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Abstract  
Effective acquisition programs, in terms of cost and capability outcomes, are increasingly 

important in today's cost-constrained environments.  Thus, it is important to have effective 
decision support for acquisition policy and process design.  This paper discusses a simulation-
based approach for decision support that facilitates analysis of the effect of system and 
acquisition enterprise characteristics on acquisition outcomes for different policy and process 
alternatives (e.g., traditional vs. evolutionary).  The particular characteristics studied are system 
modularity and production quantity, plus enterprise architecture and risk characteristics (i.e., 
mission risk).  The modeling approach and results to date are presented. 

1. Introduction 
With the continued advent of new threats on the one hand, and likely constraints on the 

ability of the government to fund new systems on the other, effective military acquisition 
programs are increasingly important.  New threats currently derive from asymmetric and 
regional sources such as terrorism, insurgencies and cyber-warfare.  These new threats call for 
new types of systems.  However, the defense acquisition enterprise operates in an increasingly 
cost-constrained environment.  In recent years, acquisition cost overruns have been highlighted 
by the GAO and have provoked concern from government funding sources.  In addition, short-
term war expenditures have used, and continue to use, funds that otherwise might have been 
used for the acquisition of new systems, and long-term government entitlement commitments 
may constrain future funding for new systems.  Finally, sustainment cost is becoming an 
increasingly significant area of concern. 

This, of course, is not a new observation since the past forty years have seen numerous 
attempts at reforming the acquisition enterprise.  One of the most important reforms is the 
concept of evolutionary acquisition, in which systems are acquired in smaller increments of 
capability and then evolved after initial deployment with capability upgrades.  The theory is that 
evolutionary acquisition enables shorter cycles for acquisition, allowing new capabilities to be 
deployed more quickly to warfighters in the field at less cost, as opposed to traditional 
acquisition approaches that rely on long development cycles (Johnson & Johnson, 2002).   

Despite evolutionary acquisition's status as official policy, though, the Department of 
Defense seems to have had limited success in its implementation (Lorell, Lorrell, & Younossi, 
2006).  Our previous work has demonstrated that evolutionary acquisition can, in fact, result in 
quicker deployment of increased capability but that more frequent cycles incur additional 
overhead that may increase overall costs (Pennock & Rouse, 2008).  By expanding on these 
results, this paper seeks to study the effect of system and enterprise features on the 
performance of acquisition policies.  In particular, the immediate focus is on the effect of system 
modularity on acquisition lifecycle performance, where performance is considered as (i) the time 
taken to deploy new capabilities in the field, (ii) the availability of systems in the field once 
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deployed, (iii) and the lifecycle cost associated with acquisition and sustainment.  The notion of 
modularity has potential synergy with evolutionary acquisition—in terms of enabling capability 
upgrades to be integrated into existing platforms—due to the presence of a modular system 
architecture.   

This paper discusses a simulation-based approach that provides decision support for the 
design of acquisition policies and processes over the acquisition lifecycle so that issues such as 
the effect of system modularity can be addressed.  The remainder of the paper is organized as 
follows.  Section 2 reviews the literature on system modularity in product design and acquisition 
processes.  Section 3 describes the simulation model used in this research.  Sections 4 and 5 
discuss an initial experiment and its results, demonstrating the effect of modularity on costs and 
availability.  Then, Section 6 concludes with a description of future research intentions. 

2. Literature Review 
Modularity is typically conceptualized as a matrix of relationships between different 

system modules or components, where the relationship may mean that two modules or 
components are connected or that changes to one impact the other.  Here, we adopt the latter 
as the meaning.  For instance, a laptop computer is typically considered less modular than a 
desktop since many components of a desktop are designed to be assembled and replaced by 
the user without changes to other components (Hölttä-Otto & de Weck, 2007).  The modular 
architecture of a system often is considered to consist of a set of modules or components and 
an infrastructure, which connects components or otherwise provides a platform for the system.  
Here, we adopt the terminology that a simple system is composed of components and that a 
complex system is composed of modules, which are, in turn, composed of components.  In this 
type of complex system, a module typically has strong relationships among its constituent 
components. 

