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Abstract

This thesis reports the derivation and validation of two single-beacon acoustic navi-

gation algorithms, as well as the development and experimental evaluation of a platform-

independent acoustic communication (Acomms) system that enables combined communi-

cation and navigation. The navigation algorithms are centralized and decentralized for-

mulations of single-beacon navigation, and employ range measurements from a single ref-

erence beacon to an underwater vehicle in addition to the vehicles Doppler velocity log,

gyrocompass, and depth sensors to perform absolute (as opposed to relative) localization

and navigation of the vehicle. The centralized single-beacon algorithm is based on the ex-

tended Kalman filter. We assume that the Kalman filter has simultaneous, real-time access

to sensor measurements from both the vehicle and the beacon (e.g. the ship). The decen-

tralized single-beacon algorithm is based on the information form of the extended Kalman

filter. We assume that the information filter on the vehicle only has access to measure-

ments from the vehicles on-board navigation sensors in real-time. The vehicle-based filter

receives acoustic broadcasts from the reference beacon that contain information about the

beacons position and sensor measurements. We show analytically and in simulation that
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ABSTRACT

the decentralized algorithm formulated herein yields an identical state estimate to the state

estimate of the centralized algorithm at the instant of each range measurement; in addition

we show that between range measurements the results from the two algorithms differ only

by linearization errors and the effects of smoothing historic ship states. The Acomms sys-

tem has been installed on the Wood Hole Oceanographic Institution vehicles Puma, Jaguar,

and Nereus. The author and collaborators deployed the Acomms system in four sea trials

in the North Pacific and South Atlantic Oceans, including the Mariana Trench. The per-

formance of the navigation algorithms are evaluated using simulations and navigation data

from these field trials. The benefit of single-beacon navigation and this implementation

are that the decentralized formulation scales naturally to multiple vehicles and the use of a

single, moving reference beacon eliminates the need for multiple, fixed beacons and their

associated cost and range limitations.
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Chapter 1

Introduction

A great help also would be for the furtherance of skill, if those that are practisers in that Arte

[of Navigation], and such as are Students of the Mathematikes, might often conferre together.

For except there be a uniting of knowledge with practice, there can be nothing excellent.

William Barlow in Navigator’s Supply (1597)

1.1 Motivation

The world’s oceans cover more than 70% of our planet, but we presently know less

about the submerged surface of the earth than we do about the surface of the moon. The

oceans hold information that is important in basic research and our daily lives. They can

provide clues to widely disparate areas of study, such as how species adapt to different

depths and temperatures and how ocean circulation contributes to global climate regula-

tion. To help understand these phenomena, we use underwater robotic vehicles to collect

1



CHAPTER 1. INTRODUCTION

biological and geological samples, create accurate maps, and deploy and recover experi-

ments. To enable these scientific activities, we must be able to accurately and repeatably

measure vehicle position. The challenge, however, is that the global positioning system

(GPS) does not work underwater.

In lieu of GPS, underwater navigation is most commonly accomplished using sound—

for instance, garnering range measurements from the time-of-flight of acoustic signals.

However, existing high-precision absolute acoustic navigation methods for underwater ve-

hicles are impractical over long length scales (on the order of 10 km or more). Moreover,

many existing acoustic navigation systems lack scalability for simultaneously navigating

multiple vehicles. In comparison to land-based radio frequency navigation and commu-

nication methods, underwater acoustic navigation and communication using underwater

modems suffers from severely limited bandwidth and high latency [53]. Given the speed of

sound in water (∼1500 m/s), transmitting acoustic data over length scales on the order of

kilometers results in latency on the order of seconds. Although the bandwidth of acoustic

modem technology has increased dramatically in recent years, achieving throughput of up

to 2400 bps [84], operationally the average throughput is on the order of 10-50 bps due to

the low duty cycle with which acoustic messages are typically transmitted during under-

water vehicle operations. As a result, existing multi-vehicle navigation algorithms that rely

on high-bandwidth communication are of limited practical use underwater.

The goal of this thesis is to enable high-precision absolute navigation of multiple under-

water vehicles over length scales on the order of 1 to 100 km. To support the simultaneous

2



CHAPTER 1. INTRODUCTION

navigation of multiple underwater vehicles, we seek a flexible, scalable solution through

a decentralized approach. This thesis focuses on a new navigation algorithm employing a

single beacon that can be mounted on a ship. The algorithm is designed to work in a low-

bandwidth environment, scale naturally to multiple vehicles, and avoid the geographical

constraint imposed by fixed acoustic beacons.

1.2 Thesis Contributions and Roadmap

This thesis reports the development, implementation, and evaluation of a new naviga-

tion system for underwater vehicles, as well as the derivation of two navigation algorithms

based on ranges from a single moving reference beacon (e.g. range-aided navigation). The

navigation algorithms are a centralized implementation and a decentralized implementation

of range-aided navigation based on the extended Kalman filter and the extended informa-

tion filter respectively. The navigation system was tested in simulation and full-scale field

trials. The centralized filter is experimentally validated with data collected during field

trials and the decentralized filter is validated through simulation.

Review of Underwater Navigation and Previous Research

Chapter 2 reviews the current standard methods for underwater navigation, the pre-

vious research on the relatively unexploited method of single-beacon navigation, and the

details of single-beacon one-way-travel-time (OWTT) navigation—the navigation method

addressed in this thesis—which was first published in [27] and [28].

3



CHAPTER 1. INTRODUCTION

Acoustic Communications (Acomms) System

Chapter 3 reports the development of a novel navigation system for underwater vehicles

that implements OWTT navigation, employing synchronous clocks and acoustic modems

in addition to standard shipboard and vehicle-based navigation sensors to achieve simul-

taneous acoustic communication and navigation. Details of the Acomms system’s perfor-

mance and engineering accomplishments during four different oceanographic expeditions

are presented. This work was published in part by the author and collaborators in [92].

System Models

Chapter 4 describes the process models for the vehicle and the ship and the observation

models used in this thesis. These models are used in the formulation of both the Kalman

filter and the information filter. These models are published in conjunction with the work

in Chapter 5.

Centralized Extended Kalman Filter Algorithm and Benchmark

Chapter 5 reports the formulation and implementation of a centralized algorithm based

on the extended Kalman filter and designed to estimate vehicle and ship position within

the framework of single-beacon OWTT navigation. The centralized (CEKF) algorithm is

designed to have simultaneous access to all sensor measurements from both the vehicle

and the ship. Field results are reported from an autonomous underwater vehicle (AUV)

survey carried out in 4000 m of water on the southern Mid-Atlantic Ridge while carry-

ing out a near-bottom survey in search of hydrothermal vents. The experimental results

4



CHAPTER 1. INTRODUCTION

presented demonstrate that single-beacon navigation is a viable alternative to traditional

absolute acoustic navigation methods, and the CEKF is used as a benchmark for the decen-

tralized algorithm discussed in Chapter 6. This CEKF work was published in part by the

author and collaborators in [93].

Decentralized Extended Information Filter Algorithm

Chapter 6 reports the derivation of a decentralized algorithm based on the extended

information filter for single-beacon OWTT navigation. The decentralized (DEIF) algorithm

is designed to run locally on a submerged vehicle with real-time access to measurements

from only the vehicle’s on-board navigation sensors and with infrequent, asynchronous

reception of acoustic broadcasts containing information from the ship. The DEIF algorithm

is designed to be implemented in real time on one or more underwater vehicles. The DEIF

is shown analytically to replicate exactly the state estimate of the CEKF immediately after

each range measurement, and the analytical results are supported using a simulation of the

deep-water experimental data set from Chapter 5. To the best knowledge of the author,

this work is the first to formulate and test an extended information filter in the context

of decentralized single-beacon navigation for underwater vehicles. This work has been

accepted for publication in [94].

Future Work

Conclusions and future work are discussed in Chapter 7, including the extension of the

decentralized algorithm to multi-vehicle operations employing inter-vehicle ranges.
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Chapter 2

Underwater Vehicle Navigation

The ability to estimate the position of an underwater vehicle reliably, repeatably, and

accurately is a necessary prerequisite for collecting high resolution oceanographic data,

creating meaningful, high-resolution maps, and locating and relocating sites of interest in

the ocean. This chapter reviews conventional underwater navigation methods as well as

previous work reported in single-beacon and decentralized navigation. The remainder of

the chapter is organized as follows: Section 2.1 reviews conventional navigation. Section

2.2 reviews previously reported results on single-beacon navigation and details of the im-

plementation used in this thesis. Section 2.3 reviews previously reported results in decen-

tralized estimation in the context of underwater navigation. Section 2.4 reviews previously

reported navigation methods, both land- and water-based, that rely on the information filter.

Section 2.5 concludes with a brief literature review of range-only simultaneous localization

and mapping (RO-SLAM).
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CHAPTER 2. UNDERWATER VEHICLE NAVIGATION

2.1 Conventional Navigation Methods

Conventional underwater navigation methods can be loosely categorized as either meth-

ods that provide bounded-error position estimates or methods that do not, resulting in po-

sition estimates with errors that are unbounded over time.

2.1.1 Dead Reckoning

Navigation based on velocity and heading, commonly referred to as dead reckoning,

has long been a staple of nautical navigation [11]. Dead reckoning relies on an initial geo-

referenced position estimate, referred to as a position fix, and propagates this fix forward by

estimating the direction and distance traveled by the ship or vehicle. The distance traveled

is estimated by integrating velocity or acceleration measurements to calculate relative dis-

placement. In addition to these sensors, underwater vehicles typically have a depth sensor

and a compass. The typical suite of vehicle-based navigation sensors available to under-

water vehicles, depending on the vehicle size and budget, is shown in Table 2.1, where z

denotes depth or altitude, ẍ denotes linear accelerations in the world frame, ẍbody denotes

linear accelerations in the body frame, ω denotes angular velocities, and ω̇ denotes angular

accelerations.

In underwater vehicle navigation several methods for estimating vehicle velocity are

common. A Doppler velocity log currently provides the most accurate estimate of linear

velocity available to underwater vehicles. On torpedo-shaped vehicles the angular velocity

7



CHAPTER 2. UNDERWATER VEHICLE NAVIGATION

Table 2.1: Navigation sensors commonly used in underwater vehicles.

Instrument Variable Update Rate Precision Range Drift
Acoustic Altimeter z (altitude) 0.1–10 Hz 0.01–1.0 m varies w/ freq —
Pressure Sensor z (depth) 1 Hz 0.01–0.1% 11 km —
Inclinometer roll, pitch 1–10 Hz 0.1◦–1◦ ±45◦ —
Magnetic Compass heading 1–10 Hz 1–10◦ 360◦ —
Gyro: Mechanical heading 1–10 Hz 0.1◦ 360◦ 10◦/h
Gyro: Ring-laser heading 1–1600 Hz 0.01◦–0.1◦ 360◦ 0.1–10◦/h

and Fiber-optic
Gyro: North Seeking heading, 1–100 Hz 0.01◦–0.1◦ 360◦ —

pitch,
roll,ẍ,ω

IMU ẍ,ω,ω̇ 1–1000 Hz 0.01 m varies varies
Bottom-lock Doppler ẋbody 1–5 Hz ≤ 0.3% 18–100 m —

Source: Kinsey et al. [54]

of the propeller is sometimes used as a proxy for a forward velocity, and the direction of

travel is assumed to be parallel to heading of the vehicle.

The advantage of dead reckoning is that it can be performed using only vehicle-based

sensors. The disadvantage is that dead reckoning accrues error at a rate determined by the

precision of these sensors and yields an estimate of local displacement with errors that are

unbounded over time. In order to achieve bounded-error navigation, additional navigation

information is required from an absolute georeferenced source.

2.1.2 Bounded-Error Navigation

Bounded-error navigation underwater is usually achieved with the aid of systems that

rely on external sensors such as long baseline (LBL) or ultra-short baseline (USBL) nav-

igation [68]. Table 2.2 shows a comparison between LBL, USBL, and global positioning

system (GPS) position measurements. Between position fixes, a vehicle estimates its po-
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CHAPTER 2. UNDERWATER VEHICLE NAVIGATION

sition using velocity, acceleration, and attitude measurements as in dead reckoning. An

extreme example of this is underwater gliders such as the Slocum glider that uses GPS to

measure a position fix while on the surface, but navigates solely by dead reckoning between

GPS fixes—typically for periods on the order of hours or days [91].

Table 2.2: Georeferenced navigation sensors used to measure XYZ position.

Instrument Variable Update Rate Precision Range
Global Positioning System xyz 1–10 Hz 0.1–10 m in air 0 km in water
Long Baseline (300 kHz) xyz 1–10 Hz ±0.007 m 0.1 km
Long Baseline (12 kHz) xyz 0.1–1.0 Hz 0.1–10 m 5-10 km
Ultra-Short Baseline range & 0.02–0.5 Hz 0.1–2.0% 0.1-10 km

bearing of range

Source: Kinsey et al. [54]

LBL navigation relies on acoustic beacons that are typically deployed as subsurface

moorings, 50-600 m above the seafloor, prior to vehicle deployment [68]. After deploy-

ment, the beacon locations are surveyed from the ship by collecting two-way travel times

between the beacon and the ship’s transducer as the ship navigates around the estimated

beacon location. The position of the ship’s transducer is known from GPS and the ship’s

gyrocompass so that, taking into account the sound velocity profile, a least squares esti-

mate of the beacon position can be found. A careful beacon survey can result in residuals

on the order of one meter or less in several thousand meters of water. Once the vehicle is

deployed, it interrogates the beacons and the beacons respond with a fixed, known turn-

around time. Using an estimate of sound velocity, the vehicle uses the two-way travel-time

to estimate its range from each beacon and can thus triangulate its own position.

The principal advantage of LBL navigation is that it provides absolute geodetic naviga-
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CHAPTER 2. UNDERWATER VEHICLE NAVIGATION

tion fixes. One of the disadvantages of LBL navigation is that, in most cases, the beacons

are fixed, thus limiting the vehicle to a 5-10 km range for 12 kHz LBL. In addition, the

beacons and the time required to deploy, survey, and recover them are costly in terms of

the hardware, the cost of ship time, and the time lost during the expedition.1

USBL navigation relies on the calculation of a vehicle’s relative displacement from a

single external beacon typically mounted on a ship. Range, azimuth, and elevation are

measured using an acoustic signal—the two-way travel time of the signal is used to de-

termine range, a small transducer array is used to determine the azimuth and elevation of

the incoming acoustic signal. Provided that the external beacon has a known location, it is

possible to compute a geodetic fix for the vehicle. However, the vehicle position informa-

tion is typically calculated at the external beacon, not on-board the vehicle, and is therefore

not available to the vehicle unless the information is communicated acoustically or through

some other means.

Because USBL navigation does not rely on a fixed external beacon, as is commonly the

case with LBL navigation, the use of USBL does not constrain the vehicle to an area of

the seafloor. However, the range limitations in a USBL system are more severe than LBL

because a USBL system measures range and bearing, and error in the bearing measurement

results in greater error in the position estimate of the vehicle at longer ranges. Thus the

precision of the vehicle position estimate is a function of the range between the ship and the

vehicle. This effectively depth-limits USBL systems depending on the desired precision.
1Acoustic navigation beacons rated for full-ocean-depth operation typically cost more than $10k each.

An acoustic beacon survey at full-ocean-depth takes ∼1–24 hours of ship time, and a large oceanographic
ship such as an AGOR-25 class vessel, e.g. R/V Atlantis and R/V Thomas G. Thompson, costs ∼$30k/day.
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2.2 Single-Beacon Navigation

In this thesis range-aided navigation refers to vehicle navigation that relies on ranges

from one or more georeferenced sources in addition to supplementary non-georeferenced

navigation information from additional sources such as inertial sensors. The term range-

only navigation is reserved for navigation based solely on range measurements, possibly

from multiple sources, with no additional navigation information. Single-beacon navi-

gation is the minimal implementation of range-aided navigation, relying on range mea-

surements from a single, georeferenced beacon to provide an absolute position reference.

Conversely, long baseline could be considered the maximal implementation of range-aided

navigation whereby ranges from multiple beacons are measured concurrently.

Compared to long baseline navigation, single-beacon navigation reduces the system

complexity at the expense of reduced dimensionality of the constraint on vehicle position

for each measurement. By virtue of requiring only one beacon, single-beacon navigation

requires less equipment than traditional long-baseline. Additionally, the implementation

of single-beacon navigation used in this thesis relies only on a ship-based beacon, elimi-

nating the costly and time-consuming deployment and beacon survey. However, a single

range measurement provides no position information in the direction orthogonal to the di-

rection of the range measurement, relying on multiple measurements at different times and

at different relative bearings to provide a fully observable solution.

Observability in single-beacon navigation has been covered from several perspectives

as described in Appendix A.5. This thesis will not discuss the details of observability, but
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the consensus is that vehicle position is globally observable provided vehicle heading is

known, the vehicle is not travelling directly towards or away from the beacon, and at least

three range measurements have been made that are not along a linear vehicle trajectory (i.e.

range measurements have been made at three non-collinear points).

The remainder of this section describes single-beacon one-way travel-time navigation,

the implementation of single-beacon navigation advanced in this thesis, followed by a re-

view of prior research on single-beacon navigation.

2.2.1 Single-Beacon One-Way-Travel-Time Navigation

Single-beacon one-way travel-time (OWTT) navigation relies on range estimation from

the time-of-flight (TOF) of acoustic data packets propagating between a reference beacon

with a known, though not necessarily stationary, location and the underwater vehicle to

provide a reference to the world frame [27, 28]. The implementation of OWTT naviga-

tion, discussed in detail in Chapter 3, requires underwater acoustic modems on both the

reference beacon and the underwater vehicle, as well as precision clocks to synchronize the

modems. Figure 2.1 depicts a ship-based acoustic modem broadcasting acoustic data pack-

ets to multiple underwater vehicles. The acoustic data packets broadcast by the reference

beacon (in this case a ship) encode both the time-of-launch (TOL) and information about

the geodetic location of the sender’s transducer at the TOL. The time-of-arrival (TOA) of

this acoustic data packet at the receiver, combined with the decoded TOL and the position

information in the acoustic data packet, are used to estimate range. A range measurement,
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Figure 2.1: Acoustic data packet broadcast from the ship to multiple vehicles (RIP ABE).
Photo credit: Paul Oberlander, WHOI.

in conjunction with the depth of the vehicle measured from a pressure sensor, constrains

the vehicle position to a circle of solutions. Between range measurements, relative vehicle

motion is estimated using velocity and attitude measurements.
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The one-way time-of-flight is calculated from the difference between the TOL encoded

in the acoustic packet, measured by a precision clock and modem system aboard the ship,

and the TOA, measured by a precision clock and modem system aboard the underwater

vehicle. The accuracy of this TOF measurements is limited by the accuracy of the precision

clocks residing on the ship and the underwater vehicle. To ensure valid TOF measurements,

it is crucial that the clocks on the sender and receiver remain synchronized throughout the

dive to within an acceptable tolerance. The time-keeping problem and our solution are

discussed in more detail in Section 3.2.2.

OWTT navigation provides bounded-error position estimates. Moreover, when the ship

and vehicle navigate in concert, navigation can be conducted on an unbounded area. This

is in contrast to a conventional 12 kHz LBL system using fixed beacons that provides

navigation only within a range of a 5-10 km radius from the beacons. OWTT navigation

provides scalability as well, allowing any vehicles within acoustic range to simultaneously

use the same acoustic data packet broadcast independent of the number of vehicles.

2.2.2 Prior Single-Beacon Navigation Research

An in-depth review of selected single-beacon navigation papers—including a summary

of the observation and process models used and a summary of the authors’ conclusions—

is provided in Appendix A. This section provides a more inclusive, though less detailed,

overview of prior research in single-beacon navigation.

The majority of prior literature in single-beacon navigation reports estimation algo-
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rithms and the results of numerical simulations of these algorithms. Only a few report

experimental evaluations of the proposed algorithms, and even fewer employ independent

navigation methods to evaluate quantitatively the accuracy of the proposed methods.

The earliest formulation of vehicle navigation using ranges from a single beacon that is

known to the authors is reported in [80]. This approach employs least-squares to estimate

the unknown initial vehicle position and a constant-velocity unknown current; additionally,

a linear algebra-based observability analysis is reported.

Range-only localization methods used for estimating the position of a target are ad-

dressed by [76] and [85]. In [76] the authors assume a constant-velocity, constant-bearing

target trajectory and compute the theoretical Cramér-Rao bound and compare it to the per-

formance of a maximum-likelihood estimator (MLE), an extended Kalman filter (EKF),

and a regularized particle filter during field tests. In [85] the author assumes a target with

constant acceleration and addresses the observability of the target-tracker problem using the

Fisher information matrix and reports simulation results using an EKF. In related work, [1]

implements the EKF from [85] and reports simulation results.

Several different methods for addressing the observability of single-beacon navigation

are reported in the literature. The papers [32–35] report an observability analysis employ-

ing limiting systems to assess uniform observability, and derive sufficient conditions for

the existence of an observer with exponentially decaying estimation error for the cases of

both known and unknown ambient currents. The authors report field results from their

implementation of an EKF. In related work [62] extends the EKF reported in [32–35] to
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three-dimensional coordinates with simulation results.

A concise observability analysis in continuous time is reported in [77] using Lie deriva-

tives to compute conditions for which the system has local weak observability. In [48] the

authors report an algebraic analysis showing local uniform observability based on signal

estimation techniques, though the lack of an estimation model disallows the computation

of an updated position in the absence of a new measurement.

The use of EKFs for homing and single-beacon navigation, initialized by least-squares,

is reported in [3,4,89] with both simulation and field trials. Similarly, in [18] the authors re-

port an EKF initialized by a minimum mean squared error solution with simulation results.

In [4] the authors also report a simulated two-vehicle system using a cascaded approach

in which the second vehicle navigates relative to the first vehicle using inter-vehicle range

measurements.

The papers [58–60] report an error state EKF for single-beacon navigation based on

error models of the vehicle’s inertial navigation system. The authors report results using a

combination of field and simulation data.

More recent least-squares solutions are reported in [65], [42], and [57]. In [65] the

authors report a nonlinear least mean square method for estimating a vehicle’s initial posi-

tion after which it relies on dead reckoning. In [42] the author reports an ad hoc iterative

technique to estimate course. In [57] the author reports a method for advancing multiple

single-beacon fixes along the vehicle’s estimated trackline to simulate a multi-beacon fix.

An extended set-valued observer is reported in [63]. The authors show this observer
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provides bounds on the estimation error in the presence of non-linearities in the model

and non-Gaussian noise, guaranteeing that the true vehicle position is contained within

the estimator’s predicted error covariance ellipsoid when linearization error and noise are

correctly characterized.

Single-beacon navigation using differential Doppler measurements is reported in [17]

with simulation results. Navigation using range-rate single-beacon measurements is dis-

cussed in [81]. In [83] the authors describe and provide experimental results for several

methods of single- and multi-beacon navigation, including ranges based on one-way travel-

time measurements from one or two beacons and the time-difference of arrival from multi-

ple synchronized beacons.

This thesis is concerned with advancing the single-beacon navigation method first de-

scribed in [27] and [28], in which the authors report the theory and first experimental results

in single-beacon one-way-travel-time (OWTT) acoustic navigation with an acoustic mo-

dem and precision timing board. The authors employ a maximum-likelihood estimator and

report field results from shallow-water sea trials. This thesis extends OWTT navigation to

a centralized EKF and includes results from deep-water field trials as described in Chapter

5 and reported in part in [93]. This thesis also extends OWTT navigation to a decentralized

extended information filter (EIF) and includes simulation results as described in Chapter 6

and reported in part in [94].

The single-beacon navigation method reported that most closely resembles the work

presented in this thesis is [29]. In [29] the authors report a system employing a single mov-

17



CHAPTER 2. UNDERWATER VEHICLE NAVIGATION

ing georeferenced beacon to support the localization of multiple vehicles through asyn-

chronous acoustic broadcasts. This work is a single-beacon implementation of the decen-

tralized multi-vehicle navigation method reported in [5, 6], which is discussed briefly in

Section 2.3 and in more detail in Section 6.4.3. The principal difference between [29] and

the decentralized OWTT navigation algorithm reported herein is that [29] uses an ad hoc

vehicle-based EKF to perform range measurement updates that rely on the absolute position

and covariance broadcast from the reference beacon. In contrast, the decentralized method

reported herein relies on incremental data broadcast from the reference beacon, allowing us

to exactly recreate the results of a centralized EKF that has access to measurements from

both the vehicle and the beacon’s navigation sensors.

2.3 Decentralized Estimation in Navigation

Decentralized estimation in the context of underwater communication and navigation

faces unique constraints in terms of low bandwidth and high latency, which renders many

of the decentralized estimation solutions from land-based applications unsuitable. Until

recently little research has been done on the topic of decentralized estimators and multi-

vehicle navigation in the field of underwater robotics. However, as the cost of vehicles

has decreased and their reliability improved, increased interest in multi-vehicle operations

within the ocean science community has precipitated new research in this area.

The authors of [5, 6] address cooperative localization of multiple underwater and sur-
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face vehicles in a SLAM framework using ranges between multiple vehicles and reference

beacons. The method presented allows a vehicle running a Bayes estimator to use range

and position information broadcast from one or more moving beacons; the mechanics of

the algorithm are discussed in more detail in Section 6.4. This work expands on the moving

long baseline concept in [90] to encompass multiple range sources and real-time operation.

The authors of [69] address a similar concept to moving long baseline and compare the

effect of the use of the Kalman filter versus the particle filter on the vehicle’s localization

performance.

2.4 Navigation using Information Filters

To date, the information filter has not been widely used for navigation in the field of

robotics. Derived in detail in [70], the extended information filter (EIF) has been employed

for vehicle navigation [15] and SLAM algorithms [74, 87] in the context of land-based

robotics. In the context of underwater vehicles, the EIF is most widely used for coordinated

control, but there are a few examples of the EIF being employed in SLAM algorithms

[22, 26].

19



CHAPTER 2. UNDERWATER VEHICLE NAVIGATION

2.5 Range-Only Simultaneous Localization and

Mapping

Though not directly related to single-beacon navigation, range-only simultaneous local-

ization and mapping (RO-SLAM) is briefly reviewed here. RO-SLAM is concerned with

estimating vehicle position relying solely on range information from multiple beacons. The

extension of RO-SLAM to multiple vehicles is similar to the future work proposed in this

thesis—incorporating inter-vehicle ranges from multiple vehicles into a decentralized nav-

igation solution.

The authors of [71, 72] address RO-SLAM for underwater vehicles and report exper-

imental results. In this formulation multiple beacons are used but a priori beacon loca-

tion is not known. Multi-beacon, range-only navigation for terrestrial vehicles in a SLAM

framework is addressed in [23, 24, 51, 52, 55, 56] using radio-frequency beacons for range

measurement, in [64] using audible sound, in [67, 86] using wireless sensor networks, and

in [9,10] with an unspecified range sensor. Specifically in the context of wireless networks,

the author of [61] computes the Cramér-Rao bound on positioning accuracy using range

measurements between multiple agents and illustrates with simulation.
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Chapter 3

A Platform-Independent Acoustic

Communication and Navigation System

3.1 Introduction

This chapter describes a platform-independent acoustic communication system, re-

ferred to as the Acomms system, designed by the author and collaborators to enable mul-

tiple nodes (any combination of underwater vehicles, surface ships, and fixed beacons)

to simultaneously exchange data and calculate inter-node ranges with one meter accuracy

with up to 10 km range. The Acomms system and field results herein are reported in part

in [92].

Multi-vehicle operations are motivated by the desire to collect richer data sets, i.e.

increased spatial extent, spatial resolution, and/or the variety of data types. The com-
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bined communication and navigation system described herein supports one-way-travel-

time (OWTT) navigation, which enables one or more vehicles to use a single, georefer-

enced, moving beacon, e.g. the ship, to perform bounded-error navigation. As discussed in

detail in Chapter 2, bounded-error navigation is achieved currently with the aid of systems

such as long baseline (LBL) or ultra-short baseline (USBL) navigation. LBL navigation

requires external, fixed reference beacons that have a range of only 5-10 km and require

additional survey and recovery time, while the accuracy of USBL navigation is approxi-

mately 1% of range, which limits its usefulness over long ranges. Using the ship as a single

reference beacon, OWTT navigation enables the vehicles to travel over tens of kilometers

limited only by speed and endurance and removing the need for external beacons. In addi-

tion, the accuracy of the range measurements used in OWTT navigation is independent of

range.

Advances in underwater communication systems promise improved communication

and connectivity for underwater vehicles. Acoustic communication systems are increas-

ingly employed on untethered underwater vehicles, which have historically had limited

telemetry when submerged. The Acomms system supports two types of acoustic com-

munication: asynchronous communication, which is the most commonly used for sending

data, and synchronous communication, which in addition to communication enables navi-

gation using inter-node ranges derived from the one-way travel-times of acoustic messages

between nodes.

The Acomms system hardware is implemented with a dedicated software program,
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Linux host computers, acoustic underwater modems, and precision reference clocks. The

acoustic communications software configures the modem, manages all acoustic communi-

cation traffic, and acts as an interface between the vehicle-specific software and the modems

and clocks. While the communications and one-way travel time features are provided using

the Woods Hole Oceanographic Institution (WHOI) Micro-Modems [30, 31] and the PPS-

Board [27,28], the concepts have been developed in a hardware independent framework and

can be used with any acoustic system or combination of systems that includes bidirectional

communications with synchronous transmission and precision time-tagged reception.

