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Nomenclature

matrix of location-dependent coefficients, a3,
a14:M?; Ay, AyyiM™'; dos, Aoy dys, Ggqm™!

vector of temperature measurements, b, b,:K; b3,
by:K/m?

vector of temperature profile polynomial coefficients,
c1:K; ¢y K/m; ¢5:K/m?; ¢,:K/m?

heat capacity, J/kg - K

imaginary part

imaginary number, ~/—1

thermal conductivity, W/m - K

temperature profile polynomial of degree n, K
heat flux, W/m?

real part

temperature, K

rate of change of temperature, K/s

time, s

distance from the surface, m

thermal diffusivity, m?/s

low-pass filter coefficient for time derivative, s~
gain, nondimensional

low-pass filter coefficient for time average

time step, s

uncertainty

density, kg/m?

length scale parameter, m~
phase angle, rad

angular frequency, rad/s
amplitude
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Subscripts

polynomial and matrix indices

low-pass filter index

order of polynomial approximation for temperature
position nearest to the measurement surface
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% = nondimensional number
Superscripts

- = frequency domain quantity
- = low-pass filtered quantity
* = complex conjugate

I. Introduction

HE measurement of the transient heat flux and the surface

temperature in heat-sink combustion chambers continues to
present technical challenges to the instrumentation engineer. Sensor
failure rates are high, and measurement accuracies and uncertainties
are not well characterized. These shortcomings have had a significant
impact on some recent programs that have used heat-sink test articles
to acquire data for the validation of heat transfer predictions at liquid
rocket engine operating conditions [1,2].

There are numerous types of heat flux sensors, but a relatively
small subset is capable of operating in rocket chamber conditions in
which the heat flux levels can exceed 10 W/m?, and the surface
temperatures of 1000 K are typical. Diller [3] reviewed the devices
that have been used and organized them into methods that relied on
temperature differences over a spatial distance with known thermal
resistance and temperature differences over time having known
thermal capacitance. The most commonly used method has been the
coaxial thermocouple, which is an example of the second type. A
thermocouple junction is formed on the surface of the chamber
between a wire of one type of thermocouple material and a sur-
rounding sheath of another type. The heat flux is determined from the
measured temperature boundary condition using a one-dimensional
transient solution to the heat equation. The junction is typically a few
micrometers in thickness and is often formed by lightly scratching
the surface to drag filaments of one type of material across the elec-
trically insulating layer to the other type. In some applications, when
erosion of the surface occurs, the junction is continuously reformed,
and this has led to the description of coaxial thermocouples as
eroding thermocouples. However, in heat-sink chambers, it is quite
common to find that the junction disappears at some point during a
test, and the sensor fails.

Other methods have been developed that do not rely on surface
temperature measurements but embed the sensors within the wall
where they are protected from erosion. In the null-point calorimeter, a
hole is drilled from the backside of the chamber wall and a ther-
mocouple is inserted. The bead is brazed or resistance welded to the
bottom of the hole. Null point refers to a distance from the bottom of
the hole to the inner wall, where the disturbance to the flow of heat
caused by the hole results in the junction reading nearly equal to the
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inner wall temperature. The construction of null-point calorimeters is
challenging. The junction cannot be visually inspected, and large
measurement errors can result from manufacturing flaws [4].

Another method using embedded temperature sensors is the plug-
type heat flux gauge of Liebert [5]. An annular groove is machined
into the chamber wall to form a post, and thermocouples are attached
at several axial points along the outside of the post. A polynomial
curve is used to extrapolate the temperatures to the wall position, and
an integral method is used to calculate the total heat load to the plug
from transient temperature measurements. Two-dimensional effects
can be significant in this type of device. The dimensions of the groove
are critical, and significant errors can result from the disturbance to
the flow of heat [6].

Recently, Conley et al. used embedded temperature sensors to
measure transient heat flux in a subscale combustion chamber [7].
Transient temperature data were reduced to heat flux using an
equation developed from an energy balance on a control volume
between the sensors. The equation includes terms for Fourier’s law of
heat conduction and heat storage. Nominal constant values were used
for the properties.