Assume that a value of 1 means that two components are strongly related, that a value 
of 0 means that they are not related, and that a value in between represents the probability that 
they are related over a set of circumstances.  Figure 1, then, illustrates the concept of 
modularity for small systems represented by matrices.  It should be noted in the figure that the 
matrix entry mij represents the degree to which a change in component i affects component j.  
Also, the matrix representation is not standardized in the literature.  For instance, other efforts 
reverse the role of the rows and columns (e.g., Baldwin & Clark, 2000).  It is assumed that 
entries along the diagonal are all 1; however, they are not relevant to the model.  In Figure 1e, 
then, component 1 is the infrastructure, and the example shows that a change to it impacts all 
components.  In Figure 1f, there are two modules, each composed of two components. 
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Figure 1. Modularity Representations 

The concept of modularity in system design has been researched fairly extensively over 
the last twenty years.  Much of this literature applies to commercial product design rather than 
military system design.  In this discussion, the terms system and product will be used 
interchangeably.  Ulrich and Tung (1991) offer one of the first definitions of modularity, focusing 
on (i) similarity between the physical and functional architectures of a product or system and (ii) 
minimization of interactions between physical components.  While function is one focus of 
modularity research, another focus is on the system lifecycle—for instance, modularity to 
facilitate component disassembly, recycling or reuse (Gershenson, Prasad & Allamneni, 1999).  
The lifecycle focus provides a framework for discussing how modularity affects cost during the 
different phases of acquisition. 

In design, there is considerable literature on how to format for modularity.  The research 
literature, for the most part, does not concentrate directly on cost, though.  Baldwin and Clark 
(2000) discuss three stages of cost with respect to designing for modularity: (i) establishing 
design rules, (ii) establishing design parameters, and (iii) testing and fixes.  Design rules provide 
constraints within which modules (or components) must operate.  As the number of modules 
increases, the cost of establishing design rules also increases, although no specific relationship 
is identified (Baldwin & Clark, 2000).  Establishing design rules is considered a one-time 
expenditure, since they are believed to remain in effect for a long time.  Design parameters 
must be established each time a module is designed.  The cost increases with product 
complexity and is applied for each redesign.  Costs for testing and fixes start high but decrease 
over time as personnel gain expertise with the particular product or system. 

Hölttä and Otto (2005) support the general relationship described for Baldwin and 
Clark’s “design parameter” costs, but add two boundary cases of significance.  First, minor 
changes often do not require a reworking of the module parameters, largely owing to the 
allowances of play existing within the system.  Second, major changes usually require a much 
more costly reworking of the module concept itself.  Although they do not use the same 
terminology as Baldwin and Clark, the implication is that these large changes could challenge 
even the initial design rules.  Between those two extremes, however, Hölttä and Otto observe a 
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roughly linear relationship between the degree of change requested and the difficulty—and, by 
inference, the cost—of enacting that change.   

In terms of production, Fixson (2007), in his review of research into modularity and 
commonality, finds that most studies of modularity have identified economies of scale as a 
significant cost benefit.  Garud and Kumaraswamy (1995) describe the effect as an economy of 
substitution.  The ability to manufacture components separately from the products they 
comprise permits these component designs to outlive individual product lines.  Thus, modularity 
extends the size of the production runs across both products and through time.  This reuse of a 
design lowers costs by reducing retooling requirements.  The relationship is not entirely linear.  
There is an optimal number of modules where increasing assembly costs balance out the 
decreasing fabrication costs (Fixson, 2007). 

The scale of the product itself may also be significant in whether these cost benefits can 
be realized.  Zhang and Gershenson (2003), investigating a collection of fourteen small-
consumer products, “found no general relationships between relative modularity and cost, or 
between change in modularity and change in cost.” 

In sales and demand for commercial products, Desai, Kekre, Radhakrishnan, and 
Srinivasan (2001) find that increasing commonality between products can hurt demand.  Shared 
components reduce the perceived value of high-value products and increase the component 
costs for low value products, thus eating into profits from both ends.  The F-35 Joint Strike 
Fighter offers an interesting case of commonality across systems in a military context.  Its three 
variants are designed for three different service applications (a traditional fighter for the Air 
Force, a vertical/short take-off and landing vehicle for the Marines, and a carrier-based fighter 
for the Navy).  If successful, this approach demonstrates a way whereby commonality increases 
demand via appealing to different classes of customers. 

In sustainment, modularity can help reduce inventory cost by pooling demands, an 
extension of the economies of scale that benefit the production stage.  These early findings 
have seen much elaboration and investigation, leaving the inventory phase one of the most 
researched phases in the lifecycle of modular architecture.  Fixson (2007) offers a thorough 
account of the various exceptions and extensions of the inventory research, including the roles 
of demand distributions, correlated demands, component cost structures, inventory time 
horizon, process and supply networks, and other constraints and considerations. 

Aside from inventory, the sustainment phase of the product lifecycle is one of the least 
researched aspects of modularity.  Gershenson et al. (1999) speculate that maintenance costs 
should diminish with increased modularity, but their focus is elsewhere, and they do not back 
this speculation with data.  Newcomb, Bras, and Rosen (1998) demonstrate that it is possible to 
modularize a product with respect to lifecycle, i.e. maintenance and disposal.  Tsai, Wang, and 
Lo (2003) offer a similar demonstration.  Both papers indicate that modularity can reduce costs 
of ownership but only if applied properly.  Gershenson, Prasad & Zhang (2003) speculate that 
any modularity is good for maintenance costs; however, this hypothesis does not yet appear to 
have been tested in the research literature. 