The Acomms software and related hardware have been installed on the Woods Hole

Oceanographic Institution vehicles Puma, Jaguar, and Nereus, and have been deployed

successfully in sea trials at the southern Mid-Atlantic Ridge [93], the Mariana Trench [12,

13, 96], and the Cayman Trough [37]. This chapter covers the system architecture in detail

and results from each of the field trials.

3.2 Acoustic Communication

The Acomms software, designed to operate symmetrically on all nodes, initializes the

modem and issues a sequence of modem commands, defined by the user, to initiate data

transmissions between nodes, transmit ranging pings, and interrogate acoustic navigation

beacons. In addition, the Acomms software enables the user to specify modem configu-

rations and ensures that the modem is properly configured after a vehicle or modem re-
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boot. The Acomms software time-stamps and logs all modem communication traffic and

Acomms-related data, provides basic format checking for messages sent to the modem,

monitors the state of the modem, tracks message traffic and modem status, and reports mo-

dem statistics to the vehicle controller. Details of the Acomms software are discussed in

Section 3.3.4.

3.2.1 Asynchronous Communication

The majority of vehicles that use underwater modems operate their modems asyn-

chronously: the modems are used to transmit data and send commands between nodes—

where a node can be an underwater vehicle, a ship, or a fixed entity such as a mooring—

without the need for precision or synchronized time-keeping among the nodes. During

asynchronous operation, a modem on one node is typically designated as the master mo-

dem. The master modem initiates acoustic communications for all nodes in a deployment,

eliminating the potential for collisions between acoustic data transmissions.

3.2.2 Synchronous Communication and Navigation

In addition to asynchronous communication capabilities, the Acomms system enables

synchronous communication and navigation when equipped with a precision clock. For

synchronous communication, topside nodes, i.e. nodes that are not submerged, rely on a

global positioning system (GPS) timeserver for their timing reference. Subsea each node is
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equipped with a free-running precision clock as a timing reference that is synchronized to

a GPS timeserver prior to the start of the dive. Details of the implementation are covered

in Section 3.3.

OWTT navigation, first proposed in [27], uses one-way travel times of acoustic mes-

sages to estimate range between subsea nodes and a surface node, such as a vehicle or

ship equipped with a GPS receiver, that has knowledge of its position in the world frame

[27, 28, 93]. OWTT navigation employs acoustic broadcasts of data packets that contain

information about the transmitter’s position and the time at which the message was trans-

mitted. Because the transmitter and receiver clocks are synchronized, the receiver can

calculate the time-of-flight of the acoustic broadcast using the time-of-arrival of the mes-

sage and the time-of-launch that is encoded in the data packet. Time-of-flight information

combined with the acoustically encoded position information from the transmitter provides

a range measurement from a known position in the world frame. Between range mea-

surements the vehicle performs dead reckoning. OWTT navigation is covered in detail in

Chapter 2 and [27], [28], and [93].

The Acomms software supports OWTT navigation through a message packing function

that precisely controls the timing of messages provided to the modem as specified in [39]

and can thus properly anticipate and encode the time-of-launch of the data packet. The

Acomms software and hardware also ensures that the modem’s internal clock, which is

used to measure the time-of-arrival of messages, is properly disciplined.

In addition to enabling OWTT navigation, synchronous communication provides fur-
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ther advantages over asynchronous communication by making it possible to accurately

predict the timing of acoustic transmissions of other nodes, thereby enabling synchronized

time-division multiple access (TDMA) cycles among nodes. Typically, to avoid collision

of acoustic messages, a single node is designated as the master that commands data trans-

missions for all nodes in a deployment. Synchronous communication eliminates the need

for a single master node because messages originating at different nodes can be scheduled

a priori to not overlap. This feature, which was used extensively during field trials as de-

scribed in Section 3.4, enables a higher throughput of data while also retaining the ability

for an operator to transmit additional acoustic messages from the ship. Using synchronous

communication, an operator knows the exact timing of the vehicle’s sequence of acoustic

transmissions and can reliably predict when the acoustic channel is clear for transmission

from the ship, such as an abort message that commands the vehicle to return to the sur-

face. For example, a vehicle’s modem could be programmed to run a two-minute-long

cycle of data transmissions that starts on the even minutes but begins with a thirty-second

period during which no acoustic transmissions are scheduled. The shipboard operator then

knows that the thirty-second period after every even minute is clear to transmit acoustic

transmission from the ship to the vehicle without risking message collision. We have fur-

ther exploited this functionality to enable on-the-fly switching between different modem

configurations (e.g. frequency band, modulation method, bandwidth, and bitrate) as de-

scribed in more detail in Section 3.3.1, which requires simultaneously reconfiguring both

the transmitting and receiving modems.
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Previously reported acoustic modem drivers for synchronous communication, such as

the modem drivers employed on the Massachusetts Institute of Technology (MIT) au-

tonomous surface vehicles [20], and the WHOI Seabed vehicles [27, 28], are not portable

due to the tight integration of these modem drivers into the vehicle-specific application

code of their respective vehicle control and navigation systems. In contrast, the Acomms

software reported herein is portable, employs a vehicle-independent interface based on user

datagram protocol (UDP) messages, runs as a stand-alone daemon on a host Linux CPU,

and operates symmetrically on all node types—e.g. underwater vehicles, fixed beacons,

and surface ships.

3.3 System Architecture

For asynchronous communication the Acomms system requires an acoustic underwater

modem, a transducer, and a host computer at each node. Synchronous communication addi-

tionally requires that each node’s computer be synchronized within an acceptable tolerance

for the duration of the mission. For example, assuming a sound speed of 1500 m/s, a 10 ms

offset between the sender and receiver results in a 15 m error in the range measurement.

The architecture of the Acomms system in a typical two-node setup is depicted in Figure

3.1, where the vehicle is referred to as the subsea node and the ship is referred to as the

topside node. Topside the Acomms software runs on a laptop running Ubuntu Linux and

communicates with the shipboard modem via the network using UDP messages through
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Figure 3.1: Typical sea-going architecture for a two-node deployment of the Acomms sys-
tem.

a MOXATMserial device server. Computers on the topside network are synchronized to

a GPS timeserver through the Network Time Protocol (NTP). In addition, the timeserver

supplies a pulse-per-second (PPS) signal to the topside modem, which consists of a 1 Hz

square wave that has its rising edge synchronized with the start of the second. During the

field trials described here we used a Meinberg GPS/NTP shipboard timeserver [66].

Subsea, the Acomms software runs on the main vehicle computer, also running Ubuntu

Linux, and communicates with the modem over a serial connection. Acomms communi-

cates with the vehicle’s controller and navigation processes over the vehicle’s local network

using UDP messages. At present, no commercially available precision clocks (such as

the Meinberg noted above) are suitable for use on small autonomous underwater vehicles

(AUVs) due to power and size constraints. To address this, we use the PPSBoard—a small,
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comparatively low-power, precision clock board suitable for AUV applications [27, 28].

The PPSBoard on the vehicle serves as the vehicle’s on-board NTP timeserver and pro-

vides a PPS signal to the vehicle’s modem. The acoustic modem used in the field trials

described here is the WHOI Acoustic Micro-Modem. The individual components of the

Acomms system are described in detail below.

3.3.1 WHOI Micro-Modem

The WHOI Micro-Modem is an acoustic modem capable of encoding and decoding

acoustic data packets that it transmits through the water column [30, 31]. All Micro-

Modems are able to transmit both frequency-shift keyed (FSK) and phase-shift keyed

(PSK) encoded acoustic messages. All Micro-Modems are able to receive FSK encoded

acoustic messages and, with the addition of a coprocessor board, are also able to receive

PSK encoded messages. In Band A (8-12 kHz carrier frequency) 32-byte-long FSK-

encoded data packets take 3-4 seconds to transmit. Mini-packets (32 bits long) take 840

ms to transmit. The range of the Micro-Modem varies with encoding, bandwidth, data-rate

and the acoustic channel characteristics (horizontal/shallow channel versus vertical/deep

channel). During recent trials in the Mariana Trench, the author and collaborators tested

the modem’s capabilities to the extremes of the vertical channel for a variety of combina-

tions of encoding, bandwidth, and data-rates. PSK encoded data packets broadcast by the

vehicle’s modem at the lowest data-rate were reliably received by the ship’s modem at up

to 11 km [84].

29



CHAPTER 3. ACOUSTIC COMMUNICATION AND NAVIGATION SYSTEM

The Micro-Modem employs its own internal clock to calculate the time-of-arrival of

acoustic messages and the travel-time of ranging pings and replies from acoustic navigation

beacons. When the modem is in synchronous navigation (SNV) mode, as described in [39],

the modem’s clock can be synchronized to a PPS signal using a NMEA clock message

from the host. Once synchronized, the time-of-arrival (TOA) of each arriving message

is reported to have an accuracy of ± 125 µs with respect to the PPS signal [31]. The

accuracy of the PPS signals used topside and subsea are discussed in Sections 3.3.2 and

3.3.3 respectively. In SNV mode, all transmitted messages are initiated by the modem

within ± 10 µs of the rising edge of the PPS signal [39].

3.3.2 PPSBoard

The PPSBoard provides a stable time reference that keeps the undersea vehicle’s CPU

clock and the vehicle’s modem synchronized with the topside clock throughout the mis-

sion. The PPSBoard, described in detail in [27] and [28], was developed by Eustice and

Whitcomb to provide a free-running, precision timing reference for use subsea that can be

synchronized to a GPS timing signal. In addition to supplying a PPS signal to the Micro-

Modem to enable its SNV mode described above, the PPSBoard is used to discipline the

vehicle CPU’s NTP server by providing a PPS signal and a NMEA-formatted clock mes-

sage naming the upcoming second. The PPSBoard is synchronized to a GPS signal while

the vehicle is on deck, and the drift characteristics of the board (∼1 ms drift over 14 hours)

ensure that the error introduced in the estimated range between the ship and the vehicle due
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to the relative drift between the two clocks is small—1 ms clock drift corresponds to 1.5 m

error in the range between the ship and the vehicle assuming 1500 m/s sound velocity.

3.3.3 Topside NTP Timeserver

The Meinberg GPS/NTP timeserver, used during the field trials to provide a stable,

shipboard timing reference, is a Stratum-1 NTP timeserver [66]. The topside computer

stays synchronized with the timeserver over the network via NTP. The Meinberg also

supplies a PPS signal, accurate to within 10 µs, to the topside modem.

3.3.4 Acomms Software

The Acomms software, written by the author with assistance from Louis L. Whitcomb,

is a multi-threaded program written in C/C++ that uses modem driver code written by

Matthew Grund. The Acomms software executes a state machine consisting of two sec-

tions: a modem initialization section and a TDMA sequence of commands. It is designed

to act as a transport layer between the host computer and the modem, passing through all

message traffic in both directions. All communications with the modem as well as various

statistics on messages transmitted and received are time-stamped and logged. In addition,

the Acomms software enables synchronous communication and navigation as described

below.

The Acomms software is designed to run as a stand-alone process in either the fore-
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ground or the background, communicating with the modem and other processes via serial

or network connections. The software is also able to run as a daemon thanks to Giancarlo

Troni and Clayton Kunz. On Nereus, the Acomms daemon is started during the host com-

puter boot-up process to ensure that the daemon is always running even in the event that

the vehicle computer reboots.

Serial and Network Connections

The Acomms software allows the user to specify the connections to the modem and

the host computer as shown in Figure 3.1. The Acomms software supports both serial I/O

connection and network I/O connections. Network I/O connections use UDP and can either

broadcast or unicast to a specified UDP port. A typical setup uses a serial connection to the

modem on the vehicle and a network connection to the topside modem. On the vehicle the

software typically communicates with the vehicle control and navigation processes over the

network. The software is also able to route specific types of modem messages to different

processes. For example one network I/O thread can communicate with the main vehicle

process while a second network I/O thread communicates with the navigation process.

Modem Initialization

The Acomms software has a user-configurable initialization file that supports all of

the WHOI Micro-Modem configurations. Configuration commands are sent to the modem

when the Acomms process is started, and every time the Acomms process receives a mes-
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sage from the modem indicating that the modem has rebooted, in order to ensure that the

modem stays properly configured.

TDMA Cycle

The Acomms software supports a user-configured TDMA cycle of modem commands

that is executed continuously except when interrupted by the modem initialization process

or the clock watchdog (described below). The TDMA cycle is used to command the modem

to transmit acoustic messages, interrogate long baseline (LBL) beacons, or change selective

modem configurations on-the-fly such as the transmission frequency and bandwidth. Table

3.1 shows the TDMA commands currently available in the Acomms software.

Table 3.1: TDMA Cycle Command Summary

Command Size Addt’l Info

Configuration n/a supports all available cfgs
Ranging Ping 32 bits returns OWTT between nodes
Mini-Packet 32 bits user specified codes (e.g. Abort, UnAbort, etc.)
Cycle-Init 32 bits initiates data TX between nodes
Data Packet 32− 2048 bytes user specified data, length varies by encoding type
LBL n/a listens on up to 4 frequencies
PAUSE n/a see Section 3.3.4
VLPAUSE n/a see Section 3.3.4

The commands PAUSE and VLPAUSE are special commands that pause the TDMA

cycle before continuing to the next entry. PAUSE stops the TDMA cycle for a specified

number of seconds, VLPAUSE pauses the TDMA cycle for a variable length of time in

order to restart the TDMA cycle at an exactly specified interval (e.g. at the beginning of

every even minute). These commands are used to insert time into the TDMA cycle so that
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the acoustic channel is clear for the modem to receive messages initiated at another node

and, in the case of VLPAUSE, to synchronize the TDMA cycle with the vehicle clock.

Each entry in the TDMA cycle has an associated timeout period and a retry flag, such

that if the step is not successfully completed by the end of the timeout period, the TDMA

cycle will either proceed with sending the next message in the cycle or resend the current

message as dictated by the retry flag. The Acomms software TDMA cycle is designed such

that upon the successful completion of an entry in the TDMA cycle, the software can either

proceed directly to the next entry, or it can wait for the full timeout specified for that entry

(fixed interval timeout mode). For operations where higher message transmission rates are

desired, the former is used. For operations where it is desirable to keep the TDMA cycle

synchronized to the clock, the latter, in combination with a VLPAUSE, is used.

Synchronous Navigation Mode and Clock Watchdog

In order for the Acomms software to support the Micro-Modem’s synchronous naviga-

tion (SNV) mode, the modem’s clock must be initialized and monitored. This is accom-

plished by sending appropriately timed clock messages to the modem in conjunction with

the PPS signal as described in [39]. The TDMA cycle sets the clock when Acomms is

started, after every modem reboot, and whenever the clock watchdog is triggered by one of

several indications that the modem clock needs to be set.

When the modem is in SNV mode, messages initiated by the modem are transmitted

at the top-of-the-second, triggered by the rising edge of the PPS signal. The Acomms
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software monitors the timing of messages sent to the modem to ensure that the messages

are provided adequately ahead of the top-of-the-second, as specified in [39], so that they

can be transmitted at the top-of-the-second.

One potential pitfall of SNV mode is that in the event of the loss of the PPS signal,

no acoustic messages will be initiated by the modem. To prevent a vehicle from losing

all acoustic communications in this situation, a user-configurable timeout is provided such

that after a given number of seconds without the PPS signal the state machine will send a

command to take the modem out of SNV mode. Once the modem is not in SNV mode,

messages will be sent regardless of the presence of the PPS signal. Message transmission

will not be synchronized with the top of the second, making range measurements from the

acoustic broadcasts impossible, but acoustic data transmission will resume.

Support for OWTT Navigation

To enable single-beacon one-way travel-time navigation as described in Section 3.2.2,

the integer value of the top of the second at which a data packet will be transmitted must

be encoded within the data packet. Because the Acomms process controls the timing of

messages provided to the modem as described in Section 3.3.4, the Acomms process an-

ticipates the time-of-launch of a data packet and over-writes a designated byte in the data

packet’s payload with the integer value of the anticipated time-of-launch. This is the only

instance in which the Acomms process will modify a message sent from the host process

before passing it to the modem.
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3.4 Field Results

The Acomms system had been installed on three of WHOI’s underwater vehicles—the

hybrid remotely operated vehicle Nereus [13] and the Puma and Jaguar AUVs [82]. To

date the system has been successfully deployed on four oceanographic expeditions, each

one allowing us to develop and test new functionality for the Acomms system.

The Acomms system was first tested at sea in October 2007 during the deep-water

field trials for Nereus near Oahu, Hawaii. During this expedition the Acomms system was

used for asynchronous communication between the vehicle and the ship, enabling ship-

board AUV operators to monitor the progress of and send commands to the new vehicle

while it was submerged and operating autonomously [14]. In January 2008 the Acomms

system was used for synchronous communication between the ship and the AUV Puma

or Jaguar during an expedition to locate and map new hydrothermal vents on the south-

ern Mid-Atlantic Ridge. The navigation results from this expedition provide experimental

validation in post-processing for OWTT navigation [93]. In May-June 2009 the Acomms

system provided synchronous communication between three nodes (Nereus, the ship, and a

depressor—described in more detail below) during Nereus’s first dives to Challenger Deep

in the Mariana Trench [12]. The depth of the site (10,903 m) and the expedition schedule

precluded the use of a navigation ground truth such as LBL, but the multi-node configu-

ration highlights the benefits of synchronous operation. In October 2009, the most recent

Acomms deployment to date, the Acomms system was deployed with Nereus on an ex-

pedition to locate and map new hydrothermal vents in the Cayman Trough [37]. During
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this expedition, using two-node synchronous communication, not only were vehicle status

updates sent from the vehicle to this ship, but also new mission plans and modifications

to existing mission plans were sent from the ship to the vehicle, allowing shipboard AUV

operators to modify the AUVs survey path in real time without recovering the vehicle.

3.4.1 November 2007, Nereus, Deep-Water Trials

Asynchronous Two-Node Communication

The first full-scale at-sea deployment of the Acomms system was in November 2007

during field trials of the vehicle Nereus near the coast of Oahu, Hawaii. All Acomms-

related hardware was installed on Nereus by Chris Taylor and John W. Bailey. The author

installed the Acomms system software and was responsible for Acomms operations during

the expedition. Christopher J. McFarland and Michael H. Brown assisted with the sys-

tem install and testing. The Acomms system was used for asynchronous communication

between the vehicle and the ship. Operations were conducted from the R/V Kilo Moana,

a 185’ small waterplane area, twin hull (SWATH) vessel operated by the University of

Hawaii. Figures 3.2 and 3.3 show Nereus being lowered into the water from the R/V Kilo

Moana configured as an AUV and an ROV respectively.

Nereus is a hybrid remotely operated vehicle (HROV) that is unique among full-ocean-

depth underwater vehicles for two reasons: it can be configured as either a remotely oper-

ated vehicle or an autonomous underwater vehicle and it is designed to operate in up to 11
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Figure 3.2: The hybrid remotely operated vehicle Nereus configured as an AUV. Photo
credit: Louis Whitcomb, JHU.

km of water [13]. Nereus has an EDO/Straza SP23 transducer mounted at the forward end

of the starboard hull facing upwards. A second EDO/Straza SP23 transducer was lowered

from the stern of the ship, facing downwards, in a baffled cage to reduce the ambient acous-

tic noise. During initial tests the transducer was lowered from the ship and held 1-2 meters

below the surface of the water to keep it clear of the ship’s propellers and other gear in the

water. Later a bridle was used to reduce side-to-side motion and position the transducer

3-4 meters below the surface of the water. During two of the dives Benthos transponders

were also lowered from the stern of the ship to test the modem’s LBL functionality, though

LBL beacons were not deployed at the site.

The Acomms software ran on the vehicle in both ROV and AUV mode. During this

expedition, when the vehicle was in ROV mode, the Acomms software on the ship was

typically designated as master using a TDMA cycle of modem messages consisting of a
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Figure 3.3: Lowering Nereus off the stern of the R/V Kilo Moana. Photo credit: Matthew
Heintz, WHOI.

ranging ping to the vehicle, a request for a data packet to be transmitted from the vehicle

to the ship, and an LBL ping if the LBL transducers were in the water. When the vehicle

was in operation as an AUV, the Acomms software on the vehicle was typically designated

as master using a TDMA cycle consisting of a data packet transmitted from the vehicle to

the ship and a pause to allow for messages to be transmitted from the ship to the vehicle if

necessary. There was no LBL ping because the LBL beacons were not deployed during the

trials. The data packets transmitted from the vehicle to the ship contain vehicle status and

health updates, including estimated position, speed, battery health, and the current goal

or action. All messages were FSK-encoded. The synchronous navigation mode was not

employed because the PPSBoard was not installed on the vehicle at that time.
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Figure 3.4: Real-time acoustically reported vehicle position overlaid on vehicle trackline.

During the expedition three successful ROV dives were completed to a maximum depth

of 2257 m, with a total bottom time of 7 h 38 min. As an AUV the vehicle completed

multiple shallow dives over a period of 11 h 33 min. The vehicle’s maximum depth as an

AUV was 22 m with 12 min of bottom time [14, 95]. Figure 3.4 shows the position data

decoded in real time from acoustically transmitted status messages sent from the vehicle

to the ship. These position data are overlaid on the full vehicle trackline that was retrieved

after the conclusion of the dive. The real-time acoustic vehicle status updates allowed the

AUV operators to monitor the vehicle’s progress while it was submerged. In addition, we

successfully tested an acoustic abort, where we sent an abort code to the vehicle using the

Micro-Modems, commanding the vehicle to drop weights and return to the surface.
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3.4.2 January 2008, Puma & Jaguar, Mid-Atlantic Ridge

Synchronous Communication and Navigation

In January 2008 the Acomms system was deployed on the Puma and Jaguar AUVs

during engineering trials for methods for locating and mapping new hydrothermal vents

on the southern Mid-Atlantic Ridge in 4000 m of water. Chris Murphy assisted with the

integration of the Acomms software on these AUVs. The author was responsible for the

Acomms system operations during the expedition. Acoustic ranges and vehicle navigation

data collected by the author and collaborators during Dive 03 with Puma were used by the

author and collaborators in post-processing to experimentally validate the single-beacon

one-way travel-time navigation methods described in Section 3.2.2. Figure 3.5 shows the

AUV Puma; Figure 3.6 shows the trackline of the ship and the estimated trackline of the

vehicle during Dive 03. This dive lasted 21 hours, of which 9 hours (the portion shown)

were spent doing a gridded survey 200 m above the seafloor. Presented here is an analysis

of the acoustic throughput of the Acomms system during this dive. The author’s formula-

tion of the OWTT navigation algorithm and the experimental navigation results from this

expedition are covered in Chapter 5.

Both Puma and Jaguar have an upward-facing ITC-3013 [45] transducer mounted on

the lower hull forward of the forward vertical yellow stanchion. An additional ITC-3013

was lowered over the side of the ship 3-6 m below the surface of the water facing down-

ward. Both vehicles also have PPSBoards installed, which enable the vehicle clocks to be
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Figure 3.5: AUV Puma. Photo credit: Louis Whitcomb, JHU.

Table 3.2: Two-minute TDMA cycle of modem messages during Dive 03.

Command Time [s]
Data TX to ship 20
PING ship 10
LBL ping 20
Data RX from ship 20
PING ship 10
LBL ping 20
no acoustic TX 20

Total TDMA cycle time [s] 120

synchronized with the topside clock. Three LBL transducers were deployed at the site.

The Acomms software running on the vehicle was designated as the master and ran a two-

minute TDMA cycle shown in Table 3.2. All modem communications were FSK-encoded.

Travel times from the LBL interrogation were passed to the navigation process on the ve-

hicle by the Acomms software.

During Dive 03, the vehicle modem had difficulty decoding messages it received once

the vehicle’s thrusters were enabled during the descent to the bottom and while the vehicle
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Figure 3.6: The ship trackline and estimated vehicle trackline during the 9-hour-long survey
at 200m altitude.

was at depth. We believe this difficulty was due to the location of the modem transducer on

the lower hull where the upper hull may have interfered with acoustic transmissions from

the ship and/or due to electrical or acoustic noise from the vehicle thrusters. The successful

throughput of messages was asymmetric and depended on the type of message (32-bit

mini-packet versus full 32-byte data packet). For the dive shown here, 39% of mini packets

transmitted from the vehicle to the ship were successfully received at the ship, whereas

mini-packets transmitted from the ship to the vehicle were successfully received by the

vehicle only 22% of the time. The successful receipt of 32-byte data packets is predicated

on the success of the mini-packets: for a 32-byte message to be successfully received, a type

of mini-packet called a cycle-init must first be successfully received. Because the vehicle
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was designated master, all cycle-inits originated from the vehicle. Thus, the maximum

percent of data packet transmissions possible is limited by the 39% success rate of vehicle-

to-ship mini-packets. Of the data transmissions that had successful cycle-inits, 59% of the

data packets transmitted by the vehicle to the ship were successfully received and 25%

of the ship-to-vehicle data packets were successfully received. This results in an overall

success rate of 23% for vehicle-to-ship data packets and only 9.5% for ship-to-vehicle

data packets. In addition to their sparsity, the messages received at the vehicle had time-of-

flights that were largely inconsistent with the the time-of-flights of messages received at the

ship. The cause of this discrepancy is still under investigation. The percentages presented

here are based on a total of ∼ 2500 mini-packets (including ranging pings and cycle-inits)

and ∼ 900 FSK-encoded data packets transmitted between the vehicle and the ship.

3.4.3 May-June 2009, Nereus, Mariana Trench

Synchronous Three-Node Communication

On May 31, 2009 Nereus completed the first of several dives to Challenger Deep in the

Mariana Trench, reaching a maximum depth of 10,903 m. During these dives the Acomms

software managed all acoustic communications between the vehicle, the depressor, and the

ship. The author was responsible for the Acomms system operations. This was the first

multi-node deployment with the Acomms system where we made use not only of the syn-

chronized clocks on the vehicle and the ship to predict the vehicle’s acoustic transmissions,
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Figure 3.7: The science and engineering team on board the R/V Kilo Moana after Nereus
successfully completed three dives to Challenger Deep in the Mariana Trench. Photo credit:
Barbara Fletcher, SPAWAR.

but also actively initiated acoustic messages at each node as a regular part of the TDMA

cycle in a true multi-master setup. Figure 3.7 shows the entire science and engineering

team in front of Nereus with a bathymetric plot of Challenger Deep.

As described above, Nereus has an EDO/Straza SP23 transducer mounted at the forward

end of the starboard hull facing upwards. Operations during this expedition were again

conducted from the R/V Kilo Moana and the same bridle setup described in Section 3.4.1

was used for the shipboard EDO/Straza SP23 transducer. Figure 3.8 shows the author and

the marine tech on the R/V Kilo Moana, Vic Polidoro, deploying the shipboard transducer.

During this expedition, all dives were carried out with the vehicle in ROV mode with a

depressor positioned around 5800 m deep for the deep dives. The depressor, shown in
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Figure 3.8: The author and shipboard marine tech deploying the Acomms transducer off
the stern of the R/V Kilo Moana. Photo credit: Catherine Offinger, WHOI.

Figure 3.9, is the transition point between the standard steel-armored cable from the ship

and the micro-fiber link to the vehicle. The depressor also carries a WHOI Micro-Modem, a

PPSBoard, and a downward facing EDO/Straza SP23 transducer. The depressor modem is

controlled from the ship and is intended to serve as an intermediate acoustic communication

node for more reliable communication with the vehicle at full depth. LBL transducers were

not deployed due to concerns over our ability to trigger the acoustic release mechanisms

at 11 km deep from the ship. A detailed description of Nereus and the Mariana Trench

deployment is reported in [12].

The six-minute TDMA cycle of messages used during the deep dives, shown in Table

3.3, consists of three two-minute schedules. Each schedule tests a different carrier fre-

quency and bandwidth combination (referred to as Bands) using three different PSK data
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Figure 3.9: The depressor shown on the aft deck of the R/V Kilo Moana with the depressor
design team from SPAWAR. Photo credit: Catherine Offinger, WHOI.

rates (see Table 3.4) and an FSK message when applicable (only Band A supports FSK).

Each two-minute schedule includes a ∼30 second quiet time when an operator could ini-

tiate an acoustic message from the ship or the depressor, such as an Abort or a Ranging

Ping. Sandipa Singh was responsible for the design of the TDMA cycle, while the author

was responsible for its implementation and Acomms operations during the expedition. Be-

cause switching carrier frequencies and bandwidths requires changing the configuration on

both the sending and receiving modems, this TDMA cycle would be impossible in practice

without synchronized clocks on the vehicle, the depressor, and the ship.

As shown in Table 3.4.3 the successful throughput of messages versus range varied by

message types. Note that the carrier frequency is given for reference only—the acoustic

range is not directly correlated to the carrier frequency. The operational range of the lower

data-rate PSK messages, 11km, far exceeded the team’s expectations, allowing direct com-
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Table 3.3: Typical TDMA cycle of modem messages during Challenger Deep dives.

