
Network Border Patrol
Célio Albuquerquey, Brett J. Vickersz and Tatsuya Suday

y Dept. of Information and Computer Science z Dept. of Computer Science
University of California, Irvine Rutgers University

fcelio,sudag@ics.uci.edu bvickers@cs.rutgers.edu

Abstract— The end-to-end nature of Internet congestion control is an im-
portant factor in its scalability and robustness. However, end-to-end con-
gestion control algorithms alone are incapable of preventing the congestion
collapse and unfair bandwidth allocations created by applications which are
unresponsive to network congestion. In this paper, we propose and investigate
a new congestion avoidance mechanism calledNetwork Border Patrol(NBP).
NBP relies on the exchange of feedback between routers at the borders of
a network in order to detect and restrict unresponsive traffic flows before
they enter the network. The NBP mechanism is compliant with the Internet
philosophy of pushing complexity toward the edges of the network whenever
possible. Simulation results show that NBP effectively eliminates congestion
collapse, and that, when combined with fair queueing, NBP achieves approx-
imately max-min fair bandwidth allocations for competing network flows.

Keywords—Internet, congestion control, congestion collapse, max-min fair-
ness, end-to-end argument

I. I NTRODUCTION

T
HE essential philosophy behind the Internet is expressed by
the scalability argument: no protocol, algorithm or service

should be introduced into the Internet if it does not scale well. A
key corollary to the scalability argument is the end-to-end argu-
ment: to maintain scalability, algorithmic complexity should be
pushed to the edges of the network whenever possible. Perhaps
the best example of the Internet philosophy is TCP congestion
control, which is achieved primarily through algorithms imple-
mented at end systems. Unfortunately, TCP congestion control
also illustrates some of the shortcomings of the end-to-end argu-
ment.

As a result of its strict adherence to end-to-end congestion
control, the current Internet suffers from two maladies: conges-
tion collapse from undelivered packets, and unfair allocations of
bandwidth between competing traffic flows. The first malady—
congestion collapse from undelivered packets—arises when band-
width is continuously consumed by packets that are dropped be-
fore reaching their ultimate destinations [1]. Unresponsive flows,1

which are becoming increasingly prevalent in the Internet as net-
work applications using audio and video become more popular,
are the primary cause of this type of congestion collapse, and the
Internet currently has no way of effectively regulating them.

This research is supported by the National Science Foundation through grant
NCR-9628109. It has also been supported by grants from the University of
California MICRO program, Hitachi America, Hitachi, Standard Microsystem
Corp., Canon Information Systems Inc., Nippon Telegraph and Telephone Corp.
(NTT), Nippon Steel Information and Communica-tion Systems Inc. (ENICOM),
Tokyo Electric Power Co., Fujitsu, Novell, Matsushita Electric Industrial Co. and
Fundac¸ão CAPES/Brazil.
1An unresponsive flow is any flow generated by an application that fails to re-

duce its transmission rate in response to increased packet discarding caused by
congestion.

The second malady—unfair bandwidth allocation—arises in
the Internet for a variety of reasons, one of which is the presence
of unresponsive flows. Adaptive flows (e.g., TCP flows) that re-
spond to congestion by rapidly reducing their transmission rates
are likely to receive unfairly small bandwidth allocations when
competing with unresponsive or malicious flows. The Internet
protocols themselves also introduce unfairness. The TCP algo-
rithm, for instance, inherently causes each TCP flow to receive a
bandwidth that is inversely proportional to its round trip time [2].
Hence, TCP connections with short round trip times may receive
unfairly large allocations of network bandwidth when compared
to connections with longer round trip times.

These maladies—congestion collapse from undelivered packets
and unfair bandwidth allocations—have not gone unrecognized.
Some have argued that they may be mitigated through the use of
improved packet scheduling [3] or queue management [4] mech-
anisms in network routers. For instance, per-flow packet schedul-
ing mechanisms like Weighted Fair Queueing (WFQ) [5], [6] at-
tempt to offer fair allocations of bandwidth to flows contending for
the same link. So does Core-Stateless Fair Queueing (CSFQ) [7],
an approximation of WFQ that requires only edge routers to main-
tain per-flow state. Active queue management mechanisms like
Fair Random Early Detection (FRED) [8] achieve an effect simi-
lar to fair queueing by discarding packets from flows that are us-
ing more than their fair share of a link’s bandwidth. All of these
mechanisms are more complex and expensive to implement than
simple FIFO queueing, but they reduce the causes of unfairness
and congestion collapse in the Internet. Nevertheless, they do not
eradicate them. For illustration of this fact, consider the example
shown in Figure 1. In this example, two unresponsive flows com-
pete for bandwidth in a network containing two bottleneck links
arbitrated by a fair queueing mechanism. At the first bottleneck
link (R1-R2), fair queueing ensures that each flow receives half of
the link’s available bandwidth (750 kbps). On the second bottle-
neck link (R2-S4), much of the traffic from flow B is discarded due
to the link’s limited capacity (128 kbps). Hence, flow A achieves
a throughput of 750 kbps and flow B achieves a throughput of 128
kbps. Clearly, congestion collapse has occurred, because flow
B packets, which are ultimately discarded on the second bottle-
neck link, unnecessarily limit the throughput of flow A across the
first bottleneck link. Furthermore, while both flows receive equal
bandwidth allocations on the first bottleneck link, their allocations
are notglobally max-min fair.2 A globally max-min fair alloca-

2An allocation of bandwidth is said to be globally max-min fair if, at every link,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Network Border Patrol

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Information and Computer Science, University of
California, Irvine

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

R1 R2

S1

S2

S3

S4

1.5 Mbps

10 Mbps

10 Mbps

10 Mbps

128 kbps

Flow A

Flow B

Fig. 1. Example of a network which experiences congestion collapse

tion of bandwidth would have been 1.372 Mbps for flow A and
128 kbps for flow B.

