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Abstract 

 In the Department of Defense (DOD) supply chain for sustainment cargo, over 

45,000 pallets were transloaded at Incirlik Air Base (AB), Turkey from April 2008 to 

December 2009 with ultimate destinations in the USCENTCOM AOR, making Incirlik 

the largest transshipment node for airlift in the DOD by over two-fold.  Current methods 

of forecasting follow-on transportation requirements are based on the number of pallets 

on hand at the aerial port as well as short-term visibility of pallets currently in the channel 

system destined for Incirlik, yielding a forecast horizon of only 2-3 days for planning 

subsequent airlift missions.   

 Post-sample forecasts of historical pallet data from the Global Air Transportation 

Execution System (GATES) were analyzed to determine if significant results could be 

obtained to forecast follow-on transportation requirements from airlift transshipment 

nodes.  In addition, both daily and weekly aggregation of pallet data was obtained to 

determine the best means to analyze the data.  Daily pallet groupings with forecast 

methods that considered the aircraft type into the transshipment node yielded the most 

consistent results.   
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AN ANALYSIS OF TIME SERIES FORECASTING METHODS FOR THE  
 

AIRLIFT OF PALLETIZED SUSTAINMENT CARGO 
 

I.  Introduction 

Background, Motivation, & Problem Statement 

 Recent conflicts have highlighted deficiencies in the Department of Defense’s 

(DOD) management of the supply chain.  Since 1990, the US Government Accounting 

Office (GAO) has maintained the DOD’s supply chain management processes on their 

list of high-risk areas “needing urgent attention and fundamental transformation to ensure 

that they function in the most economical, efficient, and effective manner possible” (US 

GAO 2007, ii).  Despite recent process improvements in supply chain coordination, 

logistical gaps exist that the GAO continues to emphasize.   

The main contributors to the DOD supply chain are the Defense Logistics Agency 

(DLA) and the United States Transportation Command (USTRANSCOM).  DLA is the 

prime acquisition, storage, and packing source for the millions of line items required by 

DOD customers.  In this vein, it operates a number of supply centers, distribution centers, 

and several specialized field activities.  Transportation, however, is not one of its core 

logistics functions.  This responsibility falls to USTRANSCOM. 

USTRANSCOM is one of 10 Combatant Commands listed in the Unified 

Command Plan.  Of the 10, it is one of 4 commands organized under a functional 

construct, meaning it is not limited to a geographic area of responsibility.   Like DLA, it 

reports directly to the DOD, and is further divided by service components in the 
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distribution process: Military Surface Deployment and Distribution Command (Army), 

Military Sealift Command (Navy), and Air Mobility Command (Air Force).  The 

functional components reflect the modal managers and force providers for surface 

transportation, sealift and airlift.   

Complicating their role in the supply chain, in 2003 the Secretary of Defense 

named USTRANSCOM the Distribution Process Owner (DPO), shifting their focus from 

solely the “fort to fort” segment of the supply chain to “end to end.”   This statement 

effectively increased USTRANSCOM’s stake in the role that DLA plays in distribution.  

Prior to 2003, DLA and USTRANSCOM’s relationship was at best arm’s-length, leaving 

the supplier, warehousing and order processing functions to DLA and the transportation 

of goods to the service arms of USTRANSCOM through organic capability or contracts 

with commercial carriers.  On the surface this declaration seemed very straightforward.  

However, the GAO has identified several problems with this edict.  As of 2007, no 

executive orders had been published defining the authority of USTRANSCOM over 

DLA’s processes.  Furthermore, there has been concern over the USTRANSCOM 

exceeding its core competencies by taking on this role (US GAO 2007, 11). 

Despite the DOD having a vertically structured supply chain, the arm’s-length 

relationships between DLA and USTRANSCOM historically have caused gaps in 

planning transportation requirements, despite DLA knowing of these requirements (on 

some level) weeks, sometimes months in advance.  To alleviate some of these problems, 

DLA and USTRANSCOM have partnered on several initiatives to improve their level of 

supply chain coordination.  The first, and arguable the most successful, is the 

development of the Joint Deployment and Distribution Operation Center (JDDOC).  
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Based off of the test program in US Central Command (USCENTCOM), the JDDOC 

provides an in-theater presence of logistical expertise from DLA, the services and 

USTRANSCOM that enhances in-transit visibility (ITV) and the prioritization of 

intratheater movements.    

Particularly relating to this study is the myriad of information technology (IT) 

systems through which the DOD manages its supply chain.  Although process 

improvements have led the charge in advancements in DOD logistics, IT still presents a 

major hurdle to the overall efficiency of the DOD supply chain.  It is apparent from the 

literature that there is no consensus on the exact number of logistics applications that 

exist, only that there are far too many.  The estimates range from 500 major systems 

(Heise 2009) to over 2000 sub-applications (US GAO 2006, 5).  With the sheer volume 

of information to be processed, it is no surprise that these systems lack the integration 

necessary for end to end visibility or seamless transition from order to receipt (Hauser, et 

al. 2004). 

The fundamental problem with IT solutions in DOD logistics is that their 

architectures are largely service-based and service-funded.  As part of their Business 

Management Modernization Program, the “DOD recognizes that achieving success in 

supply chain management is dependent on developing interoperable systems that can 

share critical supply data” (US GAO 2006, 7).  While some legacy systems have been 

eliminated, bridge applications have attempted to band-aid the gaps.  One such system is 

USTRANSCOM’s Global Transportation Network (GTN).  GTN bridges the myriad of 

distribution management solutions from the services as well as their contract partners to 

provide a common portal for ITV once a shipment enters the Defense Transportation 
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System (DTS).  Despite its success in providing a common interface, it is limited by its 

focus on the transportation system alone.   

DLA, as the prime distributer of material consumed by the DOD, maintains the 

systems through which orders are placed from its DOD customers.  Like the 

transportation side of the supply chain, DLA also receives feeds from numerous service 

and DOD agency requisition systems.  Their system to combine these systems into a 

parent database is the Integrated Data Environment (IDE).  The goal of DLA in creating 

IDE is “to make the data for which it has stewardship responsibility available to 

authorized users on an on-demand basis and in a useable format” (DLA J-6 n.d., n. d.).   