Modularity is related to the notion of open systems, which have been adopted as an 
initiative in the DoD acquisition.  An open-systems approach seeks to enable the integration of 
current and future capabilities into a system via standards.  Ford and Dillard (2008) study the 
interaction between evolutionary acquisition and open systems and find that the use of the two 
together may improve schedule and cost performance but may also increase cost in 
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sustainment due to a trade-off between increased integration risks (due to evolving standards) 
and reduced design risks (due to use of currently stable standards). 

There are several hypotheses that are of interest when considering modularity.  These 
include, along with supporting evidence from the literature: 

1. Increasing modularity decreases the cost of implementing technology upgrades for 
deployed systems (Fleming & Sorenson, 2001; Garud & Kumaraswamy, 1995; 
Gershenson et al., 2003; Huang & Kusiak, 1998; Ulrich & Tung, 1991; Ulrich, 1995); 

2. Increasing modularity decreases the mean time to repair a system that has failed 
(Cheung & Hausman, 1995; Gershenson et al., 2003; Tsai et al., 2003); 

3. Increasing modularity increases the upfront engineering design hours required for a 
system (Ulrich, 1995); 

4. Increasing modularity increases the cost of changes to infrastructure (Ethiraj & Levinthal, 
2004; Fleming & Sorenson, 2001; Garud & Kumaraswamy, 1995; Ulrich & Tung, 1991; 
Ulrich, 1995). 

It should be noted that Fleming and Sorenson (2001) offer mixed support for hypothesis 
1 since they find that small technology upgrades are handled easily with a modular architecture 
but that major upgrades may pose challenges since they may require changes to the modular 
architecture itself.  In addition, Garud and Kumaraswamy (1995) assert that technology upgrade 
costs decrease only at the expense of an initial infrastructure cost.  This paper primarily 
addresses the first two hypotheses. 

As the number of components in a system increases, it is a complex task to compare 
different modularity matrices and quantitatively determine differences in modularity.  Thus, there 
has been interest in establishing a modularity index to provide a standardized measurement of 
modularity.  Two such indices are given by Guo and Gershenson (2004) and Hölttä-Otto and de 
Weck (2007).  Effective modularity indices remain an area of research. 

3. Model Description 
This research uses a simulation-based decision support to determine the effectiveness 

of different acquisition policies and processes.  Simulation has traditionally been used in 
process-based domains such as manufacturing (Law & Kelton, 2000).  Increasingly, it is being 
used to study acquisition.  Ford and Dillard (2008) use a system dynamics approach, which 
models the delayed effects and feedback flows associated with the acquisition enterprise.  
Discrete-event simulation is used in our previous work (Pennock & Rouse, 2008) and by Olson 
and Sage (2003).  Discrete-event simulation tends to offer better representational support for 
organizational decision-making processes. 

3.1. Existing Model Summary 
Our existing model is implemented using ARENA 10.0, a commercially available, 

discrete-event simulation package.  It consists of three interacting components, which address 
the traditional acquisition system (Pennock & Rouse, 2008): 

 Technical Progress Model.  The technical progress model accounts for basic 
research that occurs exogenous to the defense enterprise.  This work may be 
performed in the commercial sector or via government funding.  It feeds raw, new 
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technologies into a technology development process model that reflects the 
DoD's science and technology (S&T) development enterprise.  Technologies are 
characterized by an application area, a maturity level and a capability level.  An 
example of an application area might be radar.  The maturity level reflects the 
readiness of the technology for usage and is measured using the NASA 
technological readiness level (TRL) scale, recently adopted by the DoD (DoD, 
2006, July).  Capability level, on the other hand, represents the technology's 
capability (once deployed) in relation to previous generations within the same 
application area.  Capability level for each succeeding generation is determined 
by a combination of a learning effect (from the other DoD applications) and an 
exogenous progress effect (from commercial and outside technical progress).  
Technologies are put into the technology development process model at an early 
TRL (e.g., 1). 

 Technology Development Process Model.  In this S&T enterprise, new 
technologies for the DoD systems typically undergo a staged process of 
development whereby ideas are reduced to working technologies that can be 
integrated into a system.  There is considerable technical risk in the development 
process, as ideas often do not work in practice, do not scale-up to production, or 
do not integrate into systems.  The staged process mitigates risk by not fully 
funding a technology's development, allowing it to be culled if it fails or if it is 
outpaced by competing technologies.  It should be noted that the S&T enterprise 
model consists of a single, unified organization rather than the myriad agencies 
that comprise the actual DoD S&T enterprise. 