The data reduction methods developed by Leibert [5] and Conley
et al. [7] are particular examples of a more general class of inverse
solution procedures. Inverse heat transfer problems are challenging
because surface conditions must be obtained from temperature sen-
sors embedded within objects that experience attenuated and time-
lagged responses to changes in the boundary conditions. Solution
methods must be stable and accurate in the presence of noisy signals.
Most inverse methods are based on minimizing the sum of square
residuals (SSR) of the difference between measurements and a
solution of the heat equation. An initial estimate is made for the
boundary condition, and the response at the sensor location is cal-
culated. Then the estimate is improved using a gradient method until
a convergence criterion for SSR is satisfied. The method used to
calculate the response is specific to the problem and can be any of the
analytical and numerical methods that exist for solving the heat
equation. However, there is a fundamental physical limit on the size
of the time step because there must be sufficient time for the change in
the boundary to propagate to the sensor location. A primary focus of
research in this area is the development of methods that can achieve
the smallest possible time step without incurring instability. A widely
used procedure is the function specification method [8]. A functional
form for the time dependence of the boundary condition is assumed.
and the parameters of the function are then determined by mini-
mizing SSR. The function may span the entire time domain or it may
be parsed into subintervals. Another widely used class of technique is
based on regularization [§]. These techniques add additional factors
to the least squares function to enhance stability and convergence.

If the method used to solve the heat equation is a numerical
technique, the number of processor operations will likely require that
the inverse calculations be performed as a postprocessing operation.
However, if the method is based on an analytical solution, it may be
possible to perform the calculation in real time. Inverse methods
based on analytical solutions are generally limited to situations for
which thermal properties are effectively constant and specific bound-
ary conditions are satisfied. An important subset of these methods
has been developed for the case in which the transient surface
temperature is measured and the test duration is short, such that the
body can be treated as an infinitely thick slab. The method of Cook
and Felderman assumes that heat flux is constant within a sampled
time interval and the analytical relation between heat flux and surface
temperature is used to obtain the surface flux from the measured
temperatures as a summation of contributions from each time interval
[9]. Cook also suggested a modification to the method to account for
temperature-dependent properties [10].

There have been a number of publications describing the applic-
ation of digital signal processing techniques to the measurement of
heat transfer. Beck et al. discusses the use of an efficient digital filter
algorithm for linear problems and its application to online or real-
time data processing [8]. In the method by Beck et al., the filter
coefficients can be derived for the particular problem from any of
the numerical or analytical approaches. Once obtained, the filter
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coefficients do not change, and the heat flux calculation is reduced to
the product of two arrays, although a specific origin of time is
required. Marineau and Hornung described an efficient method for
calculating heat flux from surface temperature measurements based
on digital signal processing techniques [11]. The relationship be-
tween heat flux and surface temperature is based on the Green’s
function for the impulse problem, and the heat flux is deconvolved
from the Green’s function and the surface temperature in the
frequency domain. Oldfield developed an efficient method for
processing signals from thin film heat flux gauges based on the linear
time-invariant (LTI) system theory [12]. The analytical solution for
the impulse response of the sensor is convolved with the measured
temperature distribution to obtain the surface heat flux.

Frankel et al. have suggested other approaches that could be used
for real-time processing [13]. For a one-dimensional problem, a
Taylor series can be used to extrapolate from the measurement point
to the surface condition, with the spatial derivatives in the series
obtained from rate sensors for temperature and heat flux (which is
nonintrusive to the flow of heat) and the heat equation. Frankel also
suggested a two-sensor arrangement , wherein a Taylor series for the
first sensor is expanded about location x, and a series for the second
sensor is expanded about 2x. Adding the two expansions eliminates
terms and results in an order of accuracy equal to the one sensor
expansion, with derivatives in time one order lower.

In this paper, we extend these ideas and report a number of new
results for the class of methods based on the extrapolation of a
function for the two-sensor arrangement. We have found that this
method leads to very satisfactory solutions to the major technical
challenges of accuracy, time response, stability in the presence
of noise, uncertainty, computational efficiency, failure rate, and
producibility in the heat-sink chambers used for rocket heat transfer
experiments.

II.

The domain of interest is a continuous one-dimensional body with
smoothly varying or constant thermal properties (Fig. 1). The initial
temperature distribution is assumed to be continuous and smoothly
varying. The boundary conditions at the surfaces are arbitrary and
may be discontinuous in time. The principle goal of the analysis is to
determine the transient temperature and heat flux at x =0 from
temperature data at x; and x,.