IDE and GTN form the basis of a recent partnership between DLA and 

USTRANSCOM in an effort to improve the end-to-end supply visibility.  IDE/GTN 

Convergence, or IGC, will provide a single platform for the entire DLA-USTRANSCOM 

supply chain, enabling common users a medium in which to track their orders from 

“factory to foxhole.”  As these individual systems serve many commercial partners as 

well as the services, the individual platforms will be phased out in a spiral approach to 

allow a seamless transition (Heise 2009).  While it remains to be seen whether IGC will 

truly be an overarching supply chain enterprise resource planning (ERP) system, its 

design promises to reap some of the benefits that have been achieved in commercial 

industry. 

In their study on the strategic supply industry, Hauser, et. al. (2004) found that 

band-aided legacy ERP systems had a much higher failure rate.  Their focus expanded the 

common reference to ERP, including the processes and planning functions in addition to 

the information systems aspect that comprise commercial supply chains.  Their research 
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found that the proprietary nature of ERP information systems often made them ill-

prepared to adapt to future systems integration.  Furthermore as a planning function, they 

noted that organizations which conducted joint planning had more efficient supply 

chains.  However, they are quick to admit that it is naïve to assume that a complex 

organization can adopt a single ERP information system. 

Despite the promise that IGC offers in the realm of transportation requirements 

planning, it still is a work in progress and no official date has been identified for its 

release.  Hauser, et. al. (2004) also bring into question the operability of a band-aided 

approach.  The question then becomes what we can do today to enhance the visibility of 

down-range transportation requirements, given that a requirement to move something at 

some time is already known by DLA.   USTRANSCOM attempts to alleviate the 

uncertainty of the demand for transportation assets by using Time Phased Force 

Deployment Data (TPFDD).  In theory, the advantage of the TPFDD is that it provides 

readily available data for unit moves in the form of availability for shipment, required 

delivery date and priority.  This information is essential to the planners that forecast and 

plan requirements down the supply chain.  However, the vast majority of cargo validated 

for air shipment to the USCENTCOM area of responsibility (AOR) is that for sustaining 

combat operations procured through service-specific supply procedures not included in 

the TPFDD.  Most of this sustainment cargo is picked and packaged at distribution 

centers operated by DLA and then transported to aerial ports for shipment via organic 

channel airlift or via contract carriers to a transload port.   

At the present time, transload ports such as Incirlik Air Base (AB), Turkey can only 

predict the follow-on transportation requirements in terms of the number of pallets and 
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time of arrival at the aerial port.  They cannot identify beyond 2-3 days (at best) where 

the final destination will be, information that is critical to airlift planners for planning the 

follow-on missions into the AOR.  This shortened horizon forces mission planners to 

sacrifice efficiency for effectiveness often at expense to the customer.  Austere airfields 

with low maximum on ground (MOG) capabilities limit airlift throughput.  This scarce 

ramp space makes it imperative that aircraft cargo capacity is utilized at near peak levels 

to ensure that current operations can be sustained. 

The purpose of this research paper is to analyze different forecasting methods based 

on their ability to identify requirements in the distirbution of sustainment cargo.  Pallet 

level data from the Global Air Transportation and Execution System (GATES) is used to 

determine whether they can expand the current 2-3 day horizon that planners face in 

planning follow-on requirements for cargo shipped to transload locations for the 

USCENTCOM AOR via the channel system  The study is limited to the transload 

operations that occur at Incirlik AB, with the proposal that similar methodologies could 

be applied to other transload ports once steady state operations have been achieved.  The 

ultimate goal of such forecasting efforts would be to yield similar effects to the 

predictability of TPFDD movements, thus enhancing the efficiency of the airlift planning 

process and ultimately provide more predictable deliveries to the customer.   

In that vein, the next chapter presents a review of the literature as it pertains to the 

“as-is” framework airlift transload operations as well as published research on 

forecasting.  Chapter 3 describes the time series forecasting methodologies that were used 

in this study to determine their ability to forecast different types of sustainment 

operations.  Chapter 4 discusses the results of the forecasting methods applied to 
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transload operations at Incirlik AB, Turkey.   Finally, Chapter 5 forwards conclusions 

based on the results of the forecasted series to provide insights as to how planners could 

use these methods to streamline mission flows subsequent to transload operations. 
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II. Literature Review 

 Transportation is a service based on derived demand. That is, the demand for 

transportation is necessitated by the demand for a product that must travel from one point 

to another. As such, in order to accurately size capacity (organic capability) and write 

contracts for excess capability (contract carriers), it is essential that forecasting measures 

be in place to measure this demand.   

 One of the more recent changes to the airlift system, in its application to the 

USCENTCOM AOR, is the two Expeditionary Airlift Squadron (2-EAS) system.  In this 

system, two C-17 squadrons deploy to provide a theater presence of dedicated heavy lift-

capability for the combatant commander.  Instituted in May of 2006, this system 

represented a doctrinal shift that in recent years had only been applied to C-130 aircraft. 

While the achievements of this system are outside of the scope of this research paper, its 

development laid the groundwork that is the foundation of this study. 

 Prior to 2006, C-17s operated primarily in a direct delivery role, transporting 

material directly from the continental United States (CONUS) to the theater.  The great 

distances involved necessitated crew changes at enroute stages due to limitations on the 

amount of time that a single crew could remain on duty.  To facilitate these crew changes, 

personnel from a single C-17 squadron deployed at enroute bases.  The deployed 

squadron acted as an enabler in the process by managing the crews at the stage location, 

but did not fly the missions themselves.  Furthermore, the enroute stages did not possess 

aircraft, ground times were limited to the minimum amount required to generate an 



 

9 

additional crew and to meet any additional restrictions in the follow-on segments for the 

mission.  The result was often aircraft flying great distances simply to recover the 

mission to a CONUS location. 