 System Acquisition Process Model.  The system acquisition model primarily 
represents the first four phases of a defense acquisition program, as specified in 
the DoD Defense Acquisition Guidebook (2006).  These include concept 
development, technology development, system development and production & 
deployment.  Operations & support is represented by a simple delay function for 
the period of sustainment.  The system acquisition process model pulls 
technologies from the technology development process model for use in the 
system being developed.  In the existing model, the TRL at which these 
technologies are selected is an experimental variable used to assess the effect of 
traditional acquisition (which selects relatively immature technologies and 
matures them in the program for significant capability leaps in deployed systems) 
versus evolutionary acquisition (which selects relatively mature technologies for 
more frequent, but smaller capability leaps). 

The remainder of this section discusses two enhancements to the existing model—the 
introduction of a representation for system modularity and a model of the sustainment phase of 
the acquisition lifecycle. 

3.2. Modularity Matrix 
A system is assumed to have n components.  These components may or may be related 

with one another for the purposes of repair/replacement and/or technology upgrades during 
sustainment.  One of these components is designated as the system infrastructure, or the 
platform that integrates the various components.  Modular systems often require such an 
infrastructure to facilitate modularity.  Modularity is then characterized as the degree to which 
the various components interact or are connected, and it is represented as an n x n matrix.  It 
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should be noted that modularity is assumed to be a function of the system design, as 
determined in upstream stages of the acquisition process. 

Each entry mij in this modularity matrix M represents the probability that a change in 
component i necessitates a change in component j.  Component failures and component 
technology upgrade opportunities arrive and involve changes to a component.  Due to 
modularity effects, they may also involve changes to other components through the relations 
represented by M.  The modularity values for a particular system may differ for repairs and 
technology upgrades, resulting in two different matrices, Mr and Mt.  Also, a modularity matrix is 
not necessarily symmetric.  That is, changes to component i may affect component j in a 
manner different from that in which changes to j affect i.  A simple example of asymmetry is 
when replacing i requires removing j, but replacing j does not require removing i.  Components 
may be organized into modules in complex systems. 

3.3. Sustainment Model 
The sustainment model has two primary processes—repairs and technology upgrades.  

Failures and technology upgrade opportunities arrive as random events to a deployed system, 
according to a Poisson process with a particular rate.  Each failure or technology upgrade 
opportunity directly affects only one component, except that an infrastructure component, when 
present, is not affected by failures or technology upgrades and is assumed to be component 1.  
However, repairs or upgrades may cascade to other components, due to modularity 
relationships.  The following notation is used for the sustainment model. 

 fi is the failure rate associated with component i.  f1 is undefined when infrastructure 
is present (since infrastructure is component 1). 

 ri is the repair rate associated with component i.  r1 is undefined when infrastructure 
is present. 

 ti is the arrival rate of new technology upgrades for component i.  t1 is undefined 
when infrastructure is present. 

 ui is the upgrade rate for component i.  u1 is undefined when infrastructure is present. 

 pi is the cost of repairing component i.  p1 is undefined when infrastructure is present. 

 qi is the cost associated with a technology upgrade to component i.  q1 is undefined 
when infrastructure is present. 

 cij is the compatibility cost associated with making component j technologically 
compatible with component i if i is upgraded and if the interaction between i and j 
necessitates that j be made compatible to the new technology for i.  ci1 is undefined 
when infrastructure is present. 

In general, it is assumed that fi > ti, ri > ui, and pi < qi. 

The simulation logic works as follows.  When a failure to component i arrives to the 
system, it invokes a repair delay for that component, occurring at rate ri.  All components j such 
that mij > 0 are evaluated probabilistically via a Bernoulli variable, using the probability mij, to 
determine whether j must also be repaired.  Any components j requiring a repair are then 
repaired at rate rj.  This repair requirement can cascade to additional components that are 
dependent on j, and so on.  The system experiences a repair downtime equal to the maximum 
repair time of i and that of any other affected components. 
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Similarly, when a technology upgrade to component i arrives to the system, it invokes an 
upgrade delay for that component.  This delay occurs at rate ui.  All components j such that mij > 
0 are evaluated probabilistically via a Bernoulli variable to determine whether j must also be 
made compatible with the upgrade.  Any components j requiring a compatibility operation invoke 
a delay at rate uj.  Upgrade effects can cascade similarly to repair effects.  The system 
experiences an upgrade downtime equal to the sum upgrade time of i and compatibility time of 
any affected components.  This is in contrast to the downtime due to repairs. 

If a failure or technology upgrade for i arrives while the system is in downtime, then that 
failure or technology upgrade queues until the downtime is resolved.  Multiple entities in this 
queue are processed as first-come-first-served. 

Clearly, this is a relatively simple model.  It is meant to allow basic analysis of the effects 
of modularity and to provide a basis for more complex models in the future. 