This example, which is a variant of an example presented in [1],
illustrates the inability of local scheduling mechanisms, such as
WFQ, to eliminate congestion collapse and achieve global max-
min fairness without the assistance of additional network mecha-
nisms.

Jainet al.have proposed several rate control algorithms that are
able to prevent congestion collapse and provide global max-min
fairness to competing flows [10]. These algorithms (e.g., ERICA,
ERICA+) are designed for the ATM Available Bit Rate (ABR) ser-
vice and require all network switches to compute fair allocations
of bandwidth among competing connections. However, these al-
gorithms are not easily tailorable to the current Internet, because
they violate the Internet design philosophy of keeping router im-
plementations simple and pushing complexity to the edges of the
network.

Floyd and Fall have approached the problem of congestion col-
lapse by proposing low-complexity router mechanisms that pro-
mote the use of adaptive or “TCP-friendly” end-to-end conges-
tion control [1]. Their suggested approach requires selected gate-
way routers to monitor high-bandwidth flows in order to deter-
mine whether they are responsive to congestion. Flows that are
determined to be unresponsive are penalized by a higher packet
discarding rate at the gateway router. A limitation of this approach
is that the procedures currently available to identify unresponsive
flows are not always successful [7].

In this paper, we introduce and investigate a new Internet traffic
control mechanism calledNetwork Border Patrol(NBP). The ba-
sic principle of NBP is to compare, at the borders of the network,
the rates at which each flow’s packets are entering and leaving the
network. If packets are entering the network faster than they are
leaving it, then the network is very likely to be buffering or, worse
yet, discarding the flow’s packets. In other words, the network is
receiving more packets than it can handle. NBP prevents this sce-
nario by “patrolling” the network’s borders, ensuring that pack-
ets do not enter the network at a rate greater than they are able
to leave it. This has the beneficial effect of preventing conges-
tion collapse from undelivered packets, because an unresponsive
flow’s otherwise undeliverable packets never enter the network in
the first place.

NBP’s prevention of congestion collapse comes at the expense
of some additional network complexity, since routers at the bor-
ders of the network (i.e., edge routers) are expected to monitor
and control the rates of individual flows. NBP also introduces an

all active flows not bottlenecked at another link are allocated a maximum, equal
share of the link’s remaining bandwidth [9].

�������� �
�
�
�

��

��

�
�
�
�
�
�
�
�

��
��
��

��
��
��

Edge routerEnd systems Core router

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

��
��

Domain 1 Domain 2

Fig. 2. The core-stateless Internet architecture assumed by NBP

added communication overhead, since in order for an edge router
to know the rate at which its packets are leaving the network, it
must exchange feedback with other edge routers. However, un-
like other existing approaches to the problem of congestion col-
lapse, NBP’s added complexity is isolated to edge routers; routers
within the core of the network remain unchanged. Moreover, end
systems operate in total ignorance of the fact that NBP is imple-
mented in the network, so no changes to transport protocols are
necessary.

Note that the primary goal of NBP is to prevent congestion col-
lapse from undelivered packets. On its own, NBP cannot provide
global max-min fairness to competing network flows. Neverthe-
less, when combined with fair queueing at core routers, NBP can
achieve approximate global max-min fairness, as we will show
later in this paper.

The remainder of this paper is organized as follows. In section
II, we describe the architectural components of the Network Bor-
der Patrol mechanism in further detail and present the feedback
and rate control algorithms used by NBP edge routers to prevent
congestion collapse. In section III, we present the results of sev-
eral simulations, which illustrate the ability of NBP to avoid con-
gestion collapse and, when combined with a fair queueing algo-
rithm in core routers, to provide global max-min fairness to com-
peting network flows. In section IV, we discuss several imple-
mentation and scalability issues that must be addressed in order
to make deployment of NBP feasible in the Internet. Finally, in
section V we provide some concluding remarks.

II. N ETWORK BORDER PATROL

Network Border Patrol is a core-stateless congestion avoid-
ance mechanism. That is, it is aligned with the core-stateless ap-
proach [7], which allows routers on the borders (or edges) of a
network to perform flow classification and maintain per-flow state
but does not allow routers at the core of the network to do so.
Figure 2 illustrates this architecture. In this paper, we draw a fur-
ther distinction between two types of edge routers. Depending
on which flow it is operating on, an edge router may be viewed
as aningressor anegressrouter. An edge router operating on a
flow passing into a network is called an ingress router, whereas an
edge router operating on a flow passing out of a network is called

Flow
Classifier

Rate
Monitor

Rate
Monitor

To forwarding
function and
output ports

Flow 1

Flow n

Arriving
packets

Rate 1 Rate n

Forward
Feedback
Flow

Backward
Feedback
Flow

Feedback
Controller

Fig. 3. An input port of an NBP egress router

an egress router. Note that a flow may pass through more than one
egress (or ingress) router if the end-to-end path crosses multiple
networks.

NBP prevents congestion collapse through a combination of
per-flow rate monitoringat egress routers and per-flow rate control
at ingress routers. Rate monitoring allows an egress router to de-
termine how rapidly each flow’s packets are leaving the network,
whereas rate control allows an ingress router to police the rate at
which each flow’s packets enter the network. Linking these two
functions together are the feedback packets exchanged between
ingress and egress routers; ingress routers send egress routersfor-
ward feedback packets to inform them about the flows that are be-
ing rate controlled, and egress routers send ingress routersback-
ward feedback packets to inform them about the rates at which
each flow’s packets are leaving the network.

This section describes three important aspects of the NBP
mechanism: (1) the architectural components, namely the mod-
ified edge routers, which must be present in the network, (2) the
feedback control algorithm, which determines how and when in-
formation is exchanged between edge routers, and (3) the rate
control algorithm, which uses the information carried in feedback
packets to regulate flow transmission rates and thereby prevent
congestion collapse in the network.