We begin by assuming a one-dimensional flow of heat in the x
direction and approximate the temperature profile in the body with a
polynomial in x with time-dependent coefficients:

Derivation of Model

n+l

P,(x, )= c(Dx"!

i=1

(€]

In addition to matching temperatures at the two points, the poly-
nomial is also required to satisfy the one-dimensional heat equation.
Specifically, it is required to match the second derivative of tem-
perature with respect to position:

a)

b) c d
Fig. 1 Domains addressed by current theory: a) finite slab, b) finite slab

with sensor on second surface, ¢) semi-infinite slab, and d) internal
points.
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As shown by Burggraf [15], the heat equation can be extended to
any even-numbered derivative of x:
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Expressions for the c;(¢) in Eq. (1) are obtained by equating
P,(x, 1) and its even-numbered spatial derivatives with measured
values. For the case of P;(x, 7), the set of equations can be expressed
in matrix form as follows:

T(xp, 1) Lx o 6 ][a®
7;2(;5(2’ l)) 1 x 3 x ¢y (1) @)
0 N3 ==
— 0 0 2 6x; || 30
2T (xy,
% 0 0 2 6x; || cad)
The inverse is the following:
X —Xx XX (2x,—x1) x1x (x—2x7)
Cy (l‘) Xz—le x2—~]\‘1 lﬁfxz—le)l lﬁ%«“z—xl)l T('xl ’ t)
¢ (t) 1 1 x%—2x1x2—2x§ 2xf+2x,x2—x§ T(Xz, t)
C2 (l‘) = | n—x x»-x 6()‘%;1'1) O(XE;]XI) 02T (xy,1)
2 o 0 Wy oo P
4 0 0 T W o
(5)
ci(t) =a;;b;(t) (6)

Allterms in a;; depend only on the sensor locations and need to be
calculated once. The vector b;(z) contains the experimental mea-
surements. The second derivative terms in b,(t) are obtained from
Eq. (2). The method used to calculate the time derivative in Eq. (2) is
critical to the success of the technique because differentiation of
experimental data can be a highly unstable process [13,14,16,17] and
low-pass filtering is usually required. The vector ¢;(#) can be used to
reconstruct an approximation for the temperature profile in the
sensor, but the most important application is in the estimate of the
boundary conditions:

T(0,0) ~ P3(0,1) = ¢, (1) ©)

q(0, ) ~ — = —key (1)

‘ aP5(0, 1) ®)
0x

Note that there are no specific limitations that have been placed on
the boundary conditions. The model can be applied to semi-infinite
or finite thickness slabs. The sensor at x, can be embedded in the
body or it can be placed on the surface. The surface can be adiabatic
or actively cooled at a known or unknown rate. The technique can be
used to estimate temperature and heat flux profiles within a body.
The extension of this approach to higher-order polynomials, using
Eq. (3), and radial geometry is straightforward.

As an initial illustration of the ability of the polynomial approxi-
mations to reproduce temperature profiles and boundary conditions,
we take as an example a uniform slab of copper exposed to a steady-
periodic heat flux boundary condition. The heat flux is oscillating
sinusoidally at 10 Hz, and temperature sensors are located at depths
of 2 and 5 mm from the heated surface. For the purpose of this
illustration, the sensors are free of noise. In Fig. 2, the analytical
solution is compared with polynomial approximations of orders 1, 3
and 5. The order 1 approximation is a simple linear extrapolation of
temperature to the surface. It is, in effect, a steady approximation and
exhibits a large error and time delay. The maximum fractional error at
the surface, based on the amplitude of the input wave, is 0.81. The
order 3 approximation includes the second derivative terms, and the
results are much improved. The maximum fractional error at the
surface is reduced to 0.11. The order 5 approximation includes
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T (K)

X (mm)

Fig. 2 Polynomial approximations to temperature profile in a copper
slab exposed to steady-periodic heat flux at left boundary. Sensors are
located at 2 and 5 mm.

second and fourth derivatives and is indistinguishable from the exact
solution. The maximum fractional error at the surface is 0.03.