Command Description Time [s]

Band A (10 kHz, 5kHz bandwidth)
Configs Set band, carrier freq, bandwidth 9
Ping Topside pings Vehicle 21
Data Broadcast Vehicle sends state data (FSK,0) 15
Data Broadcast Vehicle sends state data (PSK,2) 15
Data Broadcast Vehicle sends state data (PSK,4) 15
Data Broadcast Vehicle sends state data (PSK,5) 15
Ping Depressor pings Vehicle 20
Pause Until the top of even minute 10

Band 0 (12 kHz, 2kHz bandwidth)
Configs Set band, carrier freq, bandwidth 9
Ping Topside pings Vehicle 21
Data Broadcast Vehicle sends state data (PSK,2) 15
Data Broadcast Vehicle sends state data (PSK,4) 15
Data Broadcast Vehicle sends state data (PSK,5) 15
Ping Depressor pings Vehicle 20
Pause Until the top of even minute 25

Band 0 (8 kHz, 1.25kHz bandwidth)
Configs Set band, carrier freq, bandwidth 9
Ping Topside pings Vehicle 21
Data Broadcast Vehicle sends state data (PSK,2) 15
Data Broadcast Vehicle sends state data (PSK,4) 15
Data Broadcast Vehicle sends state data (PSK,5) 15
Ping Depressor pings Vehicle 20
Pause Until the top of even minute 25

Total TDMA Cycle Time [s] = 360

munication from the vehicle to the ship throughout the deep dives. A complete analysis of

acoustic communication performance during this expedition is reported in [84].
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Table 3.4: Rate table for the WHOI Micro-Modem

Max payload Burst rate [bps] per BandwidthRate
[bytes] 5000 Hz 2000 Hz 1250 Hz

0 32 65 n/a n/a
2 192 520 208 130
4 512 1300 520 325
5 2048 5380 2150 1340

Table 3.5: Approximate range for various PSK rates and band-
width combinations through the vertical acoustic channel.

Range @ Bandwidth (Carrier Frequency)PSK rate
1.25kHz (8kHz) 2kHz (12kHz) 5kHz (10kHz)

2 9 km 11 km 7 km
4 9 km 10 km 6 km
5 5 km 6 km 4 km

3.4.4 October 2009, Nereus, Cayman Trough

On-The-Fly Subsea Mission Corrections

In October 2009 the Acomms system was again deployed with Nereus to the Cayman

Trough in the western Caribbean Sea. The mission of this expedition was to locate and

map new hydrothermal vents along the Mid-Cayman Rise, an ultra-slow spreading center

with a maximum depth just over 6,800 m located at the center of the trough [7]. During

this expedition Louis L. Whitcomb and James C. Kinsey were responsible for the Acomms

system operations. During the first leg of the expedition Nereus was configured as an AUV;

during the second leg of the expedition Nereus was operated as an ROV. The survey area

in both cases was around 5200 m deep. During AUV operations, the vehicle operators used

the Acomms system to monitor, in real time, both the vehicle position and health through
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navigation data packet uplinks and the science sensor data through science data packet up-

links. In addition, acoustic transmissions to the vehicle were used to modify the vehicle

mission plan in real time. With this capability, the vehicle’s path could be reprogrammed

from the surface without recovering and re-launching the vehicle—a lengthy process when

the vehicle is operating at 5200 m. Figure 3.10 shows the science data that was acoustically

sent to the ship from the vehicle, allowing the science and operations team to monitor the

vehicle’s progress in real time. Part way through the survey, the operations team acousti-

cally broadcast new trackline information causing the vehicle to modify its mission plan

in order to survey an area to the west of the original survey area. The new survey area

contained strong evidence of hydrothermal activity as shown in the science data broadcast

from the vehicle [37]. This functionality, not unique to the Acomms system, underscores

the potential for acoustic communication to revolutionize autonomous vehicle operations.

3.5 Chapter Summary

The Acomms system has proven to be a valuable asset during autonomous vehicle op-

erations, allowing AUV operators to monitor the status of the vehicle in real time, enabling

multi-node systems to communicate efficiently without packet collision, and enabling on-

the-fly mission corrections to the vehicle during subsea operations. In addition, one-way

travel-time data collected by the author and collaborators using the Acomms system has

experimentally validated single-beacon navigation in post-processing.
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Figure 3.10: The vehicle track over the Mid-Cayman Rise with acoustically uplinked sci-
ence data collected by the vehicle. The xy-axes are in meters and the color of the data points
represents redox potential (Eh), the strength of the chemical signature in the water from the
hydrothermal vent, where blue is strongest. The vehicle mission was reprogrammed acous-
tically from the surface to move the programmed survey to the west of the original survey
as shown. Photo credit: WHOI.
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Chapter 4

System Models

This chapter describes the process models for the vehicle and the ship and the observa-

tion models used in the formulation of both the Kalman filter and the information filter.

4.1 State Description

The complete state vector of the system, denoted with a different font x, consists of

the current vehicle estimate, xv, the current ship estimate, xs, and a fixed-length queue

of historic states representing the ship and vehicle position at the beginning of the second

(referred to as the top of the second) for the most recent n seconds, denoted xv−i and xs−i

for i ∈ [1, .., n].

x = [x>v ,x
>
s ,x

>
v−1,x

>
s−1, · · · ,x>v−n,x>s−n]> (4.1)
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The current vehicle state contains local-level pose and attitude, as well as body-frame linear

and angular velocities

xv = [s>,ϕ>,υ>,ω>]> (4.2)

s =



x

y

z


 , ϕ =



φ

θ

ψ


 , υ =



u

v

w


 , ω =



p

q

r


 (4.3)

where s is the local-level vehicle pose in the local frame, ϕ is the local-level vehicle attitude

(Euler roll, pitch, heading), υ is the body-frame linear velocity, and ω is the body-frame

angular velocity. The current ship state contains x-y position, heading, and the respective

velocities

xs = [xs, ys, θs, ẋs, ẏs, θ̇s]
>. (4.4)

The historic states contain full estimates of the vehicle state and the ship state from

previous time steps. Historic states are necessary for causal processing of range measure-

ments because of the time required for an acoustic data packet to propagate from the sender

to the receiver. When the acoustic modems are in synchronous navigation mode (see Sec-

tion 3.3.1) all acoustic transmissions are initiated at the top of the second. Thus, in order to

ensure that the state vector contains the appropriate historic states needed to perform range

measurement updates, the CEKF maintains an estimate of the state of the system at the top

of the second for the previous n seconds. In practice n = 6 for this implementation, which

enables the algorithm to accommodate range measurements with travel times of up to six

seconds (i.e. 9000 m range assuming 1500 m/s sound velocity).
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4.2 Vehicle Process Model

We seek a navigation algorithm that is independent of the vehicles on which it is em-

ployed. Thus, as is common for navigation algorithms, we use a constant-velocity kine-

matic model of the system that does not incorporate vehicle dynamics, drag models, or

thrust or steering inputs. The constant-velocity assumption is valid in the context of un-

derwater vehicles for several reasons. An autonomous vehicle survey typically consist of

a “mowing-the-lawn” vehicle track consisting of long, straight, constant-velocity segments

with short turns in between. In addition the vehicle is subject to low bandwidth control

and moves slowly relative to the precision and frequency of measurement updates. During

stops, starts, and turns the vehicle accrues bounded error, but the estimation error converges

once the vehicle has returned to constant-velocity motion, as has been validated by [33].

The following formulation of the process model and the details of its linearization and

discretization presented here are from [25]. As stated above, we use a constant-velocity

process model for the vehicle

ẋv =




0 0 R(ϕ) 0

0 0 0 J (ϕ)

0 0 0 0

0 0 0 0


 xv

︸ ︷︷ ︸
f(xv(t))

+




0 0

0 0

I 0

0 I




︸ ︷︷ ︸
Gv

wv (4.5)

where R(ϕ) is the transformation from body-frame to local-level linear velocities, J (ϕ) is

the transformation from body-frame angular velocities to Euler rates, and wv ∼ N (0,Qv)
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is the independent zero-mean Gaussian process noise in the acceleration term. R(ϕ) and

J (ϕ) are found by solving

R(ϕ) = R>
ψR>

θ R>
φ (4.6)

Rψ =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 , Rθ =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 , Rφ =




1 0 0
0 cosφ sinφ
0 − sinφ cosφ




and

ω =



φ̇

0

0


 +Rφ




0

θ̇

0


 +RφRθ




0

0

ψ̇


 =




1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ




︸ ︷︷ ︸
J −1

ϕ̇ (4.7)

J =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ


 . (4.8)

Linearization: We linearize the vehicle process model (4.5) about µt, our estimate of the

state at time t, using the Taylor series expansion

ẋv(t) = f(µt) + F x(xv(t)− µt) +HOT + Gvwv(t) (4.9)

where

F x =
∂f(xv)

∂xv

∣∣∣∣
xv(t)=µt

(4.10)
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and HOT denotes higher order terms. Dropping the HOT and rearranging we get

ẋv(t) ≈ F xxv(t) + f(µk)− F xµk︸ ︷︷ ︸
u(t)

+Gvwv(t) (4.11)

= F xxv(t) + u(t) + Gvwv(t) (4.12)

where f(µt)− F xµt is treated as a constant input pseudo control u(t).

Discretization: In order to find a discrete-time model of the linearized vehicle process

model we rewrite (4.12) as

ẋv(t) = F xxv(t) + Bvu(t) + Gvwv(t) (4.13)

where Bv = I . Assuming zero-order hold and using the standard method [8] to discretize

over a time step T we solve for F vk
and Bvk

in the discrete form of the process model:

xvk+1
= F vk

xvk
+ Bvk

uk + wvk
(4.14)

F vk
= eF xT (4.15)

Bvk
=

∫ T

0

eF x(T−τ)Bvdτ

=

∫ T

0

eF x(T−τ)dτ

= eF xT

∫ T

0

e−F xτdτ (4.16)
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for F x nonsingular. The discretized process noise wvk
has the form

wvk
=

∫ T

0

eF x(T−τ)Gvwv(τ)dτ (4.17)

for which we can calculate the mean and variance as follows:

E [wvk
] = E

[∫ T

0

eF x(T−τ)Gvwv(τ)dτ

]
(4.18)

=

∫ T

0

eF x(T−τ)Gv»»»»»»:0
E[wv(τ)]dτ

= 0

Qvk
= E

[
wvk

w>
vk

]
(4.19)

= E

[∫ T

0

eF x(T−τ)Gvwv(τ)dτ

∫ T

0

(
eF x(T−γ)Gvwv(γ)

)>
dγ

]

= E

[∫ T

0

∫ T

0

eF x(T−τ)Gvwv(τ)w
>
v (γ)G>

v e
F>x (T−γ)dτdγ

]

=

∫ T

0

∫ T

0

eF x(T−τ)Gv E
[
wv(τ)w

>
v (γ)

]
︸ ︷︷ ︸

Qvδ(τ − γ)

G>
v e

F>x (T−γ)dτdγ

=

∫ T

0

eF x(T−τ)GvQvG
>
v e

F>x (T−τ)dτ

where we make use of the facts that the expected value can be brought inside the integral

because it is a linear operator and the noise vector wv is independent in time so that the

covariance E
[
wv(τ)w

>
v (γ)

]
is zero except when γ = τ .
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4.3 Ship Process Model

Similar to the vehicle, we use a constant-velocity process model for the ship. As de-

scribed for the vehicle process model, this is a valid assumption because of the typical ship

operations, holding station or steaming at a constant speed, and the relative speed of the

ship compared to the precision and frequency of GPS and gyro measurement updates.

ẋs =

[
0 I

0 0

]

︸ ︷︷ ︸
F s

xs +

[
0

I

]

︸ ︷︷ ︸
Gs

ws (4.20)

where ws ∼ N (0,Qs) is the independent zero-mean Gaussian process noise in the accel-

eration term. The ship process model (4.20) is already linear and does not require lineariza-

tion. It is discretized in the same fashion as the vehicle model:

xsk+1
= F sk

xsk
+ wsk

(4.21)

F sk
= eF sT (4.22)

= I + F sT +
½

½
½

½½>
0

1

2!
F 2
sT

2 +
½

½
½

½½>
0

1

3!
F 3
sT

3 + · · ·

=

[
I IT

0 I

]

where the higher order terms are identically zero because of the structure of F s, resulting

in a simple closed-form solution for F sk
. Note that Bsk

= 0 because Bs = 0. The
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discretized ship process noise

wsk
=

∫ T

0

eF s(T−τ)Gsws(τ)dτ, (4.23)

can also be shown to be zero-mean Gaussian using formulas (4.18) and (4.19), such that

wsk
∼ N (0,Qsk

). Due to the structure of F sk
, the covariance matrix simplifies to

Qsk
=

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
Qs. (4.24)

4.4 Observation Model

The range measurement from the ship’s modem to the vehicle’s modem is a nonlinear

function of the current vehicle state and an historic ship state. For simplicity of notation,

we assume here that the modems are located at the origin of their respective local frames

and that the ship’s modem has a depth of 0 m.

The measurement equation for a range measurement made from an acoustic data packet

sent from the ship to the vehicle is

zrng =
√

(xvxyz − xsxyz)
>(xvxyz − xsxyz) + vrng (4.25)

where xsxyz is the ship pose at the time of launch of the acoustic data packet, tTOL, and

xvxyz is the vehicle pose at the time of arrival of the acoustic data packet, tTOA. We assume
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zero-mean Gaussian measurement noise, vrng ∼ N (0, Rrng), which is in units of distance

and represents the imprecision in timing multiplied by the speed of sound. The covariance

Rrng is assumed to be identical for all range measurements and therefore does not have the

time-dependent subscript k. We can rewrite (4.25) in terms of the state vector as

zrng = (x>M>Mx)
1
2 + vrng (4.26)

where

M =

[
Jv︸︷︷︸

xvxyz(tTOA)

0 · · · 0 J s︸︷︷︸
xsxyz(tTOL)

0 · · · 0
]

(4.27)

and Jv and J s are defined to capture the pose information of the vehicle and ship1

Jv




(x, y, z)>

(φ, θ, ψ)>

(u, v, w)>

(p, q, r)>




︸ ︷︷ ︸
xv

=



x

y

z


 (4.30)

J s

[
(xs, ys, θs)

>

(ẋs, ẏs, θ̇s)
>

]

︸ ︷︷ ︸
xs

=



xs

ys

0


 (4.31)

assuming that tTOA is the current time and tTOL is the the top of the second when the acoustic

signal was broadcast from the ship.

1Jv and Js are defined explicitly as

Jv = [ I3×3 03×9 ] (4.28)

Js =
[ 0I2×2 0 03×3

0 0 0

]
. (4.29)

60



CHAPTER 4. SYSTEM MODELS

The Jacobian of the measurement with respect to x, Hrngk
, is

Hrngk
=
∂zrng(x)

∂x

∣∣∣∣
x=µk|k−1

= (µ>
k|k−1M

>Mµk|k−1)
− 1

2 µ>
k|k−1M

>M . (4.32)

Measurements from additional navigation sensors, e.g. depth sensor, gyrocompass, and

Doppler velocity log, are processed asynchronously using standard observation models.
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Chapter 5

Extended Kalman Filter for

Single-Beacon Navigation

5.1 Introduction

This chapter describes the formulation and implementation of a centralized extended

Kalman filter (CEKF) designed to estimate vehicle and ship position within the framework

of one-way-travel-time (OWTT) navigation. The experimental results presented demon-

strate that single-beacon navigation is a viable alternative to traditional absolute navigation

methods such as long baseline (LBL) and ultra-short baseline (USBL) navigation (dis-

cussed in detail in Chapter 2). The CEKF is applicable in post-processing, where sensor

measurements from both the ship and the vehicle are available simultaneously. The CEKF

is used in Chapter 6 as a benchmark for the decentralized algorithm. The implementation
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described here is for a single surface node, the ship, and a single underwater vehicle, though

the algorithm is trivially extensible to multiple vehicles.

This chapter describes the formulation of the extended Kalman filter designed by the

author and collaborators for OWTT navigation and reports field results using data collected

by the author and collaborators from an autonomous underwater vehicle (AUV) survey

carried out in 4000 m of water on the southern Mid-Atlantic Ridge [93].

5.2 Centralized Extended Kalman Filter

An extended Kalman filter is employed to fuse depth, gyrocompass, and Doppler veloc-

ity measurements from the vehicle, position and attitude measurements from the ship, and

range measurements between the vehicle and the ship. The CEKF is designed to estimate

the current and previous states of both the ship and the vehicle and is applicable in post-

processing of previously acquired dive data. This section briefly reviews the formulation

of the extended Kalman filter followed by the details of the centralized implementation for

OWTT navigation, summarized in Algorithm 1. A derivation of the linear Kalman filter is

provided in Appendix B.

5.2.1 Review of EKF Formulation

The extended Kalman filter is a sub-optimal filter that recursively estimates system

state. The EKF applies the general approach of the Kalman filter [50], the optimal linear
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Algorithm 1 CEKF with state augmentation
1: loop {perform prediction and measurement update}
2: ∆t = min(time until top of the second; time until next measurement; 0.1s)
3: if current time (before prediction) is the top of the second then
4: augment state vector with prediction of current state forward ∆t (5.12, 5.13)
5: else
6: predict current state forward ∆t (5.15, 5.16)
7: end if
8: if ∃ measurements at this time step then
9: perform measurement update (5.8, 5.9)

10: end if
11: end loop

estimator, to nonlinear plants by linearizing the plant process and observation models along

the trajectory of the system. The formulation reported here is for a nonlinear plant with

discrete observations [36]. Consider the general nonlinear plant process and observation

model

ẋ(t) = f(x(t), t) + G(t)w(t) (5.1)

zk = h(x(tk)) + vk, k = 1, 2, · · · (5.2)

where x(t) is the state in continuous time, w(t) ∼ N (0,Q(t)) is the independent zero-

mean Gaussian process noise, zk is the measurement at time step tk in discrete time, and

vk ∼ N (0,Rk) is the independent zero-mean Gaussian measurement noise. Note that

boldface math symbols, e.g. x and Q, represent vectors and matrices, while standard

weight math symbols, e.g. t and k, represent scalars.
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The CEKF reported herein employs a discrete-time linearization of the process model

xk+1 = F kxk + Bkuk + wk (5.3)

to recursively estimates the mean, µ, and covariance, Σ, of the state vector x

µ = E [x] (5.4)

Σ = E
[
(x− µ)(x− µ)>

]
(5.5)

resulting in process prediction equations

µk+1|k = F kµk|k + Bkuk (5.6)

Σk+1|k = F kΣk|kF
>
k + Qk (5.7)

where F k is the discrete-time linear state transition matrix, Bk is the discrete-time linear

input matrix, Qk is the discrete-time process noise covariance, uk is the piecewise-constant

input at time step tk, and we use > as the transpose operator.

The measurement update equations for the extended Kalman filter are

µk|k = µk|k−1 + Kk(zk − h(µk|k−1)) (5.8)

Σk|k = Σk|k−1 −KkHkΣk|k−1 (5.9)
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where Hk is the Jacobian of h at time step tk

Hk =
∂h(x(tk))

∂x(tk)

∣∣∣∣
x(tk)=µk|k−1

(5.10)

and Kk is the Kalman gain at time step tk, given by

Kk = Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1. (5.11)

5.2.2 Process Prediction and Augmentation

The complete state process prediction for the EKF is written in terms of the full state

vector of the system defined in (4.1). Combining the discrete-time linearized vehicle and

ship process models (4.14) and (4.21), and substituting them into the discrete-time lin-

earized Kalman process prediction equation (5.6), the complete state process prediction

becomes

µk+1|k =




F vk
0 0 · · · 0

0 F sk
0 · · · 0

0 0 I · · · 0
...

...
... . . . ...

0 0 0 · · · I




︸ ︷︷ ︸
F k

µk|k +




Bvk
uk

0

0
...
0




(5.12)

Σk+1|k = F kΣk|kF
>
k + Qk. (5.13)
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where

Qk =




Qvk
0 0 · · · 0

0 Qsk
0 · · · 0

0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0



. (5.14)

Note that the historic states do not change during this process update.

A modified process prediction is necessary at the top of the second when state augmen-

tation is done in concert with the process prediction. During this modified prediction step,

in addition to predicting forward the current vehicle state, the estimate of the current state

(before the prediction) is added to the state vector while simultaneously marginalizing out

the oldest historic state, i.e. (xv−n,xs−n)

µk+1|k =




F vk
0 0 · · · 0 0 0

0 F sk
0 · · · 0 0 0

I 0 0 · · · 0 0 0

0 I 0 · · · 0 0 0

0 0 I · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · I 0 0




︸ ︷︷ ︸
F̃ k

µk|k +




Bvk
uk

0

0

0

0
...
0




(5.15)

Σk+1|k = F̃ kΣk|kF̃
>
k + Qk. (5.16)

and Qk is as defined before.
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5.2.3 Measurement Update

We find the extended Kalman filter measurement update equations for a range measure-

ment by substituting the Jacobian of the range measurement (4.32) into (5.8) and (5.11)

µk|k = µk|k−1 + Krngk
(zrngk − (µ>

k|k−1M
>Mµk|k−1)

1
2 ) (5.17)

Krngk
= Σk|k−1H

>
rngk

(Hrngk
Σk|k−1H

>
rngk

+Rrng)
−1. (5.18)

5.3 Field Results

Sea trials were conducted by the author and collaborators using the Acomms system

with WHOI Micro-Modems and PPSBoards during an expedition on the R/V Knorr to the

southern Mid-Atlantic Ridge in January 2008. The goal of the expedition was to test and

evaluate engineering methods for locating and mapping new hydrothermal vents on the

southern Mid-Atlantic Ridge. Navigation data collected by the author and collaborators

during this expedition is used to experimentally validate the CEKF in post-processing.

These results are reported here and were published in [93].

5.3.1 Site Description

The southern Mid-Atlantic Ridge (SMAR) is a divergent boundary between the South

American Plate and the African Plate that is presently spreading at about 2.5 cm per year.

The survey site, shown in Figure 5.1, is located near 04◦ S 12◦ W in a deep non-transform
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discontinuity whose maximum depth exceeds 4000 m [38]. Operations were conducted on

a section of the SMAR to the north of the sites where active hydrothermal vents were first

discovered by a combination of deep-tow and deep-submergence technologies culminating

in photography by ABE [38] and subsequently sampled by the ROV Marum Quest [40].

5.3.2 Experimental Setup

The data presented here were collected by the author and collaborators using the au-

tonomous underwater vehicle (AUV) Puma, developed at Woods Hole Oceanographic In-

stitution [82]. Puma is a 5000 m rated AUV equipped with the following navigation sen-

sors: a Paroscientific pressure depth sensor, an OCTANS fiber-optic gyrocompass for atti-

tude and attitude rate measurements, and a 300 kHz RDI Doppler velocity log (DVL) for

velocity measurements. The vehicle is also equipped with a WHOI Micro-Modem [31] and

an ITC-3013 transducer [45] for acoustic communications and range measurements and a

PPSBoard for precision timing [27,28]. The Micro-Modem and PPSBoard are described in

more detail in Chapter 3. The author was responsible for the development and operations

of the Acomms system during this expedition. Chris Murphy assisted with the integration

of the Acomms software on Puma.

The R/V Knorr is a 279 ft oceanographic research vessel operated by WHOI. The ship

has two azimuthing stern thrusters, a retractable azimuthing bow thruster, and dynamic

positioning (DP) capability enabling it to hold station and maneuver in any direction [97].

For the ship’s position information we used the C-Nav 2000 Real-Time GIPSY (RTG) GPS
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(a) (b)

(c)

Figure 5.1: (a) R/V Knorr (b) AUV Puma (c) The survey site is shown by the red box near
Ascension Island on the southern Mid-Atlantic Ridge. Photo credits: WHOI.

with a reported horizontal accuracy of 10 cm [19]. An Applanix POS/MV-320 provided

heading, pitch, and roll data with a reported accuracy of 0.02◦ [2]. The ship was also

equipped with a WHOI Micro-Modem [31] and an ITC-3013 transducer for sending and

receiving acoustic data packets. Figure 5.1 shows the R/V Knorr, the AUV Puma and the

survey area in the red box near Ascension Island.

On Puma Dive 03, the vehicle conducted a survey comprised of 12 tracklines approxi-

mately 65 meters apart and 700 meters long while maintaining an altitude of 200 m. While

the vehicle carried out the survey mission, we repositioned the R/V Knorr around the sur-

vey site in a diamond shaped pattern, holding station at each apex. This was done to pro-
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vide range measurements to the vehicle from different locations for increased observability.

During these field trials we used two-way acoustic communication between the vehicle and

the ship initiated by the vehicle. Acoustic data packets were sent from the vehicle to the

ship and requested by the vehicle from the ship every 30 seconds.

5.3.3 Initialization

Because the EKF algorithm performs linearization along the system trajectories, an

initial state estimate too far from the actual state could cause the algorithm to be unstable.

In this implementation we initialize the CEKF with a maximum-likelihood estimate (MLE)

of the vehicle state and covariance. For this implementation of the CEKF, the maximum-

likelihood estimation is performed over the entire data set as previously reported in [28].

5.3.4 Sensor Offsets

The vehicle reference frame is defined to be coincident with the Doppler frame. Any

angular offset between the OCTANS and the Doppler is accounted for as a mounting offset

in the OCTANS. Doppler attitude measurements were not used by the CEKF, but, by com-

paring them to the OCTANS pitch and roll measurements in post-processing, we calculated

the angular offset of the OCTANS to be -3.24◦ and 0.64◦ in pitch and roll respectively. The

OCTANS heading offset was estimated by analyzing the mean and standard deviation of

the error between the EKF-estimated vehicle position and the LBL vehicle position over
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the entire trackline for various OCTANS heading offsets, shown in Figure 5.2, assuming

the previously stated roll and pitch offsets. Given these data a 3.5◦ heading offset in the

gyrocompass was assumed and accounted for as a mounting offset in the OCTANS.
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Figure 5.2: East-West and North-South components of the error between the EKF-
estimated vehicle position and the LBL vehicle position. Errors are calculated over the
entire trackline for a range of OCTANS heading offsets.

5.3.5 Results

The integrity of the vertical acoustic telemetry channel varied over the course of the

dive. While the vehicle was surveying near the bottom, on average one acoustic data packet

from which we could calculate range was successfully received every 90 seconds. Figure

5.3 shows an XY plot of the vehicle trajectory as estimated by the CEKF compared with the
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Figure 5.3: EKF estimate of vehicle position compared to LBL fixes with an overlay of the
ship’s track.

vehicle position fixes from LBL. LBL fixes were largely unavailable on tracklines where

the vehicle was heading east, most likely due to shadowing of the transducer by the vehicle

frame at this vehicle heading. Calculating the difference between the LBL fixes and the

corresponding CEKF estimated vehicle position in the East-West direction and the North-

South direction, we find that error in the East-West direction has a mean of -10.3m and a
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standard deviation of 10.2 m, while the error in the North-South direction has a mean of

-13.5 m and also a standard deviation of 10.2 m. These errors compare favorably with LBL,

which has 1-10 m typical accuracy. However, the non-zero mean suggests the presence of

systematic errors that are not accounted for in the reported sensor calibrations. The author

and collaborators are currently pursuing a more rigorous evaluation of sensor calibration.

5.3.6 Sources of Error

Unmodelled non-zero-mean or non-Gaussian noise violates the assumptions of the

Kalman filter and is a source of error in the filter’s estimate. In addition to sensor off-

sets discussed above, other possible sources of error in this experiment are the estimate of

the LBL beacon positions and the assumption of a constant sound velocity profile.

LBL Accuracy: While submerged, the vehicle used range information in the form of two-

way travel times from three LBL beacons to estimate its absolute position in real time [44].

The accuracy of the vehicle position estimate from LBL ranges is predicated on the accu-

racy to which the position of the LBL beacons is known—uncertainty in beacon location

translates directly to uncertainty in the vehicle position estimate in the radial direction from

the beacon. The LBL beacon survey on this expedition, directed by Michael Jakuba, used

the standard procedure of collecting two-way travel times from the ship to the individual

beacons from 5-10 different ship locations after each beacon reaches the seafloor. The ship

locations are spaced approximately equally around a circle with ∼1km horizontal radius
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from each beacon’s estimated bottom location. Beacon location is then estimated using

a least-squares algorithm after outliers have been manually rejected. Table 5.1 shows the

position of the three LBL beacons used for this survey relative to the survey site and the

residual root mean squared error of the estimated beacon position when surveyed in as

described.

Table 5.1: LBL Beacon location and accuracy of position estimate.

Beacon Approx. Location RMS Error
A 3 km West 1.8 m
B 3 km North 3.8 m
C 2.5 km East 3.7 m

Sound Velocity Estimation: In this implementation, the CEKF uses a depth-weighted

average sound velocity to calculate range from the travel time of acoustic data packets. The

actual sound velocity profile, however, varies over depth as shown in Figure 5.4. Refrac-

tion due to the change in sound speed can cause ray bending in acoustic signals transmitted

through the water column. As a result, the travel time of an acoustic signal is not directly

proportional to slant range and is dependent on the horizontal displacement between the

vehicle and the ship.

To quantify this error, we consider a range estimate between the vehicle and the ship

when the ship is at the western-most apex of its diamond pattern and the vehicle is at the far

eastern edge of its survey, thus incorporating the largest horizontal offset possible (1236 m

horizontal offset). Calculating the difference in the range estimate found using ray-bending
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Figure 5.4: Sound velocity computed from data from the conductivity-temperature-depth
(CTD) sensor on Puma.

techniques [88] versus the depth-weighted average sound velocity, we find that assuming

a constant sound velocity equal to the depth-weighted average incurs an error in the range

estimate on the order of one meter and therefore is not a substantial source of error in this

data set.
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5.4 Chapter Summary

This chapter reports results from deep-water sea trials evaluating a single-beacon one-

way-travel-time navigation implemented with a centralized EKF. Results from the CEKF

are compared to the ground truth absolute-navigation from LBL position fixes. The dif-

ference between the CEKF results and the LBL fixes is commensurate with the errors we

typically expect from LBL, leading us to conclude that single-beacon navigation is a viable

alternative to LBL navigation for deep-water applications where the ship or surface node

can be moved around the survey site to provide appropriate geometric constraints on the

vehicle position estimate.
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Chapter 6

Extended Information Filter for

Single-Beacon Navigation

6.1 Introduction

The information filter, originally conceived as a decentralized formulation of the Kalman

filter [50], is a recursive estimator for linear systems that retains the properties of the

Kalman filter (i.e. it is an unbiased, minimum variance estimator) with the additional ben-

efits of additive measurement updates and, when formulated properly as discussed below,

additive process predictions [26].