A. Architectural Components

The only components of the network that require modification
by NBP are edge routers. The input ports of egress routers must be
modified to perform per-flow monitoring of bit rates, and the out-
put ports of ingress routers must be modified to perform per-flow
rate control. In addition, both the ingress and the egress routers
must be modified to exchange and handle feedback.

Figure 3 illustrates the architecture of an NBP egress router’s
input port. Packets sent by ingress routers arrive at the input port
of the egress router and are first classified by flow. In the case
of IPv6, this is done by examining the packet header’s flow label,
whereas in the case of IPv4, it is done by examining the packet’s
source and destination addresses and port numbers. Each flow’s
bit rate is then rate monitored using a rate estimation algorithm
such as the Time Sliding Window (TSW) [11]. These rates are
collected by a feedback controller, which returns them in back-
ward feedback packets to an ingress router whenever a forward
feedback packet arrives from that ingress router. In some cases,

Flow
Classifier

Traffic
Shaper

Traffic
Shaper

To output
buffer and
network

Flow 1

Flow n

Outgoing
packets

Rate 1 Rate n

Backward
Feedback
Flow

Forward
Feedback
Flow

Rate Controller

Feedback
Controller

Fig. 4. An output port of an NBP ingress router

to be described later in this section, backward feedback packets
are also generated asynchronously; that is, an egress router sends
them to an ingress router without first waiting for a forward feed-
back packet.

The output ports of NBP ingress routers are also enhanced.
Each contains a flow classifier, per-flow traffic shapers (e.g., leaky
buckets), a feedback controller, and a rate controller. See Fig-
ure 4. The flow classifier classifies packets into flows, and the traf-
fic shapers limit the rates at which packets from individual flows
enter the network. The feedback controller receives backward
feedback packets returning from egress routers and passes their
contents to the rate controller. It also generates forward feedback
packets, which it periodically transmits to the network’s egress
routers. The rate controller adjusts traffic shaper parameters ac-
cording to a TCP-like rate control algorithm, which is described
later in this section.

B. The Feedback Control Algorithm

The NBP feedback control algorithm determines how and when
feedback packets are exchanged between edge routers. Feed-
back packets take the form of ICMP packets and are necessary
in NBP for three reasons. First, they allow egress routers to dis-
cover which ingress routers are acting as sources for each of the
flows they are monitoring. Second, they allow egress routers to
communicate per-flow bit rates to ingress routers. Third, they al-
low ingress routers to detect network congestion and control their
feedback generation intervals by estimating edge-to-edge round
trip times.

The contents of NBP feedback packets are shown in Figure 5.
Contained within the forward feedback packet is a time stamp and
a list of flow specifications3 for flows originating at the ingress
router. The time stamp is used to calculate the round trip time
between two edge routers, and the list of flow specifications indi-
cates to an egress router the identities of active flows originating
at the ingress router. (An edge router adds a flow to its list of ac-
tive flows whenever a packet from a new flow arrives; it removes
a flow when the flow becomes inactive.) In the event that the net-

3A flow specification is a value uniquely identifying a flow. In IPv6 it is the
flow’s flow label. In IPv4, it is the combination of source address, destination
address, source port number, and destination port number.

FF

Ingress
Router

Egress
Router

IP/ICMP
Headers Timestamp

Flow
Spec 1 . . .

Flow
Spec n

Hop
Count

IP/ICMP
Headers

Timestamp Egress
Rate 1

Flow
Spec 1

. . . Egress
Rate n

Flow
Spec n

BF

Backward Feedback (BF) Packet

Forward Feedback (FF) Packet

Fig. 5. Forward and backward feedback packets exchanged by edge routers

work’s maximum transmission unit size is not sufficient to hold an
entire list of flow specifications, multiple forward feedback pack-
ets are used.

When an egress router receives a forward feedback packet, it
immediately generates a backward feedback packet and returns
it to the ingress router. Contained within the backward feedback
packet are the forward feedback packet’s original time stamp, a
router hop count, and a list of observed bit rates, calledegress
rates, collected by the egress router for each flow listed in the
forward feedback packet. The router hop count, which is used
by the ingress router’s rate control algorithm, indicates how many
routers are in the path between the ingress and the egress router.
The egress router determines the hop count by examining the time
to live (TTL) field of arriving forward feedback packets. When the
backward feedback packet arrives at the ingress router, its contents
are passed to the ingress router’s rate controller, which uses them
to adjust the parameters of each flow’s traffic shaper.

In order to determine how often to generate forward feedback
packets, an ingress router keeps, for each egress router, a timer
which determines the frequency of forward feedback packet gen-
eration. To maintain an adequate and consistent feedback up-
date interval, the timer repeatedly expires after an interval of time
known as thebase round trip time. The base round trip time
for egress routere, denotede.baseRTT, is defined as the shortest
observed round trip time between the ingress router and egress
router e, and it generally reflects the round trip time between
the two edge routers when the network is not congested. The
valuee.baseRTTis calculated by estimating the current round trip
time from each arriving backward feedback packet andupdating
e.baseRTTwhenever the current round trip time is less.