A. Frequency Domain Analysis

The equations in (5) constitute an LTI system. The polynomial
approximation is obtained from linear combinations of the mea-
surements contained in the b;(#) vector with the constant coefficients
of the a;; matrix. The system is time invariant because the output is
based on current values of the measurements only. Therefore, a time
shift in the input produces an equal time shift in the output. LTI
systems can be completely represented by an impulse response or
equivalently, in the frequency domain, by the gain and phase re-
sponse. In this section, we present the frequency domain behavior for
approximating polynomials of orders 1, 3, and 5. To avoid lengthy
expressions, we illustrate the transformation using just the P; ap-
proximation. We begin with the following expression for the time-
domain surface temperature, which has been obtained by replacing
the second derivatives with respect to x in the b;(¢) vector with the
right-hand side of Eq. (2):

P3(0,1) = a; T(xy, 1) + apT(xy, 1) + a3

T(xh 1) T(xz, 1)
+ay
o o

(C)]

Following Cole, we transform to the frequency domain using the
complex-valued 7 '(x, w) [18]:
T(x, ) = Re[T(x, w)e™] (10)

Substituting Eq. (10) into Eq. (9),

- ) ~ 1) ~
P30, w) = (au + i&aB)T(xl, o) + (a12 + i&am)T(xz, o)

an
The corresponding expression for surface heat flux is
3P5(0, o) ~
- k% = —k|:(a21 + zaaz_g)T(x,, )
LW ~
+ (%2 + 15024) T (x, w)j| (12)

To illustrate the behavior of the model, we obtain inputs from an
exact analytical solution. We consider the case of a uniform semi-
infinite slab with a steady-periodic heat flux boundary condition. The
solution to this problem is [19]:

T o)= 17 0srcc0z0) a3
q(x, w) = |gle ™, 0<x<o0,w=>0) (14)
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o=(141i) | (15)
200
Gain is defined as the ratio of the amplitude of the model to the actual
value:
I'(P,) = |P,(0, 0)|/|T(0, w)| (16)
Phase is defined as the difference between the phase of the model and
the actual value:

$(P,) = tan"! (7Im[[j" ©, w)]) — tan™"! (LT(O* w)]) a7
Re[P,(0, w)] Re[T(0, w)]

The gain and phase expressions for surface heat flux are identical to

those for surface temperature.

Gain and phase plots are shown in Figs. 3—6 for polynomials of
orders 1, 3, and 5. Frequency has been nondimensionalized using a
time scale based on the thermal diffusivity and the depth of the near-
surface sensor:

X
Wg, = ——

18)

The value of x,/x; in each case is 2.3. This value was determined
to be near optimal and is discussed further, next, in the context of the
noise sensitivity. The gain behavior for surface temperature is shown
in Fig. 3. All orders of approximation converge to a gain of one at low
frequency but deviate as frequency is increased. The P, approxi-
mation rolls off slowly to zero and has a —3 db frequency of 2. The
P approximation exhibits a region of gain greater than 1 and then
rolls off at a frequency of 20. The P5 approximation has a larger gain
region and a —3 dB frequency of 100. The region of gain greater than
one can be eliminated by low-pass filtering, as will be shown later.
The gain at high frequency would manifest itself in the time domain
as an overshoot in the response when subjected to rapid changes in

2 : : : :
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Fig. 3 Surface temperature gain for three orders of polynomial models.
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Fig. 5 Surface heat flux gain for three orders of polynomial models.
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Fig. 6 Surface heat flux phase for three orders of polynomial models.

the inputs. The phase behaviors show similar points of departure, but
all approximations exhibit monotonically increasing phase lag
(Fig. 4). From these plots, we can state that the P; approximation has
a frequency response approximately one order of magnitude higher
than the P; approximation, and the Ps approximation is approxi-
mately two orders higher.

The behavior of the surface heat flux plot (Fig. 5) is qualitatively
similar to surface temperature, but the points of departure and roll off
are shifted to lower frequencies. The —3 db point of the P; ap-
proximation occurs at a frequency of 0.3 because the simple linear
extrapolation does a poor job capturing the slope of the temperature
profile at the surface. The P5 approximation shows smaller amplitude
in the gain region than the surface temperature plot, but the Ps
approximation continues to have a region of large gain. The phase
characteristics of heat flux are also monotonically decreasing
(Fig. 6). The point of departure for P, is shifted to a frequency of less
than 0.01. The P; approximation begins to exhibit a phase lag at a
frequency of 0.3, but the P5 does not exhibit a phase lag until 20.
From these plots, we can state that the P; approximation has a
frequency response at least three orders of magnitude higher than the
P, approximation, and the Ps approximation is approximately
four orders higher. These improvements come about solely as aresult
of a higher-order polynomial approximation to the temperature
profile.