 Under the 2-EAS construct, 2 squadrons of aircraft and crews are now forward 

deployed to the AOR and direct delivery missions are flown by exception.  Instead, most 

missions originating from outside the USCENTCOM AOR fly to intermediate bases such 

as Al Udeid AB, Qatar; Kuwait International, Kuwait; or Incirlik AB, Turkey; where 

cargo shipments are transloaded for follow-on movement to the final destination by C-17 

and C-130 aircraft.  In this sense, the system operates in a two loop system, with the open 

loop operating similar to the trunk lines of a commercial airline hub and spoke system.  

The closed loop system, operated by the assets in place at the transload points, functions 

as the smaller feeder routes in the hub and spoke system (Buschur 2007). 

 The 2-EAS construct is in-line with other USTRANSCOM-led programs, as the 

DPO, that have contributed to an increase in the velocity of cargo throughput to the 

warfighter.  However, this increase in velocity also creates additional challenges.  While 

TPFDD cargo typically has long lead times and advance notice of shipment, the supply-

distribution gap of sustainment cargo is not as seamless.  In fact, USTRANSCOM 

Handbook 60-2 establishes distribution forecasting and planning as the second largest 

technological gap behind in-transit visibility (USTRANSCOM 2008). 

 The current hub system that manifested under the 2-EAS construct relies on 

capability forecasts from the aerial ports at the transshipment nodes to plan follow-on 

missions in the post-channel, closed loop system.  However, the improved velocity in the 

open loop system has led to a decrease in the lead time with which capability forecasters 
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have visibility over sustainment movements.  In the case of Incirlik AB, Turkey, the 

average time from pallet build time to delivery at Incirlik AB is only 3 days.  This does 

not account for any delays in manifesting a particular pallet to a mission, which most 

likely decreases this visibility even further.  In reality, the capability forecaster 

realistically only knows of follow-on requirements of sustainment cargo about 2-3 days 

in advance of a mission’s arrival.  Given the restrictions arising from MOG in theater, 

this places airlift planners in a reactionary position, essentially basing closed loop 

requirements on port levels. 

Forecasting Transportation Demand 

 Studies have been published on the forecasting of transportation requirements for 

nearly every mode.  In the commercial sector of transportation, these models can make or 

break a company and provide the basis for strategic directions such as markets to enter 

and fleet mixes.  As such, their forecasts focus more on the long term to help make these 

decisions and changes made to infrastructure, equipment and schedules are rarely 

completed on a less than quarterly basis.   

 With the advent of containerization, the forecasting of waterway traffic lends 

itself to the comparison to airlift demand, based on the nature of palletized movement. 

Hui, et al. (2004) and Lam, et. al (2004) highlight the importance of forecasting in their 

studies of Hong Kong’s sea port.  As a vital node in the trade lanes of the Pacific, these 

studies attempt to improve those accomplished by the Hong Kong Port and Maritime 

Board.  Each study utilized several years of historical data to produce and then validate 

their models.  As is the case with many forecasts used in commerce, the methodologies in 
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their forecasts do not lend themselves well to military airlift as they rely heavily on 

econometric data.  However, the importance of their studies to this research is how they 

validated their methods.  Historical data was used first to develop the model, and then 

subsequent validation was achieved by using a post-sample forecast.  That is, they used 

historical data subsequent to that used in developing the model to validate its results.  

This method is used to evaluate the methodologies used in this paper and is discussed 

further in the results section. 

 The forecasting models used in the Hong Kong studies, while focused on a 

particular mode, are generally applicable to other modes of transportation.  Similarly, 

other studies, while focusing on a particular mode, have universal take-aways.  Al-Deek 

(2002) used data from inbound shipments from ocean vessels to forecast requirements for 

surface shipments from the seaports to the destination.  In this sense, he effectively 

studied the same framework that exists in the open and closed loop system of military 

airlift.   

 Additionally, Peng and Chu (2009) in their study on container volumes through 

the port of Taiwan, identified that container volumes through the port of Taiwan were 

best forecast using classical time-series decomposition and that more complex models did 

not necessarily produce more accurate results.  Two additional studies (Babcock and Lu 

2002, Babcock, Lu and Norton 1999) also identify methods of forecasting on a per unit 

basis.  Common to these studies is that they identified that there are few explanatory 

variables published for the modes of interest.  As such, demand levels on a per-unit basis 

are forecasted using time series methods. 
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Forecasting Airlift Demand  

 As a tool, forecasting is probably used more widely as a demand predictor than 

for any other means, whether used for services or goods.  For various industries, it 

provides a means to make strategic decisions based on the substance of predicted values.  

That said, the accuracy of forecasts have very measurable consequences, and 

considerable development is given to establishing novel forecasting methods to predict 

demand.   

 Wilson and Keating cite several examples of industries that use forecasts to 

streamline their operations (2009).  While they outline that forecasting is a key 

component in ensuring customer expectations are met in a profitable manner, they limit 

their description of forecasting in supply chain management to the supply segment of the 

chain, neglecting the importance of forecasting in transportation planning.  In the DOD 

context, demand forecasting systems play an integral role in the acquisition of the line 

items needed by its customers.  Dussault (1995) examined the Air Force and Navy 

forecasting systems’ ability to forecast different demand patterns for products.  While he 

provided an in depth look at the systems themselves, as was the case with Wilson & 

Keating, he offered little insight into how these forecasts could be used effectively by 

USTRANSCOM in their operations.  

 Surprisingly, there is very little published research on demand forecasting for the 

DOD transportation system as a whole.  What does exist is rather dated in its application.  

A RAND study in 1968 represents one of the first mathematical attempts to model airlift 

scheduling as a function of demand.  In their analysis, RAND used linear programming to 

develop route scheduling for the then Military Airlift Command (today, Air Mobility 
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Command (AMC)) both by month and by day (Midler and Wollmer 1968).  In both 

models, the demand is based on what is already known regarding supply on hand at aerial 

ports.  In this sense, it provides little more than what is already done in capability 

reports—everything else that it achieves has already been streamlined through the 

development of various IT systems.  