Egress routers may also generate backward feedback packets
asynchronously. If an egress router does not receive a forward
feedback packet from an ingress router within a fixed interval of
time (denotedAsynchInterval), it generates and transmits a back-
ward feedback packet to the ingress router. Asynchronously gen-
erated backward feedback packets are specially marked by the

on arrival of BF packet p from egress router e
 if (p.asynchronous == FALSE)
 e.currentRTT = cur_time - p.timestamp;
 if (e.currentRTT < e.baseRTT)
 e.baseRTT = e.currentRTT;
 deltaRTT = e.currentRTT - e.baseRTT;
 for each flow f listed in p
 f.mrc = min (MSS / e.currentRTT, f.egress_rate / MF);
 if (f.phase == SLOW_START)
 if (deltaRTT × f.ingress_rate < MSS × e.hopcount)
 f.ingress_rate = f.ingress_rate × 2;
 else
 f.phase = CONG_AVOID;
 if (f.phase == CONG_AVOID)
 if (deltaRTT × f.ingress_rate < MSS × e.hopcount)
 f.ingress_rate = f.ingress_rate + f.mrc;
 else
 f.ingress_rate = f.egress_rate - f.mrc;
 else /* p.asynchronous == TRUE */
 for each flow f listed in p
 if (f.phase == SLOW_START)
 if (f.ingress_rate > f.egress_rate × 8)
 f.ingress_rate = f.egress_rate - f.mrc;
 f.phase = CONG_AVOID;
 else /* f.phase == CONG_AVOID */
 if (f.ingress_rate > f.egress_rate + 3 × f.mrc)
 f.ingress_rate = f.egress_rate - f.mrc;

Fig. 6. Pseudocode for ingress router rate control algorithm

egress router and are not used by the ingress router to update the
round trip time measurement. The reason for asynchronous back-
ward feedback packet generation is to prevent the squelching of
congestion feedback when forward feedback packets are delayed
or dropped by the network. It also ensures that ingress routers re-
ceive frequent rate feedback and are able to respond to congestion
even when the distance between edge routers is very large.

C. The Rate Control Algorithm

The NBP rate control algorithm regulates the rate at which each
flow enters the network. Its primary goal is to converge on a set of
per-flow transmission rates (hereinafter calledingress rates) that
prevents congestion collapse from undelivered packets. It also
attempts to lead the network to a state of maximum link utilization
and low router buffer occupancies, and it does this in a manner that
is similar to TCP.

In the NBP rate control algorithm, shown in Figure 6, a flow
may be in one of two phases,slow startor congestion avoidance,
which are similar to the phases of TCP congestion control. New
flows enter the network in the slow start phase and proceed to the
congestion avoidance phase only after the flow has experienced
congestion. The rate control algorithm is invoked whenever a
backward feedback (BF) packet arrives at an ingress router. Re-
call that egress routers send two types of BF packets to ingress
routers: normal BF packets, which are generated when an egress
router receives a forward feedback (FF) packet, and asynchronous
BF packets, which egress routers generate without any prompting

from an ingress router. Both types of BF packets contain a list of
flows arriving at the egress router from the ingress router as well
as the monitored egress rate for each flow. However, only nor-
mal BF packets contain meaningful time stamps which are copied
from arriving FF packets.

If the arriving BF packet is a normal BF packet, then the algo-
rithm calculates the current round trip time and updates the base
round trip time, if necessary. It then calculatesdeltaRTT, which is
the difference between the current round trip time (e.currentRTT)
and the base round trip time (e.baseRTT). A deltaRTTvalue
greater than zero indicates that packets are requiring a longer time
to traverse the network than they once did, and this can only be
due to the buffering of packets within the network.

NBP’s rate control algorithm decides that a flow is experiencing
congestion whenever it estimates that the network has buffered the
equivalent of more than one of the flow’s packets at each router
hop. To do this, the algorithm first computes the product of the
flow’s ingress rate anddeltaRTT. This value provides an estimate
of the amount of flow data that is buffered somewhere in the net-
work. If it is greater than the number of router hops between the
ingress and the egress router multiplied by the size of the largest
possible packet, then the flow is considered to be experiencing
congestion. The rationale for determining congestion in this way
is to maintain both high link utilization and low queueing delay.
Ensuring there is always at least one packet buffered for transmis-
sion on a network link is the simplest way to achieve full utiliza-
tion of the link, and deciding that congestion exists when more
than one packet is buffered at the link keeps queueing delays low.

When the rate control algorithm determines that a flow is not
experiencing congestion, it increases the flow’s ingress rate. If the
flow is in the slow start phase, its ingress rate is doubled. Dou-
bling the ingress rate allows a new flow to rapidly capture avail-
able bandwidth if the network is underutilized. If the flow is in
the congestion avoidance phase, its ingress rate is conservatively
incremented by aminimum rate change(MRC) value in order to
avoid the creation of congestion. MRC is computed as the maxi-
mum segment size divided by the current round trip time between
the edge routers. This results in rate growth behavior that is simi-
lar to TCP in its congestion avoidance phase. Furthermore, MRC
is not allowed to exceed the flow’s current egress rate divided by a
constant factor (MF). This guarantees that rate increments are not
excessively large when the round trip time is small.

When the rate control algorithm determines that a flow is expe-
riencing congestion, it reduces the flow’s ingress rate. If a flow is
in the slow start phase, it enters the congestion avoidance phase.
If a flow is already in the congestion avoidance phase, its ingress
rate is reduced to the flow’s egress rate decremented by MRC. In
other words, an observation of congestion forces the ingress router
to send the flow’s packets into the network at a rate slightly lower
than the rate at which they are leaving the network.

