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ABSTRACT 

In general, network traffic data has a heavy-tailed 

probability distribution. The Entropy-Based Heavy Tailed 

Distribution Transformation (EHTDT) has been developed to 

convert the heavy tailed network traffic data distribution into a 

transformed probability distribution. In practice, the entropy 

distribution of the transformed probability distribution exhibits 

a type of linearity that gives rise to an eigenstructure that 

allows the characterization of network traffic data to effectively 

lossily compress network traffic data via the Rate Controlled 

Eigen-Based Coding. The aforementioned eigenstructure is 

motivated by singular value decomposition theory.  A very high 

compression ratio can be achieved by the proposed method.  

Results of applying the methods to real network traffic data 

network traffic data are presented. 

INTRODUCTION 

Intrusion Detection Systems (IDS’s) must be capable of 

detecting unknown attacks. The problem with building an 

anomaly detection model is that observed activities deviate 

significantly from established normal usage profiles. Reliable 

anomaly detection modeling requires training huge datasets 

regularly in order to learn legitimate behaviors. There is an 

enormous cost in collecting, storing, and analyzing intrusion 

datasets. A difficult problem in handling intrusion detection 

data is that one is not able to store and manage efficiently a 

huge amount of intrusion detection data with the current data 

mining and data management technologies.  

In general, anomaly detection usually involves 

computation on massive datasets. There has been an increased 

interest in data mining based approaches for intrusion detection. 

The major difficulty of data mining is that it is computationally 

expensive to find correlations between attributes in massive 

intrusion detection datasets. It is desirable to perform statistical 

processing on reduced datasets instead of the original full 

datasets. The reduced data sets must of course contain enough 

information for effective segmentation and classification. To 

efficiently measure similarity in appearance within object 

classes, one must first determine which features are most 

effective at describing anomalies of objects. A standard linear 

method for data feature extraction is that of principal 

component analysis (PCA). This reduction is achieved by 

selecting the first few principal components. These components 

capture the most relevant features use to classify a group of 

objects to be recognized. However, intrusion detection 

technologies based on PCA are still immature because of 

dynamic behaviors and heavy tailed distributions in network 

traffic.  

The study of heavy tailed distributions in network traffic 

has been an important research topic in various network 

applications [1][2][4][5][6][7][8][10]. Characterization of 

heavy tailed network traffic plays a critical role to improve the 

Quality of Services. More efficient intrusion detection data 

modeling and management methods are required to characterize 

heavy tailed network traffic data with greater reliability and 

faster retrieval rates.  

This paper provides combined network traffic 

characterization and the PCA approaches that are applied to 

minimize model complexities and maintenance problems in 

IDS design. The proposed Entropy-Based Heavy Tailed 

Distribution Transformation and the Rate Controlled Eigen-

Based Coding method are effective methods to extract 

meaningful features from heavy tailed datasets. These feature 
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extraction functions are useful for traffic analyzers and 

intrusion detection tools.       

STATISTICAL ANOMALY DETECTION MODELING 

There has been recently a big increase in the number of 

studies related to the statistical analysis to characterize traffic 

traces. One of the open problems in understanding the dynamic 

nature of network traffic is when the statistical distributions of 

traffic traces are non-Gaussian and heavy tailed [3][9]. Heavy 

tails refer to the power decrease of the marginal distributions. It 

is evident that many important problems with heavy tailed 

anomalies are poorly described by standard statistical models.  

This research aims to develop a new statistical model to 

represent a heavy tailed distribution in a compact form with 

great generality and several feature extraction properties. A 

wide range of shapes of the distribution can be investigated by 

choosing the parameters. This approach is novel because these 

estimators are extracted to take advantage of the anomaly 

detection.  

Future research will focus on temporal granularity and 

statistical characteristics, how to detect and measure these 

quantities and identify other potential characteristics, especially 

within apparent heavy tailed regions. In this approach, principal 

component based statistical characteristics are extracted from 

the heavy tailed distribution data, and stored in a database that 

is updated regularly and automatically to determine dynamic 

thresholds for discriminant functions. 

ENTROPY-BASED HEAVY TAILED DISTRIBUTION 
TRANSFORM (EHTDT) 

Network traffic characterization has been studied 

extensively, but an accurate characterization of network traffic 

still remains elusive due to difficulty of parameter estimations. 

This section describes the transformation procedures to 

characterize network traffic data. The simple transformation 

process has the ability to predict the behavior of large-scale 

network traffic. This section describes the transformation 

procedures with real network traffic data.   

The plot of real network traffic connection is shown in 

Figure 1. Frequency and ordering properties of network traffic 

datasets are important features of anomaly detection models. 