4. Experiment 
In this section, we detail a simulation experiment to test the effect of different types of 

modularity matrices on sustainment.  The dependent variables are the repair costs, upgrade 
costs and system availability.  Sustainment of a single system is considered in each 
experimental run.  Three classes of modularity are considered: 

 Type 1.  All non-diagonal entries in the matrix are the same fractional probability 
value. 

 Type 2.  All non-diagonal entries in the modularity matrix are either zero or one. 

 Type 3.  The matrix consists of modules, comprised of components that have strong 
relationships, but the relationship entries between modules in different components 
is zero.   

4.1. Parameters and Assumptions 
The simulation is executed over a period representing ten years of sustainment.  The 

following parameter values are used.  These parameter values are selected as notional values 
for the experimental analysis to illustrate the effects of the modularity. 

 fi = 60 days for all i 

 ri = 1 hour for all i 

 ti = 360 days for all i 

 ui = 6 hours for all i 

 pi = 10 currency units for all i 

 qi = 100 currency units for all i 

 cij = 15 currency units for all i and j 

4.2. Experimental Setup 
Table 1 shows the variations tested among the different types of modularity matrices.  In 

matrices of types 1 and 2, n equals 10.  In matrices of type 3, the size is adjusted to n equals 16 
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to accommodate modules being the same size (e.g., systems with eight modules, each having 
two components, or with four modules, each having four components). 

Table 1. Modularity Matrix Variations Tested 
Matrix Type Variations 
Type 1 Eleven different variations are simulated.  Each variation uses a different value 

for all non-diagonal mij.  The different values used are 0.0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. 

Type 2 Seven different variations are simulated.  Each variation has a mix of values 
(0, 1) for non-diagonal mij.  Each variation uses a different probability to select 
a specific value for each mij.  These probabilities are 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 
and 0.6, and the probability corresponds to mij equaling one, as opposed to 
zero.  It was determined that probability values above 0.6 had similar behavior; 
thus, they are not considered here. 

Type 3 Five variations are simulated.  Each variation has a different size of module.  
The variations include sixteen modules of size 1, eight modules of size 2, four 
modules of size 4, two modules of size 8, one module of size 16.  Within each 
module, all mij equal 1.  Relationships between modules have mij equal 0. 

 

Ten replications of each variation are run for statistical significance. 

5. Results and Analysis 

5.1. Repair Costs 
Figures 2-4 illustrate average repair costs as a function of the level of modularity in a 

system.  The actual average repair cost shown is the average collateral repair cost, or the cost 
of repairing other components related to a failed component that must be repaired due to a 
modularity relationship.  This shows the variable effect of modularity in terms of average repair 
cost.  The result from each replication across each variation is shown in each figure.  The units 
for cost are in currency units, as specified in the parameters for the model. 

According to expectations, as the level of relationship strength (or coupling) increases 
(i.e., as modularity decreases), the repair cost increases for each type of matrix.  The factors of 
interest include the points at which the costs start to converge to a maximum value and the 
relative spread of the costs for each level of variation within each type of modularity matrix.  In 
the type 1 matrix, the variance is less than that of the type 2 matrix, suggesting that numerous 
weak relationships provide a more predictable repair cost for a system than a set of 
relationships that are either very strong or very weak.  Intuitively, this makes sense.  It also is 
reinforced by the outcome from type 3 matrices, in which the repair cost is always the same, 
since a component failure leads to replacement of the entire module, and each module is the 
same size and cost.  Since module size has a linear relationship with module cost, the cost 
relationship with modularity is likewise linear. 

Since the failure rates are the same across all replications, the patterns for total repair 
costs of each replication (over the entire ten-year time horizon) are similar to those of average 
costs (per failure incident).  Therefore, only the average costs are shown.  However, it should be 
noted that there would be variance across variations in the type 3 matrix total costs since the 
number of failures during the time horizon is a random variable. 
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Figure 2. Repair Cost as a Function of Modularity for Type 1 Matrix 
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Figure 3. Repair Cost as a Function of Modularity for Type 2 Matrix 
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Figure 4. Repair Cost as a Function of Modularity for Type 3 Matrix 

5.2. Technology Upgrade Costs 
Figures 5-7 illustrate average upgrade costs as a function of the level of modularity in a 

system.  Average upgrade cost addresses the work to make components consistent to 
upgrades when they are related to the component being upgraded, i.e., the variable portion of 
cost related to modularity.  The result from each replication across each variation is shown in 
each figure.   