B. Low-Pass Filtering

The formulation as an LTI system facilitates the use of digital
signal processing techniques. Low-pass filtering of the input signals
can improve the performance of the polynomial models by sup-
pressing the propagation of errors from the input signals and by
eliminating the region of gain greater than one. The design of
optimum filters is an extensive subject and has been treated by several
authors in the context of inverse heat conduction methods. Hensel
showed that filtering the input data improves the stability of an
inverse calculation, and he recommended the use of a Gaussian filter
because it does not distort phase and has an acceptable rate of roll off
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Fig. 7 Heat flux gain for P5; model with low-pass filter for four values of
filter window width.

at high frequency [20]. Frankel used a Gaussian filter to suppress
noise in the input signals before using a finite difference calculation
to obtain a time derivative [14]. Frankel suggested a method for
interrogating the power spectrum to locate an optimum cutoff fre-
quency for the input filter. However, there remained a significant
propagation of error to the derivative, which he attributed to the ill-
posed nature of numerically differentiating noisy data [14].

An important factor in choosing a low-pass filter, in addition to the
phase and roll-off characteristics, is the efficiency with which the
calculation can be performed. The most efficient methods are im-
plemented as convolutions in the time domain:

T()C,-, [n) = Z ij(xh tn+j)

Jj=—m

19)

%(xiv tn) = Z 5]T(xi’ t”+j)

j==m

(20)

A filter that is well suited for this type of processing is the
polynomial smoothing filter, also known as the Savitzky—Golay filter
[21,22]. The linear combination of the coefficients y; and §;, with the
data T(x;, t,;), results in filtered values that are identical to those
obtained from a least squares fit of a polynomial. However, the filter
is computationally efficient because it eliminates the need for a
matrix inversion.

It is informative to transform the low-pass filter into the frequency
domain in order to characterize the effect on the gain and phase
behavior of the polynomial model. This is accomplished by applying
the discrete Fourier transform to Egs. (19) and (20) and then using the
filtered frequency domain temperatures in Eqgs. (11) and (12) [23].
The effect of a quadratic polynomial filter on the heat flux response is
shown in Figs. 7 and 8 for the P5 model. The figures contain curves
for four values of the filter window width based on the characteristic
time scale for the diffusion of heat x2/a. The window width of
0.25a/x? is too narrow to remove the high frequencies in which the
gain is greater than one. The window width of 0.52a/x? removes the
region of gain greater than one and approaches most closely to the
ideal gain curve. Further increasing the window width to x3/a
reduces the frequency response by approximately a factor of 3. The
filter introduces characteristic high frequency modes, and these are
sometimes cited as a drawback of the Savitzky—Golay filter. How-
ever, for this application, although the modes create large errors in
phase above a frequency of 20, the gain is negligible and the results
are not significantly affected.

C. Efficiency

The main advantage of the current method over the more general
inverse methods is that it can be formulated as a digital filter and
calculated in the time domain with relatively few processor opera-
tions. To obtain the minimum number of operations, the filter
coefficients can be combined with the a;; coefficients. Using the P;
case as an example, Egs. (19) and (20) can be substituted into Eq. (5)
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Fig. 8 Heat flux phase for P5; model with low-pass filter for four values
of filter window width.

to obtain the following forms for the surface temperature and heat
flux:

P3(0, t,) = Z |:(01|V_/ + %ﬁ_i)T(xl, tytj)

j=—m

+ (auy,- + %ﬁ,-) T(x,. tnﬂ-)} 1)
aPz(O tn) —k Z[(anyj-l—%ﬂj)T(xl, ln+/-)
Jj=—m
+ (a22yj + %ﬂj) T (x,, tu+j)i| (22)

The coefficients multiplying the temperatures can be calculated
once, and then only 4m + 2 multiplications and 2m + 1 additions
are required to evaluate surface temperature and heat flux (or about
100 processor operations for a typical value of m ~ 10). As an
illustration, Figs. 9-11 contain coefficients for 31 point filters for
surface heat flux for polynomials of orders 1, 3 and 5, respectively.
Note also that the number of operations is not affected by the order of
the approximating polynomial. The order affects only the value of the
coefficients.