The most common way to detect anomalies is to use statistical 

distributions represented by a discrete distribution with a 

specified number of bins and the relative frequency of a value 

appearing in that bin. Real network traffic exhibits heavy tailed 

distributions in Figure 2.  

One of the most challenging characteristics of heavy tailed 

distribution is to parameter estimation. Known statistical 

procedures can be used to estimate parameters, but it is 

infeasible due to computational complexity for real-time 

network traffic characterization. This research addresses a new 

method for estimating the parameters of heavy tailed 

distributions using the EHTDT. 

 

Figure 1. PLOTS OF DAILY CONNECTIONS. 
 

 

 

Figure 2. PLOTS OF DAILY CONNECTIONS, THE FIRST 
ORDERER DIFFERENCE ALONG CONNECTIONS AND HISTOGRAM 

OF HEAVY TAILS.  

Note: diff(connections(t))=connections(t+1) - connections(t)). 

. 
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Figure 3. PLOTS OF PROBABILITY MASS FUNCTION (P), 
DIFFERENTIAL OF ENTROPY-BASED HEAVY TAILED 

DISTRIBUTION (ξ) AND ENTROPY-BASED HEAVY TAILED 
DISTRIBUTION (Ψ). 

 

Figure 4. PLOTS OF TRANSFORMED PROBABILITY MASS 
FUNCTION (P), DIFFERENTIAL OF ENTROPY-BASED HEAVY TAILED 

DISTRIBUTION (ξ) AND ENTROPY-BASED HEAVY TAILED 
DISTRIBUTION (Ψ). 

In general, network traffic data have heavy-tailed 

distributions. Power-law distributions are widely used for 

estimating packet interval time as well as in other networking 

applications and  - contaminated (Gaussian-mixture) 

distributions are useful to detect anomaly network traffics. A 

power-law distribution is one-tailed and an  - contaminated 

(Gaussian-mixture) distribution is two-tailed.  For statistical 

anomaly detection, two-tailed distributions have been 

considered to derive the EHTDT. 

Forward EHTDT 

Figure 3 presents a probability mass function, a differential 

of entropy-based heavy tailed distribution, and entropy-based 

heavy tailed distribution. Experimental results indicate that 

these heavy tailed distributions are difficult to use to 

characterize network traffic. Hence, the Forward EHTDT has 

been developed for fast network traffic characterization. 

A two-tailed probability mass function is defined as a 

probability vector  

    
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( (1), (2),..., ( 1), ( ), ( 1),..., ( ))P P P P K P K P K P N         (1) 

where ˆ( )P K is the unique maximum element of P̂  and N is the 

maximum index number. 

To characterize network traffic in a more compact form, the 

probability vector P̂ is converted into a transformed probability 

vector P by the following two procedures: 

The vector  is defined, such that 

                                 
ˆ1 ( )

( )
P x

x



                                     (2) 

where 
1

ˆ(1 ( ))
N

x

P x


   is the normalization factor, and 

1,2,...,x N . 

 

The transformed probability vector P  is then defined by  

( ( ), ( 1),..., (1), ( ), ( 1),..., ( 1))P K K N N K           (3)     
                                                               

 

where (1) ( )P K is the minimum element of P . 

The Entropy-Based Heavy Tailed Distribution    is 

defined by        

                                   
1

( ) ( )
x

j

x j


                                     (4)                                                                                                                                                                                                                 

where 
2( ) ( ) log ( )j P j P j    and  1,2,...,x N . 

Note that the last element of  is the entropy of the 

transformed probability vector P  .            
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2

1 1

( ) ( ) ( ) log ( ) ( )
N N

x x

N x P x P x H P
 

       .         (5)                                                                           

The main reason to transform data as part of a regression 

analysis is to achieve linearity. In practice, the proposed 

transformation provides approximate linearity as shown in 

Figure 4. 

Inverse EHTDT 

The Inverse Entropy-Based Heavy Tailed Distribution 

Transform can be determined by the following procedure. The 

first order differences of  are used to determine  as follows: 

      
2( ) ( ) ( ) ( 1) ( ) log ( )x x x P x P x                  (6)                                                                                                                     

where (1) is a stored parameter and 2,3,...,x N .  

It is emphasized that one can deal directly with P (or an 

estimate of P via an iteration technique), and then obtain the 

initial heavy tailed probability vector P̂  from P . Inverting (3), 

the probability vector  is obtained as  

        ( ( ), ( 1),..., (1), ( ),..., ( 1))P K P K P P N P K   
.
          (7)    

Then, P̂ can be calculated via 

                              ˆ( ) 1 ( )P x x                                       (8)                                                                                                                                                                                             

where the normalization factor   is a stored parameter and 

1,2,...,x N . 