 In contrast, Billion and Regan (1966) attempted in very general terms to describe 

an econometric method to forecast demand for cargo to overseas destinations.  While the 

RAND study did not examine the demand for supplies, Billion and Regan’s method uses 

the demand for supply as the core part of their method.  However, their method focuses 

more on the prediction of demand for airlift in relation to other modes for the purpose of 

acquiring organic systems.  In this sense, their methodology focuses on the long term 

acquisition process rather than the tactical level scheduling of individual flights. 

 More recent studies in solving airlift problems almost unilaterally focus on 

capacity-level restrictions based on throughput, rather than the scheduling of missions 

based on demand at the pallet level.  They examine the ability of airlift to occur, not 

whether or not and in what quantity it will be demanded.  Koepke, et al. (2008), focus 

primarily on MOG values in their model, establishing a method by which the channel 

system can be rescheduled according to variances in available MOG.  Many other studies 

have been published in an effort to determine strategic mixes required to accomplish the 

mobility effort of a conflict (Koepke, et al. 2008).  While these efforts serve their purpose 

well in establishing the airlift requirements for troop movement into an operation, the 

level of detail for sustainment operations is less robust. 
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 The topic of scheduling Air Mobility Command’s channel cargo missions has 

been very well covered in the literature.  Fitzsimmons and Walker (1994)  and Rau 

(1993) developed methodologies to improve the channel route scheduling systems in use 

at the time, the Strategic Transport Optimal Routing Model (STORM), CARGPREP, and 

CARGOSIM.  In a similar fashion, Del Rosario (1993) developed a model to minimize 

the delay enroute for the channel system, given movement requirements and flight 

schedules.  While their focus was on the channel system, the goal was to enhance 

efficiency by updating the long range channel plan with near term requirements.  

Although it is difficult to extend their models to the post-channel system, the nature of 

the research alone highlights the complex nature of predicting airlift requirements in the 

DOD system.  Additionally, like several other studies, these studies focused on a 

modeling approach versus a forecasting approach, the difference being that the 

forecasting approach narrows its focus to a particular per-unit variable. 

 While not a published portion of the literature, it is worth noting the as-is 

framework of the forecasting efforts that are currently in place.  USTRANSCOM 

identifies planning as one of the functions of the Joint Deployment and Distribution 

Enterprise.  Demand forecasting is one of the core competencies of the planning function, 

using quantitative and qualitative forecasts to improve the overall distribution of material 

in the DOD (Ford 2008).  However, the capability forecasts produced at Incirlik AB are 

not predictive in nature.  They simply identify what cargo has been manifested on the 

missions coming to Incirlik AB.  The Hub Cape Report, shown in Figure 1, identifies the 

outbound missions as well as the short timeframe for inbound missions.  According to 

Lanier (2009), occasionally the Dover Air Force Base (AFB) utilization logs are obtained 
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in addition to the cape report in order to identify further requirements; however, it was 

apparent in his research that only visibility further into the supply chain would give the 

forecasters greater ability to predict demand in the closed loop system (Lanier 2009).   

While IGC may offer this ability, it remains to be seen whether the variability of this 

information will be of use in forecasting aggregate demand at the pallet level and is 

discussed in greater detail in the Conclusions chapter.  

  

 

Figure 1  Incirlik AB Hub Cape Report (Farris 2010) 

 



 

16 

General Forecasting 

 Despite a gap in forecasting the airlift demand problem, the literature on 

forecasting in general is vast.  Of particular interest to this study is a series of forecasting 

competitions that were performed over the course of several decades beginning in 1982.  

In these competitions, experts from the forecasting field were given hundreds of data sets 

with which to apply forecasting methods of varying complexity.  The ultimate goal was 

to determine the type of forecasts most appropriate for a given type of data.  The first 

competition identified three general conclusions.  In terms of significant improvements in 

forecasting accuracy, judgmental methods are not necessarily more accurate than 

objective methods; causal methods are not more accurate than extrapolation; and more 

complex methods are not necessarily more accurate than simple methods (Makridakis, et 

al. 1982, 112).  These conclusions were also re-affirmed in the most recent competition 

(Makridakis and Hibon 2000).  The concept presented here forms the basis of the 

methodologies that were explored in this research.  That is, that simpler forecasting 

methods developed without the use of forecasting software can produce results with 

statistical significance.   
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III. Methodology 

Scope 

 While forecasting methods can be applied to any component of the Defense 

Transportation System (DTS), their utility arises when applied to problems more narrow 

in scope.  In 2008 and 2009 alone, over 625,000 pallets were catalogued in GATES.  

Given that that the movement of units is known through the TPFDD process, the 

necessity of short range forecasts for these goods is questionable.  However, the 

movement of sustainment goods, those required to continue combat operations, 

represents an area that lacks sufficient study.   

 In the airlift portion of the DTS, these goods are transported primarily through a 

two part system.  The first part of the system represents the long haul, strategic segment, 

operating aircraft capable of larger economies of density such as commercial Boeing 

747s.   Following transportation to a transshipment node, these goods are then transferred 

to smaller aircraft such as the Boeing C-17 and the Lockheed C-130 for shipment to the 

pallet’s Aerial Port of Debarkation (APOD).   

 The transshipment nodes often are airfields with robust aircraft and materiel 

handling capabilities.  In contrast, the follow-on APODs often lack such features and are 

constrained by MOG due either to physical limitations or the ability to service multiple 

aircraft.  The planning of follow-on missions from the transshipment node, thus becomes 

a delicate act, balancing inbound missions that generate requirements with the capability 
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of the subsequent airfields.  While this aspect is not limited to sustainment cargo, the 

notice that is given to airlift planners of these requirements is often very short. 

 While it is known that an aircraft will arrive with a certain capacity, it is not 

known until approximately three days prior to arrival how that capacity will be utilized.  

