 Multiple Responses in RPD 

Eight linear combinations of factor analysis were developed to reduce multiple 

responses into a single dimension.  Further exploration of this concept could discover a 

new combination technique which could achieve superior and more consistent results.  

Multiple responses in RPD is a lightly researched area and has the potential for 

tremendous contributions.   
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Appendix A. Summary of Example Problems  

 
Problem Source Variables Responses Application 

 
Semiconductor 
Manufacturing 

 
Myers & 

Montgomery 
(2002:566) 

 2 control 
3 noise 

 
Single 

(minimized) 

Quadratic 
Regression in 

RPD 
Doubly Robust 

(QR) 
Semiconductor 
Manufacturing 

Extended 
 (higher-order terms) 

 
Myers & 

Montgomery 
(2002:566) 

 2 control 
3 noise 

 
Single 

(minimized) 

ANNs in RPD 
 

Doubly Robust 
(ANNs) 

 
Force Transducer 

 
Koksoy (2008) 

3 control 
2 noise 

Non-linearity 
(u=1) 

Hysteresis 
(min) 

QR vs ANNs 
in RPD 

Notional 2 23 2×  
Design with 5 

Responses 

 
None 

2 control 
2 noise 1 2 3, ,Y Y Y  

(min) 

4 5,Y Y  (max) 

 
Factor Analysis 

 
 
 

Problem  
(examined but 
not presented) 

Source Variables Responses Application 

 
Color TV Images  

 

Myers & 
Montgomery 
(2002:570) 

2 control 
2 noise 

Single 
(maximized) 

Quadratic 
Regression and 
ANNs in  RPD 
Doubly Robust 

(QR) 
 

Hard Disk Drive 
Quality 

 
Su & Tong (1997) 

 5 control 
1 noise 

PW (min) 
HFA (max) 
OW (max) 
PS (min) 

 
QR vs ANNs 

in RPD 

Notional 2 23 2×  
Design with 4 

Responses 
(representative of 

Davis (2009) work) 

 
None 

2 control 
2 noise 1 2,Y Y  (max) 

3 4,Y Y  (min) 

 
Factor Analysis 
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Appendix B. CCD for AutoGAD 

 
Dim Max Bin Pt SNR Bin ID Thresh Clean High Low LSNR Win Fishers % Tgt # Clusters

-2 6 0.1 6 0.1 1 0 150 5 14 3 -1.00 -0.80 -0.26
-2 6 0.01 1 0.01 0 1 150 45 14 11 0.71 -0.63 -1.00
-2 14 0.1 6 0.1 1 0 50 5 4 3 1.00 -0.19 -0.99
-2 14 0.1 6 0.1 1 0 150 5 4 11 0.71 -1.00 0.26
-2 14 0.1 1 0.01 0 0 150 45 14 3 1.00 -1.00 1.00
-2 14 0.1 6 0.1 0 1 150 45 4 3 0.71 -0.63 -1.00
2 10 0.06 3.5 0.06 1 0 100 25 9 7 -1.00 1.00 -0.79
2 6 0.1 1 0.01 1 0 150 45 14 11 0.43 -0.84 -0.56
2 14 0.01 1 0.1 0 1 50 45 4 3 1.00 -1.00 1.00
2 14 0.1 6 0.01 0 1 50 5 14 3 0.71 -1.00 0.26
2 14 0.01 6 0.1 0 0 50 5 14 11 0.71 -0.63 -1.00
-2 6 0.01 6 0.01 0 0 150 5 4 3 -1.00 -0.80 -0.26
-2 6 0.01 6 0.1 1 0 50 45 4 3 0.43 -0.84 -0.56
2 14 0.01 6 0.01 0 0 50 45 14 3 0.71 -1.00 0.26
2 14 0.01 6 0.1 1 1 50 45 4 11 -1.00 1.00 -0.79
2 14 0.1 6 0.01 0 1 50 5 4 11 0.71 -0.63 -1.00
-2 6 0.1 1 0.1 0 0 50 45 14 3 0.71 -1.00 0.24
2 6 0.1 1 0.01 1 0 150 45 14 11 1.00 -0.19 -0.99
-2 6 0.1 6 0.01 1 0 50 5 14 3 -1.00 -0.80 -0.26
-2 14 0.01 1 0.01 1 0 50 45 4 3 0.71 -1.00 0.26
2 6 0.01 6 0.1 1 0 50 5 4 3 0.71 -1.00 0.24
2 14 0.1 1 0.1 0 1 50 5 4 11 -1.00 -0.80 -0.26
-2 14 0.1 6 0.01 1 1 50 45 14 11 0.43 -0.84 -0.56
2 14 0.01 6 0.1 1 0 150 45 4 11 0.71 -0.63 -1.00
2 14 0.01 6 0.01 0 0 50 5 14 11 0.71 -1.00 0.24
2 6 0.01 6 0.01 1 0 50 45 14 3 1.00 -0.19 -0.99
-2 14 0.01 6 0.01 1 0 150 45 4 3 0.43 -0.84 -0.56
2 6 0.1 6 0.1 0 0 150 5 4 11 -1.00 1.00 -0.79
-2 6 0.1 1 0.01 0 1 150 5 4 11 1.00 -1.00 1.00
-2 6 0.1 1 0.1 0 0 150 45 4 11 0.71 -1.00 0.26
2 6 0.1 6 0.1 1 1 150 5 4 11 -1.00 -0.80 -0.26
2 6 0.1 6 0.01 1 1 150 45 4 11 0.43 -0.84 -0.56
-2 14 0.01 6 0.01 0 1 150 45 4 3 1.00 -1.00 1.00
-2 6 0.1 6 0.01 0 0 150 45 14 3 0.71 -0.63 -1.00
2 6 0.01 6 0.1 1 0 50 5 4 3 -1.00 -0.80 -0.26
2 14 0.01 6 0.01 0 0 150 45 4 3 0.71 -1.00 0.26
2 14 0.1 6 0.01 1 1 150 5 4 3 1.00 -1.00 1.00
2 14 0.1 1 0.01 1 0 50 5 14 3 -1.00 -0.80 -0.26
-2 14 0.01 6 0.01 0 1 150 5 4 3 1.00 -1.00 1.00
-2 6 0.1 1 0.01 1 1 150 45 14 3 0.71 -0.63 -1.00
-2 14 0.1 6 0.1 0 1 50 5 4 3 -1.00 1.00 -0.79
-2 6 0.1 6 0.1 0 1 150 5 14 3 0.71 -1.00 0.24
0 10 0.06 3.5 0.06 0 1 100 5 9 7 0.71 -1.00 0.24
2 14 0.01 6 0.1 0 0 50 5 14 3 0.43 -0.84 -0.56
-2 6 0.1 1 0.1 0 1 150 5 4 11 -1.00 -0.80 -0.26
-2 6 0.01 6 0.01 1 0 50 5 4 3 0.71 -0.63 -1.00
-2 6 0.1 1 0.1 1 1 150 45 4 3 -1.00 1.00 -0.79
2 6 0.01 1 0.1 0 1 50 45 4 11 0.71 -1.00 0.24
0 10 0.06 3.5 0.1 1 0 100 25 9 7 0.71 -1.00 0.26  
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