Very Low-Bit Rate EHTDT 

The Entropy-Based Heavy Tailed Distribution  can be 

decomposed as 

                               .                                        (9) 

The sum of a linear function  and a nonlinear function 
where  is taken as 

                  
( ) (1)

( ) (1) ( 1)
1

N
x x

N


 
   


                     (10)                                                                                                                                                         

for 1,2,...,x N . 

 

  will contain most of the energy of the heavy tailed 

information; the linear distribution of the heavy tailed 

approximation can be estimated with the entropy of the inverse 

distribution ( )N and (1) . The nonlinear function  is then 

                                       .                                      (11) 

The differential vector is given by             

                         ( ) ( ) ( 1)x x x                                       (12)                                                                                                                                                                                         

where 2,3,...,x N . 

Data reduction and feature selection are two reasons to 

compress the nonlinear function . Fourier coefficients, 

wavelet coefficients, and principal components are commonly 

selected for features. In this approach, the principal component 

analysis (PCA) will be applied to select features and analyze 

anomaly detection data sets. The estimated nonlinear function 

̂  can be determined with a few principal components.  

The reconstructed function ̂ can be expressed as 

                                        ˆ ̂  
.
                                  (13)    

The estimated heavy tailed probability vector P̂  can also 

be determined by the Inverse Entropy-Based Heavy Tailed 

Distribution Transform. A very high compression ratio can be 

achieved by the proposed methods. A few principal 

components, ( )N  and (1)  are selected for features.  

LOSSY COMPRESSION 

Principal component analysis (PCA) is a popular technique 

in many areas of multivariate analysis. There are various 

generalizations of PCA such as multiple correspondence 

analysis (MCA), non-metric principal component analysis 

(NCA) and ordinary metric PCA. In correspondence analysis, 

the variables are linearly transformed to provide orthogonal 

solutions. First, we will briefly describe ordinary metric PCA 

and Singular Value Decomposition (SVD)-Based Coding. Then, 

the Rate Controlled Eigen-Base Coding for EHTDT is 

introduced. The proposed coding system will reduce the 

dimensionality of the data enormously and capture the effective 

feature structure. 

Principal Component Analysis (PCA)  

Suppose that 
1 2, ,..., Mf f f are 1N   observation vectors.  

Let  be the mean vector of the observation vectors 

1 2, ,..., Mf f f .  Zero mean observation vectors are given by      

                                  
x xf                                    (14)                                                                                                                    

where 1,2,...,x M . 

 

The empirical covariance matrix S is computed as    

                                    
1

1 M
T

x x

xM
 



 S  .                              (15)                                                                                                                       

The unique set of M orthonormal eigenvectors of S ,

1 2[ , ,..., ]M MQ q q q , and their associated eigenvalues, 

1 2, ,..., M    are computed. Linear combinations of the first L

eigenvectors 
1 2[ , ,..., ]L LQ q q q   corresponding to the L  largest 

eigenvalues (e.g.,
1 2 ... L     ) span the space of the zero 

mean observation vector to capture most of the relevant 

information in the input data. The projection of the vector 
x  
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onto the lines spanned by the orthonormal basis  

1 2[ , ,..., ]L LQ q q q  is given by the following operation 

                        
1 2( , ,..., )T T

x L x x x Lxp Q p p p                      (16) 

where 1 x N  . 

The elements of vector 
xp are called the principal components. 

The 1N   principal component vector 
xp contains compact 

information for
xf . The reconstructed vector ˆ

xf  can be 

computed as 

                                       ˆ
x L xf Q p                                 (17)                                  

where 1 x M  . 

Singular Value Decomposition (SVD) 

The singular value decomposition (SVD) is relevant to 

principal component analysis in several respects. The basic 

concept is to represent a given data matrix   of size N K . 

SVD is then applied to this matrix to obtain ,U S , and V

matrices. This compression operation is expressed in the 

following equations. Singular Value Decomposition is given by 

                                         
TUSV                                    (18)  

where the dimensions of  , ,X U S ,and V are N K , N K , 

K K  , and K K , respectively. 

Reconstructed data is computed by 

                                             ˆˆ ˆ ˆTX USV                               (19)     

where L K  and  the dimensions of ˆˆ ˆ, , ,X U S  and V̂ are 

N K , N L , L L , and K L , respectively. 

The columns of U are called the left singular vectors. The rows 

of 
TV contain the elements of the right singular vectors. The 

elements of S are only nonzero on the diagonal, and are called 

the singular values. For example, if ( )rank L  , then 

                               
1 2( ) ( , ,..., )Ldiag S s s s                          (20) 

where 
1 1 ,..., 0Ls s s    .  

 

Note that for a square and symmetric matrix, the singular value 

decomposition is equivalent to diagonalization, or solution of 

the eigenvalue problem. The SVD-based compression method 

is popular to compress large data matrices.  