For instance, a channel mission is scheduled to arrive at a transshipment APOD and has a 

B-747-400 dedicated to it.  Planning factors from AFPAM 10-1403, Air Mobility 

Planning Factors, indicate that it has 34 pallet positions available (although in practice, 

as discussed in the results section, it is higher).  However, it is not until pallets are loaded 

against this mission in GATES at the Aerial Port of Embarkation (APOE) that final 

destinations represented by the B-747’s capacity are known.  Furthermore, recent 

advances in supply chain coordination have reduced the port hold time, the time that a 

pallet sits in the APOE/APOD awaiting follow-on transportation.  While this synergy has 

undoubtedly increased the velocity of palletized goods in the DTS, it also compresses the 

time in which airlift planners have to identify follow-on requirements. 

 Given this problem, the nature of the transshipment activity lends itself to 

forecasting methods, which in turn would serve to reduce the uncertainty of follow-on 

requirements from the transshipment APODs.  The purpose of this research is to compare 

the ability of different forecasting methods in their ability to forecast requirements in 

advance of the present 3-day window. 

Selection of Data   

 Of all the pallets that were catalogued in GATES between 23 April 2008 and 31 

December 2009, over 118,000 were subject to transload operations.  That is, all of these 
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pallets were offloaded at an intermediate APOD that was not their final destination.  

Some of these pallets were transported by intermodal means to the final destination; 

however, the vast majority was airlifted subsequently by other aircraft.  Table 1 contains 

a list of the three-letter airport codes (APCs) from GATES for those airfields described in 

this research.  For brevity, these codes will be referenced in lieu of the full airfield name. 

 23 April 2008 was selected as the starting period for this analysis as Incirlik’s 

runway had been closed for repairs for several months prior to that time.  Figure 2 

Table 1 APC Identifiers 

APC  Airfield  APC  Airfield  APC  Airfield  

3OR  Al Asad AB, 
Iraq KWI Kuwait Intl., 

Kuwait  OSM Mosul Airfield, Iraq 

ADA Incirlik AB, 
Turkey IUD Al Udeid AB, Qatar RMS Ramstein AB, 

Germany  

AZ1 Camp Bastion, 
Afghanistan O2R Al Sahra Airfield, 

Iraq SDA Baghdad Intl., Iraq  

DOV Dover AFB, DE O6R Qayyarah West 
Airfield, Iraq SUU  Travis AFB, CA 

KDH 
Kandahar 
Airfield, 
Afghanistan  

OA1 Bagram AB, 
Afghanistan TA8 Ali AB, Iraq  

KEZ Ali Al Salem 
AB, Kuwait OR5 Al Taqqadum AB, 

Iraq WRI McGuire AFB, NJ 

KIK Kirkuk Airfield, 
Iraq OR9 Balad AB, Iraq   
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describes the activity of the top ten transshipment aerial ports during this period.  As 

shown in this figure, Incirlik dwarfs the other aerial ports in terms of its transload 

operations, accomplishing over triple the next higher port, IUD.  Furthermore, Incirlik 

operations accounted for 39% of the total volume of airlift transloads DTS-wide.  As 

such, Incirlik offers the advantage that, while it is not unique in these operations, it has a 

large data set that can be studied. 

 

Figure 2 Pallet Position Equivalents by Transload APOD  
23 April 2008 – 31 December 2009 
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 As the goal of the forecasting effort is to define the follow-on requirements of 

pallets arriving at a transshipment location, it is necessary then to determine what the 

primary pallet destinations are during the studied period.  Figure 3 illustrates those 

destinations that received greater than 2000 pallets during the study period. 

 It comes as no surprise that all of these locations are in the USCENTCOM AOR, 

given the weight of effort in the DTS to support that theater.  Since only transload 

operations at Incirlik AB are studied in this paper, Figure 4 illustrates the breakdown of 

final pallet destinations by APOD that were first offloaded at Incirlik AB for subsequent 

movement by intratheater airlift. 

 

Figure 3 Pallet Position Equivalents for Final Destination APODs  
23 April 2008 – 31 December 2009 
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 It should be noted that 98% of Incirlik AB’s transload volume was destined for 

the 10 ports in Figure 4.  The remaining 2% was allotted to 14 other ports at various 

intensities.  In terms of forecasting models, these 10 ports in addition to OA1 present 4 

different scenarios. 

 

Routine Sustainment: operations that, while varying with time, are relatively stable with 

respect to the frequency of transload occurrences.  This characteristic applies to KIK, 

O2R, O6R, OR9, OSM, SDA and TA8 during the study period. 

 

Declining Operations: operations that, during the study period, experienced a significant 

decline in transload operations.  This characteristic is demonstrated by OR5. 

 

 

Figure 4 Pallet Positions for Final Destination APODs Transloaded at Incirlik AB  
23 April 2008 – 31 December 2009 
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Escalating Operations: operations that, during the study period, experienced a significant 

increase in transload operations.  This applies to KDH as well as AZ1. 

 

Random Operations:  operations that do not show a discernable pattern in frequency or 

volume.  While the unstudied pallet APODs also fall into this area, OA1 only is analyzed 

here as it has enough volume to be worth discussion. 

Sources of Data 

 All data in this study is obtained from GATES and provided by Air Mobility 

Command’s Analysis division (A9) in the form of Microsoft Access databases.  These 

two data sets, from 2008 and 2009, contained all of the pallets registered in the GATES 

system during that time.  Pallets to be analyzed in this study were identified by two 

factors.  The first was the mission APOD, identifying that the mission was offloading 

pallets at Incirlik AB.  Second, the data was filtered to include only those pallets that had 

pallet APODs (versus mission APODs) other than Incirlik.  This produced a database of 

pallets that were subject to transload at Incirlik AB.  This filtered set was then exported to 

Microsoft Excel for ease of manipulation.  Due to a runway closure prior to 23 April 

2008 at Incirlik, only those pallets arriving on or after are considered for this analysis.  

Finally, occurrences where pallets were returned to Incirlik after initial transload were 

filtered from the data so that inflated demand would not be predicted.  Of the over 45,000 

pallets contained in the set, 0.1% contained inconsistencies in the data that excluded them 

from analysis in this study.   
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Forecasting methods 

 Several methods were used to forecast the demand for airlift to the 10 APODs 

from 1-31 December 2009.  In order to effectively compare the forecasting methods, 

pallet arrivals were grouped both on a daily and weekly basis by the pallet APOD.  The 

forecasting methods for daily arrivals included moving averages, simple exponential 

smoothing, Holt’s method, Winter’s method, multiple regression and novel methods.  