The actions described above are taken only when a normal BF
packet arrives at an ingress router. A different set of actions is
taken when an asynchronous BF packet arrives. This is because,
unlike normal BF packets, asynchronous BF packets are not gen-
erated in response to FF packets and thus do not carry meaning-
ful time stamps. Therefore, the congestion status of the network

Simulation parameter Value

Packet size 1000 bytes
Router queue size 100 packets
Maximum segment size (MSS) 1500 bytes
TCP implementation Reno [12]
TCP window size 100 kbytes
MRC factor (MF) 10
AsynchInterval 10 msec
TSW window size 10 msec
End-system-to-edge propagation delay 100�sec
End-system-to-edge link bandwidth 10 Mbps

Table 1. Default simulation parameters

cannot be determined through the use of round trip time measure-
ments. Instead, it is determined by comparing a flow’s ingress
and egress rates. In the slow start phase, a flow is considered to
be experiencing congestion when its current ingress rate exceeds
its reported egress rate by a factor of eight. The reason for the
choice of the value eight is that we found a delay of three round
trip times is typically required for a change in the ingress rate to
be fully reflected in the egress rate of a backward feedback packet.
During this time, the flow may double its ingress rate three times,
increasing it by at most a factor of eight. Similarly, in the con-
gestion avoidance phase, a flow is considered to be experiencing
congestion whenever its current ingress rate exceeds its reported
egress rate by three MRC increments. The reasoning in this case
is similar to the reasoning used in the slow start case, except that
a flow in the congestion avoidance phase may only increase its
ingress rate by at most three MRC increments during three round
trip times.

Clearly, the steps taken to determine congestion when an asyn-
chronous BF packet arrives are more tolerant of transient conges-
tion than the steps taken to determine congestion when a normal
BF packet arrives. This is because asynchronous BF packets are
only meant to be used as a stopgap measure to prevent serious
congestion from developing during the interval between normal
BF packet arrivals.

III. SIMULATION EXPERIMENTS

In this section, we present the results of several simulation ex-
periments, each of which is designed to test a different aspect of
Network Border Patrol. The first set of experiments examines the
ability of NBP to prevent congestion collapse, and the second set
of experiments examines its ability to provide fair bandwidth al-
locations to competing network flows. All simulations were run
for 100 seconds using the UC Berkeley/LBNL/VINT ns-2 simu-
lator [13]. The ns-2 code implementing NBP and the scripts to
run these simulations are available at the UCI Network Research
Group web site [14]. Default simulation parameters are shown in
Table 1. They are set to values commonly used in the Internet and
are used in all simulation experiments unless otherwise noted.

A. Preventing Congestion Collapse

The first set of simulation experiments explores NBP’s ability
to prevent congestion collapse from undelivered packets. In the
first experiment, we study the scenario depicted in Figure 7. One

I1

I2

R2

E2

S1

S2

S3

S4

1.5 Mbps

10 Mbps

10 Mbps

10 Mbps

128 kbps

TCP Flow

Unresponsive UDP Flow

3 ms

10 ms

5 ms

2 ms

3 ms

R1

E1

I = Ingress Router
E = Egress Router
R = Core Router
S = End System

Fig. 7. A network with a single shared link

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

UDP input traffic load (Kbps)

Combined
TCP
UDP

(a) Severe congestion collapse using FIFO only

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

UDP input traffic load (Kbps)

Combined
TCP
UDP

(b) Moderate congestion collapse using WFQ only

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

UDP input traffic load (Kbps)

Combined
TCP
UDP

(c) No congestion collapse using NBP with FIFO

Fig. 8. Congestion collapse observed as unresponsive traffic load increases. The
solid line shows the combined throughput delivered by the network.

flow is a TCP flow generated by an application which always has
data to send, and the other flow is an unresponsive constant bit
rate UDP flow. Both flows compete for access to a shared 1.5
Mbps bottleneck link (R1-R2), and only the UDP flow traverses
a second bottleneck link (R2-E2), which has a limited capacity of
128 kbps.

Figure 8 shows the throughput achieved by the two flows as
the UDP source’s transmission rate is increased from 32 kbps to
2 Mbps. The combined throughput delivered by the network (i.e.,
the sum of both flow throughputs) is also shown. Three different
cases are examined under this scenario. The first is the benchmark
case used for comparison: NBP is not used between edge routers,

128
kbps

128
kbps

128
kbps

1.5 Mbps 1.5 Mbps 1.5 Mbps 10 Mbps10 Mbps

10
Mbps

10
Mbps

10
Mbps

R R R RI

I I I

EE E

E

UDP1 UDP2 UDPn

UDP1 UDPn-1 UDPn

TCP TCP

Fig. 9. A network with multiple congested router hops

and all routers schedule the delivery of packets on a FIFO basis.
As Figure 8(a) shows, the network experiences severe congestion
collapse as the UDP flow’s transmission rate increases, because
the UDP flow fails to respond adaptively to the discarding of its
packets on the second bottleneck link. When the UDP load in-
creases to 1.5 Mbps, the TCP flow’s throughput drops nearly to
zero. In the second case, weighted fair queueing replaces FIFO
queueing in each of the routers, and the result, shown in Fig-
ure 8(b), is better throughput for the TCP flow. However, as
indicated by the combined throughput of both flows, congestion
collapse still occurs as the UDP load increases. Although WFQ
allocates 750 kbps to both flows at the first bottleneck link, only
128 kbps of this bandwidth is successfully exploited by the UDP
flow, which is even more seriously bottlenecked by a second link.
The remaining 622 kbps is wasted on undelivered packets. In the
third case, FIFO queues are reintroduced, and NBP is installed in
the edge routers. As Figure 8(c) shows, NBP effectively elimi-
nates congestion collapse; the TCP flow achieves a nearly optimal
throughput of 1.37 Mbps, and the combined throughput remains
very close to 1.5 Mbps.

In the second experiment, we examine whether these positive
results continue to be demonstrated when a TCP flow traverses
several bottleneck links carrying traffic from unresponsive UDP
flows. The simulation model for this experiment is shown in Fig-
ure 9. In this configuration, a TCP flow shares several 1.5 Mbps
bottleneck links with unresponsive UDP flows,each of which
is further bottlenecked by another link with a capacity of 128
kbps. All links have propagation delays of 10 msec, and the UDP
sources each transmit packets at a constant rate of 1 Mbps.