This chapter reports a brief overview of the extended information filter, a discussion of

sparsity in the centralized implementation of the extended information filter (CEIF), and

the derivation of a decentralized extended information filter (DEIF) for single-beacon one-
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way-travel-time (OWTT) navigation [27, 28, 93, 94]. The CEIF is formulated within the

the same framework as that used in Chapter 5 for the CEKF, i.e. with access to all sensor

data from both the vehicle and the ship. In contrast, the DEIF is designed to run locally

on a submerged vehicle with real-time access to measurements from the vehicle’s inertial

sensors and infrequent, asynchronous access to acoustic broadcasts from a moving refer-

ence beacon. The DEIF does not have access to real-time global positioning system (GPS)

measurements from the reference beacon or any other georeferenced information except

that which is received acoustically. While the CEIF is applicable only in post-processing,

the DEIF is designed to be implemented in real time on one or more vehicles. Both for-

mulations reported here are for the nonlinear plant with discrete observations described in

Chapter 4. Note that the CEIF is identical to the CEKF by definition because they are for-

mulated with identical constraints. The CEIF is simply based on a different, but equivalent,

pair of statistics to describe the state of the system.

The remainder of this chapter is organized as follows: Section 6.2 reviews the extended

information filter. Section 6.3 discusses the sparsity of the centralized information filter as it

is formulated for OWTT navigation. Section 6.4 presents the derivation of the decentralized

extended information filter and shows that analytically it produces identical results to those

of a centralized extended Kalman filter at the time instant immediately following each range

measurement. Section 6.5 presents the results of a numerical simulation used to validate

the DEIF. Section 6.6 discusses the robustness of the proposed navigation method to packet

loss and strategies for mitigating potential issues with packet loss. Section 6.7 concludes.
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6.2 Extended Information Filter

The information filter is often referred to as the dual of the Kalman filter. The Kalman

filter recursively estimates the mean, µ, and covariance, Σ, of the random variable x, which

is the state vector of the system

µ = E[x] (6.1)

Σ = E
[
(x− µ)(x− µ)>

]
. (6.2)

The information filter is based on the explicit normalization of the random variable x by

its covariance Σ such that the information filter recursively estimates the mean, η, and

covariance, Λ, of the random variable Σ−1x

η = E[Σ−1x] = Σ−1µ (6.3)

Λ = E
[
(Σ−1x−Σ−1µ)(Σ−1x−Σ−1µ)>

]
(6.4)

= E
[
Σ−1xx>Σ−1 −Σ−1xµ>Σ−1 −Σ−1µx>Σ−1 + Σ−1µµ>Σ−1

]
(6.5)

= E
[
Σ−1xx>Σ−1

]−Σ−1µµ>Σ−1 (6.6)

= Σ−1
(
E

[
xx>

]− µµ>)
Σ−1 (6.7)

= Σ−1 (6.8)

where η is referred to as the information vector, and Λ the information matrix [8, 70].

The information filter can be extended for use on nonlinear systems to form the ex-
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tended information filter (EIF) in the same manner as the extended Kalman filter—by

linearizing the process model and observation models along the trajectories of the sys-

tem [36,70]. A complete derivation of the linear information filter is provided in Appendix

C. The process prediction and measurement update equations for the extended information

filter are well known, and are provided here with references but without proof.

6.2.1 Conditioning and Marginalization

Assuming that we have a normal random variable ξ such that p(ξ) = N (µ,Σ), parti-

tioned ξ = [α>,β>]> results in

p(α,β) = N
([

µα
µβ

]
,
[

Σαα Σαβ
Σβα Σββ

])
(6.9)

which in the information form results in the information vector and information matrix

η =

[
ηα
ηβ

]
(6.10)

Λ =

[
Λαα Λαβ

Λβα Λββ

]
. (6.11)

Examining the probabilistic representation of the information filter compared to the Kalman

filter, we see that the operations of marginalization and conditioning are performed by the

dual calculations shown in Table 6.1.
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Table 6.1: Kalman filter versus information filter

Marginalization Conditioning
p(α) =

∫
p(α,β)dβ p(α|β) = p(α,β)/p(β)

µ = µα µ′ = µα + ΣαβΣ
−1
ββ (β − µβ)Kalman filter

Σ = Σαα Σ′ = Σαα −ΣαβΣ
−1
ββΣβα

η = ηα −ΛαβΛ
−1
ββηβ η′ = ηα −ΛαββInformation filter

Λ = Λαα −ΛαβΛ
−1
ββΛβα Λ′ = Λαα

Source: Eustice et al. [26]

6.2.2 Process Prediction

We assume a general process model of the form

ẋ(t) = f(x(t), t) + G(t)w(t) (6.12)

where x(t) is the state vector and w(t) ∼ N (0,Q(t)) is independent zero-mean Gaussian

process noise in the acceleration term. The discrete-time linearized process model is then

xk+1 = F kxk + Bkuk + wk (6.13)

where F k is the discrete-time linear state transition matrix, uk is the piecewise-constant

input, and wk ∼ N (0,Qk) is independent zero-mean Gaussian process noise.

In the formulation of the information filter presented herein our state vector consists of

both current and historic states of the plant defined in (6.13). Therefore we consider the

state vector of the system, denoted by a different font x, consisting of two plant states, the
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current plant state xk and a previous plant state xp

xk|k =

[
xk

xp

]
(6.14)

with the information matrix and vector defined as

Λk|k =

[
Λkk Λkp

Λpk Λpp

]
(6.15)

ηk|k =

[
ηk
ηp

]
. (6.16)

In the information form, the process prediction equations for the system, conditioned on

the vehicle sensor measurements up to time k, Z1:k, and the control inputs up to time k,

U1:k, are

p(xk+1,xp|Z1:k,U1:k) : (6.17)

Λk+1|k =

[
Ψk Q−1

k F kΩ
−1
k Λkp

ΛpkΩ
−1
k F>

k Q−1
k Λpp −ΛpkΩ

−1
k Λkp

]
(6.18)

ηk+1|k =

[
Q−1
k F kΩ

−1
k ηk + Ψk(f(µk|k,uk)− F kµk|k)

ηp −ΛpkΩ
−1
k η∗k

]
(6.19)
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where f(·) is the nonlinear process model and

Ψk = (Qk + F kΛ
−1
kkF>

k )−1 (6.20)

Ωk = Λkk + F>
k Q−1

k F k (6.21)

η∗k = ηk − F>
k Q−1

k (f(µk|k,uk)− F kµk|k) (6.22)

as derived in [26, 87].

6.2.3 Process Prediction with Augmentation

In equations (6.18) and (6.19), the current state at time k is propagated to time k + 1,

such that

xk+1|k =

[
xk+1

xp

]
. (6.23)

If, instead, we augment the state vector to include the state at time k + 1 in addition to the

original states

xk+1|k =




xk+1

xk

xp


 (6.24)
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the process prediction equations have a very different structure [26],

p(xk+1,xk,xp|Z1:k,U1:k) : (6.25)

Λk+1|k =




Q−1
k −Q−1

k F k 0

−F>
k Q−1

k F>
k Q−1

k F k + Λkk Λkp

0 Λpk Λpp


 (6.26)

ηk+1|k =




Q−1
k (f(µk|k,uk)− F kµk|k)

ηk − F>
k Q−1

k (f(µk|k,uk)− F kµk|k)

ηp


 (6.27)

where Equation (6.26) can be written as the sum of two matrices—one containing the

process prediction information and the other containing the previous information matrix

Λk+1|k =




Q−1
k −Q−1

k F k 0

−F>
k Q−1

k F>
k Q−1

k F k 0

0 0 0


 +




0 0 0

0 Λkk Λkp

0 Λpk Λpp


 . (6.28)

As is noted in [26], this results in Λ having a sparse, block-tridiagonal structure. The

sparsity of Λ is examined in greater detail in Section 6.3.

6.2.4 Measurement Update

Assuming that we have the discrete, nonlinear observation model

zk = h(x(tk)) + vk, k = 1, 2, · · · (6.29)
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where zk is the measurement at time step tk, xk is the state vector, h(·) is the observation

model, and vk ∼ N (0,Rk) is independent zero-mean Gaussian measurement noise, the

measurement update equations for the extended information filter are

Λk|k =Λk|k−1 + H>
k R−1

k Hk (6.30)

ηk|k =ηk|k−1 + H>
k R−1

k (zk − h(µk|k−1) + Hkµk|k−1) (6.31)

where Hk is the Jacobian of the measurement with respect to x

Hk =
∂h(x(tk))

∂x(tk)

∣∣∣∣
x(tk)=µk|k−1

(6.32)

and µk|k−1 is the mean of the state vector [36,70,87]. Note that one of the useful properties

of the information filter, shown clearly in (6.30) and (6.31), is that the measurement update

equation is additive.

6.3 Sparsity in the Centralized Filter

The purpose of using the information filter is to enable a tractable decentralized im-

plementation for one-way-travel-time navigation. Before deriving the decentralized infor-

mation filter, however, we briefly explore sparsity in the centralized extended information

filter (CEIF) within the context of OWTT navigation.

The CEIF uses the identical model described in chapter 4. As described in [26], the
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information matrix can be represented graphically using undirected graphical models. Fig-

ure 6.1 depicts two such models of the vehicle and the ship, where the nodes, xvi
and xsi

for i ∈ [1, · · · , n], represent the pose of the vehicle or ship at a different time step and

the edges represent constraints between poses. Note that, though the graph is undirected,

arrows are used for the convenience of the readers to represent the temporal dependence of

the poses. All of the poses shown are included in the state vector of the system

x = [x>v0 , · · · ,x>v6 ,x>s0 , · · · ,x>s6 ]>. (6.33)

In the information form, constraints also represent non-zero entries in the corresponding

information matrix. In the information matrices shown, the vehicle poses are grouped

together in the upper left sub-block and the ship poses are grouped together in the bottom

right sub-block as shown in (6.33). The current ship and vehicle states, xv6 and xs6 , are in

the top left corner of their respective sub-blocks.

As is noted in [26] and shown in Section 6.2.3, when the information filter is formulated

such that the state vector contains an estimate of multiple poses, the resulting information

matrix, Λ, has a sparse, tridiagonal structure. This tridiagonal structure is clearly visible

from the graphical model because each pose is only connected to the pose immediately

before it in time and the pose immediately after it in time. Mathematically this represents

the conditional independence of the current pose, given the previous pose, of all other

historic poses—a property of first-order Markov processes [78].
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(a) Undirected graphical models for the vehicle and ship, where xvn and xsn are the vehicle and
ship states respectively at time step n. The associated information matrix is sparse and tridiagonal.

(b) Range measurements between the ship and vehicle add additional constraints shown in blue.

Figure 6.1: Example undirected graphical models and their corresponding information ma-
trices.

In Figure 6.1, the graphical model in (a) shows the vehicle and ship independent of each

other. The addition of range measurements in (b) adds constraints between the vehicle and

ship and adds non-zero off-diagonal entries to the information matrix. Because every ship

or vehicle pose has at most one range measurement associated with it (in the single-vehicle

implementation), the range measurements add only a single diagonal above and below

the tridiagonal. Measurements from other vehicle or ship sensors do not add additional

constraints because they only add information to the current vehicle or ship state.

The marginalization of states in the system has the potential to reduce sparsity by caus-

ing fill-in. Graphically, when a state is marginalized out, every state linked to it in the pose

graph becomes simply connected as shown in Figure 6.2. When marginalizing out a state

that does not have a range measurement associated with it, as in (a), the tridiagonal struc-

ture of the information matrix is not altered. However, when the ship and vehicle states

associated with one of the range measurement are marginalized out, as in (b), the resulting
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graphical has a densely connected subset of states. In the CEIF we avoid this problem by

marginalizing out only the oldest vehicle and ship states as shown in (c). In this case, when

marginalizing out both the ship and vehicle states associated with the oldest time step that

has a range measurement associated with it, the constraint from the original range mea-

surement is replaced by a link between the oldest remaining vehicle and ship states, but no

additional links are added to the graphical model.

(a) The marginalization of a state that is only serially connected with the states before and after it
has no effect on the sparsity or tridiagonal structure of the information matrix.

(b) During the marginalization of the states associated with a range measurement, fill-in occurs
in the information matrix.

(c) The marginalization of only the oldest states prevents fill-in in the information matrix, even in
the presence of range measurements.

Figure 6.2: Undirected graphical models illustrating the effects of marginalization. Vehicle
and ship states are shown for every tTOL and tTOA.
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6.4 Decentralized Implementation

In this section we present the derivation of the vehicle-based decentralized extended

information filter (DEIF), designed to enable the simultaneous navigation of multiple un-

derwater vehicles in real time using only vehicle-based navigation sensors and acoustic

broadcasts from the ship or other georeferenced node. The implementation of the DEIF

relies on two separate filters, a ship-based filter and a vehicle-based filter, both of which

process sensor data causally and asynchronously. The information filter on the ship has

access to ship sensor data but not range measurements. The ship-based filter is used to cal-

culate the change, or delta, in the ship information vector and information matrix between

acoustic broadcasts, and this delta information is acoustically transmitted to the vehicle.

Figure 6.3 shows a schematic of the delta ship information transmitted from the ship to the

vehicle. The decentralized vehicle-based filter, the DEIF, has real-time access to vehicle

sensor data and the asynchronous acoustic broadcasts from the ship, but does not have di-

rect access to the ship sensor measurements apart from the delta information transmissions.

6.4.1 DEIF State Vector

The DEIF, the filter on the vehicle, maintains an estimate of the current vehicle state as

well as estimates of historic ship states reconstructed from the delta information received
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Figure 6.3: A schematic of the information contained in the acoustic data packet transmitted
from the ship to the vehicle.

acoustically from the ship

xk|k =




xvk

xsTOLn

...
xsTOL1




(6.34)

where xk|k denotes the entire vehicle state vector, xvk
denotes the current vehicle state, and

xsTOLn
denotes the ship state at the time-of-launch (TOL) of the nth acoustic data packet.

In practice it is undesirable and unnecessary to keep every ship state, causing the state

vector to grow without bound. Instead we maintain a fixed-length queue of ship states by

marginalizing out the oldest ship state when a new state is appended to the state vector.

Note that, because acoustic broadcasts have a non-negligible time delay associated with

them, the DEIF state vector cannot contain information about the current ship state, it only

contains information about historic ship states (see Figure 6.3).

The reconstructed ship states are not subjected to process predictions or measurement

updates other than range measurements, because the DEIF has no knowledge of the ship
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process model or measurement from ship sensors. The ship states remain unchanged over

time except when new information from acoustic broadcasts is incorporated and range

measurement updates are performed.

6.4.2 Independent Ship Filter

The ship-based filter maintains an estimate of the current ship state as well as estimates

of previous ship states at the time-of-launch (TOL) of each acoustic data packet. Assuming

n data packets have been broadcast, this results in a state vector of the form

xsk|k =




xsk

xsTOLn

...
xsTOL2

xsTOL1




(6.35)

where xsk|k denotes the entire state vector at time k, xsk
denotes the current ship state, and

xsTOLn
denotes the ship state when the nth acoustic data packet was broadcast. In practice

it is undesirable and unnecessary to keep every ship state, causing the state vector to grow

without bound. Instead we maintain a fixed-length queue of ship states by marginalizing

out the oldest ship state when a new state is appended to the state vector.
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6.4.3 Acoustic Range Measurements

To initiate a range measurement, the ship broadcasts an acoustic data packet containing

information about the ship state. When a data packet packet arrives at the vehicle, the ship

information included in the data packet is incorporated into the DEIF in order to recreate

the ship’s filter. After the ship information is incorporated, the range measurement update,

(6.30) and (6.31), is performed using the range information garnered from the acoustic

broadcast.

What differentiates the DEIF from other estimators used in decentralized single-beacon

navigation is the information that is transmitted with the range measurements and how that

information is incorporated into the decentralized vehicle navigation filter in conjunction

with the range measurement. In other formulations of single-beacon navigation, the acous-

tic data packet contains the mean and covariance of the ship’s current x-y position, which

is used by the filter on the vehicle to perform a range measurement update. In [5] and [29]

in particular, which are the works that most closely resemble the work presented in this

thesis, range measurements are incorporated in an ad hoc fashion where multiple hypothe-

ses for current and historic vehicle states are found based on the intersection of the current

range measurement and a given number of historic range measurements are forward propa-

gated using the vehicle’s dead-reckoned track. The likelihood of the vehicle’s path through

each combination of these possible states is evaluated with a cost function based on the

Kullback-Leibler divergence distance metric. Over-confidence is addressed by maintain-

ing multiple filters on each vehicle that selectively exclude data from every combination
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of other vehicles. The acoustic broadcast from a vehicle contains the estimates from all of

these filters so that the receiving vehicle is able to choose an estimate that does not result in

an over-confident solution. As a result, the proposed algorithm is somewhat cumbersome

and difficult or impossible to compare analytically to a centralized filter.

In contrast, in the formulation presented here, the acoustic data packet contains the

change in Λs and ηs between the time of the current acoustic broadcast, TOLn, and the

time of the previous acoustic broadcast, TOLn−1,

∆ΛTOLn = ΛsTOLn
−ΛsTOLn−1

(6.36)

∆ηTOLn
= ηsTOLn

− ηsTOLn−1
(6.37)

where, for conformability, ΛsTOLn−1
and ηsTOLn−1

have been padded with zeros to match

the size of ΛsTOLn
and ηsTOLn

respectively. These data packets are reassembled subsea in

the DEIF to recreate the ship’s filter and, as discussed in more detail in Section 6.4.4, enable

the vehicle-based filter to exactly replicate the results of the centralized filter immediately

after each range measurement. The structure of the ship-based filter is the key to making

this replication possible.

Because of the linear ship model and the linear observation models for GPS and gyro-

compass measurements, no linearization is necessary to calculate the process prediction or

94



CHAPTER 6. EXTENDED INFORMATION FILTER

the measurement update. The process prediction

Λsk+1|k =

[
Q−1
sk

−Q−1
sk

F sk

−F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk

]
+

[
0 0

0 Λsk|k

]
(6.38)

=

[
Q−1
sk

−Q−1
sk

F sk

−F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk
+ Λsk|k

]
(6.39)

is additive and independent of the ship state—F sk
is constant and Qsk

is dependent only

on the size of the time step. The measurement update

Λsk+1|k+1
= Λsk+1|k +

[
H>

k+1R
−1
k+1Hk+1 0

0 0

]
(6.40)

=

[
Q−1
sk

−Q−1
sk

F sk

−F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk
+ Λsk|k

]
+

[
H>

k+1R
−1
k+1Hk+1 0

0 0

]
(6.41)

=

[
Q−1
sk

+ H>
k+1R

−1
k+1Hk+1 −Q−1

sk
F sk

−F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk
+ Λsk|k

]
(6.42)

is also additive and depends only on the observation models and the measurement noise.

In the case of the ship’s GPS and gyrocompass observation models, both are linear because

they are directly measuring elements in the state vector (x-y position and heading) and we

assume a constant measurement noise covariance R for each that does not vary with time.

The delta information after a process prediction and measurement update

∆ΛTOLk+1
= Λsk+1|k+1

−Λsk|k (6.43)

=

[
Q−1
sk

+ H>
k+1R

−1
k+1Hk+1 −Q−1

sk
F sk

−F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk

]
(6.44)
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is thus completely independent of the ship state because every element in the matrix is

constant. In addition, a single delta measurement encapsulates all of the ship sensor infor-

mation gained since the last acoustic data packet was transmitted.

At the vehicle, when the delta information is received, it is incorporated into the DEIF

by addition after accounting for conformability. We assume that the range measurement

was broadcast at the ship at t = k+1 and arrives at the vehicle at t = m+1 where m > k.

Let Λ−
m+1|m represent the DEIF information matrix before the addition of the delta ship

information and Λ+
m+1|m represent the DEIF information matrix after the addition of the

delta ship information. We assume that

Λ−
m+1|m =

[
Λvm+1|m Λ>

rngm

Λrngm Λsk|k

]
(6.45)

before the delta ship information is incorporated, where Λrngm is the term from the previous

range measurement at t = m that correlates the current vehicle state and the ship state at

t = k. After the delta ship information is incorporated

Λ+
m+1|m = Λ−

m+1|m + ∆ΛTOLk+1
(6.46)

=




Λvm+1|m 0 Λ>
rngm

0 0 0

Λrngm 0 Λsk|k


 +




0 0 0

0 Q−1
sk

+ H>
k+1R

−1
k+1Hk+1 −Q−1

sk
F sk

0 −F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk




(6.47)

=




Λvm+1|m 0 Λ>
rng

0 Q−1
sk

+ H>
k+1R

−1
k+1Hk+1 −Q−1

sk
F sk

Λrngm −F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk
+ Λsk|k


 . (6.48)
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Incorporating the new range measurement that is made at t = m + 1 when the delta ship

information arrives

Λm+1|m+1 = Λ+
m+1|m + H>

rngm+1
R−1
rngHrngm+1 (6.49)

where

H>
rngm+1

R−1
rngHrngm+1 =




Λrng;vm+1 Λ>
rngm+1

0

Λrngm+1 Λrng;sk+1
0

0 0 0


 (6.50)

correlates the current vehicle state and the ship state at k + 1 such that

Λm+1|m+1 = Λ+
m+1|m + H>

rngm+1
R−1
rngHrngm+1 (6.51)

=




Λvm+1|m 0 Λ>
rngm

0 Q−1
sk

+ H>
k+1R

−1
k+1Hk+1 −Q−1

sk
F sk

Λrngm −F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk
+ Λsk|k


 (6.52)

+




Λrng;vm+1 Λ>
rngm+1

0

Λrngm+1 Λrng;sk+1
0

0 0 0


 (6.53)

=




Λvm+1|m+1
Λ>
rngm+1

Λ>
rngm

Λrngm+1 Λsk+1|k+1
−Q−1

sk
F sk

Λrngm −F>
sk

Q−1
sk

F>
sk

Q−1
sk

F sk
+ Λsk|k


 (6.54)

where

Λvm+1|m+1
= Λvm+1|m + Λrng;vm+1 (6.55)

Λsk+1|k+1
= Q−1

sk
+ H>

k+1R
−1
k+1Hk+1 + Λrng;sk+1

. (6.56)
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Because the elements that comprise the delta information are constant, i.e. independent

of the actual ship state, the independent ship filter and the centralized filter will calculate

identical information from process predictions and measurement updates. Thus ∆ΛTOLk+1

and ∆ηTOLk+1
calculated from the ship-based filter, which has no knowledge of the vehicle

and is not subject to range measurement updates, is identical to the CEIF even though

the two filters have different estimates of the ship’s current state. The simplicity of this

computation is one of the advantages of the information filter.

6.4.4 Comparison between DEIF and CEKF

The centralized extended Kalman filter (CEKF) that has simultaneous, real-time access

to both vehicle and ship sensor data is used as a benchmark for state estimation perfor-

mance. The goal of the DEIF is for the current state of the vehicle recovered from the DEIF

to exactly reproduce the vehicle state recovered from the CEKF. The DEIF accomplishes

this immediately after each range measurement update, but there are several subtleties to

this operation that we address here.

The range measurement is a nonlinear measurement. In order for the range measure-

ment update made by the DEIF to match that made by the CEKF, both filters must be

linearizing the range observation model about the same vehicle state. At the TOA of the

acoustic data packet, the range measurement is made between xvTOA
and xsTOL

. Compar-

ing the probability distributions of the two filters immediately after the range measurement

update, we find that they are not identical because, as shown in Figure 6.4, the centralized
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filter has access to the ship-based measurements shown in blue, while the decentralized

filter does not,

DEIF: p
(
xvk

,xsTOL
|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v , Z1:TOL
s

)
(6.57)

CEKF: p
(
xvk

,xsTOL
|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v , Z1:TOA
s

)
(6.58)

where zTOA
rng is the most recent range measurement, Z1:TOA

v are the vehicle sensor measure-

ments up to the TOA, U1:TOA
v are the vehicle control inputs up to the TOA, and Z1:TOL

s are

the ship sensor measurements up to the TOL. The ramifications of this are that the DEIF

Figure 6.4: The centralized filter has access to ship sensor measurements, shown in blue,
that are unavailable to the decentralized filter when the range measurement is received.

performs a range measurement between the current vehicle state and the best estimate of

the ship state at the TOL given ship sensor measurements only up to the TOL. In contrast,

the CEKF performs a range measurement between the current vehicle state and the best

estimate of the ship state at the TOL given ship sensor measurement up to the TOA. The

CEKF is essentially performing a smoothing operation on the ship state at the TOL, because

it has additional information from the ship sensors after the data packet was broadcast.
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In order to properly compare the CEKF and the DEIF, we use a two-step delayed mea-

surement update in the CEKF, first performing a measurement update for the range mea-

surement that only includes ship measurements up until the TOL, (6.59), and then per-

forming another measurement update for the ship measurements that happened between

the TOL and the TOA, (6.60)

CEKF (step 1): p(xvk
,xsTOL

|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v , Z1:TOL
s ) (6.59)

CEKF (step 2): p(xvk
,xsTOL

|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v ,Z1:TOL

s , ZTOL:TOA
s ). (6.60)

Now the DEIF distribution in (6.57) is identical to the CEKF distribution in (6.59), without

compromising the CEKF’s final distribution, i.e. (6.60) is identical to (6.58).

Between range measurements, the CEKF and DEIF estimates of the vehicle state will

not be identical because of linearization errors, as seen in (6.57) versus (6.58). However,

at the instant of every range measurement, through the two-step delayed update, the filter

estimates will be made identical again.

6.5 Simulation

The performance of the DEIF in comparison to the CEKF is demonstrated using a

simulated 6-hour survey at 3800m depth. The CEKF has access to the sensor measurements

from both the ship and the vehicle simultaneously. The DEIF has real-time access to vehicle

sensor data and asynchronous acoustic broadcasts from the ship that are used to make range
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measurements. The DEIF does not have access to the ship sensor measurements apart from

these acoustic broadcasts. To test the validity of the DEIF, we compare the state estimate

recovered from it to that obtained from the CEKF using the two-step delayed measurement

update as described in Section 6.4.3.

6.5.1 Simulation Setup

This simulation is designed to mimic the experimental setup of the deep water survey

described in Section 5.3 and [93]. In the simulated mission presented here, the vehicle

drives ten 700 m tracklines spaced 80 m apart at a velocity of 0.35 m/s. The vehicle depth

is constant at 3800 m. The vehicle takes approximately 6 hours to complete the survey,

during which time the ship drives around the vehicle survey area in a diamond pattern at

0.5 m/s, broadcasting acoustic data packets every 2.5 minutes.

We assume that the ship is equipped with a differential global positioning system (DGPS)

receiver and a gyrocompass to measure heading. The vehicle has an OCTANS fiber-optic

gyrocompass to measure attitude and attitude rates; a Paroscientific pressure sensor to mea-

sure depth; and an RDI Doppler velocity log (DVL) to measure bottom-referenced veloc-

ities. Acoustic modems are used to measure the range between the ship and the vehicle.

The vehicle and ship navigation sensors, their sampling frequencies, and the noise statistics

for each sensor are given in Table 6.2, where ψ, θ, and φ are local-level heading, pitch, and

roll respectively; r, q, and p are body-frame angular rates in heading, pitch, and roll.

In order to compare the CEKF and the DEIF, we must initialize them to the same point.
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Table 6.2: Simulated navigation sensor sampling frequency and noise.

Sensor Frequency Noise
ψ: 0.1◦

φ, θ: 0.01◦
OCTANS 3 Hz

r: 0.5◦/s
p, q: 0.25◦/s

depth sensor 0.9 Hz 5 cm
DVL 3.0 Hz 1 cm/s
GPS 1.0 Hz 0.5 m
gyrocompass 2.0 Hz 0.1◦

modem every 2.5 min 4 m

In this simulation, for comparison purposes we initialize the vehicle state to the true vehicle

position with a large covariance for both filters. During an actual mission this would, of

course, not be possible. Instead the vehicle would estimate its initial own position using a

method such as a maximum likelihood estimate over the first few range measurements.

6.5.2 DEIF Results

A comparison between the DEIF and the CEKF for the simulated dive is shown in

Figures 6.6, 6.7, and 6.5. Figure 6.5 shows the estimated vehicle trajectory overlaid with

the 3-sigma covariance of the vehicle position as estimated by the DEIF. The GPS-reported

position of the ship as it moves around the vehicle survey area is also shown. Figure 6.6

shows the difference between the true vehicle position and the estimate from the DEIF

of the vehicle position over the course of the simulated dive. The 3-sigma error bars are

included to show that the filter maintains consistency over the course of the dive. The

error at the end of the dive between the DEIF’s estimate of the vehicle position and the

102



CHAPTER 6. EXTENDED INFORMATION FILTER

Figure 6.5: Ship and vehicle trajectories. The ship moved counter-clockwise around the
diamond starting at the eastern-most apex.

true vehicle position is 3.7 m cross-track and 0.2 m along-track both with 3.1 m standard

deviation. For comparison, had the vehicle relied solely on dead reckoning throughout the

dive with no range measurements, the error at the end of the dive between the estimated and

true vehicle position would have been 8.8 m cross-track and 5.6 m along-track with a 7.8

m standard deviation. Comparing the estimated mean of the 12 DOF vehicle state vector

from the DEIF versus the CEKF, Figure 6.7 shows the norm of the difference of the state

vector, (∆x>∆x)−1/2 where ∆x = xDEIF −xCEKF , over the course of the simulation. The

lower plot highlights the norm of the difference immediately after the range measurements

103



CHAPTER 6. EXTENDED INFORMATION FILTER

0 1 2 3 4 5 6

−20

−10

0

10

20

mission time [hr]

∆
 X

 (
E

a
s
t)

 [
m

]

0 1 2 3 4 5 6

−20

−10

0

10

20

mission time [hr]

∆
 Y

 N
o
rt

h
) 

[m
]

∆ X and Y position: DEIF estimated minus true with 3−σ error bars

Figure 6.6: The difference between the true vehicle position and estimate from the DEIF
over time. The error bars are 3 times the standard deviation in each degree of freedom.

marked by asterisks. Note that the y-axis on the lower plot has been scaled down by two

orders of magnitude to show the precision with which the DEIF is able to reproduce the

results of the CEKF. As expected, the x-y position error dominates the norm. The average

difference between the filters across the entire dive is 5.68e-3 m (5.7 mm) in x-y position

and 3.35e-8 in the other state elements. The average difference immediately after a range

measurement is 8.27e-5 m in x-y position and 1.70e-10 in the other vehicle states.
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(a)

(b)

Figure 6.7: (a) The sum of the squared error between the mean vehicle position as estimated
by the DEIF versus the CEKF. (b) The same plot as (a) but with a zoomed view of the y-
axis highlighting the norm immediately after the range measurements.