D. Noise Sensitivity

The propagation of noise from the temperature measurements to
the predicted surface temperature and heat flux can be evaluated by
treating each temperature measurement as an independent random
variable and using the square-root-of-sum-of-squares approach for
error propagation [24]. In the following, we assume that the
uncertainty in temperature measurement §7 is the same at the two
measurement locations, and the uncertainties in measurement posi-
tions and material properties are negligible. Proceeding from
Eqgs. (21) and (22) for the P; approximation, we have

m a 2
5P3(07 tn) = [izz_m(ally_/ +§ﬂ/) 8T2
a 2 1/2
N (alzyj o ﬁj) STZ] (23)
9P5(0, 1,) 3 @ g\’
Ay : 2 2
+ (azzy/' + 751) T @9

Equations (23) and (24), as well as the equivalent equations for the
other orders of approximation, can be rewritten in terms of the
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Fig. 9 Coefficients for calculation of surface heat flux based on P,
approximation.
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Fig. 10 Coefficients for calculation of surface heat flux based on P;
approximation.
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Fig. 11 Coefficients for calculation of surface heat flux based on Ps
approximation.

following signal-to-noise ratios, such that the only independent
variables are the depth ratio x, /x, and the filter parameters. The filter
parameters used in producing the plots were those for a quadratic
smoothing function with a window width of 0.52a//x} and m = 10.
The particular values are not significant because we are primarily
interested in the relative levels of noise for the three approximations.
Noise levels on the inputs can always be reduced by increasing the
sampling rate in order to obtain more points within the specified time
window:

_8P,(0, 1)
8Tq, = T (25)
_ 5(kaP, /0x)
845 = kST /x, (26)
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Figures 12 and 13 contain the results for the three orders of
approximation plotted as functions of the depth ratio of the sensors
x,/x;. The noise increases with the order of the model because the
magnitude of the coefficients increases, as can be seen in Figs. 9-11.
The P, model has the lowest level of noise and it decreases
monotonically with the depth ratio. The P; and P5 approximations
both exhibit minima with respect to x,/x; for both surface tem-
perature and heat flux. However, the minima are broad, and values in
the range of 2.3-2.8 are effectively equivalent. Noise increases for
X,/x; <2, and so this range should be avoided. An important
observation is that in all cases the noise is bounded. The method is
inherently stable because it has the characteristics of a low-pass filter
as discussed previously.

E. Temperature-Dependent Properties

The linear form of the heat equation, given in the preceding section
as Eq. (2), is valid when thermal properties are constant. However, in
many applications temperature dependence is significant. The most
basic example is the case of a sensor that undergoes a large
temperature change during the period of measurement. In heat-sink
rocket chamber experiments, the wall temperature can change by
800 K or more, resulting in a 30% decrease in the thermal diffusivity.
Spatial gradients in thermal properties can also be significant. As a
first approximation, when the temperatures at the two measurement
locations are significantly different, the local temperatures can be
used to evaluate the thermal diffusivity and the second derivative
term in Eq. (2). An improved approximation including spatial
gradients in properties can be obtained through the nonlinear form of
the one-dimensional heat equation:

0 (AT\_ . 9T
a ax _IOC]T

% (27)
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Fig. 12 Noise in surface temperature prediction.
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Fig. 13 Noise in heat flux prediction.



In this case, the second derivative becomes

2 2
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To a first approximation, the first term on the right-hand side
increases proportionally with the heat flux, whereas the second term
increases with the heat flux squared. For pure copper, the second term
becomes significant when heat flux is on the order of 5 x 107 W/m?.
The temperature gradient in the second term cannot be measured
directly but can be estimated from the linear form of the heat
equation, and this can be used in Eq. (28) to obtain an improved
estimate for the second derivative. The process can be repeated until a
convergence criterion is satisfied. Related expressions can be
obtained for the higher-order derivatives of Eq. (3); however, the
expressions are quite lengthy.