The behavior patterns for upgrade costs are comparable to those for repair costs: as the 
level of relationship strength increases, the upgrade cost increases for each type of matrix.  As 
with repair costs, the pattern for total upgrade cost over the ten-year time horizon is similar to 
that of the average cost, so only the average costs are shown.  The units for cost are in 
currency units, as specified in the parameters for the model. 
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Figure 5. Upgrade Cost as a Function of Modularity for Type 1 Matrix 
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Figure 6. Upgrade Cost as a Function of Modularity for Type 2 Matrix 
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Figure 7. Upgrade Cost as a Function of Modularity for Type 3 Matrix 

5.3. System Downtime 
Finally, Figures 8-10 illustrate average system downtime during the ten-year time 

horizon as a function of the level of modularity in a system.  Average downtime is a combined 
effect of failures and technology upgrades.  The result from each replication across each 
variation is shown in each figure.   

As the level of relationship strength increases, the average downtime increases for each 
type of matrix.  The behavior patterns are somewhat similar to those for costs.  The average 
downtime values across matrix type 3 variations are not constant, due to the random number of 
failures and technology upgrades in each replication.  The units for downtime are the fraction of 
time that the system is unavailable. 
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Figure 8. Downtime as a Function of Modularity for Type 1 Matrix 

 

Average Downtime

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70

Coupling (Probability that mij = 1 in type 2 modularity matrix)

A
ve

ra
ge

 D
ow

nt
im

e

 

Figure 9. Downtime as a Function of Modularity for Type 2 Matrix 
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Figure 10. Downtime as a Function of Modularity for Type 3 Matrix 

6. Discussion and Future Research 
These results provide some insight into the effect of modularity on sustainment costs 

and system availability.  There is some potential for cost savings and improved system 
availability as modularity is increased.  Clearly, the parameter values and complexities of real 
systems need to be considered, and this will be a focus of future research efforts.  Such efforts 
need to account for the notion of integration risk over the lifecycle, as detailed in Ford & Dillard 
(2008). 

One major goal of this research is to characterize the effect of modularity over the 
acquisition lifecycle.  Thus, current work is focusing on integration of the existing model of 
acquisition with the new sustainment and modularity models.  This involves modeling modularity 
and its engineering costs in the acquisition model as well as modeling the flow of technology 
upgrades to the sustainment model from the S&T model.  The emphasis on cost modeling will 
be on parametric models for cost estimation (e.g., Valerdi & Liu, in press).  Such models must 
address not only the initial design of modularity but also adjustments during development such 
as evolution of design parameters (Baldwin & Clark, 2000).  The hypothesis is that modularity 
tends to increase design and development costs while decreasing production and sustainment 
costs.  The question is to determine what levels of modularity, in combination with other system 
characteristics, achieve the best results, not only in terms of cost but also in terms of time to 
deployment and post-deployment availability.  One such system characteristic is production 
level, which has the potential to leverage economies of scale in making modularity more cost 
effective. 

To answer the question about the effectiveness of modularity levels, it is important to be 
able to characterizer modularity by a standard metric such as a modularity index.  This also will 
be an avenue of future research. 
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Another goal is to study the effect of enterprise characteristics and their interactions with 
system characteristics.  In particular, we are interested in studying the effects of alignment in the 
S&T system and the concept of mission risk.  The current model assumes a unitary S&T 
organization rather than the multi-organization S&T enterprise.  In terms of cost, schedule and 
risk, what is the trade-off between the redundancy of a multi-organization S&T enterprise versus 
the efficiency of a unitary organization?  Mission risk is increasingly important, given the 
evolution of threats that need to be addressed.  Does modularity aid in adapting systems in the 
field to new mission requirements?  Finally, we plan to extend previous results by exploring 
which conditions from the above areas of study make evolutionary acquisition more favorable 
than traditional approaches. 
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AgendaAgenda

•• MotivationMotivation
•• Previous workPrevious work
•• Modularity and sustainment modelsModularity and sustainment models
•• ExperimentExperiment
•• ResultsResults
•• Future workFuture work
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MotivationMotivation

•• Previous findings indicate:Previous findings indicate:
–– Evolutionary acquisition can result in faster deployment of Evolutionary acquisition can result in faster deployment of 

capabilitycapability
–– But may result in increased overhead cost due to more frequent But may result in increased overhead cost due to more frequent 

acquisition cyclesacquisition cycles
•• In general, what factors cause evolutionary acquisition to In general, what factors cause evolutionary acquisition to 

be more effective than traditional acquisition:be more effective than traditional acquisition:
–– Lifecycle costLifecycle cost
–– Timeliness of deployed capabilityTimeliness of deployed capability
–– Availability of new systems in the fieldAvailability of new systems in the field

•• In particular, what role does system modularity play:In particular, what role does system modularity play:
–– Lifecycle costLifecycle cost
–– System availabilitySystem availability
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simulation model 
of acquisition 
enterprise