6.5.3 Discussion

As discussed in Section 6.4.4, we expect the DEIF to produce state estimates that are

comparable to the CEKF: immediately after each range update the results should be iden-

tical; between range updates, the results should differ only due to linearization errors. The

results from the simulation shown in Figure 6.7 support this within the tolerance of numer-

ical precision. Over the course of the 6-hour simulated dive the difference in x-y position

between the DEIF and the CEKF is, on average, 8.27e-5 m immediately after each range
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update. In addition, the difference between the filters due to linearization errors (averaged

over the entire dive) is 5.7 mm on average with a maximum difference of 4.9 cm.

Because these results are based on a simulated data set, there are several possible dis-

crepancies compared to experimental data. The assumed noise characteristics of the navi-

gation sensors in Table 6.2 are used both in the simulation of noisy sensor data and in the

observation models in the DEIF and CEKF. As a result the observation models exactly

predict the performance of the navigation sensors. In addition, the noise for every sensor is

assumed to be Gaussian. While these assumptions may be reasonable for common vehicle

navigation sensors that have been tested extensively in the field [54], acoustic range mea-

surements suffer from highly-variable, non-Gaussian noise sources including multi-path

and ray-bending errors. In an attempt to account for this, we use a large assumed vari-

ance for the range measurements. In a real-world context, outlier filtering of the range data

would be necessary.

6.6 Robustness to Acoustic Data Packet Loss

Packet loss occurs when acoustically transmitted data packets are not successfully re-

ceived and decoded by the vehicle. Packet loss can occur for a variety of reasons, including

poor signal-to-noise ratio, attenuation due to range, or acoustic collision because of an

acoustic multi-path or other acoustic transmissions. Packet loss is a legitimate operational

concern given the structure of the algorithm presented here, whereby incremental informa-
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tion about the ship’s filter is acoustically broadcast by the ship and reconstructed by the

vehicle.

Operationally there exist several possible implementations that address packet loss.

Contingent on the available bandwidth, the ∆Λ for the last k broadcasts can be included

in each acoustic broadcast. In addition, in the field vehicle operations are typically moni-

tored via acoustic broadcasts from the vehicle that contain basic vehicle health and status

updates. To mitigate the possibility of packet loss, the vehicle status updates will include

the time of the last range measurement successfully received at the vehicle, allowing the

surface beacon to adjust its delta measurement broadcasts accordingly. We are also con-

tinuing to investigate alternate structuring of the delta information that is broadcast from

the ship in order to enable the DEIF to exactly recreate the delta information regardless of

packet loss. Robustness to packet loss and fully exploring the ramifications of packet loss

on the DEIF’s estimate of vehicle position over time are both areas for further research.

6.7 Chapter Summary

The structure of the information filter makes it a natural choice for a decentralized im-

plementation where the available bandwidth for sending data between nodes is limited.

Delayed ship updates are simply additive and require a minimal amount of information to

be acoustically transmitted that is well within the functional limits of available acoustic

modems [30,31]. In this chapter we have derived a vehicle-based extended information fil-
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ter that is able to estimate a vehicle’s state, including x-y position, using only vehicle-based

inertial sensors and asynchronous acoustic broadcasts from a single, moving, georeferenced

beacon. The DEIF is able to locally recreate vehicle state estimates that are commensurate

with the results from a centralized extended Kalman filter within a margin of numerical

error, and the filter did so over the course of a simulation that is representative of an actual,

deep-water survey in both physical scale and the frequency of measurements. In addition,

the filter in its current form can be utilized on multiple underwater vehicles where each

vehicle simultaneously receives acoustic data broadcasts from the reference beacon. Given

the favorable results in simulation of the DEIF, we look forward to experimentally validat-

ing this algorithm and continuing to work towards a full multi-vehicle implementation.
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Conclusion

The chirp of the underwater modem heralds a new age of communication, navigation,

and control for underwater vehicles. The ability of a shipboard science and operations team

to communicate with an autonomous vehicle that is underway thousands of meters deep

has the potential to revolutionize autonomous vehicle operations. Receiving science data

in near real time or sending commands and new mission plans to the vehicle acoustically

without risking the hazards or wasting the time of recovery and launch provides improve-

ments in the duty-cycle of vehicle operations, flexibility in mission programming, and the

ability to monitor in detail the progress of the vehicle both operationally and scientifically.

The emerging field of acoustic underwater communications also has the potential to en-

able collective or collaborative multi-vehicle behavior that has thus far been the purview of

land, air, and space vehicles because of their access to wireless networks for inter-vehicle

communication. The contributions of this thesis are based on combining acoustic commu-
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nication with navigation in order to eliminate the need for costly external acoustic beacons

while providing a distributed, scalable precision navigation system.

7.1 Summary

This thesis presents the hardware, software, and algorithms designed to perform de-

centralized single-beacon one-way-travel-time navigation for underwater vehicles. The

Acomms system, consisting of the hardware and software necessary for single-beacon one-

way-travel-time navigation, has proven its effectiveness for managing acoustic communi-

cation on four oceanographic expeditions to date, including multiple dives to more than

10,900 m depth in the Challenger Deep in the Mariana Trench with the HROV Nereus.

We verified the ability of the centralized single-beacon navigation algorithm to pro-

vide vehicle state estimates that have an accuracy commensurate with that of long baseline

acoustic navigation in deep water using navigation data collected by the author and col-

laborators with the Acomms system during an AUV survey in 4000 m of water. The state

estimate of the decentralized vehicle-based single-beacon navigation algorithm was shown

to be identical to the state estimate from the centralized filter at the instant of each range

measurement, and to differ by only linearization errors between range measurements. This

conclusion is supported by the results from a simulation of a deep-water AUV survey.
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7.2 Future Work

The decentralized vehicle-based algorithm extends naturally to multiple vehicles—any

vehicle within acoustic range of the ship can execute its own independent local vehicle-

based filter. A natural extension of the decentralized algorithm is to incorporate acoustic

broadcasts from other vehicles in addition to broadcasts from the ship. Inter-vehicle range

measurements made from inter-vehicle acoustic broadcasts would further constrain the nav-

igation solution and improve each vehicle’s own state estimate. However, as mentioned in

Section 6.4.3, in order to maintain consistency between the decentralized filter and the cen-

tralized filter the process model of the node broadcasting the acoustic data (i.e. the ship)

must be linear. A linear process model ensures that measurement updates and process pre-

dictions in the ship filter are independent of the ship’s current state. Thus, the calculation

of the information that is broadcast from the ship is identical to that of the centralized filter,

despite the fact that the state estimate of the ship from the centralized filter differs from the

state estimate of the ship from the independent ship filter. (The state estimates are differ-

ent because the centralized filter’s estimate is conditioned on previous range measurements

that are not accessible to the independent ship filter. This is true regardless of the linearity

of the ship process model.) If the ship process model is not linear, measurement updates

and process predictions, which require a linearization about the filter’s estimated current

state, will be different in the centralized filter compared to the independent ship filter. So

while we believe that assuming a linear ship process model is both reasonable and princi-

pled, the vehicle process model is not linear as defined herein. This presents a challenge
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for extending the decentralized algorithm to include inter-vehicle ranges. In addition, the

problem of over-confidence associated with double-counting information passed between

the vehicles must be addressed.
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Appendix A

Review of Single-Beacon

Navigation Literature

This appendix provides an overview of the selection of significant papers shown in Ta-

ble A.1 in the area of single beacon navigation published through 2006. I have included a

summary of the measurement and process models used in each paper as well as a summary

of the authors’ conclusions. Unless noted otherwise, the vehicle coordinate frame is as-

sumed to be defined with x forward, y lateral and z vertical, and the body-frame velocities

u, v andw are defined in the x, y and z directions respectively. Thus the vehicle body-frame

velocity u is in the direction of the vehicle heading.
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Table A.1: Single-beacon navigation papers reviewed in this Appendix.

Least Squares Approach
A. Scherbatyuk 1995 [80]
C. Hartsfield 2005 [42]
C. LaPointe 2006 [57]

Least Squares Seeded Extended Kalman Filter Approach
J. Vaganay, P. Baccou, B. Jovencel 2000 [89]
P. Baccou, B. Jovencel 2002 [3]
P. Baccou, B. Jovencel 2003 [4]

Extended Kalman Filter Approach
M. Larsen 2000 [58]
M. Larsen 2001 [59]
M. Larsen 2002 [60]

Extended Set-Valued Observer Approach
J. Marçal, J. Jouffroy, T. Fossen 2005 [63]

Observability Analysis
A. Gadre, D. Stilwell 2004 [33]
A. Gadre, D. Stilwell 2005 [34]
A. Gadre, D. Stilwell 2005 [35]
A. Gadre 2007 [32]
A. Ross, J. Jouffroy 2005 [77]
J. Jouffroy, J. Reger 2006 [48]
T. Song 1999 [85]
B. Ristic, S. Arulampalam, J. McCarthy 2002 [76]

Multi-Beacon Range-Only SLAM
P. Newman, J. Leonard 2003 [71]
E. Olson, J. Leonard, S. Teller 2006 [72]
G. Kantor and S. Singh 2002 [51]

A.1 Least Squares Approach

Scherbatyuk, 1995 [80]

This paper is the earliest formulation of the single-beacon navigation problem with

unknown currents that we know of. The author proposes to use least squares to solve for

the initial vehicle position and unknown current velocity. The author also reports a linear

algebra-based observability analysis.

Vehicle Process Model: The author assumes a simple kinematic model for the vehicle in

Cartesian coordinates in which the vehicle perfectly maintains a piecewise constant heading
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and forward velocity through the water using dead reckoning. The author assumes the

vehicle operates at a constant depth with no side slip, i.e. u 6= 0, v = 0, w = 0 in body frame

coordinates. The vehicle’s world position is affected only by the unknown current and its

unknown starting position. After the first three legs when the the first current estimate is

made, this estimate is used in subsequent dead reckoning and updated after each leg.

Observation Model: The observation model is also formulated in Cartesian coordinates.

Process inputs are range to the single beacon, vehicle yaw (heading), and the vehicle’s

relative velocity through the water. The x, y, z location of the beacon is assumed fixed and

known and the vehicle depth is assumed known without noise, reducing the problem to two

dimensions. Range measurement errors are modelled as symmetrical mutually independent

uniform random variables in the interval [-0.1,0.1]. The vehicle yaw and relative velocity

errors are modelled as mutually independent zero-mean Gaussian noise with dispersions

2% of parameter values. All of these quantities are assumed known at each time step

without additional measurement noise.

Method: The least squares method is used to determine the coefficients that arise in

the quadratic formulation of the squared range: r2(k) = A(kτ)2 + B(kτ) + C where k

is the time step, τ is the time step interval, r(k) is the range at time step k and A, B,

and C are unknown coefficients that are functions of the vehicle position, heading and

velocity and the beacon position. Once the coefficients are found for three separate legs,

the unknown current and initial vehicle position is calculated using simple linear algebra

techniques. This estimate is used in subsequent dead reckoning estimates and updated after
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each successive leg is completed.

The statistical characterization of the evaluation of each of the four unknown parameters

(initial vehicle x, y position and x, y components of the current) was explored using the

Monte Carlo method.

Observability: The author reports that the algorithm requires the vehicle to traverse

three distinct steady straight-line trajectories in order to uniquely detect the current velocity

and the initial vehicle position. Trajectories directly towards or away from the beacon are

viable trajectories.

Hartsfield, 2005 [42]

This paper presents a single-beacon navigation algorithm, the Single Transponder Range

Only Navigation Geometry (STRONG) algorithm, and details of its implementation on a

REMUS vehicle. The author employs an iterative technique to determine vehicle course

(in the world frame) and position over a sequence of four transponder-to-vehicle ranges.

Unknown currents are permissible but are not estimated.

Vehicle Process Model: The vehicle process model is formulated in Cartesian coordi-

nates. For the least squares solution, either vehicle velocity or heading is assumed constant

between each received range depending on whether a speed or course correction is to be

done (see below). The effects of unknown currents are assumed to be subsumed in the

constant bias error of the vehicle heading and velocity.

Observation Model: The observation model is formulated in Cartesian coordinates.
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The x, y, z location of a single beacon is assumed precisely known, as well as the vehicle

depth, resulting in a two-dimensional problem. Ranges between the transponder and the

vehicle are measured from a single beacon and are assumed accurate (no measurement

noise). Variable-length time steps are defined by the receipt of these acoustic ranges. The

body frame vehicle velocity with respect to the ground is known from a Doppler Velocity

Log (DVL). Vehicle heading is known from a magnetic compass.

The author assumes that either the estimated vehicle velocity or the estimated vehicle

heading is constant between successive ranges. Thus the estimated vehicle path consist of

a series of either constant bearing or constant speed path segments, as described below.

Method: The author uses ad hoc iterative techniques to assess different possible veloc-

ities, headings and initial positions for each path segment independently. Either a course

correction (heading and initial position) or speed correction (velocity and initial position)

is performed depending on the user’s choice. In the case of the course correction, veloc-

ity is assumed to be measured accurately (no measurement noise or bias). Heading and

initial position are then assessed by minimizing the squared error between the proposed

path and the four most recent range measurements. The process iterates between head-

ing and initial position until a solution with a suitably small covariance is achieved. The

speed correction is performed similarly, assuming heading is measured accurately without

measurement noise and iterating between velocity and initial position.

Conclusions: The author concludes that this algorithm is a viable method for localizing

a REMUS or similarly equipped vehicle using ranges from a single beacon.
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LaPointe, 2006 [57]

This paper presents a single-beacon navigation algorithm, the Virtual Long Baseline

(VLBL) algorithm, and its simulation. The author proposes a method for time-aligning

current and previous range fixes and uses least squares to solve for the vehicle position.

The robustness of the method with respect to two model parameters is tested in simulation.

The effects of loss of observability are noted where manifested in the simulated results.

Vehicle Process Model: The vehicle process and noise models are not addressed in

detail, except to note that the vehicle’s body-frame velocity, from a Doppler velocity log,

heading, from a magnetic compass, and depth are known inputs to the model. In simulation

the author assumes a deterministic vehicle model, i.e. no process noise, such that the vehicle

follows an exact path.

Observation Model: The observation model is formulated in Cartesian coordinates.

The measured output of the system is transponder-vehicle ranges, which are received asyn-

chronously. The transponder is assumed to be at a fixed, known location. Combined with

the known vehicle depth this makes the problem two-dimensional.

Method: The VLBL method relies on interrogating a single transponder multiple times

and “virtually” advancing each transponder along the estimated vehicle trackline to simu-

late multiple simultaneous transponder fixes from different locations.

Simulations: Simulations were performed using both synthesized data and real-world

data from Autonomous Benthic Explorer (ABE) Dive 162. The author nominally uses four

transponder ranges for the least squares solution of the vehicle position. For the simulated
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data set no noise was included. Also, the navigation fixes are plotted as calculated with-

out filtering or processing. Fixes with large discontinuities over short periods of time are

allowed in simulation.

Observability: The author notes the effects of loss of observability as indicated by the

degradation of simulated vehicle navigation fixes. Degradation in vehicle fixes is seen at

corners in the survey pattern and along tracklines with a nearly constant bearing to the

transponder. The lack of global observability for constant heading trajectories as manifest

in the existence of a parallel indistinguishable trackline is also observable in the simulated

data.

Range Sampling Rate: The author assess the range sampling rate, n, for its effect on

the performance of the algorithm using simulated data. The author tests four values of n,

(n = 1, n = 4, n = 10, n = 25), where n is the number of data points received for each

sample taken, e.g. for n = 4, the range data used to solve for the vehicle position is every

4th range data point received. Because the simulated data contains no noise, the author is

careful to point out that the experimental results can potentially significantly overestimate

the observability of the system, especially in a scenario where the transponder lies very

close to the vehicle trackline. The author also notes the need to balance the trade-offs

between faster sampling rates (smaller n’s), which could render the least squares solution

impossible to calculate due to too small of a baseline and therefore an uninvertible state

matrix, versus slower sampling rates (larger n’s), which could result in vehicle position

estimates that are too infrequent. Simulations using real-world data show the effect of
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range sampling rate and the degradation that occurs at slower sampling rates.

Outlier Rejections: The effect of varying the “outlier rejection factor” was tested in

simulation using real-world data from ABE Dive 162. The outlier rejection factor repre-

sents a radius from the last position fix outside which position estimates are rejected. The

radius is calculated based on a percentage of the expected distance travelled based on dead

reckoning. The tests ranged from 1.1 to 2.5 (i.e. 110% to 250% of the expected distance

travelled from the last navigation fix) and showed divergence when the radius was either

too small or too large.

Conclusions: The author concludes that the VLBL method is appropriate as a redundant

navigation system for use with traditional Long baseline. Future work suggested by the

author includes automating parameter tuning and careful transponder location selection to

ensure observability of the system.

A.2 Least Squares Seeded

Extended Kalman Filter Approach

Vaganay, Baccou, and Jovencel, 2000 [89]; Baccou and Jovencel, 2002

[3]; Baccou and Jovencel, 2003 [4]

These papers present a method for implementing single-beacon navigation using Least

Squares to generate an initial position estimate for the vehicle from a specific trajectory
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(a circle) and an extended Kalman filter to update the vehicle position estimate over time.

The authors assume the presence of an unknown, constant current and a vehicle without

a Doppler Velocity Log (DVL) sensor (no direct speed-over-ground measurements). A

two-vehicle system is explored in [4] that is in essence a cascaded version of the original

algorithm. Results of simulations using simulated data and real-world data are presented.

Observability is not addressed.

These three papers address successive reports by the same authors on one problem and

are discussed together herein. The first paper provides an overview of the methods, which

are refined for the second and third papers. Thus only the methods employed for [3] and [4]

are discussed here.

Vehicle Process Model: The vehicle motion is simulated using a kinematic vehicle

model formulated in Cartesian coordinates. The state vector for the model is defined as

s = [x, y, z, vx, vy, du], where x, y, z are the vehicle position in world coordinates, vx and

vy are the x and y components of the the current (assumed constant), and du is an assumed

constant vehicle speed bias. The inputs are the vehicle heading ψ, pitch θ, and speed

through the water u, where vehicle velocity through the water is derived from an a priori

propeller rpm to water velocity calibration. A DVL is not used.

Kalman Filter: The extended Kalman filter is formulated in discrete time using the

vehicle process model. The state noise vector, vk, is assumed to be zero-mean Gaussian

with a covariance matrix of Qk. The authors assume that the x,y,z position of the beacon

is known a priori without error. The depth of the vehicle is also assumed known without
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error, making the problem two-dimensional.

The only observation is of the acoustic ping’s round-trip time of flight, T , between the

vehicle and the beacon. T is a function of the vehicle state when the ping was sent, the

vehicle state when it was received, and the speed of sound. The measurement noise, wk, is

assumed to be zero-mean Gaussian with a variance of Rk.

Method: The authors use a two-part approach to solving the problem of vehicle homing

in the presence of unknown currents. First, least squares is employed to calculate an initial

estimate of the vehicle position and the current plus vehicle speed bias during strategic

vehicle maneuvers. Second, a Kalman filter is then used to continually update the vehicle-

beacon relative position and the current estimate while the vehicle is homing in on the

beacon.

LS Initialization: The vehicle is commanded to maneuver in a circle collecting range

data to the beacon. After pre-filtering (see [3]), the authors select fourteen (14) randomly

selected ranges N different times and find the group that produces the smallest median

residual (N = 70 in the simulations). Using these 14 data points, the system of equations

for the vehicle position versus range and current are then solved by least squares using the

Levenburg-Marquardt algorithm to estimate the vehicle’s x-y position and the x,y compo-

nents of the current. To calculate an initial position estimate sufficiently close to the actual

initial position and thus avoid the problem of the existence of many local minima, the prob-

lem is first solved for position only (assuming no current). That position is then used as an

initial estimate for the least squares problem with an unknown current.
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EKF Homing: The non-linear least squares solution to the initialization problem was

used to seed the Kalman filter for the homing phase. During the homing phase the vehi-

cle uses an extended Kalman filter to update the beacon-vehicle relative position estimate

and the current estimate. The vehicle drives in a spiral pattern in order to minimize the

covariance while approaching the beacon.

Simulations: Baccou and Jovencel in [3] test the above method in simulation and also

in post-processing with real vehicle data that was validated by LBL. The authors report

that the differences between LBL and their method “converge to zero” despite the added

perturbation of an unmodelled heading bias. The authors conclude that the navigation

method is “robust and efficient” and that single-beacon navigation using an EKF is worthy

of further study.

Baccou and Jovencel in [4] present the work discussed in the previous paper and add a

simulation of two vehicle operations. The vehicles are assumed to act in a leader/follower

arrangement, where the leader knows its precise position (is not affected by currents, etc.)

and the follower receives periodic range and state information from the leader via acoustic

modem link. The setup is, in essence, a cascaded one-vehicle, single-beacon problem

where each vehicle only has one ranging source. The difference between the vehicles is

that the ranging source for the fist vehicle is stationary and its position is known with

certainty. The ranging source for the second vehicle is the first vehicle, which is moving

and in reality its position is not known with certainty, though the algorithm assumes that it

is.
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A.3 Extended Kalman Filter Approach

Larsen, 2000 [58]; Larsen, 2001 [59]; Larsen, 2002 [60]

These papers present the implementation of a single-beacon navigation solution using

an error state Kalman filter. A MARPOS R©-aided dead reckoning navigation system is as-

sumed, which includes a Doppler velocity log for body-frame velocities and a gyrocompass

for vehicle heading. The author’s thesis [59] contains in-depth information about the con-

cepts presented in [58] and [60] as well as a detailed dynamic model of vehicle motion.

The author briefly discusses the use of Doppler frequency shift in addition to or instead of

range to improve dead reckoning position estimation in [58], but does not pursue the idea.

Vehicle Process Model: The author assumes a MARPOS R© dead reckoning system,

which includes a Doppler velocity log (DVL) in bottom-lock mode and a gyrocompass,

providing body-frame vehicle velocities and heading respectively. The derivation of the

dynamic model will be covered only in a most cursory manner here. The reader is urged

to consult [59] for significantly more detail. Briefly, the dynamics are governed by ˙δx =

Aδx+Gδu, where the state vector, δx, is comprised of various inertial navigation-dependent

states and δu is comprised of inertial navigation-related angular velocities and specific

forces. A is a matrix valued coefficient consisting of time-varying functions of position,

velocity, attitude and specific force. G is also a matrix-valued coefficient that maps the body

frame inertial sensor noise into the navigation frame. See [59] for a complete treatment of

the definitions and derivations of these quantities.
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Kalman Filter: The x, y, z location of the single beacon is known exactly. Vehicle

depth is also assumed to be known, thus reducing the problem to two dimensions. The

author assumes a random walk model to describe x, y position estimate error drift from the

MARPOS R©. Range to the beacon is measured with noise.

An error state Kalman filter in Cartesian coordinates is used to estimate the accrued

dead reckoning error state (and possibly errors in the beacon x, y position at each time

step). The state vector is the error state vector, δx = [θdr, θtp] where θdr = [δxv, δyv], the

vehicle position error from dead reckoning, and θtp is a vector of the measurement errors

of each range measurement. The process noise is assumed to be zero-mean Gaussian.

For the observation equation of the Kalman filter, a linearized range error is used with

the addition of zero-mean Gaussian measurement noise. The true vehicle and beacon posi-

tions are approximated by their corresponding estimates since they are not known. Range

measurement noise is assumed to be uncorrelated white Gaussian noise with a standard

deviation of 0.3 m.

Observability: Observability is not directly addressed. The author notes that there is

some asymmetry in the position accuracy related to the trajectory and suggests a trajectory

perpendicular to the bearing of the transponder for best results.

Simulations: The results from two simulations are presented.

Survey Grid Simulation: The first simulation uses real data from a 600 m by 600 m

survey grid. The vehicle travels at a speed of 6 km/hr (3.2 knots) for 180 minutes resulting

in ∼18.5 km of linear travel. A single simulated beacon is placed at the center of the grid
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with an initial position error of ∼11m (5 m N, 10 m E). Ranges to the beacon are provided

at 10-second intervals.

Survey Line Simulation: The second simulation uses real data from an 8km long linear

track. With an average speed of roughly 6 km/hr (3.2 knots) the trackline took approx-

imately 80 minutes. Two simulated transponders are placed along the trackline near the

beginning, roughly 1.5 km apart. There is no uncertainty modelled in the transponders lo-

cations. The transponders are interrogated only when the vehicle is within 600 meters of

them at a rate of once per minute.

Conclusions: The author reports that in the survey grid simulation the position error at

the end of the test is reduced from ∼18 m to ∼2 m when ranges to the transponders are

included in the position estimate. In addition, the position error appears to converge within

the first few minutes despite the induced error in the initial position of the beacon. In the

survey line simulation the position error at the end of the test is reduced from ∼18 m to ∼5

m when ranges to the transponders are included in the position estimate.

A.4 Extended Set-Valued Observer Approach

Marçal, Jouffroy, and Fossen, 2005 [63]

These papers describe the implementation of an extended set-valued observer instead

of the commonly used Kalman filter to estimate vehicle position using ranges from a sin-

gle beacon. The set-valued estimator assumes the presence of measurement noise that
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is bounded but not necessarily Gaussian, in contrast to the Kalman filter, which assumes

Gaussian noise. According to the authors, the impetus behind this observer choice was to

provide an estimation technique that would provide bounds on the estimation error even in

the presence of strong non-linearities in model and non-Gaussian noise. The output of the

observer is not as “smooth” as the Kalman filter but it is reported to guarantee that the true

position is always within the predicted covariance or confidence ellipsoid.

Vehicle Process Model: The vehicle model has state variables, in polar coordinates,

of [ρ(t) θ(t) ψ(t)] corresponding to the vehicle’s range from the beacon, bearing from the

beacon, and heading. Yaw rate and velocity, [r(t) v(t)], are inputs; range and heading, [ρ(t)

ψ(t)], are measured.

Observability: The authors assess the observability of the system in polar coordinates

by proving the existence of an admissible control, subject to certain conditions, in order

to guarantee the distinguishability of two non-identical states [75] (reference [17] in the

paper). The authors accomplish this using the Lie derivatives of the measurement equation

along the solutions of the state equation (all in polar coordinates). They show that a tra-

jectory where yaw rate r(t) = 0 is not uniquely distinguishable. The authors also discuss

the condition when yaw rate r(t) is small leading to two possible trajectories that are in

close spatial proximity to each other. While in theory the trajectory is distinguishable, the

authors claim that in practice the measurement noise may lead to the observer “settling”

on the wrong track, especially if the true location is outside of the 3σ-ellipsoid confidence

region as is possible with the EKF.
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Set-Valued Observer: The authors implement the observer in Cartesian coordinates

using the linear matrix inequalities framework as described in [79] and [16] (references

[3], [5] in the paper). The sampling dynamics include an unknown but bounded noise

vector, w, multiplied by a scaling matrix, B, for the state equation. The measurement

equation also includes an unknown but bounded noise vector multiplied by a scaling matrix,

v and D respectively. The prediction step is defined such that the bounding error ellipsoid

is guaranteed to contain the true vehicle position provided proper noise and linearization

errors are chosen. The update step, similar to a Kalman filter, provides a method for fusing

information with different statistics. The result is an estimator with larger error bounds

than a Kalman filter but that guarantees the inclusion of the true vehicle position.

Comparison with EKF: The observer performance was compared to that of an extended

Kalman filter (EKF) in three anecdotal simulations using a straight line trajectory, a “lawn-

mowing” trajectory, and a “lawn-moving” trajectory with bad measurements (measure-

ments with non-Gaussian error). Note that despite the assumption of the presence of not-

necessarily-Gaussian noise, the range measurements are assumed to have Gaussian noise

for the simulations. In particular, the authors show an example where the set-valued ob-

server’s covariance ellipsoid contains the true state while the EKF’s 3-σ covariance ellip-

soid does not. The relative lack of smoothness of the set-valued observer compared to the

EKF was also noted by the authors.
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A.5 Observability Analysis

Gadre and Stilwell, 2004 [33]; Gadre and Stilwell, 2005 [34]; Gadre and

Stilwell, 2005 [35]; Gadre, 2007 [32]

These papers address the problem of navigation from range measurements in the pres-

ence of either known or unknown currents. A novel observability analysis for linear time-

varying systems is performed for the system with no current, with a known current, and

with an unknown current. The authors employ limiting systems to assess uniform ob-

servability, and then formulate sufficient conditions for the existence of an observer with

exponentially decaying estimation error for the cases of both known and unknown currents.