Figure 10 shows the throughput of the TCP flow as the number
of congested router hops increases from 1 to 10. When only FIFO
scheduling is used, the TCP flow achieves a throughput of approx-
imately 0.5 Mbps regardless of the number of hops, whereas NBP
allows the network to avoid congestion collapse, allocating nearly
1.31 Mbps to the TCP flow when the number of hops is small. As
the number of hops increases, the throughput of the TCP flow di-
minishes somewhat due to increased feedback delays between the
TCP flow’s edge routers.

B. Achieving Fairness

The primary goal of NBP is to prevent congestion collapse from
occurring. However, its secondary goal is to improve the fairness
of bandwidth allocations to competing network flows. In this sec-
ond set of simulation experiments, we examine whether NBP can

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

T
C

P
T

hr
ou

gh
pu

t (
M

bp
s)

Number of congested hops

NBP + FIFO
FIFO

Fig. 10. TCP throughput in a network with multiple congested router hops

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

UDP input traffic load (Kbps)

Combined
TCP
UDP

(a) Severe unfairness using FIFO only

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

UDP input traffic load (Kbps)

Combined
TCP
UDP

(b) Moderate unfairness using NBP with FIFO

Fig. 11. Unfairness as the unresponsive traffic load increases

achieve fair bandwidth allocations on its own, and, if not, whether
it can do so in conjunction with other common network protocols
and mechanisms.

In the first fairness experiment, we consider only one cause of
unfairness: the existence of unresponsive flows. We return to the
scenario depicted in Figure 7 but replace the second bottleneck
link (R2-E2) with a higher capacity 10 Mbps link. The TCP flow is
generated by an application which always has data to send, and the
UDP flow is generated by an unresponsive source which transmits
packets at a constant bit rate.

Since there is only one 1.5 Mbps bottleneck link (R1-R2) in this
scenario, the max-min fair allocation of bandwidth between the
flows is 750 kbps (if the UDP source exceeds a transmission rate
of 750 kbps). However, as Figure 11(a) shows, fairness is clearly
not achieved when only FIFO scheduling is used in routers. As
the unresponsive UDP traffic load increases, the TCP flow ex-
periences congestion and reduces its transmission rate, thereby
granting an unfairly large amount of bandwidth to the unrespon-
sive UDP flow. Thus, although there is no congestion collapse
from undelivered packets, there is clearly unfairness. Figure 11(b)
shows the throughput ofeach flow when NBP is introduced. No-
tice that NBP is able to reduce the amount of unfairness observed
with FIFO scheduling only, but it does not completely eliminate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.02 0.04 0.06 0.08 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

TCP1 round trip time (sec)

Combined
TCP1
TCP2
UDP

(a) Severe congestion collapse using FIFO only

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.02 0.04 0.06 0.08 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

TCP1 round trip time (sec)

Combined
TCP1
TCP2
UDP

(b) Good fairness with congestion collapse using WFQ only

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.02 0.04 0.06 0.08 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

TCP1 round trip time (sec)

Combined
TCP1
TCP2
UDP

(c) Slight unfairness but no congestion collapse using NBP with FIFO

Fig. 12. Unfairness as the TCP round trip time increases

unfairness. This is due to the fact that NBP has no mechanism that
explicitly enforces fairness.

In the second fairness experiment we consider another cause of
unfairness: TCP’s dependence on the round trip time. In order to
study this type of unfairness, we reuse the scenario from the first
fairness experiment, but we return the second bottleneck link ca-
pacity to 128 kbps and introduce a new TCP flow (TCP2) between
S2 andS3. Thus, two TCP flows and one unresponsive UDP flow
share the first bottleneck link (R1-R2), and only the UDP flow
crosses the second bottleneck link (R2-E2). In order to study the
impact of increasing round trip times on fairness, the round trip
time of the original TCP flow (TCP1) is varied by changing the
propagation delay of link I1-R1. All other link propagation delays
remain fixed as shown in Figure 7, and the transmission rate of the
UDP source is set to 1.5 Mbps.

Figure 12(a) shows the resulting throughput ofeach flow when
FIFO scheduling is used in all routers. Congestion collapse oc-
curs to such an extent that both TCP flows achieve throughputs
of zero, regardless of the round trip time of the TCP1 flow. Fig-
ure 12(b) depicts the throughput ofeach flow when FIFO schedul-
ing is replaced with WFQ at all routers. WFQ allows the flows
to achieve perfectly fair allocations of the bottleneck link band-
width, but it does not prevent congestion collapse, as indicated by
the fact that the combined throughput is less than 1.5 Mbps. Fig-
ure 12(c) shows the throughput ofeach flow when NBP is com-

A F B H H

R R

I

E

R R
100

Mbps

R RR

EEEEE

I I I I I

50
Mbps

50
Mbps

150
Mbps

150
Mbps

50
Mbps

20ms 10ms 5ms 5ms 5ms 10ms

GGGGGGGC C CA BE EA B D

D E E F H H AAA CCC GGGGG GGBBB

Fig. 13. The GFC-2 network

Simulation results
Ideal global Throughput Throughput Throughput Throughput

Flow max-min using using NBP using NBP using NBP
Group fair share WFQ only with FIFO with WFQ with CSFQ

A 10 8.32 10.96 10.00 10.40
B 5 5.04 1.84 5.04 4.48
C 35 27.12 31.28 34.23 31.52
D 35 16.64 33.84 34.95 32.88
E 35 16.64 37.76 34.87 33.36
F 10 8.32 7.60 10.08 8.08
G 5 4.96 1.04 4.96 5.28
H 52.5 36.15 46.87 50.47 47.76

Table 2. Per-flow throughput in the GFC-2 network (in Mbps)

bined with FIFO scheduling. Although the combined throughput
is very close to 1.5 Mbps and congestion collapse is prevented,
NBP does not completely eliminate the unfair bandwidth alloca-
tions created by TCP1’s longer round trip time.