The computational cost of evaluating thermal properties at local
conditions is negligible, requiring two calls to a variable properties
function per time step. The cost of including temperature gradients is
larger. The calculation of the spatial derivatives of temperature points
requires the evaluation of all of the c¢;(¢) coefficients, then new
coefficients for the digital filter must be calculated and, finally, the
filter calculation must be repeated. The additional steps increase the
processing time by approximately a factor of 4. In most cases, the
computational time will still be negligible. However, it is possible to
include a flag to turn on the gradient calculations only when heat flux
exceeds the critical value.

Example calculations were performed to assess the effectiveness
of the variable properties approximations. The reference case was a
square-wave pulse of heat of duration 4x2 /. This case is useful for
conveying the time response and the accuracy of the methods, and it
is an idealized version of the heat flux pattern encountered in tests of
heat-sink rocket chambers. Test case data consisting of temperatures
at the measurement locations were generated using a numerical
solution of the nonlinear heat equation with functions for the
temperature-dependent properties of copper. Figure 14 includes
results for the Ps model for three methods of handling thermal
properties for a heat flux of 107 W/m?, and Fig. 15 has the same
information for 103 W/m?2. At 10”7 W/m?, the effect of property
variations for the short duration pulse is negligible, and all
approximations give the same result. The rise time is approximately
0.03 s, and the heat flux is reproduced accurately. For this case, the
temperature rise at the surface was 113 Kin 0.13 s. At 108 W/m?, the
effect of variable properties is observable. The constant properties
approximation does not converge to the correct value but rises
steadily over the duration of the pulse, and the fall time is sig-
nificantly increased. The local properties approximation more accu-
rately captures the steady plateau, and the fall rate is improved.
However, the heat flux is underpredicted by 2-5%. The gradient
approximation exhibits the same rise and fall rates as the local
properties approximation, and the accuracy is somewhat improved.
However, the square profile is not as well defined as it was for a heat
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Fig. 14 Effect of temperature-dependent properties on heat flux

calculation at 107 W/m?2.
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Fig. 15 Effect of temperature-dependent properties on heat flux
calculation at 108 W/m?2.
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Fig. 16 Comparison with function specification with three future time

steps for heat flux of 103 W/m?.

flux of 107 W/m?. For this case, the surface temperature increases by
approximately 1200 K over 0.13 s.

F. Comparison with Beck’s Function Specification Method

In this section, we compare the polynomial model with a widely
used inverse heat transfer method, the function specification with
future time steps method, for a case in which temperature-dependent
properties are significant. The method is described fully in [§]. The
method was implemented using The MathWorks MATLAB®
version 2008 library functions. The pdepe nonlinear equation solver
was used to model the heat equation. The pdepe function solves
initial-boundary value problems for systems of parabolic and elliptic
partial differential equations in one space variable [25]. The spatial
domain was divided into forward and inverse regions, and the inverse
region between the sensor and the surface consisted of five finite
volumes. The fzero function was used to find the minimum of the
convergence criteria. The fzero function uses a combination of
bisection, secant, and inverse quadratic interpolation methods [26].
The size and number of future time steps were based on optimal
values contained in Sec. 5.6.1 of [8]. For the cases described next, the
number of time steps was four, and the length of the time step was
0.15x% /«. Figure 16 contains the results of an example calculation
for a heat flux of 108 W/m?. The function specification method
accurately reproduces the steady portion of the heat flux and has
similar rise and fall times as the P5 model. The function specification
method achieves greater accuracy by modeling the full domain. The
computational cost of the higher accuracy in terms of run time was
approximately a factor of 10° on this example problem.

III. Conclusions

A method has been described for using approximating
polynomials to solve the inverse heat transfer problem for the case
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of two temperature sensors embedded in the wall of a chamber. The
method does not require surface junction thermocouples, which are
prone to failure and produce noisy signals in rocket engine flows, and
is well suited for studies of the effects of surface features on heat
transfer enhancement. An approximating polynomial is constrained
to match the temperatures and the even-numbered spatial derivatives
at the measurement points. The method requires only current values
of temperature and its rate of change, and the boundary and initial
conditions are arbitrary. The algorithm can be represented as a low-
pass filter, and the gain and phase behavior have been characterized.
The placement of the sensors affects the frequency cutoff and the
noise response, and optimum values for the relative positions of the
sensors have been obtained. The method is computationally efficient,
requiring approximately 100 multiply and add operations per
measurement, enabling real-time processing in high-channel-count
systems.
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