The performance of the observers is demonstrated using real field data.

Vehicle Process Model: The authors use a kinematic model in Cartesian coordinates

of the AUV, assuming that the vehicle operates at a constant depth with no side-slip, i.e.

u 6= 0, v = 0, w = 0 in body-frame coordinates. The authors note that there will be error

between the estimated and the true motion of the vehicle during turning maneuvers and

when the change in currents is not significantly slower than the estimation time constant.

Vehicle depth and transponder depth are assumed known; thus the authors solve the two-

dimensional problem in which the vehicle and the transponder are in the same horizontal

plane. Transponder location (x,y) is assumed known and coincident with the origin of the

world frame.

In the case of known or zero current, the state vector of the system is defined by
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s(t) = [x(t), y(t), ϕ(t)]> where x(t) and y(t) are the vehicle position and ϕ(t) is the

vehicle heading. In the case of unknown currents, the state vector is defined by s(t) =

[x(t), y(t), ϕ(t), υx(t), υy(t)]
> where υx(t) and υy(t) are the x and y components of the

unknown current. Both models take as inputs the heading rate of change (from a MEMs

gyrocompass) and vehicle velocity through the water (based on a pre-determined mapping

from steady-state propeller angular velocity). The measurement vector is the same in both

cases, h(t) = [
√
x2(t) + y2(t), ϕ(t)]>. Output measurements are made via magnetic com-

pass for vehicle heading and acoustic beacon for range.

Observability: For all three systems (no current, known current, unknown current) local

observability was addressed by linearizing the system about arbitrary potential trajectories

and assessing the observability of the linearized time-varying (LTV) system.

For the system with known currents (including zero current), the authors use the stan-

dard rank test for observability of LTV systems and conclude that it is locally observ-

able [33] excluding the case of θ̇ = 0 where θ is the bearing from the transponder to the

vehicle. Using the observability grammian of a subsystem, Gadre shows that the system is

uniformly observable [32] also excluding the case θ̇ = 0.

For the system with unknown currents, uniform observability is shown over a finite time

interval of length δ. This, combined with the requirement for observability over all sliding

intervals [t − δ, t] in [to + δ, tf ], proves uniform observability for δ over the finite interval

[to, tf ].

Using this result, the authors formulate a specific condition on the vehicle trajectory
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that is sufficient to guarantee the existence of an observer with asymptotically stable error

dynamics—specifically a Luenberger observer. The condition shows straight-line trajecto-

ries that do not pass through the origin to be observable. Gadre also shows in his thesis

that uniform observability over a finite interval is sufficient to guarantee the existence of a

stabilizing Kalman gain over a finite interval [32].

All of these observability results are local and depend on the estimated initial state being

sufficiently close to the actual initial state. For example, straight line trajectories are locally

observable but not globally observable due to the existence of a parallel indistinguishable

trajectory. Straight line trajectories that pass through the origin are not observable, but

trajectories including but not exclusively consisting of a trajectory whose extension passes

through the origin are observable.

The authors also simulate the effect of a non-zero angle of attack such as is present dur-

ing turning maneuvers and changing currents. The authors conclude that bounded estima-

tion error will occur but exponentially decay towards zero during straight line trajectories.

Kalman Filter: Although a Luenberger observer is used for the stability analysis, a

discrete-time extended Kalman filter in Cartesian coordinates is used for the implementa-

tion of the observer in post-processing simulations. The authors assume that the vehicle

velocity is parallel to its heading (i.e. a no-slip condition). The implementation is referred

to as “standard” by the authors except for the process noise covariance matrix, which varies

with time to allow for a larger process noise during turning maneuvers.

Testing: Testing was carried out using the Virginia Tech (VT) Miniature AUV in a
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lake for the system with no current and on a river for the systems with known or unknown

currents. The vehicle successfully localized its position in the presence of both zero and

known non-zero current. The vehicle successfully localized its position and estimated the

current in the presence of unknown and varying currents. The authors conclude that slowly

varying unknown currents introduce negligible errors; therefore this algorithm is suitable

for real-time analysis.

Ross and Jouffroy, 2005 [77]

This paper provides a concise treatment of the observability of a single-beacon, single-

vehicle measurement system in continuous time. The authors use Lie derivatives to com-

pute the conditions for which the system has local weak observability.

Vehicle Process Model: The kinematic vehicle model is formulated in continuous time

in both Cartesian and polar coordinates. In Cartesian coordinates the model has a state

vector of [x(t), y(t)], the vehicle’s horizontal position. Inputs to the system are fixed body

velocities, u, v, from a bottom-lock Doppler sonar, and heading, ψ, from a gyrocompass.

The measurement vector consists of the range to the vehicle from the beacon (assumed to

be at the origin of the world frame).

Observability: In polar coordinates, using an analysis of the Lie derivatives of the out-

put function and the observability rank condition for nonlinear systems [43] (reference [6]

in the authors’ paper), the authors show that the system is locally weakly observable pro-

vided that the vehicle is not travelling directly towards or away from the beacon. Further,
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for any trajectory to be distinct the vehicle must change course at least once during the

trajectory.

Kalman Filter: The authors propose an observer based on a modified EKF to give

a prescribed degree of stability as presented in [49]. The state vector of the observer is

z(t) = [R(t), γ(t)]> where R(t) and γ are the vehicle’s range and bearing to the beacon

(the origin in this analysis). The measurement vector is simply the first entry in the state

vector, R(t), the range. Process and measurement noise characteristics are not mentioned.

Simulations: Results are presented from four simulations: a straight-line trajectory with

good initialization where the observer converges; a straight-line trajectory with bad initial-

ization where the observer converges on the parallel indistinguishable trajectory; a maneu-

vering trajectory where the observer initially converges on the parallel indistinguishable

trajectory and then after the maneuver onto the correct trajectory; and finally an unobserv-

able trajectory where the observer fails to converge.

Jouffroy and Reger, 2006 [48]

The authors address the observability of a single-vehicle, single-beacon system using

what the authors call an “algebraic method”, by expressing the state as a function of the

input, the measured output, and a finite number of their derivatives to show local uniform

observability. The authors also present an “algebraic estimator” that relies on fitting a

second order polynomial to the signal over a sliding time window. The estimated signal

and its derivatives are used with the proposed observability mapping to estimate the state
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of the system. This technique lacks an estimation model however, which disallows the

computation of an updated position without a measurement.

Vehicle Process Model: The system model, in polar coordinates, has a state vector of

[R(t), γ(t)]>, the range and bearing from the beacon to the vehicle. Inputs to the system are

u and v, the vehicle velocity in body-frame coordinates from bottom-lock Doppler mea-

surements, and ψ, the vehicle heading measured by a gyrocompass. The angular velocity

ψ̇ = r is intentionally omitted by the authors because it is assumed measured by an Inertial

Measurement Unit (IMU). The measurement vector, though not explicitly defined, consists

of the beacon-vehicle range, R(t).

Observability: The authors assess the observability of the system in polar coordinates

using an algebraic approach developed by [21] (reference [1] in the paper). The authors

analyze the conditions for which the state can be expressed as a function of the input,

the measured output, and a finite number of their derivatives, which is equivalent to local

uniform observability. The authors show that the system is not globally observable for

constant heading trajectories because every straight line trajectory that does not extend

through the beacon location has a parallel indistinguishable trajectory. They also show that

the system is unobservable for trajectories directly towards or away from the beacon and

when the vehicle velocity is zero, ρ =
√
u2 + v2 = 0.

Estimation Technique: The authors use time-derivative estimation techniques from [46]

and [47] (references [9], [10] in the paper) to estimate a polynomial representation of the

desired signal using multiple integrations of the desired signal. The derivatives of the signal
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are estimated by simply differentiating the polynomial estimation. The authors point out

that multiple integrals of the signal are “readily and practically available...since integrators

will augment the signal/noise ratio.” In order to ease the computational burden of perform-

ing multiple time integrals at every time step, the authors suggest utilizing the differential

relationship between the time integrals.

To address the problem of fitting a second order polynomial to a real signal over con-

stantly increasing time scale (0 to t), the authors suggest fitting a polynomial over a fixed

length time interval (t− T to t). The authors re-derive the time-derivative estimation tech-

nique for this sliding time window assumption.

Finally, the authors combine the derived estimation technique and the conditions on

observability to create an “algebraic estimator” for Ṙ(t) and γ(t). In the estimator, ρ(t) and

α(t) (from the Doppler sensor) and ψ(t) are all assumed to be corrupted by measurement

noise, the nature of which is not defined. The range measurement R(t) is also assumed to

be corrupted by Gaussian white noise.

Simulations: Two 400 second-long simulations are conducted using the proposed es-

timator: a “well-behaved” straight trajectory that moves the vehicle past the beacon and

a straight trajectory that moves the vehicle directly away from the beacon. In the results

from the first simulation the estimator appears to converge on the actual vehicle state after

about 50 seconds of transient behavior. The results from the second simulation, according

to the text, show that the curves are very noisy, but the related figure does not appear to

reflect the stated simulated vehicle path or the stated results, i.e. the figure does not show
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γ = constant and Ṙ = u as one would expect for a vehicle on a constant-bearing trajectory

from the beacon.

Future work suggested, but not pursued by the authors, includes taking into account

the time delays inherent in acoustic systems as well as different update rates for different

inputs. An improvement in noise reduction is also suggested.

Song, 1999 [85]

This paper addresses target tracking using only range measurements in the which the

target is assumed to be moving with constant acceleration. The problem set-up differs from

the vehicle navigation papers that model a vehicle estimating its own position from range

measurements. Here an observer, the tracker, is estimating the position of a target relative

to itself, using only target-tracker range information. The heading of the target is not used.

The author derives necessary and sufficient conditions for local system observability using

the Fisher information matrix in “modified polar coordinates.”

Target Process Model: The target is modeled as a dynamic system in continuous time

using Cartesian coordinates. The state vector is x = [X, Y, Ẋ, Ẏ , ATX
, ATY

], where X and

Y are the target position relative to the tracker, Ẋ and Ẏ are the relative velocity, and ATX

and ATY
are the assumed constant world frame accelerations of the target. The input is

Am = (AmX
, AmX

), the tracker acceleration vector. The author assumes that the dynamics

are modelled perfectly with no process noise.

Observation Model: Measurements are taken in polar coordinates at discrete times.
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The only measurement in the system, z(t), is the tracker-target range, r(t). The author

assumes zero-mean Gaussian measurement noise, v(t), with variance σ2 such that z(ti) =

r(ti) + v(ti) at discrete time t = ti.

Observability: The observability analysis first requires a reformulation of the state vec-

tor in polar coordinates. The state vector is redefined as y(t) = [β̇, ṙ/r, β, 1/r, ATβ
, ATr ]

where β is the target-tracker bearing, r is the target-tracker range, and ATβ
and ATr are the

bearing and range accelerations respectively. The observability criteria are derived from the

requirement that the Fisher information matrix be positive definite and result in a necessary

and sufficient condition for local observability.

This observability condition dictates that tracker/target trajectories resulting in con-

stant relative bearing are globally unobservable. More specifically, when the target is on a

course directly towards or away from the tracker (in the tracker’s frame) the target’s course

is globally and locally unobservable. Also, when the the target and tracker both have con-

stant bearing (regardless of direction) and constant acceleration (including zero), the target

has a linear trajectory with respect to the tracker, resulting in a locally observable but not

globally observable trajectory (i.e, a parallel indistinguishable trajectory exists). The au-

thor suggests that the tracker’s trajectory should contain non-zero jerk in order to track a

target with constant acceleration and a non-zero acceleration to track a target with constant

velocity.

Simulation: The author uses an extended Kalman filter in Cartesian coordinates with

the state and observation models discussed above. A 0.2 Hz update rate and a measurement
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noise with σ2 = 0.1m2 are used for simulations. The structure of the EKF is not discussed

in detail. The author reports that the simulation results “indicate good tracking performance

for target states including position, velocity, and acceleration.”

Ristic, Arulampalam, and McCarthy, 2002 [76]

The authors make several limiting assumptions concerning the problem statement and

the dynamic models of the target and tracker as detailed below. They then compute the

theoretical Cramer-Rao lower bound and compare that to the results from three different

estimators using Monte Carlo simulations. The three estimators analyzed are a maximum

likelihood estimator, an angle-parameterized extended Kalman filter, and a regularized par-

ticle filter.

The authors make several limiting assumptions for the dynamic model of the system.

The authors assume that the target is on a constant velocity, constant bearing trajectory.

The target kinematic state is defined as stk = [xtk, ẋ
t
k, y

t
k, ẏ

t
k]
>. The observer state is defined

as sok = [xok, ẋ
o
k, y

o
k, ẏ

o
k]
>. Thus the relative state vector is sk = stk − sok = [xk, ẋk, yk, ẏk]

>.

The authors further assume that the target’s initial position at time t0 is known and that

the tracker is on a constant velocity circular trajectory. Range measurements to the target

are made at regular intervals, Ts, starting at some time delay, Td, after the initial detection,

t0, where Td >> Ts. This represents the target position acquisition by the Ingara radar in

Scan mode at time t0, the time delay, Td, to switch the instrument to ISAR mode, and then

regular range measurements at intervals of Ts thereafter. Because of these assumptions, I
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believe that the observability analysis and the estimation method comparison may not be

applicable to single-beacon OWTT navigation.

A.6 Simultaneous Localization and Mapping:

Navigating with range-only measurements to multiple beacons

with no a priori knowledge of beacon location

Newman and J. Leonard, 2003 [71]

This paper addresses the topic of range-only navigation using multiple acoustic beacons

but without the use of any additional navigation aids (i.e. no Doppler velocity log or inertial

measurement unit) and without a priori knowledge of the location of the acoustic navigation

beacons. The authors use a non-linear least squares method to solve for a concatenation of

the last N vehicle positions and the beacon locations and present simulation results based

on data collected in the field.

Process/Trajectory Model: The state vector of the system consists of some predeter-

mined number,N , of the most recent vehicle pose states as well as the location of i acoustic

beacons.

X = [xA, xB, xC , · · · , xN , x1, x2, x3, · · · , xi]>

In place of an explicit process model, the authors use a trajectory function, f(X) = 0,
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to constrain the trajectory of the vehicle to a constant velocity. Vehicle acceleration is

modelled as a zero-mean Gaussian random variable, ẍ(·) ∼ N (0, Q). This leads to a linear

relationship between any three consecutive vehicle positions: x(·)−1 − 2x(·) + x(·)+1 = 0.

Observation Model: The acoustic time of flight between the vehicle and each of the ith

beacons is concatenated into a measurement vector Zt = h(X). The covariance of Zt, R,

is a diagonal matrix consisting of the variance of each observation. The authors model the

observation error as a Cauchy distribution with half maximum width σ.

Least Squares Solution: The combination of observations and constraint equations is

solved using a non-linear least-squares approach. Z is the stacked vector consisting of the

observations and the trajectory constraints.

[
Zt

0

]
=

[
h(X)

f(X)

]

Z = h(X)

Given Z, the authors use the large-scale non-linear optimization method presented in

[41] to solve the linearized system of Gauss-Newton equations, Hδx = J>Wδz, where

H is the Hessian and J is the Jacobian of Z evaluated at the current X̂. The measurement

residual is δz = Z−h(X̂) and W is the observation weight matrix, W = diag(R−1, Q−1).

Experiments: Data was collected for simulation during an experiment in shallow water

(∼11m depth) using an Odyssey III class vehicle. Acoustic beacons were dropped onto the

seafloor and their surface release positions marked with a DGPS. These beacons were used
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to independently calculate the absolute position of the vehicle and compared to the results

of the algorithm. The vehicle navigated using an extended Kalman filter (EKF) with LBL

(and a priori knowledge of the beacon locations) as well as compass and Doppler velocity.

The survey consisted of parallel tracklines approximately 75 m apart and 350 m long.

Due to a synthetic aperture sonar on the vehicle whose frequency overlaps the frequency

band of the acoustic beacons, the range measurement data were extremely noisy with a sig-

nificant number of outliers and non-Gaussian noise. To counter this, the data were filtered

to reject outliers using a series of ad hoc algorithms. The filtered range information for

approximately 1 km of the survey was used in post-processing as input to the range-only

algorithm.

Results: Due to the nature of the range-only navigation problem presented, i.e. a so-

lution found without any additional navigation aids, the range-only navigation solution

produced is relative to the beacons without a world-frame reference. Thus the solution is

unconstrained in x, y and θ and must be rotated and translated in order to compare it to

the EKF solution. The authors accomplish this by choosing a rotation and translation that

collocates the position of the transponder labelled “T1” and aligns the baseline between

T1 and T2. The results show baseline length errors between 1.3% and 2.3% with trackline

following within 5-10 m of the EKF solution except when the trackline was in a geomet-

rically undesirable position with respect to the acoustic beacons. During these periods the

off-track error between the EKF and the range-only solution deteriorated to 20-30 m.
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Olson, Leonard, and Teller, 2006 [72]

This paper addresses vehicle position estimation using only range measurements to

multiple beacons without a priori knowledge of beacon locations. The main result pre-

sented in this paper is an outlier rejection algorithm for extremely noisy range data with

a large number of non-Gaussian outliers. The authors also present an algorithm for the

determination of the initial estimate of a beacon’s position, in this case to seed an extended

Kalman filter (EKF). Finally, the authors present the optimal vehicle trajectory for disam-

biguating between two possible beacon locations. The authors use an EKF to estimate

vehicle and beacon locations and they present a method for dynamically increasing the size

of the state vector (and covariance matrix) as new beacons are identified and initialized.

Pre-Filtering Range Data: The authors present an outlier rejection algorithm using a

form of spectral graph partitioning denoted Single Cluster Graph Partitioning (SCGP). This

algorithm relies solely on pairs of concurrent range measurements and vehicle position

estimates requiring no a priori knowledge of beacon locations. This review will not cover

the outlier rejection algorithm in detail because it is not the focus of the review, but readers

interested in more information about the algorithm are encouraged to read both the paper

reviewed here [72] and the previous paper published by the authors on the subject [73].

Process Model: The process model is not explicitly addressed except to define the state

vector xn = [rx, ry, rt, bx, by], where rx, ry, rt are the vehicle x,y position and heading in

world coordinates respectively, and bx and by are a beacon location in world coordinates

(one (bz, by) pair exists for every beacon). As new beacons are detected and initialized,
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they are added to the state vector and the state covariance matrix is updated. Neither the

authors’ assumptions concerning vehicle dynamics nor the existence or characteristics of

process noise are reported in the paper.

Observation Model: The observation model is not explicitly defined. However, the

estimated measurement, as calculated from the current state, is defined as ẑn = [(rx −

bx)
2 + (ry − by)

2]1/2. The existence of measurement noise is not addressed in the paper.

Extended Kalman Filter: To estimate vehicle and beacon positions, the authors imple-

ment an extended Kalman filter with the state vector defined above. The authors propose an

algorithm for obtaining the initial estimate of a beacon position by comparing every possi-

ble pair of data points, where a data point consists of a vehicle location and a range to the

beacon. Using a “voting scheme”, each intersection of possible beacon locations among all

of the pairs of data points is recorded as a “vote” for that location. As soon as the difference

in the number of votes between any two locations exceeds a preset number of votes, the

location with the most votes is chosen as the approximate beacon location used to seed the

extended Kalman filter.

During this voting process, two distinct candidate beacon positions may appear to be

equally likely. The authors present a simple calculation based on the gradient of the ab-

solute difference in range between the two candidate positions to determine the optimal

vehicle trajectory to disambiguate the true beacon position.

Experiments: Data used for simulation was collected during an experiment in shallow

water (∼11m depth) using an Odyssey III class vehicle. Acoustic beacons were dropped
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onto the seafloor and their surface release positions marked with a DGPS. These positions

were used as ground truth for the algorithm. The vehicle navigated using an EKF with LBL

(and a priori knowledge of the beacon locations) as well as compass and Doppler velocity.

The survey consisted of parallel tracklines approximately 75 m apart and 350 m long. This

is the same data set used by Newman and J. Leonard in [71].

Due to a synthetic aperture sonar whose frequency overlaps the frequency band of the

acoustic beacons, the range measurement data were extremely noisy with a significant num-

ber of outliers and non-Gaussian noise.

Navigation Results: Because the navigation solution is calculated only relative to the

beacons without a world frame reference, the solution is unconstrained in x, y and θ and

must be rotated and translated in order to compare it to the EKF solution. The authors

used one beacon to determine the global alignment and found errors for the remaining

three beacon positions between 1.5m and 3m. The authors note that because a ground truth

beacon position was used to determine the global alignment, the beacon position error may

be underestimated.

Kantor and Singh, 2002 [51]

This paper presents several estimation methods applied to the problem of robot localiza-

tion using range measurements from multiple beacons. The authors address three separate

topics in mobile robot localization: static localization, position tracking, and simultaneous

localization and tracking.
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Static localization is accomplished using Markovian probability grid methods and tested

experimentally. For position tracking, the authors compare simulation results from an ex-

tended Kalman filter (EKF) and a Monte Carlo particle filter. For both the static localization

and the position tracking, the authors assume that the beacon locations are known precisely.

Finally, assuming that precise beacon locations are not known a priori, the authors present

simulation results for a simultaneous localization and mapping (SLAM) algorithm that uti-

lizes an extended Kalman filter.

Static Localization with Probability Grids: To test static localization, the authors use a

Markovian probability grid method. Using a 50’x50’ test area divided into 1’x1’ squares,

each square is assigned a real number, Ps, equal to the probability that the robot is occupy-

ing that square. Given a measurement from a beacon,mi, and that beacon’s location, xb, the

probability for each square is calculated by Ps = p(rs|mi)/(2πrsβ), where rs = ||xb−xs||

and xs is the location of the center of the square. β is a constant normalizing factor to

ensure that the total probability over the test area adds to 1.

Given a probability grid for every measurement from each beacon, the authors com-

bine the probability grids using point-wise multiplication and re-normalize. This combined

probability grid is then used to calculate a weighted average of the estimated vehicle posi-

tion and covariance.

Experimentally, the authors selected approximately 100 different vehicle locations dis-

tributed across a 50’x50’ test area with eight radio-frequency beacons. Each radio fre-

quency beacon provides range measurements in feet discretized to a values in the set
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{0,6,12,18,25,31,37,43,50}. The authors experimentally determined the probability den-

sity function for each measurement.

Using the probability grid method of localization, the authors found an average estima-

tion error of 1.62 feet.

Position Tracking: For the purpose of position tracking the authors compare an ex-

tended Kalman filter (EKF) and a Monte Carlo particle filter.

Extended Kalman Filter: The EKF is based on the discrete-time process model

x(k + 1) = x(k) + T

[
u1(k)

u2(k)

]
+ w(k),

where u1(k), u2(k) are the vehicle x and y velocities in world coordinates and w(k) is a

zero-mean, independent and identically distributed Gaussian random vector with covari-

ance R. The static solution described above is used as the seed for the EKF.

The authors create an ad hoc Gaussian distribution to represent a pseudo-measurement

of vehicle position. The pseudo-measurement is based on the actual range measurement

such that the vehicle position lies at the measured range and the angle to the beacon is

based on the prior:

ẑ = xb +

[
r̄m cos θ

r̄m sin θ

]
,

where r̄m is the mean of the range measurement and θ is the angle between the x axis and

the line between the beacon and the prior estimated vehicle location. Instead of modelling

measurement noise, the authors assign a covariance matrix C to the pseudo-measurement
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such that

C = Φ

[
vr 0

0 10 ∗ vr

]
Φ>,

where vr is the measurement variance (along the direction of the measurement) and

Φ =

[
cos θ − sin θ

sin θ cos θ

]
.

Monte Carlo Particle Filter: In comparison to the EKF, the authors construct a Monte

Carlo particle filter. Following similar “prediction” and “update” steps as the EKF, the

authors start with Np particles and compute x̃p(k) for each p using the process model given

above. Each particle, p, is assigned a weight, w(p) such that w(p) = p(rp|m(k)), where rp

is the distance between xb(k) and the projected position. After computing weights for all

of the points, the weights are rescaled such that the sum of the weights for all points equals

1. Finally, for each p, xp(k + 1) is randomly chosen from the prescribed collection.

Comparison: The authors found that using identical beacon locations, beacon returns,

robot trajectories and noise covariance matrices, the average estimation error from the

Kalman filter simulation is slightly better than the Monte Carlo simulation (0.73 feet versus

0.93 feet), and the Kalman filter only requires O(Nb) computations while the Monte Carlo

simulation requires O(NbNp) computations. The authors conclude that this is a signifi-

cant difference in computation cost because the smallest Np that gives reasonable results is

approximately 200.

Simultaneous Localization and Mapping with EKF: The authors extend the EKF de-
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scribed above to the situation where beacon locations are approximately but not exactly

known. The state vector consists of the vehicle position as well as the beacon locations and

the process model is updated accordingly assuming the beacon locations do not move. The

authors assume that range measurements are transformed into a position measurement with

zero-mean Gaussian noise as described above.

In simulation, the range measurements noise variance is v = 1 and the variance of

the initial robot and beacon estimates is set to 25 (i.e. an expected error of 5 feet). In the

simulation shown in the paper, the average error improved from 5.13 feet initially to 0.77

feet after travelling approximately 60 feet.
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Linear Kalman Filter Derivation

The following is a brief derivation of the prediction and update equations for the Kalman

filter. We assume that we have a discrete-time process model and observation model of the

form

xk+1 = Fxk + Buk + wk (B.1)

zk = Hxk + vk (B.2)

where x is the state vector, uk is the input, zk is the measurement, and w ∼ N (0,Q) and

vk ∼ N (0,R) are independent zero-mean Gaussian noise.
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B.1 Assumptions

In deriving the Kalman filter we seek a recursive unbiased estimator for the plant state

µk+1|k = E[xk+1] (B.3)

µk|k = E[xk] (B.4)

such that the sum of the variance of the state estimate

E[(xk − µk|k)
>(xk − µk|k)] (B.5)

is minimized.

B.2 Process Prediction

Using the unbiased estimator assumption (B.3) we compute the prediction equation for

µ, the mean of x, as follows,

µk+1|k = E[xk+1] (B.6)

= E[Fxk + Buk + wk]

= FE[xk] + Buk +»»»»:0
E[wk]

µk+1|k = Fµk|k + Buk (B.7)
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where we rely on the fact that xk and wk are uncorrelated. Using (B.7) we can solve for

the prediction equation for Σ, the covariance of x, as follows,

Σk+1|k = cov(xk+1 − µk+1|k) (B.8)

= cov(Fxk»»»»+Buk − Fµk|k»»»»−Buk −wk)

= cov(F (xk − µk|k)−wk)

= cov(F (xk − µk|k) + cov(wk)

= F cov((xk − µk|k))F
> + cov(wk)

Σk+1|k = FΣk|kF
> + Q (B.9)

where we use the fact that F (µk|k − xk) and wk are uncorrelated.

B.3 Measurement Update

We assume when deriving the measurement update equations that the update is a linear

combination of the previous state estimate and the measurement:

µk|k = Aµk|k−1 + Kzk (B.10)
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where both A and K are unknown. Using equation B.4 to solve for A:

0 = E[xk − µk|k] (B.11)

= E[xk −Aµk|k−1 −Kzk]

= E[xk −Aµk|k−1 −K(Hxk + vk)]

= E[xk −KHxk]−»»»»»:0
E[Kvk]− E[Aµk|k−1]

0 = (I −KH)E[xk]−Aµk|k−1

A = I − KH (B.12)

Substituting (B.12) into equation (B.10) we arrive at the measurement update equation for

the mean of x in terms of K:

µk|k = µk|k−1 + K(zk −Hµk|k−1) (B.13)
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We compute the measurement update equation for the covariance of x in terms of K

Σk|k = cov(xk − µk|k) (B.14)

= cov(xk − µk|k−1 + KHµk|k−1 −Kzk)

= cov(xk − µk|k−1 + KHµk|k−1 −KHxk −Kvk)

= cov((I − KH)(xk − µk|k−1)−Kvk)

= cov((I − KH)(xk − µk|k−1)) + cov(Kvk)

= (I − KH)cov(xk − µk|k−1)(I − KH)> + Kcov(vk)K
>

Σk|k = (I − KH)Σk|k−1(I − KH)> + KRK>. (B.15)

B.4 Kalman Gain

To solve for the Kalman gain, K, we use the fact that we are seeking a recursive estima-

tor that minimizes the sum of the variance of the state estimate, and we note that minimizing

the sum of the variance is identical to minimize the trace of the covariance matrix,

E[(xk − µk|k)
>(xk − µk|k)] = trE[(xk − µk|k)(xk − µk|k)

>] (B.16)

= trΣk|k. (B.17)

Substituting the measurement update equation (B.15) for the covariance, we minimize

the trace by setting the partial derivative equal to zero and note that the trace of the partial
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derivative equals the partial derivative of the trace:

0 =
∂

∂K
{trΣk|k} = tr

∂

∂K
{Σk|k}. (B.18)

Substituting the definition of Σk|k from (B.15) into (B.18) we obtain

0 = tr
∂

∂K
{(I − KH)Σk|k−1(I − KH)> + KRK>}

= tr
∂

∂K
{Σk|k−1 −KHΣk|k−1 −Σk|k−1H

>K>

+ KHΣk|k−1H
>K> + KRK>}

= tr{−Σ>
k|k−1H

> −Σk|k−1H
> + KHΣ>

k|k−1H
>

+ KHΣk|k−1H
> + KR + KR>}. (B.19)

Because Σk|k−1 and R are symmetric by definition we can further simplify (B.19)

0 = tr{−2Σk|k−1H
> + 2KHΣk|k−1H

> + 2KR}. (B.20)

The constraint (B.20) is satisfied by setting the argument of the trace equal to zero

0 = −2Σk|k−1H
> + 2KHΣk|k−1H

> + 2KR (B.21)

which allows us to solve for the Kalman gain

K = Σk|k−1H
>(HΣk|k−1H

> + R)−1. (B.22)
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Linear Information Filter Derivation

The following is a brief derivation of the linear information filter in the context of a

linear, one degree-of-freedom plant model. The information filter is often referred to as

the dual of the Kalman filter. The Kalman filter recursively estimates the mean, µ, and

covariance, Σ, of the random variable x, where

µ = E[x] (C.1)

Σ = E
[
(x− µ)(x− µ)>

]
. (C.2)

The information filter is based on the explicit normalization of the random variable x by

its covariance Σ such that the information filter recursively estimates the mean, η, and
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covariance, Λ, of the normalized random variable Σ−1x

η = E[Σ−1x] = Σ−1µ (C.3)

Λ = E
[
(Σ−1x−Σ−1µ)(Σ−1x−Σ−1µ)>

]
= Σ−1 (C.4)

where η is referred to as the information vector, and Λ the information matrix [8, 70].