In the third and final fairness experiment, we study whether
NBP can be made more fair by combining it with a fair queueing
mechanism such as weighted fair queueing or core-stateless fair
queueing. We consider the network model shown in Figure 13.
This model is adapted from the second General Fairness Configu-
ration (GFC-2), which is specifically designed to test the max-min
fairness of traffic control algorithms [15]. It consists of 22 unre-
sponsive UDP flows,each generated by a source transmitting at
a constant bit rate of 100 Mbps. Flows belong to flow groups
which are labeled from A to H, and the network is designed in
such a way that members of each flow group receive the same
max-min bandwidth allocations. Links connecting core routers
serve as bottlenecks for at least one of the 22 flows, and all links
have propagation delays of 5 msec and bandwidths of 150 Mbps
unless otherwise shown in the figure.

The first column of Table 2 lists the global max-min fair share
allocations for all flows shown in Figure 13. These values repre-
sent the ideal bandwidth allocations for any traffic control mech-
anism that attempts to provide global max-min fairness. The re-
maining columns list the equilibrium-state throughputs actually
observed after 4.5 seconds of simulation for several scenarios.
(Only the results for a single member of each flow group are
shown.) In the first scenario, NBP is not used and all routers per-
form WFQ. As indicated by comparing the values in the first and
second columns, WFQ by itself is not able to achieve global max-
min fairness for all flows. This is due to the fact that WFQ does
not prevent congestion collapse. In the second scenario, NBP is
introduced at edge routers and FIFO scheduling is assumed at all
routers. Results listed in the third column show that NBP with

0

10

20

30

40

50

60

70

0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

A (ideal=10)
B (5)
C (35)
D (35)
E (35)
F (10)
G (5)
H (52.5)

(a) Using NBP with WFQ

0

10

20

30

40

50

60

70

0.5 1 1.5 2 2.5 3 3.5 4 4.5
T

hr
ou

gh
pu

t (
M

bp
s)

Time (sec)

A (ideal=10)
B (5)
C (35)
D (35)
E (35)
F (10)
G (5)
H (52.5)

(b) Using NBP with CSFQ

Fig. 14. Per-flow throughput in the GFC-2 network

FIFO also fails to achieve global max-min fairness in the GFC-2
network, largely because NBP has no mechanism to explicitly en-
force fairness. In the third and fourth simulation scenarios, NBP
is combined with WFQ and CSFQ, respectively, and in both cases
NBP is able to achieve bandwidth allocations that are approxi-
mately max-min fair for all flows.

NBP with WFQ achieves slightly better fairness than NBP with
CSFQ. We suspect two reasons for this fact. First, CSFQ is an
approximation of WFQ, and its performance depends on the accu-
racy of its estimation of a flow’s input rate and fair share. Second,
CSFQ’s fairness mechanism engages only when congestion is de-
tected (i.e., when a router’s buffer occupancy becomes sufficiently
large). Since NBP keeps buffer occupancies low by continuously
monitoring and responding to variations in the edge-to-edge round
trip time, CSFQ is not given many opportunities to engage.

Figures 14(a) and 14(b) show how rapidly the throughput of
each flow converges to its max-min fair bandwidth allocation for
the NBP with WFQ and the NBP with CSFQ cases, respectively.
Even in a complex network like the one simulated here, all flows
converge to an approximately max-min fair bandwidth allocation
within one second.

IV. I MPLEMENTATION ISSUES

As we saw in the previous section, Network Border Patrol
is a congestion avoidance mechanism that effectively prevents
congestion collapse and provides approximate max-min fairness
when used with a fair queueing mechanism. However, a num-

ber of important implementation issues must be addressed before
NBP can be feasibly deployed in the Internet. Among these issues
are the following:

1. Scalable flow classification.Perhaps the biggest impediment
to NBP’s scalability is its reliance upon flow classification at edge
routers. In a network with a large number of flows, the overheads
of maintaining per-flow state, communicating per-flow feedback,
and performing per-flow rate control and rate monitoring may be-
come inordinately expensive. Fortunately, it is possible to address
this concern by classifying flows more coarsely at edge routers.
Instead of classifying a flow using the packet’s addresses and port
numbers, the network’s edge routers may aggregate many flows
together by, for instance, classifying flows using only the packet’s
address fields. Alternatively, they might choose to classify flows
even more coarsely using only the packet’s destination network
address. Coarse-grained flow aggregation has the effect of signif-
icantly reducing the number of flows seen by NBP edge routers.
However, its drawback is that adaptive flows aggregated with un-
responsive flows may be indiscriminately punished by an ingress
router. Hence, NBP flow aggregation creates a trade-off between
scalability and per-flow fairness.

2. Scalable inter-domain deployment.Another approach to im-
proving the scalability of NBP, inspired by a suggestion in [7], is
to develop trust relationships between domains that deploy NBP.
The inter-domain router connecting two or more mutually trust-
ing domains may then become a simple NBP core router with
no need to perform per-flow tasks or keep per-flow state. If a
trust relationship cannot be established, border routers between
the two domains may exchange congestion information, so that
congestion collapse can be prevented not only within a domain,
but throughout multiple domains.

3. Scalable fairness.Although simulation results show that NBP
is able to achieve the best approximation to max-min fairness
when it is combined with WFQ, WFQ requires that core routers
perform per-flow operations, making it less scalable than CSFQ.
In networks where only a moderate number of simultaneous flows
is possible (e.g., a campus network), NBP with WFQ may be
preferable for its better fairness. However, NBP with CSFQ is
preferable in networks with a large number of flows since approx-
imate global max-min fairness is achieved in a more scalable core-
stateless fashion.