The fundamental concept of the SVD-based compression 

scheme is to use a smaller number of dimensions to 

approximate the original matrix. The SVD does not provide a 

computationally efficient method of compression. However, the 

importance of using the SVD for principal component analysis 

is that SVD provides the standardized versions of principal 

component scores. Component scores are useful for 

correspondence analysis. 

Rate Controlled Eigen-Based Coding for EHIDT 

The classes of admissible transformations in SVD are 

different for different types of data. Admissible transformations 

should be found to minimize the appropriate loss function. It is 

common to calculate the principal components using a 

covariance matrix. The reason is that eigenvectors of a 

covariance matrix may provide admissible transformations. 

There are other ways of computing principal components. In 

one method, eigenvectors of a correlation matrix are used to 

compute principal components with standardized variables. 

However, the principal component based EHTDT coding is 

simply implemented. Even though the loss function is not 

minimized in the coding scheme, the scheme does yield a 

reduction in the computational complexity and 

misclassification rate.  

  

 

Figure 5. RATE CONTROLLED EIGEN-BASED CODING REGIONS. 

Suppose that 
1 2, ,..., Mf f f are 1N  nonzero mean 

observation vectors 

                                         ( ) ( )f x x                                 (21) 

where {2,3,..., , ,..., }x N T N    and ( ) ( ) ( 1)x x x    
.
                                   

T is a threshold determined from the ( )x  plot as indicated in 

Figure 5. For x in between T and N-T, ( )x  can be taken as 
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zero for all practical purposes; this gives ( )f x equal to zero in 

this range of x between T and N-T. 

The empirical covariance matrix of the nonzero mean 

observation vectors is defined for computational simplicity. 

The N N empirical covariance matrix R is defined by 

                                
1

1 M
T

x x

x

f f
M 

 R                             (22)                                                                                               

where the correlation matrix R is almost always nonsingular 

and symmetric.  

Instead of using the empirical covariance matrix S   or ordinary 

empirical correlation matrix, the empirical covariance matrix 

of the nonzero mean observation vectors is defined for 

computational simplicity. The empirical covariance matrix S  
provides that the first principal component corresponds to a line 

that passes through the mean, and minimizes the mean square 

error of approximating the data. On the other hand, the 

empirical covariance matrix R of the nonzero mean 

observation vectors R  provides an effective cluster separation 

for each streaming network traffic datasets. For anomaly 

detection, the empirical covariance matrix R minimizes 

computational complexity and maximize detection rate.   

The unique set of N orthonormal eigenvectors is computed 

with the correlation matrix R and the corresponding L  

eigenvectors to form an N L eigenvector matrix
LQ . The first

L eigenvectors are 
1 2[ , ,..., ]L LQ q q q  and their associated 

eigenvalues are
1 2 ... L     . 

The simple coding pairs are given by 

                                             T

LP Q X                                 (23) 

and 

                                             ˆ
LX Q P                                  (24) 

where N L and
1 2[ , ,..., ]MX f f f . 

 

Note that the columns of L M  matrix 
1 2[ , ,..., ]MP p p p  are 

the L -dimensional principal component vectors 
1 2, ,..., Mp p p  

for the -dimensional vectors 1 2
ˆ ˆ ˆ, ,..., Mf f f and the columns of  

N M  matrix 1 2
ˆ ˆ ˆˆ [ , ,..., ]MX f f f  are the reconstructed -

dimensional vectors 1 2
ˆ ˆ ˆ, ,..., Mf f f .  

 

This coding scheme is simpler than the Karhunen-Lòeve 

transform and other principal component analysis techniques. 

CONCLUSION 

Power-law distributions are widely used for estimating 

packet interval time as well as in other networking applications 

and  - contaminated (Gaussian-mixture) distributions are 

useful to detect anomaly network traffics. The estimation of 

important tail characteristics is directly linked to the 

interpretation of the underlying network traffic. Since there is a 

limitation to estimate parameters of various heavy tailed 

distributions because of mixture distribution characteristics of 

heavy tailed network traffic, an efficient and practical 

parameter estimation technique has not been derived. For 

statistical anomaly detection, heavy-tailed probability 

distributions of network traffic data have been proposed to 

mitigate the limitation of parameter estimation.  In this work, 

the EHTDT transform converts such a heavy tailed distribution 

into a transformed probability distribution more amenable for 

lossy compression of network traffic data. 

Experimental results indicate that a compact 

characterization of heavy tailed network traffic data can be 

achieved by the EHTDT transform and the Rate Controlled 

Eigen-Based Coding approaches. Efficient intrusion detection 

data modeling can be developed by the proposed approaches 

using various network traffic features. 
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