Knowledge and Skills for Enterprise Transformation. 5

Model SummaryModel Summary

•• Technical progress modelTechnical progress model
–– Addresses research exogenous to acquisition enterpriseAddresses research exogenous to acquisition enterprise
–– Results are input to S&T modelResults are input to S&T model

•• S&T modelS&T model
–– Addresses maturation of technologies via a staged processAddresses maturation of technologies via a staged process
–– Incorporates technical riskIncorporates technical risk
–– Assumes single S&T organizationAssumes single S&T organization

•• Acquisition modelAcquisition model
–– Primarily addresses concept development, technology Primarily addresses concept development, technology 

development, system development and production & deploymentdevelopment, system development and production & deployment
–– Pulls technologies from S&T modelPulls technologies from S&T model
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ModularityModularity
•• Independence of different Independence of different 

system componentssystem components
•• Common infrastructure and Common infrastructure and 

standard interfacesstandard interfaces
•• Major principle in product and Major principle in product and 

system design literaturesystem design literature
–– Increased modularity Increased modularity 

decreases cost/time for decreases cost/time for 
repairs and technology repairs and technology 
upgrades in sustainmentupgrades in sustainment

–– Increased modularity Increased modularity 
increases cost of designincreases cost of design

–– Increased modularity may Increased modularity may 
increase costs for changes to increase costs for changes to 
infrastructureinfrastructure



Knowledge and Skills for Enterprise Transformation. 7

Modularity ModelModularity Model
•• Systems consist of components or Systems consist of components or 

modules (i.e., collection of modules (i.e., collection of 
components)components)

•• A relationship between A relationship between 
components i and j exists if components i and j exists if 
changes to i causes changes to jchanges to i causes changes to j

•• Assume this relationship is Assume this relationship is 
characterized by a probability that characterized by a probability that 
a change to i causes a change to ja change to i causes a change to j

•• Modularity can be represented as Modularity can be represented as 
a matrixa matrix

•• This matrix is not necessarily This matrix is not necessarily 
symmetricsymmetric

•• Diagonal elements are not Diagonal elements are not 
relevantrelevant

1 0.1 0.4 0.5 1

0.4 1 0.3 0.3 0.2

0.2 0.3 1 0.6 0.9

0.7 0 0.5 1 0.5

1 0.5 0.3 0.3 1
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Modularity ExamplesModularity Examples

1 0 0

0 1 0

0 0 1

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

1 0 1

0 1 0

0 0 1

1 1 1

1 1 1

1 1 1

1 1 1

0 1 0

0 0 1

1 1 0

Completely modular Weak connections Few connections

Completely non-modular With infrastructure With modules

0

1 1 0 0

0 0 1 1

0 0 1 1
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Sustainment ModelSustainment Model
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Model SummaryModel Summary

•• Addresses repairs and technology upgrades for systems Addresses repairs and technology upgrades for systems 
in the fieldin the field

•• Each failure or technology upgrade affects only one Each failure or technology upgrade affects only one 
componentcomponent

•• But due to relationships, failures and technology But due to relationships, failures and technology 
upgrades can affect other componentsupgrades can affect other components

•• Failures and technology upgrades are assumed to occur Failures and technology upgrades are assumed to occur 
via a Poisson processvia a Poisson process



Knowledge and Skills for Enterprise Transformation. 11

Sustainment ParametersSustainment Parameters

•• ffii is the is the failure ratefailure rate associated with component i.  fassociated with component i.  f11 is undefined when is undefined when 
infrastructure is present (since infrastructure is component 1).infrastructure is present (since infrastructure is component 1).

•• rrii is the is the repair raterepair rate associated with component i.  rassociated with component i.  r11 is undefined when is undefined when 
infrastructure is present.infrastructure is present.

•• ttii is the is the arrival ratearrival rate of new technology upgrades for component i.  tof new technology upgrades for component i.  t11 is is 
undefined when infrastructure is present.undefined when infrastructure is present.

•• uuii is the is the upgrade rateupgrade rate for component i.  ufor component i.  u11 is undefined when infrastructure is is undefined when infrastructure is 
present.present.

•• ppii is the is the cost of repairingcost of repairing component i.  pcomponent i.  p11 is undefined when infrastructure is is undefined when infrastructure is 
present.present.

•• qqii is the is the cost associated with a technology upgradecost associated with a technology upgrade to component i.  qto component i.  q11 is is 
undefined when infrastructure is present.undefined when infrastructure is present.