4. Incremental deployment.It is crucial that NBP be implemented
in all edge routers of an NBP-capable network. If one ingress
router fails to police arriving traffic or one egress router fails to
monitor departing traffic, NBP will not operate correctly and con-
gestion collapse will be possible. Nevertheless, it is not necessary
for all networksin the Internet to deploy NBP in order for it to
be effective. Any network that deploys NBP will enjoy the bene-
fits of eliminated congestion collapse within the network. Hence,
it is possible to incrementally deploy NBP into the Internet on a
network-by-network basis.

5. Multicast. Multicast routing makes it possible for copies of a
flow’s packets to leave the network through more than one egress
router. When this occurs, an NBP ingress router must examine
backward feedback packets returning from each of the multicast

flow’s egress routers. To determine whether the multicast flow is
experiencing congestion, the ingress router should execute its rate
control algorithm using backward feedback packets from the most
congested ingress-to-egress path (i.e., the one with the lowest flow
egress rate). This has the effect of limiting the ingress rate of a
multicast flow according to the most congested link in the flow’s
multicast tree.

6. Multi-path routing. Multi-path routing makes it possible for
packets from a single flow to leave the network through differ-
ent egress routers. In order to support this possibility, an NBP
ingress router may need to examine backward feedback packets
from more than one egress router in order to determine the com-
bined egress rate for a single flow. For a flow passing through
more than one egress router, its combined egress rate is equal to
the sum of the flow’s egress rates reported in backward feedback
packets from each egress router.

7. Integrated or differentiated services.NBP treats all flows iden-
tically, but integrated and differentiated services networks allow
flows to receive different qualities of service. In such networks,
NBP should be used to regulate best effort flows only. Flows us-
ing network services other than best effort are likely to be policed
by separate traffic control mechanisms.

V. CONCLUSION

In this paper, we have presented a novel congestion avoidance
mechanism for the Internet called Network Border Patrol. Unlike
existing Internet congestion control approaches, which rely solely
on end-to-end control, NBP is able to prevent congestion collapse
from undelivered packets. It does this by ensuring at the border
of the network that each flow’s packets do not enter the network
faster than they are able to leave it. NBP requires no modifications
to core routers nor to end systems. Only edge routers are enhanced
so that they can perform the requisite per-flow monitoring, per-
flow rate control and feedback exchange operations.

Extensive simulation results provided in this paper show that
NBP successfully prevents congestion collapse from undelivered
packets. They also show that, while NBP is unable to eliminate
unfairness on its own, it is able to achieve approximate global
max-min fairness for competing network flows when combined
with a fair queueing mechanism such as WFQ. Furthermore, NBP,
when combined with CSFQ, approximates global max-min fair-
ness in a completely core-stateless fashion.

As in any feedback-based traffic control mechanism, stability is
an important performance concern in NBP. Using techniques de-
scribed in [16], we plan as part of our future work to perform an
analytical study of NBP’s stability and convergence toward max-
min fairness. Preliminary results already suggest that NBP bene-
fits greatly from its use of explicit rate feedback, which prevents
rate over-corrections in response to indications of network con-
gestion.

ACKNOWLEDGMENTS

We would like to thank Ion Stoica, Scott Shenker and Hui
Zhang for thens-2 core-stateless fair queueing code and also
Paolo Losi for thens-2 weighted fair queueing code.

REFERENCES

[1] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control
in the Internet,” IEEE/ACM Transactions on Networking, August 1999, To
appear.

[2] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “ModelingTCP Throughput:
A Simple Model and its Empirical Validation,” inProc. of ACM SIGCOMM,
September 1998, pp. 303–314.

[3] B. Suter, T.V. Lakshman, D. Stiliadis, and A. Choudhury, “Design Consid-
erations for Supporting TCP with Per-Flow Queueing,” inProc. of IEEE
Infocom ’98, March 1998, pp. 299–305.

[4] B. Bradenet al., “Recommendationson Queue Managementand Congestion
Avoidance in the Internet,” RFC 2309, IETF, April 1998.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair
Queueing Algorithm,” inProc. of ACM SIGCOMM, September 1989, pp.
1–12.

[6] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to
Flow Control – the Single Node Case,”IEEE/ACM Transactions on Net-
working, vol. 1, no. 3, pp. 344–357, June 1993.

[7] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing: Achiev-
ing Approximately Fair Bandwidth Allocations in High Speed Networks,” in
Proc. of ACM SIGCOMM, September 1998, pp. 118–130.

[8] D. Lin and R. Morris, “Dynamics of Random Early Detection,” inProc. of
ACM SIGCOMM, September 1997, pp. 127–137.

[9] D. Bertsekas and R. Gallager,Data Networks, second edition, Prentice Hall,
1987.

[10] R. Jain, S. Kalyanaraman,R. Goyal, S. Fahmy, and R. Viswanathan, “ERICA
Switch Algorithm: A Complete Description,” ATM Forum Document 96-
1172, Traffic Management WG, August 1996.

[11] D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery
Service,” IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 362–
373, August 1998.

[12] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms,” RFC 2001, IETF, January 1997.

[13] LBNL Network Research Group,UCB/LBNL/VINT Network Simulator - ns
(version 2), http://www-mash.cs.berkeley.edu/ns/, September1997.

[14] UCI Network Research Group, Network Border Patrol (NBP),
http://netresearch.ics.uci.edu/nbp/, 1999.

[15] B. Vandalore, S. Fahmy, R. Jain, R. Goyal, and M. Goyal, “A Definition of
Generalized Fairness and its Support in Switch Algorithms,” ATM Forum
Document 98-0151, Traffic Management WG, February 1998.

[16] W.K. Tsai and Y. Kim, “Re-Examining Maxmin Protocols: A Fundamental
Study on Convergence, Complexity, Variations, and Performance,” inProc.
of IEEE Infocom, April 1999, pp. 811–818.