The treatment of weekly data also included these methods as well as Adaptive Rate 

Exponential Smoothing (ADRES).  For each of the methods described, Microsoft Excel 

was used for its universal availability to the Air Force forecaster.   

 Mean square error (MSE) was used as a basis of comparison for each of the 

models based on a forecast period of t + 7 days for daily forecasts or 1 week for weekly 

forecasts.  An explanation of the methods used in this study as well as MSE follows.  For 

brevity, explanation of the variables is limited to those instances where the symbology 

differs. 

 

Naïve forecast 

 The naïve forecast is the simplest method in that the forecast demand is simply 

equal to the previous period’s observed value as illustrated by Equation (1).  It is worthy 

to note that ADRES forecasts with a β parameter equal to 1 produce the same results as 

the naïve forecast.  The naïve forecast was used as a baseline for determining the 

significance of the results of the other models. 

tt XF =+1  (1) 
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where 
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Moving Averages 

 The moving average is a simple technique often used to forecast data that exhibits 

substantial randomness.  It is easily described as an equally weighted average of recent 

data, calculated by Equation (2): 
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where n is equal to the number of periods in the moving average. 

 

Simple Exponential Smoothing 

 Simple exponential smoothing is best applied to data when there is no seasonal or 

trend components in the data.  It uses past data to forecast future data by smoothing the 

recent data by a smoothing constant, α.  Values of α closer to zero will be more 

representative of moving average models with large values of n, while those with α 

values closer to 1 are similar to moving averages with smaller values of n.  However, due 

to the exponential decay of the past data, it differs from the moving averages in that it 

gives greater weight to more recent data.  Its general formula is: 

( )  X 11-t1 −− −+= ttt FFF α  (3) 
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where α represents a value between 0 and 1.   

 

Holt’s Method 

 Holt’s method is an extension of simple exponential smoothing that accounts for 

trends in the data.  Named for its originator, C. C. Holt, the Holt method uses an 

additional constant, β, here optimized through solver, to identify an increasing or 

decreasing linear trend. 
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Damped Trend Forecast 

 In the Holt model, the smoothing value is considered constant over the course of 

the model.  The damped trend forecast adds a third parameter, ϕ, which specifies the 

decay of the trend over time. 

(4.1) 
(4.2) 
(4.3) 
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where 

( )10decay  for trendconstant  Smoothing ≤≤= ϕϕ  

 

Winter’s Method 

 Winter’s method, also referred to as the Holt-Winter’s method, is best used when 

data exhibits seasonal patterns with respect to time.  That is, there are periodic increases 

and decreases in the demand measured that have a predictable pattern.  It combines the 

basic features of Holt’s method, biased by a seasonal index .  The seasonal index is a 

unitless multiplier that accounts for variations in the data which can be attributed to the 

time frame over which the events are considered.  To allow for seasonal variability in the 

model, the multiplicative form of the Winter’s method is used: 
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where 

(5.1) 
(5.2) 
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Multiple Regression 

 Multiple regression forecasting models used in this paper were limited to those 

that could be performed using Microsoft Excel’s Data Analysis Toolpak. As such, no 

programming was required; however, Equation (7) describes the process used in Excel to 

arrive at the coefficients in the regression models.  The regression models were limited to 

using aircraft type and quantity as the sole independent variables in the models. 

 

( ) εβββ +++== nnnt YYYYYYfF ...,..., 221121  (7) 
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 The coefficients of the regression term are solved by minimizing the sum of 

squares (Equation (8)) of the error term.  In each of the models, the value of F(0,0..0) is 

constrained to zero, resulting in no constants in the regression equation.  

 

( )22 ∑∑ −= FXε  (8) 
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Adaptive Rate Exponential Smoothing (ADRES) 

 The ADRES model functions very similar to simple exponential smoothing, 

except that the smoothing constant varies over the forecast period in response to the 

observed error of the forecast.  Like simple exponential smoothing, it is best used for 

instances in which the data does not display trends or seasonality. 
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Novel Methods 

 The three additional methods used in this paper differ from the previous 

forecasting methods in that they also consider aircraft type to determine an expected 

number of pallets to be transloaded at Incirlik AB.  These values are independent of the 

actual destinations of the pallets contained on the aircraft.  As the type of aircraft 

assigned to a particular channel mission should be known in advance of the forecast 

(9.1) 

(9.2) 
 

(9.3) 
(9.4) 
(9.5) 
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period, these expected values can then be used in conjunction with one of the methods 

above to estimate a pallet quantity for a particular airfield.  These methods are labeled 

“novel” simply to differentiate them from the classical time series methods.   

 The Novel 1 method estimates the amount of transloaded pallets for a particular 

mix of aircraft by first using 85% of the planning values identified in AFPAM 10-1403, 

shown in Table 2.  As actual arrivals occur, the transload values for a particular type 

aircraft are updated as a running average from 23 Apr 08 to the preceding 7 days for any 

given time in the study period.  This provides a realistic measure as the baseline figures 

would not be known at the outset of a contingency. 

 In order to determine the proportions of the transloaded pallets that are destined 

for a particular airfield, the Novel 1 method used moving averages of the actual arrival 

Table 2 Expected Transload Values 

Aircraft Pallet Capacity 85% Capacity 
C-130 6 5.1 
C-17 18 15.3 
C-5 36 30.6 

KC-10 23 19.55 
B-747 34 28.9 
B-757 15 12.75 
B-767 24 20.4 
DC-10 30 25.5 
L-1011 26 22.1 
MD-11 34 28.9 
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data optimized through Solver on the basis of MSE.  Therefore, for any given period, the 

forecast was calculated by Equations (10.1) and (10.2). 
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 The Novel 2 method uses the same methodology as Equation (10.1) to determine 

the expected number of pallets to arrive for transload operations in a given period.  