•• ccijij is the is the compatibility costcompatibility cost associated with making component j associated with making component j 
technologically compatible with component i if i is upgraded, antechnologically compatible with component i if i is upgraded, and if the d if the 
interaction between i and j necessitates that j be made compatibinteraction between i and j necessitates that j be made compatible to the le to the 
new technology for i.  cnew technology for i.  ci1i1 is undefined when infrastructure is present.is undefined when infrastructure is present.
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Parameter ValuesParameter Values

•• Matrix has 10 componentsMatrix has 10 components
–– Adjusted to 16 for systems with modulesAdjusted to 16 for systems with modules

•• ffii = 60 days for all i= 60 days for all i
•• rrii = 1 hour for all i= 1 hour for all i
•• ttii = 360 days for all i= 360 days for all i
•• uuii = 6 hours for all i= 6 hours for all i
•• ppii = 10 currency units for all i= 10 currency units for all i
•• qqii = 100 currency units for all i= 100 currency units for all i
•• ccijij = 15 currency units for all i and j= 15 currency units for all i and j
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ExperimentExperiment

•• Independent variable Independent variable –– relationship values within a class relationship values within a class 
of modularity matrix typesof modularity matrix types
–– Relationship Strength (Type 1) Relationship Strength (Type 1) -- All nonAll non--diagonal matrix diagonal matrix 

elements have the same probability value (this value ranges elements have the same probability value (this value ranges 
from 0 to 1)from 0 to 1)

–– Relationship Number (Type 2) Relationship Number (Type 2) -- All nonAll non--diagonal matrix entries diagonal matrix entries 
are either 0 or 1 (number of 1are either 0 or 1 (number of 1’’s determined randomly by s determined randomly by 
probability ranging from 0 to 0.6)probability ranging from 0 to 0.6)

–– Modules (Type 3) Modules (Type 3) -- Matrix is composed of modules of varying Matrix is composed of modules of varying 
size (number of modules ranges from 1 to 16)size (number of modules ranges from 1 to 16)

•• Dependent variables Dependent variables –– repair costs, upgrade costs and repair costs, upgrade costs and 
system availabilitysystem availability

•• Time horizon Time horizon –– 10 years of system operation10 years of system operation
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Results SummaryResults Summary

•• Major cost benefits for high levels of modularity, with Major cost benefits for high levels of modularity, with 
diminishing returns as modularity decreasesdiminishing returns as modularity decreases

•• Systems with varied number of strong relationships Systems with varied number of strong relationships 
exhibit greater cost variability than those with varied exhibit greater cost variability than those with varied 
strength of relationshipsstrength of relationships

•• Systems with modules (as opposed to components) Systems with modules (as opposed to components) 
exhibit a linear cost effect (increasing cost as module exhibit a linear cost effect (increasing cost as module 
size increases)size increases)

•• Availability exhibit similar behavior (with more variability)Availability exhibit similar behavior (with more variability)
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Repair Cost Repair Cost –– ModulesModules
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Upgrade Cost Upgrade Cost –– StrengthStrength
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Upgrade Cost Upgrade Cost –– NumberNumber
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Upgrade Cost Upgrade Cost –– ModulesModules
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Availability Availability –– StrengthStrength
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Availability Availability –– NumberNumber
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Availability Availability –– ModulesModules
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ConclusionsConclusions

•• Models developed to study effect of system modularity in Models developed to study effect of system modularity in 
sustainmentsustainment

•• Simulation experiments demonstrated effects of different Simulation experiments demonstrated effects of different 
patterns of modularity in terms ofpatterns of modularity in terms of
–– Repair costsRepair costs
–– Technology upgrade costsTechnology upgrade costs
–– System availabilitySystem availability
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Future Research 1Future Research 1
•• Develop a model of engineering costs for design and development Develop a model of engineering costs for design and development 

and production of modularity in systemsand production of modularity in systems
–– Study tradeStudy trade--offs between design/development and sustainment costs offs between design/development and sustainment costs 

and availabilityand availability
•• Characterize modularity via a standardized modularity indexCharacterize modularity via a standardized modularity index

–– Aid in categorization and experimentationAid in categorization and experimentation
•• Integrate sustainment model with existing acquisition model to Integrate sustainment model with existing acquisition model to 

support analysis of effectiveness of evolutionary acquisition wisupport analysis of effectiveness of evolutionary acquisition with th 
regard toregard to
–– Mission riskMission risk
–– S&T alignment and funding strategyS&T alignment and funding strategy

•• Analyze real systems with this frameworkAnalyze real systems with this framework
–– UAS and JSFUAS and JSF
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Future Research 2Future Research 2

•• Move beyond processMove beyond process--oriented representations to oriented representations to 
incorporate organizational behaviorincorporate organizational behavior
–– Human behavior via character modelsHuman behavior via character models
–– Social and organizational networksSocial and organizational networks
–– EcoEco--systemsystem
–– Organizational stories via drama managementOrganizational stories via drama management

•• Use organizational simulation to study role of incentives Use organizational simulation to study role of incentives 
and information in acquisition enterprise performanceand information in acquisition enterprise performance
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