C.1 Kalman Filter Review

The derivation of the information filter is presented in the context of the Kalman filter.

Thus we start with a brief overview of the Kalman filter. For this derivation we will assume

that B = 0.

The Kalman filter prediction equations from Appendix B are

µk+1|k = F kµk|k +»»»»:0
Bkuk (C.5)

Σk+1|k = F kΣk|kF
>
k + Qk. (C.6)

The Kalman filter measurement update equations from Appendix B are

µk|k = µk|k−1 + K(zk −Hµk|k−1) (C.7)

Σk|k = (I −KkHk)Σk|k−1 (C.8)

Kk = Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1 (C.9)
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where (C.8) is derived from the form of Σk|k given in (B.15) as follows

Σk|k = (I −KkHk)Σk|k−1(I −KkHk)
> + KkRkK

>
k (C.10)

= Σk|k−1 −KkHkΣk|k−1 −Σk|k−1H
>
k K>

k + KkHkΣk|k−1H
>
k K>

k + KkRkK
>
k

= Σk|k−1 −KkHkΣk|k−1 −Σk|k−1H
>
k K>

k + Kk(HkΣk|k−1H
>
k + Rk)K

>
k

= Σk|k−1 −Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1HkΣk|k−1

−Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1HkΣk|k−1

+ Σk|k−1H
>
k((((((((((((
(HkΣk|k−1H

>
k + Rk)

−1

((((((((((((
(HkΣk|k−1H

>
k + Rk)

(HkΣk|k−1H
>
k + Rk)

−1HkΣk|k−1

= Σk|k−1 −Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1HkΣk|k−1

−
(((((((((((((((((((((((

Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1HkΣk|k−1

+

(((((((((((((((((((((((

Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1HkΣk|k−1

= Σk|k−1 −KkHkΣk|k−1

= (I −KkHk)Σk|k−1

noting that (HkΣk|k−1H
>
k + Rk)

−1 is symmetric.
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C.2 Plant Process Model

We assume a 1 degree-of-freedom constant-velocity linear process model for the plant

ẋ =

[
0 1

0 0

]

︸ ︷︷ ︸
F

x +

[
0

1

]

︸ ︷︷ ︸
G

w (C.11)

where the state vector x is position and velocity along the y-axis

x =

[
y

ẏ

]
(C.12)

and w is independent zero-mean Gaussian process noise in the acceleration term.

w ∼ N (0, q) (C.13)

The process model is discretized according to standard methods [8], resulting in the discrete-

time linear process model

xk+1 = F kxk + wk (C.14)

F k = eFT =

[
1 T

0 1

]
(C.15)

158



APPENDIX C. LINEAR INFORMATION FILTER DERIVATION

where F is defined in (C.11), T is the discrete time step and

xk =

[
yk

ẏk

]
(C.16)

is the discrete state vector. The discretized process noise, wk is zero-mean Gaussian

wk ∼ N (0,Q) (C.17)

(C.18)

where the covariance matrix is

Q =

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
q. (C.19)

Note that even though F k and wk are shown with a subscript denoting the time step k, they

are in fact constant and do not depend on time.
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C.3 Process Prediction

To derive the prediction equations for the information matrix, we start with the defini-

tion of Λ,

Λk|k−1 = Σ−1
k|k−1 (C.20)

= (F k−1Σk−1|k−1F
>
k−1︸ ︷︷ ︸

A−1
k−1

+Qk−1)
−1

= (A−1
k−1 + Qk−1)

−1

Λk|k−1 = Ak−1 −Ak−1 (Ak−1 + Q−1
k−1)

−1Ak−1 (C.21)

where we define A−1
k−1 such that Ak−1 = F>−1

k−1 Σ−1
k−1|k−1 F−1

k−1 and we invoke the matrix

inversion lemma from Bar-Shalom [8, p. 23]

(A+BCB>)−1 = A−1 − A−1B(B>A−1B + C−1)−1B>A−1. (C.22)
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Similarly for η,

ηk|k−1 = Σ−1
k|k−1µk|k−1 (C.23)

=
[
F k−1Σk−1|k−1F

>
k−1 + Qk−1

]−1
F k−1µk−1|k−1

=
[
F k−1(Σk−1|k−1 + F−1

k−1Qk−1F
>−1

k−1 )F>
k−1

]−1

F k−1µk−1|k−1

= F>−1

k−1 (Σk−1|k−1 + F−1
k−1Qk−1F

>−1

k−1 )−1

︸ ︷︷ ︸
matrix inversion lemma

»»»»»:I
F−1
k−1F k−1µk−1|k−1

= F>−1

k−1

[
Σ−1
k−1|k−1 −Σ−1

k−1|k−1F
−1
k−1(F

>−1

k−1Σ
−1
k−1|k−1F

−1
k−1 + Q−1

k−1)
−1 · · ·

· · ·F>−1

k−1Σ
−1
k−1|k−1

]
µk−1|k−1

=
[
F>−1

k−1 − F>−1

k−1Σ
−1
k−1|k−1F

−1
k−1︸ ︷︷ ︸

Ak−1

(F>−1

k−1Σ
−1
k−1|k−1F

−1
k−1︸ ︷︷ ︸

Ak−1

+Q−1
k−1)

−1 F>−1

k−1

]
· · ·

· · ·Σ−1
k−1|k−1µk−1|k−1︸ ︷︷ ︸

ηk−1|k−1

ηk|k−1 =
[
I −Ak−1(Ak−1 + Q−1

k−1)
−1

]
F>−1

k−1ηk−1|k−1. (C.24)

C.4 Process Prediction with Augmentation

In this example, the system state is augmented with the newly predicted plant state for

every prediction, so that all historic states are retained and the system state vector grows

over time. To avoid ambiguity, we will use xt to denote the system state, which is the entire

state of the system including current and historic states. The system state consists of the
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current plant state xk and a collection of historic plant states xp

xt =

[
xk

xp

]
. (C.25)

For this derivation we will assume that xp consists of a single historic plant state. During

each prediction, the process model for the system augments the system state with a new

plant state, xk+1. Thus the system state vector grows at each time step to include not only

the collection of historic states and the current plant state xk, but also the prediction of the

next plant state xk+1 as governed by the plant process model in equation C.14. We will

drop the subscript k on F and w for clarity of notation for the remainder of the derivation.

We can now write the process model for the system as

xt+1 =




F 0

I 0

0 I




︸ ︷︷ ︸
F t

xt +




I

0

0




︸ ︷︷ ︸
Gt

w (C.26)

where

xt+1 =




xk+1

xk

xp


 . (C.27)

We define the mean and covariance of the system state estimate before prediction as

µt =

[
µk

µp

]
(C.28)

Σt =

[
Σkk Σkp

Σpk Σpp

]
(C.29)
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which, in the information form, are

Λt = Σ−1
t =

[
Λkk Λkp

Λpk Λpp

]
(C.30)

ηt = Λtµt =

[
Λkkµk + Λkpµp

Λpkµk + Λppµp

]
=

[
ηk
ηp

]
. (C.31)

The mean and covariance of the system state estimate after prediction are

µt+1 = F tµt (C.32)

=




F 0

I 0

0 I




[
µk

µp

]

=




Fµk

µk

µp


 (C.33)

Σt+1 = F tΣtF
>
t + GtQG>

t (C.34)

=




F 0

I 0

0 I




[
Σkk Σkp

Σpk Σpp

][
F> I 0

0 0 I

]
+




I

0

0


 Q

[
I 0 0

]

=




FΣkkF
> + Q FΣkk FΣkp

ΣkkF
> Σkk Σkp

ΣpkF
> Σpk Σpp


 (C.35)
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which, in the information form [25], are

Λt+1 = Σ−1
t+1

=




FΣkkF
> + Q FΣkk FΣkp

ΣkkF
> Σkk Σkp

ΣpkF
> Σpk Σpp




−1

=




Q−1 −Q−1F 0

−F>Q−1 F>Q−1F + Λkk Λkp

0 Λpk Λpp


 (C.36)

ηt+1 = Λt+1µt+1 (C.37)

=




Q−1 −Q−1F 0

−F>Q−1 F>Q−1F + Λkk Λkp

0 Λpk Λpp







Fµk

µk

µp




=




0

Λkkµk + Λkpµp

Λpkµk + Λppµp




=




0

ηk
ηp


 (C.38)

for a linear plant, where, as noted in [26], prediction with augmentation results in (C.36)

having a sparse tridiagonal structure. As noted in [25], the derivation of (C.36) through the

inversion of Σt+1 is tedious, but the result can easily be validated by matrix multiplication

to show that Λt+1Σt+1 = I . Note that (C.36) can be written as the sum of a two matrices

consisting of a constant matrix plus the previous information matrix

Λt+1 =




Q−1 −Q−1F 0

−F>Q−1 F>Q−1F 0

0 0 0


 +




0 0 0

0 Λkk Λkp

0 Λpk Λpp


 . (C.39)
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C.5 Measurement Update

The measurement update equation for the information matrix is straightforward to de-

rive using the matrix inversion lemma,

Λk|k = Σ−1
k|k (C.40)

=
[
(I −KkHk)Σk|k−1

]−1

=
[
Σk|k−1 −Σk|k−1H

>
k (HkΣk|k−1H

>
k + Rk)

−1HkΣk|k−1

]−1

= Σ−1
k|k−1 + H>

k R−1
k Hk

Λk|k = Λk|k−1 + H>
k R−1

k Hk (C.41)

where zk is the measurement,Hk is the linear measurement matrix, andRk is the covariance

matrix of the measurement noise.

To derive the measurement update equation for the information vector, we will use the

fact that Kk = Σk|kH
>
k R−1

k ,

Kk = Σk|k−1H
>
k (HkΣk|k−1H

>
k + Rk)

−1 (C.42)

Kk(HkΣk|k−1H
>
k + Rk) = Σk|k−1H

>
k

KkRk = (I −KkHk)Σk|k−1H
>
k

Kk = (I −KkHk)Σk|k−1H
>
k R−1

k

Kk = (Σk|k−1 −KkHkΣk|k−1)»»»»»:I
Σ−1
k|k−1Σk|k−1H

>
k R−1

k

Kk = Σk|kH
>
k R−1

k . (C.43)
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The derivation for the information vector is then

ηk|k = Σ−1
k|kµk|k (C.44)

= Σ−1
k|k

[
µk|k−1 + Kk(zk −Hkµk|k−1)

]

= Σ−1
k|kµk|k−1 −Σ−1

k|kKkHkµk|k−1 + Σ−1
k|kKkzk

= (Λk|k−1 + H>
k R−1

k Hk)µk|k−1 −©©©©*I
Σ−1
k|kΣk|kH

>
k R−1

k Hkµk|k−1 +
©©©©*I
Σ−1
k|kΣk|kH

>
k R−1

k zk

= Λk|k−1µk|k−1 + H>
k R−1

k Hkµk|k−1 −H>
k R−1

k Hkµk|k−1 + H>
k R−1

k zk

ηk|k = ηk|k−1 + H>
k R−1

k zk. (C.45)

C.6 Marginalization

The derivation for the generalized equations for marginalization are adapted from [25].

This derivation uses the result for the inverse of a nonsingular block 2 × 2 matrix from

Bar-Shalom [8, p.21], which is repeated here for convenience.

The inverse of a nonsingular block 2× 2 is

[
P11 P12

P21 P22

]−1

=

[
V11 V12

V21 V22

]
(C.46)
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where

V11 = P−1
11 + P−1

11 P12V22P21P
−1
11 = (P11 − P12P

−1
22 P21)

−1 (C.47)

V12 = −P−1
11 P12V

−1
22 = −V11P12P

−1
22 (C.48)

V21 = −V22P21P
−1
11 = −P−1

22 P21V11 (C.49)

V22 = P−1
22 + P−1

22 P21V11P12P
−1
22 = (P22 − P21P

−1
11 P12)

−1. (C.50)

Replacing P with Λ and V with Σ

[
Λαα Λαβ

Λβα Λββ

]−1

=

[
Σαα Σαβ

Σβα Σββ

]
(C.51)

we solve for the elements of Σ because in the covariance form if

Σ(α, β) =

[
Σαα Σαβ

Σβα Σββ

]
(C.52)

then

Σ(α) = Σαα (C.53)

and thus

Λ(α) = Σ(α)−1 = Σ−1
αα (C.54)
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where α are the states to be kept and β are the states to be marginalized out. Thus marginal-

izing out β results in

η(α) = ηα − ΛαβΛ
−1
ββηβ (C.55)

Λ(α) = Λαα − ΛαβΛ
−1
ββΛβα. (C.56)
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Appendix D

Linear Information Filter Example

Presented here is an example implementation of the linear information filter in the con-

text of a strictly linear, one-degree-of-freedom system. The linear information filter equa-

tions are used here without derivation. Readers are referred to Appendix C for the linear

information filter derivation.

This example consists of a two-node system, the nodes labelled ship and vehicle respec-

tively. Each nodes has one degree of freedom, moving along the y-axis. Both the ship and

the vehicle have a linear, constant-velocity process model. Three types of measurements

are possible, position measurements for the ship, velocity measurements for the vehicle,

and range measurements between the ship and the vehicle.

The goal of this example is to explore the differences between a centralized filter that

has access to all sensor measurements from both the ship and the vehicle in real-time and

a decentralized vehicle-based filter that only has access to vehicle sensor measurements in
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real time. In the decentralized filter the vehicle receives asynchronous data transmissions

from the ship concurrent with range measurements from the ship, but does not have access

to ship measurements of the ship state estimate in real time.

D.1 Process Model

We assume a constant-velocity process model for both the vehicle and the ship

ẋv =

[
0 1

0 0

]

︸ ︷︷ ︸
F v

xv +

[
0

1

]

︸ ︷︷ ︸
Gv

wv (D.1)

ẋs =

[
0 1

0 0

]

︸ ︷︷ ︸
F s

xs +

[
0

1

]

︸ ︷︷ ︸
Gs

ws (D.2)

where the state vectors xv and xs contain the position and velocity along the y-axis of the

vehicle and the ship respectively

xv =

[
yv

ẏv

]
(D.3)

xs =

[
ys

ẏs

]
(D.4)
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and wv and ws are independent zero-mean Gaussian process noise in the respective accel-

eration terms

wv ∼ N (0, qv) (D.5)

ws ∼ N (0, qs). (D.6)

The process models are discretized according to standard methods [8]. The resulting

discrete-time linear process models are

xvk+1
= F vk

xvk
+ wvk

(D.7)

F vk
= eF vT =

[
1 T

0 1

]
(D.8)

xsk+1
= F sk

xsk
+ wsk

(D.9)

F sk
= eF sT =

[
1 T

0 1

]
(D.10)

where F v and F s are defined in (D.1) and (D.2) respectively and T is the discrete time

step. The discretized process noise, wvk
and wsk

, are zero-mean Gaussian

wvk
∼ N (0,Qv) (D.11)

wsk
∼ N (0,Qs) (D.12)
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where the covariance matrices are

Qv =

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
qv (D.13)

Qs =

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
qs. (D.14)

Note that even though F vk
, F sk

, wvk
, and wsk

are shown with a subscript denoting the

time step k, they are in fact constant and do not depend on time.

D.2 Process Prediction and Augmentation

The ship and vehicle process models have identical process prediction and augmen-

tation equations. For simplicity of notation I will derive a general form of the equations

without either the s or v subscripts. This system is formulated such that the complete state

vector consists of both current and historic states. For every prediction, the current state is

augmented with the newly predicted state, thus all historic states are retained and the state

vector grows over time. To avoid ambiguity, I will use xk to denote current plant states, xp

to denote historic plant states, and a different font xt to denote the system state, which is

the entire state of the system including both current and historic plant states

xk =

[
xk

xp

]
. (D.15)

Consider a system in which the plant state is governed by the following constant-
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velocity, discrete-time, linear process model similar to (D.7) and (D.9)

xk+1 =

[
1 T

0 1

]

︸ ︷︷ ︸
F

xk + w (D.16)

xk =

[
yk

ẏk

]
(D.17)

where w ∼ N (0,Q), Q =

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
q and T is the discrete time step.

The process model for the system augments the system state with a new plant state,

xk+1, which is the prediction forward of the current plant state

xk+1 =




F 0

I 0

0 I




︸ ︷︷ ︸
F k

xk +




I

0

0


 w (D.18)

where

xk+1 =




xk+1

xk

xp


 . (D.19)

The mean and covariance of the system state estimate before prediction are

µ̃k|k = E[xk] =

[
µk

µp

]
(D.20)

Σ̃k|k = E[(xk − µ̃k|k)(xk − µ̃k|k)
>] =

[
Σkk Σkp

Σpk Σpp

]
(D.21)
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which, in the information form, are

Λ̃k|k = Σ̃
−1

k|k =

[
Λkk Λkp

Λpk Λpp

]
(D.22)

η̃k|k = Λ̃k|kµ̃k|k =

[
Λkkµk + Λkpµp

Λpkµk + Λppµp

]
. (D.23)

The mean and covariance of the system state estimate after prediction are

µ̃k+1|k =




Fµk

µk

µp


 (D.24)

Σ̃k+1|k =




FΣkkF
> + Q FΣkk FΣkp

ΣkkF
> Σkk Σkp

ΣpkF
> Σpk Σpp


 (D.25)

which, in the information form [25], are

Λ̃k+1|k = Σ̃
−1

k+1|k

=




Q−1 −Q−1F 0

−F>Q−1 F>Q−1F + Λkk Λkp

0 Λpk Λpp


 (D.26)

η̃k+1|k = Λ̃k+1|kµ̃k+1|k =

[
0

ηt

]
. (D.27)

Note that (D.26) can be written as the sum of a two matrices consisting of a constant matrix
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plus the previous information matrix

Λ̃k+1|k =




Q−1 −Q−1F 0

−F>Q−1 F>Q−1F 0

0 0 0


 +




0 0 0

0 Λkk Λkp

0 Λpk Λpp


 . (D.28)

D.3 Marginalization

In this example, states that do not have range measurements associated with them

are marginalized out after a given time. For completeness, the generalized marginaliza-

tion equations are shown here for two scenarios. The first scenario is when the one or

more states at the bottom of the system information vector (i.e. the oldest states) are to

be marginalized out. In this case the information vector can be split into two partitions,

one associated with the states to keep, ηα, and the other associated with the states to be

marginalized out, ηβ

η(α, β) =

[
ηα
ηβ

]
(D.29)

Λ(α, β) =

[
Λαα Λαβ

Λβα Λββ

]
. (D.30)

Marginalizing out β results in

η(α) = ηα −ΛαβΛ
−1
ββηβ (D.31)

Λ(α) = Λαα −ΛαβΛ
−1
ββΛβα. (D.32)
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Note that η(α) 6= ηα after marginalization.

In the second scenario, one or more states in the middle of the state vector are to be

marginalized out. In this scenario the information vector is split into three partitions, where

the states associated with ηβ are again to be marginalized out.

η(α, β, γ) =




ηα
ηβ
ηγ


 (D.33)

Λ(α, β, γ) =




Λαα Λαβ Λαγ

Λβα Λββ Λβγ

Λγα Λγβ Λγγ


 (D.34)

Marginalizing out β results in

η(α, γ) =

[
ηα
ηγ

]
−

[
Λαβ

Λγβ

]
Λ−1
ββηβ (D.35)

Λ(α, γ) =

[
Λαα Λαγ

Λγα Λγγ

]
−

[
Λαβ

Λγβ

]
Λ−1
ββ

[
Λβα Λβγ

]
. (D.36)

Note that the second scenario, and indeed any general case concerning the partitioning

of η and Λ, reduces to the two-partition scenario, because η and Λ can be reordered into

two partitions using an appropriate orthonormal permutation matrix. See [25] for more

details.
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D.4 Measurement Update

Given a generalized observation model for a scalar measurement

zk = Hkxk + vk (D.37)

where zk is the measurement, Hk is the linear measurement matrix, and vk ∼ N (0, rk) is

the measurement noise, the measurement update equations for the information filter are

ηk|k = ηk|k−1 +H>
k r

−1
k zk (D.38)

Λk|k = Λk|k−1 +H>
k r

−1
k Hk. (D.39)

D.5 Observation Models

The full state vector for this system contains current and historic states for both the

vehicle and the ship. However, for simplicity of notation, the observation models below

are written in terms of a simplified state vector consisting of only the current vehicle and

current ship states except where otherwise noted.
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D.5.1 Ship GPS Measurement

The position measurement for the ship mimics a GPS measurement. The position mea-

surement equation is

zgps = ys + vgps (D.40)

where vgps ∼ N (0, rgps). We can rewrite (D.40) in matrix notation as

zgps =
[

0 0 1 0
]

︸ ︷︷ ︸
Hgps

[
xv

xs

]
+ vgps. (D.41)

D.5.2 Vehicle Velocity Measurement

The velocity measurement for the vehicle mimics a Doppler velocity log measurement.

The velocity measurement equation is

zvel = ẏv + vvel (D.42)

where vvel ∼ N (0, rvel). We can rewrite (D.42) in matrix notation as

zvel =
[

0 1 0 0
]

︸ ︷︷ ︸
Hvel

[
xv

xs

]
+ vvel. (D.43)
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D.5.3 Range Measurement

The range measurement between the vehicle and ship in this example is chosen to

mimic a range measurement made underwater using the time-of-flight of an acoustic signal,

except that the measurement here is linear. The range measurements in this example are

always made from the ship to the vehicle. Because the travel time of an acoustic signal

underwater is non-negligible, the range measurement is made between the receiver (the

vehicle) at the current time step and the sender (the ship) at an earlier time step.

The range measurement equation between the ship and the vehicle in this problem is

zrng = yvk
− ysk−1

+ vrng (D.44)

where tk − tk−1 is the time-of-fight of the acoustic transmission and the noise vrng ∼

N (0, rrng) represents the imprecision in the distance measurement. Note that the range

measurement is a signed number in this model in order to disambiguate which side of the

ship the vehicle is on. We can rewrite (D.44) in matrix notation as

zrng =
[

1 0 −1 0
]

︸ ︷︷ ︸
Hrng

[
xvk

xsk−1

]
+ vrng. (D.45)
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D.6 Centralized Implementation

In the centralized implementation, the filter estimates the current and historic states

of both the vehicle and the ship. We assume that the filter has access to all vehicle and

ship sensor measurements in real time. The ship and the vehicle start at t0 and the filter is

initialized to

η0|0 =

[
ηv0
ηs0

]
(D.46)

Λ0|0 =

[
Λv0v0 0

0 Λs0s0

]
. (D.47)

Figure D.1 shows the example system used here to compare the centralized and the

decentralized implementations of the information filter. In addition to the measurements

shown, the vehicle state at t0 and the ship state at t1 are marginalized out after the t1 to t2

prediction with augmentation step.

Figure D.1: Vehicle and ship trajectories with sensor measurements.
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Prediction with Augmentation t0 → t1

A prediction with augmentation step transitions the state from t0 to t1:

η1|0 =




0

ηv0
0

ηs0


 (D.48)

Λ1|0 =




Q−1
v −Q−1

v F v 0 0

−F>
v Q−1

v F>
v Q−1

v F v 0 0

0 0 Q−1
s −Q−1

s F s

0 0 −F>
s Q−1

s F>
s Q−1

s F s


 +




0 0 0 0

0 Λv0v0 0 0

0 0 0 0

0 0 0 Λs0s0




=




Q−1
v −Q−1

v F v 0 0

−F>
v Q−1

v F>
v Q−1

v F v + Λv0v0 0 0

0 0 Q−1
s −Q−1

s F s

0 0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0


 . (D.49)
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Range Measurement at t1

Incorporating the range measurement zrng(t1) gives us

η1|zrng1
= η1|0 +H>

rngr
−1
rngzrng(t1) (D.50)

=




0

ηv0
0

ηs0


 +




[
1

0

]

0

0[
−1

0

]




zrng(t1)

rrng

=




0

ηv0
0

ηs0


 +




zr1
0

0

−zr1




=




zr1
ηv0
0

ηs0 − zr1


 (D.51)

where we define zr1 =

[
1

0

]
zrng(t1)

rrng
.
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Λ1|zrng1
= Λ1|0 +H>

rngr
−1
rngHrng (D.52)

= Λ1|0 +




[
1

0

]

0

0[
−1

0

]




r−1
rng

[ [
1 0

]
0 0

[
−1 0

] ]

= Λ1|0 +




[
1

rrng
0

0 0

]
0 0

[
−1
rrng

0

0 0

]

0 0 0 0

0 0 0 0[
−1
rrng

0

0 0

]
0 0

[
1

rrng
0

0 0

]




= Λ1|0 +




Rr 0 0 −Rr

0 0 0 0

0 0 0 0

−Rr 0 0 Rr




=




Q−1
v + Rr −Q−1

v F v 0 −Rr

−F>
v Q−1

v F>
v Q−1

v F v + Λv0v0 0 0

0 0 Q−1
s −Q−1

s F s

−Rr 0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0 + Rr




(D.53)

where we define Rr =

[
1

rrng
0

0 0

]
.
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Ship GPS Measurement at t1

Next we incorporate the ship GPS measurement zgps(t1).

η1|zrng1 ,zgps1
= η1|zrng1

+H>
gpsr

−1
gpszgps(t1) (D.54)

=




zr1
ηv0
0

ηs0 − zr1


 +




0

0[
1

0

]

0




zgps(t1)

rgps

=




zr1
ηv0
0

ηs0 − zr1


 +




0

0

zg1
0




=




zr1
ηv0
zg1

ηs0 − zr1


 (D.55)

where we define zg1 =

[
1

0

]
zgps(t1)

rgps
.
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Λ1|zrng1 ,zgps1
= Λ1|zrng1

+H>
gpsr

−1
gpsHgps (D.56)

= Λ1|zrng1
+




0
0[
1
0

]

0



r−1
gps

[
0 0

[
1 0

]
0

]

= Λ1|zrng1
+




0 0 0 0
0 0 0 0

0 0

[
1

rgps
0

0 0

]
0

0 0 0 0




= Λ1|zrng1
+




0 0 0 0
0 0 0 0
0 0 Rg 0
0 0 0 0




=




Q−1
v + Rr −Q−1

v F v 0 −Rr

−F>
v Q−1

v F>
v Q−1

v F v + Λv0v0 0 0
0 0 Q−1

s + Rg −Q−1
s F s

−Rr 0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0 + Rr




(D.57)

where we define Rg =

[
0 0
0 1

rgps

]
.