However, rather than using moving averages, Novel 2 forecasts the proportions through 

Holt’s method.  The Novel 3 method uses multiple regression to first determine the total 

number of pallets to arrive for transload operations as a function of the mix of aircraft 

arrivals at a given time period.  Subsequently, it uses Holt’s method to determine the 

proportion of the expected pallet arrivals that will be destined for a particular airfield. 

 For all of the methods above, the Evolutionary Solver subroutine was used to 

identify optimum parameters in each model.  This method was selected over the other 

non-linear options in Solver due to its ability to evaluate objective functions containing 

(10.1) 

 

(10.2) 
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“lookup” and “if” statements   Solutions for the parameters were calculated by 

minimizing the MSE for the periods prior to the forecast periods.  For example, if the 

forecast period was 1-31December 2009, the parameters of the model would be 

calculated through solver by minimizing the MSE of the model from 23 April 2008 to 30 

November 2009.  These parameters would then be the basis of calculation for the 1-31 

December 2009 forecast by the selected measure.  A MSE for the post sample forecast 

was then calculated in order to compare the method’s accuracy for the given airfields.  

The calculation of the MSE is depicted by Equation (11): 
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where n represents the number of cycles (days or weeks) in the forecasted period. 

Limitations 

 Pallet data in GATES is often not provided in whole number increments due to 

pallet sizes that exceed the dimensions of a 463L pallet.  In the cases where pallets were 

larger than a single pallet position, the pallet size was simply determined to be the 

fractional multiple of a single pallet.  By this measure, it is possible that aggregation of 

the pallets on a daily or weekly basis would produce levels that would not be 

transportable by simple dividing the aggregated total by the pallet capacity of a given 

aircraft. 
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 In addition, while the goal of this research is to identify a forecast methodology 

that best identifies airlift requirements for post-transload operations at any aerial port, it 

only examines operations at one transshipment node (Incirlik AB, Turkey).  As such, 

there may be other factors not measured in this study that skew the results.  Furthermore, 

the methods discussed above are not causal models, and therefore, do not take into 

account external factors that could cause abrupt shifts in requirements.  It is important for 

any forecaster to take these factors into account when basing decisions on the models 

used in this research. 
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IV. Results and Analysis  

 The first set of trials examined the forecast methods using all of the data available 

from 23 April 2008 to 30 November 2009.  For each model, the parameters determined 

through Solver were used to forecast 1-31 December 2009.  Pallets were aggregated on a 

daily basis.  Date values were determined by the Greenwich Mean Time (GMT) values as 

reported in arrival time field reported in GATES.  The MSEs for 1-31 December 2009 of 

the model applied to the airfields identified in Figure 4 are reported in Table 3, with the 

exception of OR5 and OA1.  Since the deliveries to these airfields ended prior to 

December 2009, their results are discussed separately.   

Table 3 Daily Forecast Results for 1-31 December 2009 Using  
23 April 2008 – 30 November 2009 Data 

Forecast 
Method 

TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 

Naïve 61.0 260.6 397.9 9.4 43.3 10.4 70.1 68.3 4.5 
Simple 
Exponential 

32.3 204.2 182.7 5.6 24.6 5.9 86.3 61.8 6.3 

Moving 
Average 

32.4 226.6 187.1 5.5 26.7 5.9 82.5 42.7 4.3 

Holt's 32.3 217.0 188.6 5.6 24.6 6.0 86.3 56.0 6.3 
Damped 
Trend 

32.5 204.2 189.4 5.5 24.6 5.9 86.3 61.9 6.3 

Winter's  33.9 212.1 266.0 5.2 24.7 6.4 77.9 44.8 3.9 
Multiple 
Regression 

24.0 194.8 107.0 4.0 18.0 3.6 143.4 116.0 4.9 

Novel 1 23.6 89.4 71.2 3.9 16.8 4.2 22.0 17.8 2.9 
Novel 2 24.4 87.7 62.1 4.2 16.6 3.6 18.4 13.7 3.7 
Novel 3 25.4 86.1 62.4 4.4 17.0 3.6 17.6 13.1 3.6 
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 The MSE values reported in the table reflect the accuracy of the forecasts 

compared to the actual data.  Adopting the approach by Makridakis and Hibon (2000), 

significance of the forecasts was determined by performing F-tests at the 5% level by 

comparing the forecasts to a common benchmark, in this case the naïve forecast. The 

highlighted values indicate the forecasts which pass the F-test and are statistically 

significant (that is, not the result of chance).  This convention is used throughout the 

reporting of the results. 

  The same date convention was used to aggregate the transloaded pallets at the 

weekly level.  For this treatment, weekly periods were constructed beginning on 23 April 

2008, ending on 1 December 2009.  Solver was used to determine the model parameters, 

minimizing MSE for the first period.  These parameters were then applied to the four 

weeks beginning 2 December 2009.  The results of this weekly grouping are reported in 

Table 4. 

 It is apparent from the results that for daily forecasts, the novel models that took 

into account the type of aircraft delivering the pallets to Incirlik AB had the greatest 

consistency of significant forecasts when compared to the naïve model.  Aggregating the 

pallets at the weekly level had decidedly different results.  While the novel forecasts 

performed better than the traditional time-series methods, in most cases, the forecasts did 

not produce results with greater significance than the Naïve forecast baseline.  An 

explanation for this can be found from an examination of the variance of the daily and 

weekly transloads volumes.  
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 As shown in Table 5, the relative standard deviations (as a percentage of the mean 

transload volumes) for a particular airfield were much higher for the daily transload 

volumes than in the weekly volumes.  In fact, in most cases the daily standard deviation 

percentages were more than double the weekly standard deviation percentages.  As a 

result, by aggregating the pallets to the weekly level, the performance of the naïve 

forecast was improved.  As this was the baseline in determining the significance of the 

other models, the standard of performance to establish significance of the other forecasts 

was also increased. 