After incorporating all of the measurements for this time step we let

η1|1 =

[
η1|1v

η1|1s

]
= η1|zrng1 ,zgps1

(D.58)

Λ1|1 =

[
Λ1|1vv

Λ1|1vs

Λ1|1sv
Λ1|1ss

]
= Λ1|zrng1 ,zgps1

. (D.59)
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Prediction with Augmentation t1 → t2

A prediction with augmentation step transitions the state from t1 to t2:

η2|1 =




01x1

η1|1v2x1

01x1

η1|1s2x1




=




0
zr1
ηv0
0
zg1

ηs0 − zr1




(D.60)

Λ2|1 =




Q−1
v −Q−1

v F v 0 0 0 0
−F>

v Q−1
v F>

v Q−1
v F v 0 0 0 0

0 0 0 0 0 0
0 0 0 Q−1

s −Q−1
s F s 0

0 0 0 −F>
s Q−1

s F>
s Q−1

s F s 0
0 0 0 0 0 0




+




0 0 0 0 0 0
0 Λ1|1vv

0 Λ1|1vs

0 0
0 0 0 0 0 0
0 Λ1|1sv

0 Λ1|1ss

0 0




=




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rr −Q−1
v F v

0 −F>
v Q−1

v F>
v Q−1

v F v + Λv0v0 · · ·
0 0 0
0 0 0
0 −Rr 0

0 0 0
0 0 −Rr

· · · 0 0 0
Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s + Rg −Q−1
s F s

0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0 + Rr




(D.61)
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Marginalize out xv(t0), Vehicle State at t0

Starting with the information vector after the prediction to t2, equation (D.60),

η2|1(xv2 ,xv1 ,xv0 ,xs2 ,xs1 ,xs0 , ) =




0
zr1
ηv0
0
zg1

ηs0 − zr1




, (D.62)

we marginalize out the vehicle state at t0 using equations (D.35) and (D.36),

η2|1(xv2 ,xv1 ,xs2 ,xs1 ,xs0) =




0
zr1
0
zg1

ηs0 − zr1



−




0
−Q−1

v F v

0
0
0




(F>
v Q−1

v F v + Λv0v0)
−1ηv0

(D.63)

=




0
η̃v1
0
zg1

ηs0 − zr1




(D.64)

where

η̃v1 = zr1 + Q−1
v F v(F>

v Q−1
v F v + Λv0v0)

−1ηv0 (D.65)
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Similarly for the information matrix,

Λ2|1(xv2 ,xv1 ,xs2 ,xs1 ,xs0) (D.66)

=




Q−1
v −Q−1

v F v

−F>
v Q−1

v F>
v Q−1

v F v + Q−1
v + Rr

0 0 · · ·
0 0
0 −Rr

0 0 0
0 0 −Rr

· · · Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s + Rg −Q−1
s F s

0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0 + Rr




−




0
−Q−1

v F v

0
0
0




(F>
v Q−1

v F v + Λv0v0)
−1

[
0 −F>

v Q−1
v 0 0 0

]
(D.67)

=




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v Λ̃v1v1 0

0 0 Q−1
s · · ·

0 0 −F>
s Q−1

s

0 −Rr 0

0 0
0 −Rr

· · · −Q−1
s F s 0

F>
s Q−1

s F s + Q−1
s + Rg −Q−1

s F s

−F>
s Q−1

s F>
s Q−1

s F s + Λs0s0 + Rr




(D.68)

where

Λ̃v1v1 = F>
v Q−1

v F v + Q−1
v + Rr −Q−1

v F v(F>
v Q−1

v F v + Λv0v0)
−1F>

v Q−1
v . (D.69)
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Marginalize out xs(t1), Ship State at t1

Starting with xv0 already marginalized out, equations (D.64) and (D.68), we marginalize out

the ship state at t1, again using equations (D.35) and (D.36),

η2|1(xv2 ,xv1 ,xs2 ,xs0) =




0
η̃v1
0

ηs0 − zr1



−




0
0

−Q−1
s F s

−F>
s Q−1

s




(F>
s Q−1

s F s + Q−1
s + Rg)−1zg1

(D.70)

=




0
η̃v1
η̃s2
η̃s0




(D.71)

where η̃v1 was defined in equation (D.65) and

η̃s2 = Q−1
s F s(F>

s Q−1
s F s + Q−1

s + Rg)−1zg1 (D.72)

η̃s0 = ηs0 − zr1 + F>
s Q−1

s (F>
s Q−1

s F s + Q−1
s + Rg)−1zg1 . (D.73)
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Similarly for the information matrix,

Λ2|1(xv2 ,xv1 ,xs2 ,xs0) =




Q−1
v −Q−1

v F v 0 0
−F>

v Q−1
v Λ̃v1v1 0 −Rr

0 0 Q−1
s 0

0 −Rr 0 F>
s Q−1

s F s + Λs0s0 + Rr




−




0
0

−Q−1
s F s

−F>
s Q−1

s




(F>
s Q−1

s F s + Q−1
s + Rg)−1

[
0 0 −F>

s Q−1
s −Q−1

s F s

]

=




Q−1
v −Q−1

v F v 0 0
−F>

v Q−1
v Λ̃v1v1 0 −Rr

0 0 Λ̃s2s2 Λ̃s2s0

0 −Rr Λ̃s0s2 Λ̃s0s0




(D.74)

where Λ̃v1v1 was defined in equation (D.69) and

Λ̃s2s2 = Q−1
s −Q−1

s F s(F>
s Q−1

s F s + Q−1
s + Rg)−1F>

s Q−1
s (D.75)

Λ̃s2s0 = −Q−1
s F s(F>

s Q−1
s F s + Q−1

s + Rg)−1Q−1
s F s (D.76)

Λ̃s0s2 = −F>
s Q−1

s (F>
s Q−1

s F s + Q−1
s + Rg)−1F>

s Q−1
s (D.77)

Λ̃s0s0 = F>
s Q−1

s F s + Λs0s0 + Rr − F>
s Q−1

s (F>
s Q−1

s F s + Q−1
s + Rg)−1Q−1

s F s (D.78)
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Vehicle Velocity Measurement at t2

Next we incorporate the vehicle velocity measurement zvel(t2).

η2|zvel2
= η2|1 +H>

velr
−1
velzvel(t2) (D.79)

=




0
η̃v1
η̃s2
η̃s0




+




[
0
1

]

0
0
0




zvel(t2)
rvel

=




0
η̃v1
η̃s2
η̃s0




+




zv2
0
0
0




=




zv2
η̃v1
η̃s2
η̃s0




(D.80)

where we define zv2 =

[
0
1

]
zvel(t2)
rvel

.
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Λ2|zvel2
= Λ2|1 +H>

velr
−1
velHvel (D.81)

= Λ2|1 +




[
0
1

]

0
0
0
0




r−1
vel

[ [
0 1

]
0 0 0 0

]

= Λ2|1 +




[
0 0
0 1

rvel

]
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0




= Λ2|1 +




Rv 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




=




Q−1
v + Rv −Q−1

v F v 0 0
−F>

v Q−1
v Λ̃v1v1 0 −Rr

0 0 Λ̃s2s2 Λ̃s2s0

0 −Rr Λ̃s0s2 Λ̃s0s0




(D.82)

where we define Rv =

[
0 0
0 1

rvel

]
.

192



APPENDIX D. LINEAR INFORMATION FILTER EXAMPLE

After completing the marginalizations and incorporating all of the measurements for this time

step we let

η2|2 =

[
η2|2v

η2|2s

]
= η2|zvel2

(D.83)

Λ2|2 =

[
Λ2|2vv

Λ2|2vs

Λ2|2sv
Λ2|2ss

]
= Λ2|zvel2

. (D.84)

Prediction with Augmentation t2 → t3

A prediction with augmentation step transitions the state from t2 to t3:

η3|2 =




01x1

η2|2v2x1

01x1

η2|2s2x1




=




0
zv2
η̃v1
0
η̃s2
η̃s0




(D.85)

Λ3|2 =




Q−1
v −Q−1

v F v 0 0 0 0
−F>

v Q−1
v F>

v Q−1
v F v 0 0 0 0

0 0 0 0 0 0
0 0 0 Q−1

s −Q−1
s F s 0

0 0 0 −F>
s Q−1

s F>
s Q−1

s F s 0
0 0 0 0 0 0




+




0 0 0 0 0 0
0 Λ2|2vv

0 Λ2|2vs

0 0
0 0 0 0 0 0
0 Λ2|2sv

0 Λ2|2ss

0 0



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=




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v

0 −F>
v Q−1

v Λ̃v1v1

0 0 0 · · ·
0 0 0
0 0 −Rr

0 0 0
0 0 0
0 0 −Rr

· · · Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Λ̃s2s2 Λ̃s2s0

0 Λ̃s0s2 Λ̃s0s0




. (D.86)

Range Measurement at t3

Incorporating the range measurement zrng(t3) gives us

η3|zrng3
= η3|2 +H>

rngr
−1
rngzrng(t3) (D.87)

=




0
zv2
η̃v1
0
η̃s2
η̃s0




+




zr3
0
0
0

−zr3
0




=




zr3
zv2
η̃v1
0

η̃s2 − zr3
η̃s0




(D.88)

where we define zr3 =

[
1
0

]
zrng(t3)
rrng

.
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Similarly for the information matrix,

Λ3|zrng3
= Λ3|2 +H>

rngr
−1
rngHrng (D.89)

= Λ3|2 +




Rr 0 0 0 −Rr 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−Rr 0 0 0 Rr 0
0 0 0 0 0 0




=




Q−1
v + Rr −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v

0 −F>
v Q−1

v Λ̃v1v1

0 0 0 · · ·
−Rr 0 0

0 0 −Rr

0 −Rr 0
0 0 0
0 0 −Rr

· · · Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Λ̃s2s2 + Rr Λ̃s2s0

0 Λ̃s0s2 Λ̃s0s0




(D.90)

where we define Rr =

[
1

rrng
0

0 0

]
.

For ease of notation let

η3|3 = η3|zrng3
(D.91)

Λ3|3 = Λ3|zrng3
. (D.92)
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Marginalize out xs(t0), Ship State at t0

We will now marginalize out the ship state at t0. This will illustrate what happens when a state

associated with a range measurement is marginalized out, and allow is to verify that the solution is

reproducible in the decentralized implementation.

Using equations (D.35) and (D.36),

η3|3(xv3 ,xv2 ,xv1 ,xs3 ,xs2) =




zr3
zv2
η̃v1
0

η̃s2 − zr3



−




0
0

−Rr

0
Λ̃s2s0




Λ̃
−1
s0s0 η̃s0 (D.93)

=




zr3
zv2
η̂v1
0
η̂s2




(D.94)

where

η̂v1 = η̃v1 + RrΛ̃
−1
s0s0 η̃s0 (D.95)

η̂s2 = η̃s2 − zr3 − Λ̃s2s0Λ̃
−1
s0s0 η̃s0 . (D.96)
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Similarly for the information matrix,

Λ3|3(xv3 ,xv2 ,xv1 ,xs3 ,xs2) =




Q−1
v + Rr −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v

0 −F>
v Q−1

v Λ̃v1v1 · · ·
0 0 0

−Rr 0 0

0 −Rr

0 0
· · · 0 0

Q−1
s −Q−1

s F s

−F>
s Q−1

s F>
s Q−1

s F s + Λ̃s2s2 + Rr



−




0
0

−Rr

0
Λ̃s2s0




Λ̃
−1
s0s0

[
0 0 −Rr 0 Λ̃s0s2

]

=




Q−1
v + Rr −Q−1

v F v 0 0 −Rr

−F>
v Q−1

v F>
v Q−1

v F v + Q−1
v + Rv −Q−1

v F v 0 0
0 −F>

v Q−1
v Λ̂v1v1 0 R̂rv1s0

0 0 0 Q−1
s −Q−1

s F s

−Rr 0 R̂rs0v1
−F>

s Q−1
s Λ̂s2s2




(D.97)

where

Λ̂v1v1 = Λ̃v1v1 −RrΛ̃
−1
s0s0Rr (D.98)

Λ̂s2s2 = F>
s Q−1

s F s + Λ̃s2s2 + Rr − Λ̃s2s0Λ̃
−1
s2s2Λ̃s0s2 (D.99)

R̂rv1s0
= RrΛ̃

−1
s0s0Λ̃s0s2 (D.100)

R̂rs0v1
= Λ̃s2s0Λ̃

−1
s0s0Rr. (D.101)

D.7 Decentralized Implementation

The decentralized implementation relies on two separate information filters, one on the vehicle

and one on the ship. The ship filter has no knowledge of the vehicle or the range measurements. The
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vehicle filter receives data transmissions from the ship concurrent with range measurements from

the ship, but does not have access to the ship measurements directly or the ship state estimate in real

time. The data transmissions contains the delta change in the ship information vector and matrix

since the last transmission to the vehicle (i.e. when the last range measurement was sent). For the

example presented here, the initial ship state at t0 is transmitted to the vehicle at t0 and received at

t1, and the delta change in the ship state from t0 to t1 is transmitted at t1to the vehicle and received

at t2.

D.7.1 Ship Filter

Because the ship has no knowledge of the vehicle state or the range measurements we compute

its trajectory estimate first. To differentiate this filter from the vehicle filter we will use ŷ and Y to

represent the information form of the ship filter.

Initial Conditions The ship starts at t0 and we assume that

ŷ0|0 = ηs0 (D.102)

Y0|0 = Λs0s0 . (D.103)
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Prediction with Augmentation t0 → t1

ŷ1|0 =

[
0
ηs0

]
(D.104)

Y1|0 =

[
Q−1
s −Q−1

s F s

−F>
s Q−1

s F>
s Q−1

s F s

]
+

[
0 0
0 Λs0s0

]
(D.105)

=

[
Q−1
s −Q−1

s F s

−F>
s Q−1

s F>
s Q−1

s F s + Λs0s0

]
(D.106)

Ship GPS Measurement at t1

ŷ1|zgps1
= ŷ1|0 +H>

gpsr
−1
gpszgps(t1) (D.107)

=

[
0
ηs0

]
+

[
zg1
0

]

=

[
zg1
ηs0

]
(D.108)

Y1|gps1 = Y1|1 +H>
gpsr

−1
gpsHgps (D.109)

= Y1|1 +

[
Rg 0
0 0

]

=

[
Q−1
s + Rg −Q−1

s F s

−F>
s Q−1

s F>
s Q−1

s F s + Λs0s0

]
(D.110)

where

Rv =

[
0 0
0 1

rrng

]
(D.111)
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Once we are finished with all of the measurements at time step t1 we assign

ŷ1|1 = ŷ1|zgps1
(D.112)

Y1|1 = Y1|gps1 . (D.113)

Prediction with Augmentation t1 → t2

ŷ2|1 =

[
01x1

ŷ1|12x1

]
=




0
zg1
ηs0


 (D.114)

Y2|1 =




Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s 0

0 0 0


 +




0 0 0
0
0

Y 1|1


 (D.115)

=




Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s + Rg −Q−1
s F s

0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0


 (D.116)

There are no measurements to include at time step t2 so

ŷ2|2 = ŷ2|1 (D.117)

Y2|2 = Y2|1 (D.118)
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Prediction with Augmentation t2 → t3

ŷ3|2 =

[
01x1

ŷ2|23x1

]
=




0
0
zg1
ηs0




(D.119)

Y3|2 =




Q−1
s −Q−1

s F s 0 0
−F>

s Q−1
s F>

s Q−1
s F s 0 0

0 0 0 0
0 0 0 0




+




0 0 0 0
0
0
0

Y 2|2




(D.120)

=




Q−1
s −Q−1

s F s 0 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s −Q−1
s F s 0

0 −F>
s Q−1

s F>
s Q−1

s F s + Q−1
s + Rg −Q−1

s F s

0 0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0




(D.121)
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D.7.2 Vehicle Filter

For the vehicle filter we will use the η and Λ variables for the information filter vector and

matrix respectively. The ship and the vehicle start at t0 but we assume that initially we only have

knowledge of the vehicle state.

Initial Conditions

η0|v0 = ηv0 (D.122)

Λ0|v0 = Λv0v0 (D.123)

Vehicle-Only Prediction with Augmentation t0 → t1

η1|v0 =

[
0
ηv0

]
(D.124)

Λ1|v0 =

[
Q−1
v −Q−1

v F v

−F>
v Q−1

v F>
v Q−1

v F v

]
+

[
0 0
0 Λv0v0

]
(D.125)

=

[
Q−1
v −Q−1

v F v

−F>
v Q−1

v F>
v Q−1

v F v + Λv0v0

]
(D.126)

Incorporate Initial Ship Data from Data Transmission at t0

The ship information transmitted with the first range measurement is just the initial conditions

of the ship:

ŷ0|0 = ηs0 (D.127)

Y0|0 = Λs0s0 . (D.128)
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We add these new states to the vehicle filter:

η1|v0,s0 =

[
η1|v02x1

ŷ0|01x1

]
=




0
ηv0
ηs0


 (D.129)

Λ1|v0,s0 =

[
Λ1|v02x2

0
0 Y0|01x1

]
(D.130)

=




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Λv0v0 0

0 0 Λs0s0


 . (D.131)

After adding the ship states let

η1|0 = η1|v0,s0 (D.132)

Λ1|0 = Λ1|v0,s0 . (D.133)

Range Measurement at t1

η1|zrng1
= η1|0 +H>

rngr
−1
rngzrng(t1) (D.134)

=




0
ηv0
ηs0


 +




zr1
0

−zr1




=




zr1
ηv0

ηs0 − zr1


 (D.135)

where

zr1 =

[
1
0

]
zrng(t1)
rrng

. (D.136)
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Λ1|zrng1
= Λ1|0 +H>

rngr
−1
rngHrng (D.137)

= Λ1|0 +




Rr 0 −Rr
0 0 0

−Rr 0 Rr




=




Q−1
v + Rr −Q−1

v F v −Rr

−F>
v Q−1

v F>
v Q−1

v F v + Λv0v0 0
−Rr 0 Λs0s0 + Rr


 (D.138)

where

Rr =

[
1

rrng
0

0 0

]
. (D.139)

With all of the measurements incorporated for this time step, let

η1|1 = η1|zrng1
(D.140)

Λ1|1 =

[
Λ1|1vv

Λ1|1vs

Λ1|1sv
Λ1|1ss

]
= Λ1|zrng1

. (D.141)
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Vehicle-Only Prediction with Augmentation t1 → t2

η2|v1,s0 =

[
01x1

η1|13x1

]
=




0
zr1
ηv0

ηs0 − zr1




(D.142)

Λ2|v1,s0 =




Q−1
v −Q−1

v F v 0 0
−F>

v Q−1
v F>

v Q−1
v F v 0 0

0 0 0 0
0 0 0 0




+




0 0 0 0

0
0

Λ1|1vv
Λ1|1vs

0 Λ1|1sv
Λ1|1ss




(D.143)

=




Q−1
v −Q−1

v F v 0 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rr −Q−1
v F v −Rr

0 −F>
v Q−1

v F>
v Q−1

v F v + Λv0v0 0
0 −Rr 0 Λs0s0 + Rr




(D.144)

For simplicity of notation let

η2|1 = η2|v1,s0 (D.145)

Λ2|1 = Λ2|v1,s0 . (D.146)
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Marginalize out Vehicle State at t0

We marginalize out the vehicle state at t0 using equations (D.35) and (D.36),

η2|1(xv2 ,xv1 ,xs0) =




0
zr1

ηs0 − zr1


−




0
−Q−1

v F v

0


 (F>

v Q−1
v F v + Λv0v0)

−1ηv0 (D.147)

=




0
η̃v1

ηs0 − zr1


 (D.148)

where

η̃v1 = zr1 + Q−1
v F v(F>

v Q−1
v F v + Λv0v0)

−1ηv0 (D.149)

Similarly for the information matrix,

Λ2|1(xv2 ,xv1 ,xs0) =




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rr −Rr

0 −Rr Λs0s0 + Rr




−




0
−Q−1

s F s

0


 (F>

v Q−1
v F v + Λv0v0)

−1
[

0 −F>
s Q−1

s 0
]

(D.150)

=




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v Λ̃v1v1 −Rr

0 −Rr Λs0s0 + Rr


 (D.151)

where

Λ̃v1v1 = F>
v Q−1

v F v + Q−1
v + Rr −Q−1

v F v(F>
v Q−1

v F v + Λv0v0)
−1F>

v Q−1
v . (D.152)
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Note: Unlike the centralized implementation we only have information for the ship state at t0 at this

time, so we must delay marginalizing out the ship state at t1.

Vehicle Velocity Measurement at t2

η2|zvel2
= η2|1 +H>

velr
−1
velzvel(t2) (D.153)

=




0
η̃v1

ηs0 − zr1


 +




[
0
1

]

0
0



zvel(t2)
rvel

=




0
η̃v1

ηs0 − zr1


 +



zv2
0
0




=




zv2
η̃v1

ηs0 − zr1


 (D.154)

where

zv2 =

[
0
1

]
zvel(t2)
rvel

. (D.155)
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Λ2|zvel2
= Λ2|1 +H>

velr
−1
velHvel (D.156)

= Λ2|1 +




[
0
1

]

0
0



r−1
vel

[ [
0 1

]
0 0

]

= Λ2|1 +




[
0 0
0 1

rvel

]
0 0

0 0 0
0 0 0




= Λ2|1 +



Rv 0 0
0 0 0
0 0 0




=




Q−1
v + Rv −Q−1

v F v 0
−F>

v Q−1
v Λ̃v1v1 −Rr

0 −Rr Λs0s0 + Rr


 (D.157)

where

Rv =

[
0 0
0 1

rvel

]
(D.158)

With all of the measurements incorporated for this time step, let

η2|2 = η2|zvel2
(D.159)

Λ2|2 =

[
Λ2|2vv

Λ2|2vs

Λ2|2sv
Λ2|2ss

]
Λ2|zvel2

. (D.160)
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Vehicle-Only Prediction with Augmentation t2 → t3

η3|v2,s0 =

[
01x1

η2|23x1

]
=




0
zv2
η̃v1

ηs0 − zr1




(D.161)

Λ3|v2,s0 =




Q−1
v −Q−1

v F v 0 0
−F>

v Q−1
v F>

v Q−1
v F v 0 0

0 0 0 0
0 0 0 0




+




0 0 0 0

0
0

Λ2|2vv
Λ2|2vs

0 Λ2|2sv
Λ2|2ss




(D.162)

=




Q−1
v −Q−1

v F v 0 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v 0

0 −F>
v Q−1

v Λ̃v1v1 −Rr

0 0 −Rr Λs0s0 + Rr




(D.163)

Incorporate Delta Ship Data t0 to t2 from Data Transmission at t2

The ship information transmitted with the second range measurement is the change in the ship

state from t0 to t2, taking into account conformability.

∆ŷ = ŷ2|2 −




0
0
ŷ0|0


 (D.164)

=




0
zg1
ηs0


−




0
0
ηs0


 (D.165)

=




0
zg1
0


 (D.166)
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∆Y = Y2|2 −




0 0 0
0 0 0
0 0 Y0|0


 (D.167)

=




Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s + Rg −Q−1
s F s

0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0


−




0 0 0
0 0 0
0 0 Λs0s0




(D.168)

=




Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s + Rg −Q−1
s F s

0 −F>
s Q−1

s F>
s Q−1

s F s


 (D.169)

The delta ship states are added to the vehicle filter, again taking info account conformability.

η3|v2,s2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1




η3|v2,s0 +




0
0
0

∆ŷ3x1




(D.170)

=




0
zv2
η̃v1
0
0

ηs0 − zr1




+




0
0
0
0
zg1
0




=




0
zv2
η̃v1
0
zg1

ηs0 − zr1



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Λ3|v2,s2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1




Λ3|v2,s0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1




+




0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

∆Y




(D.171)

=




Q−1
v −Q−1

v F v 0 0 0 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v 0 0 0

0 −F>
v Q−1

v Λ̃v1v1 0 0 −Rr

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −Rr 0 0 Λs0s0 + Rr




+




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Q−1

s −Q−1
s F s 0

0 0 0 −F>
s Q−1

s F>
s Q−1

s F s + Q−1
s + Rg −Q−1

s F s

0 0 0 0 −F>
s Q−1

s F>
s Q−1

s F s




=




Q−1
v −Q−1

v F v 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v

0 −F>
v Q−1

v Λ̃v1v1 · · ·
0 0 0
0 0 0
0 0 −Rr

0 0 0
0 0 0

· · · 0 0 −Rr

Q−1
s −Q−1

s F s 0
−F>

s Q−1
s F>

s Q−1
s F s + Q−1

s + Rg −Q−1
s F s

0 −F>
s Q−1

s F>
s Q−1

s F s + Λs0s0 + Rr




(D.172)
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Again for ease of notation, after adding the ship states let

η3|2 = η3|v2,s2 (D.173)

Λ3|2 = Λ3|v2,s2 . (D.174)

Marginalize out Ship State at t1

Now we are able to marginalize out the ship state at t1 using equations (D.35) and (D.36),

η3|2(xv3 ,xv2 ,xv1 ,xs2 ,xs0) =




0
zv2
η̃v1
0

ηs0 − zr1



−




0
0
0

−Q−1
s F s

−F>
s Q−1

s




(F>
s Q−1

s F s + Q−1
s + Rg)−1zg1

(D.175)

=




0
zv2
η̃v1
η̃s2
η̃s0




(D.176)

where η̃v1 was defined in equation (D.149) and

η̃s2 = Q−1
s F s(F>

s Q−1
s F s + Q−1

s + Rg)−1zg1 (D.177)

η̃s0 = ηs0 − zr1 + F>
s Q−1

s (F>
s Q−1

s F s + Q−1
s + Rg)−1zg1 . (D.178)
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Similarly for the information matrix,

Λ3|2(xv3 ,xv2 ,xv1 ,xs2 ,xs0) =



Q−1
v −Q−1

v F v 0 0 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v 0 0

0 −F>
v Q−1

v Λ̃v1v1 0 −Rr

0 0 0 Q−1
s 0

0 0 −Rr 0 F>
s Q−1

s F s + Λs0s0 + Rr




−




0
0
0

−Q−1
s F s

−F>
s Q−1

s




(F>
s Q−1

s F s + Q−1
s + Rg)−1

[
0 0 0 −F>

s Q−1
s −Q−1

s F s

]

=




Q−1
v −Q−1

v F v 0 0 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v 0 0

0 −F>
v Q−1

v Λ̃v1v1 0 −Rr

0 0 0 Λ̃s2s2 Λ̃s2s0

0 0 −Rr Λ̃s0s2 Λ̃s0s0




(D.179)

where Λ̃v1v1 was defined in equation (D.152) and

Λ̃s2s2 = Q−1
s −Q−1

s F s(F>
s Q−1

s F s + Q−1
s + Rg)−1F>

s Q−1
s (D.180)

Λ̃s2s0 = −Q−1
s F s(F>

s Q−1
s F s + Q−1

s + Rg)−1Q−1
s F s (D.181)

Λ̃s0s2 = −F>
s Q−1

s (F>
s Q−1

s F s + Q−1
s + Rg)−1F>

s Q−1
s (D.182)

Λ̃s0s0 = F>
s Q−1

s F s + Λs0s0 + Rr − F>
s Q−1

s (F>
s Q−1

s F s + Q−1
s + Rg)−1Q−1

s F s (D.183)
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Range Measurement at t3

η3|zrng3
= η3|2 +H>

rngr
−1
rngzrng(t3) (D.184)

=




0
zv2
η̃v1
η̃s2
η̃s0




+




zr3
0
0

−zr3
0




=




zr3
zv2
η̃v1

η̃s2 − zr3
η̃s0




(D.185)

where we define zr3 =

[
1
0

]
zrng(t3)
rrng

. Similarly for the information matrix,

Λ3|zrng3
= Λ3|2 +H>

rngr
−1
rngHrng (D.186)

= Λ3|2 +




Rr 0 0 −Rr 0
0 0 0 0 0
0 0 0 0 0

−Rr 0 0 Rr 0
0 0 0 0 0




=




Q−1
v + Rr −Q−1

v F v 0 −Rr 0
−F>

v Q−1
v F>

v Q−1
v F v + Q−1

v + Rv −Q−1
v F v 0 0

0 −F>
v Q−1

v Λ̃v1v1 0 −Rr

−Rr 0 0 Λ̃s2s2 + Rr Λ̃s2s0

0 0 −Rr Λ̃s0s2 Λ̃s0s0




(D.187)

where we define Rr =

[
1

rrng
0

0 0

]
.
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Once all of the measurements are incorporated for this time step, let

η3|3 = η3|zrng3
(D.188)

Λ3|3 = Λ3|zrng3
. (D.189)

Marginalize out xs(t0), Ship State at t0

We will now marginalize out the ship state at t0. This will illustrate what happens when a state

associated with a range measurement is marginalized out.

Using equations (D.35) and (D.36),

η3|3(xv3 ,xv2 ,xv1 ,xs2) =




zr3
zv2
η̃v1

η̃s2 − zr3



−




0
0

−Rr

Λ̃s2s0




Λ̃
−1
s0s0 η̃s0 (D.190)

=




zr3
zv2
η̂v1
η̂s2




(D.191)

where

η̂v1 = η̃v1 + RrΛ̃
−1
s0s0 η̃s0 (D.192)

η̂s2 = η̃s2 − zr3 − Λ̃s2s0Λ̃
−1
s0s0 η̃s0 . (D.193)
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Similarly for the information matrix,

Λ3|3(xv3 ,xv2 ,xv1 ,xs2) =




Q−1
v + Rr −Q−1

v F v 0 −Rr

−F>
v Q−1

v F>
v Q−1

v F v + Q−1
v + Rv −Q−1

v F v 0
0 −F>

v Q−1
v Λ̃v1v1 0

−Rr 0 0 Λ̃s2s2 + Rr




−




0
0

−Rr

0
Λ̃s2s0




Λ̃
−1
s0s0

[
0 0 −Rr 0 Λ̃s0s2

]
(D.194)

=




Q−1
v + Rr −Q−1

v F v 0 −Rr

−F>
v Q−1

v F>
v Q−1

v F v + Q−1
v + Rv −Q−1

v F v 0
0 −F>

v Q−1
v Λ̂v1v1 R̂rv1s0

−Rr 0 R̂rs0v1
Λ̂s2s2




(D.195)

where

Λ̂v1v1 = Λ̃v1v1 −RrΛ̃
−1
s0s0Rr (D.196)

Λ̂s2s2 = Λ̃s2s2 + Rr − Λ̃s2s0Λ̃
−1
s2s2Λ̃s0s2 (D.197)

R̂rv1s0
= RrΛ̃

−1
s0s0Λ̃s0s2 (D.198)

R̂rs0v1
= Λ̃s2s0Λ̃

−1
s0s0Rr. (D.199)
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D.8 Comparison of Decentralized versus Cen-

tralized Results

Comparing the centralized results for η and Λ at t3 after marginalizing out the ship state, (D.94)

and (D.97), to the decentralized results, (D.191) and (D.195), we see that the vehicle estimates

are identical. The ship estimates are not identical because the decentralized results do not have

an estimate for the current ship state, i.e. the ship state at t3, but instead only have an estimate of

the ship state up to t2, where t2 is the time that the last range measurement was sent. However, if

you compare the ship state estimate at t3 in the decentralized results before the range measurement

and before the ship state a t0 is marginalized out, equations (D.176) and (D.179), to the ship state

estimate at t2 in the centralized results, equations (D.71) and (D.74), as expected the ship state

estimates are identical. These results indicate that for a linear system with linear measurements we

are able to locally recreate an exact replica of the centralized estimate of vehicle state at every time

step. In addition, we are able to locally recreate an exact replica of the centralized estimate of ship

state up to the time that the last range measurement was sent.
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