 In order to determine if the post-sample forecasts for 1- 31 December 2009 would 

be better predicted by using only near term-data, model parameters were calculated using 

Table 4 Weekly Forecasts for 2-29 December 2009 Using  
23 April 2008 – 30 November 2009 Data 

Forecast 
Method 

TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 

Naïve 460.5 1055.5 2295.5 67.1 441.5 128.9 89.8 666.8 17.2 
Simple 
Exponential 335.7 1265.4 1224.8 40.7 262.5 40.8 334.4 844.7 39.4 

ADRES 299.8 1218.9 1757.9 39.8 256.8 40.9 89.8 943.2 52.2 
Moving 
Average 356.9 1528.3 1113.2 29.4 308.8 40.1 655.4 712.5 89.0 

Holt's 335.7 1570.1 1287.0 40.7 262.5 40.8 334.4 727.3 39.4 
Damped 
Trend 335.7 1575.8 1324.7 40.7 262.5 40.8 334.4 727.3 39.4 

Winter's  310.0 772.6 2166.1 42.1 388.6 109.3 815.2 419.4 18.9 
Multiple 
Regression 214.8 12369.7 7059.7 24.0 430.3 29.1 3133.7 6650.1 105.2 

Novel 1 334.3 1265.1 802.3 15.5 200.6 49.3 317.6 374.0 55.4 
Novel 2 205.1 1071.9 236.8 16.9 179.1 41.7 160.6 217.5 91.2 
Novel 3 200.2 1090.4 238.9 16.7 186.2 41.6 157.4 205.2 86.4 
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only the data during 1 Jun to 30 November 2009.  Table 6 and Table 7 report the daily 

and weekly results, respectively.  The results of this analysis are inconclusive.  Of the 81 

model combinations, 54 showed an improvement, 5 showed no change and 22 actually 

declined.  Furthermore, of the 37 forecasts that were significant using the entire data set, 

24 produced lower MSEs.  While a distinct positive conclusion cannot be drawn from 

these findings, further research may be able to identify an optimum timeframe with which 

to establish the forecasts. 

 The last treatment of the forecasts was performed to determine if the presence of 

lower than average transload volumes had a significant effect on forecast performance.  

As shown in Figure 5, the transload volumes for December were 16% lower than the 

average for the year and 21% lower than the average for the previous 7 months which had 

been relatively stable.   

Table 5 Variation of Daily Versus Weekly Transload Volumes 

  TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 
Daily Mean 6.8 6.4 7.9 2.6 6.4 2.3 20.9 17.0 3.3 
Daily Std Dev 6.0 11.3 11.8 2.6 6.4 2.9 16.9 14.2 3.6 
% 90 180 150 100 100 120 80 80 110 
Weekly Mean 47.5 44.5 55.6 17.9 44.7 16.4 146.6 119.0 23.1 
Weekly Std Dev 17.0 58.7 62.4 7.0 20.7 7.9 63.3 49.7 10.2 
% 40 130 110 40 50 50 40 40 40 
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Table 7 Weekly Forecasts for 1-31 December 2009 Using  
1 June 2009 – 30 November 2009 Data 

Forecast 
Method 

TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 

Naïve 460.5 1055.5 2295.5 67.1 441.5 128.9 89.8 666.8 17.2 
Simple 
Exponential 354.0 1184.1 1155.2 27.8 277.7 48.4 343.0 884.6 16.6 

ADRES 465.9 1218.9 1998.2 19.8 429.7 128.9 776.9 529.9 61.5 
Moving 
Average 347.1 1687.9 1685.9 43.0 308.8 40.1 574.2 948.9 89.0 

Holt's 364.8 1317.1 2280.0 17.7 217.8 128.7 516.9 946.0 45.1 
Damped 
Trend 364.8 1317.1 2075.9 18.4 217.8 128.7 516.9 946.0 45.1 

Winter's  256.4 953.4 3417.7 35.0 389.2 47.4 1420.6 575.6 112.8 
Multiple 
Regression 311.2 9670.9 15668.5 48.5 990.0 65.7 538.3 1376.4 107.9 

Novel 1 305.6 1286.3 391.5 15.5 193.2 49.3 264.9 364.2 55.4 
Novel 2 319.3 1003.8 257.2 15.9 149.8 41.8 184.4 856.0 12.1 
Novel 3 324.3 1045.7 250.7 15.6 154.7 41.7 164.4 808.1 10.2 

 

Table 6 Daily Forecasts for 1-31 December 2009 Using  
1 June 2009 – 30 November 2009 Data 

Forecast 
Method 

TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 

Naïve 61.0 260.6 397.9 9.4 43.3 10.4 70.1 68.3 4.5 
Simple 
Exponential 

31.6 202.5 179.3 5.6 24.2 5.9 116.9 54.0 5.8 

Moving 
Average 

35.5 228.7 191.5 5.5 26.9 5.9 78.3 42.7 4.5 

Holt's 31.6 190.9 214.8 5.5 23.6 5.9 116.9 42.2 5.8 
Damped 
Trend 

31.6 190.9 186.2 5.5 23.6 5.9 116.9 42.2 5.8 

Winter's  34.4 212.2 216.0 5.4 25.4 6.4 62.4 46.8 6.5 
Multiple 
Regression 

24.4 194.8 107.0 4.2 29.9 4.7 65.4 90.4 3.8 

Novel 1 23.5 85.5 61.8 3.8 16.6 4.2 19.8 17.5 2.9 
Novel 2 23.6 83.2 69.5 4.4 15.9 4.7 16.8 13.0 3.4 
Novel 3 24.3 81.2 65.8 3.7 16.2 3.7 16.6 12.9 3.3 
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 In order to eliminate the selection of December as a possible bias, 1-31 October 

2009 was used as the basis of comparison, as its volume was in line with the average of 

the preceding months.  As in the first forecasts, all of the parameters for the daily models 

were solved based on the full data set, from 23 April 2008 – 30 September 2009.  The 

MSE for the weekly forecasts is calculated from the 5 weeks following 30 September 

2009 to capture all of October.  Table 9 and Table 8 report the results for the daily and 

weekly forecasts, respectively. 

 

Figure 5 Transload Volumes at Incirlik AB During 2009 
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Table 9 Daily Forecasts for 1-31 October 2009 Using  
23 April 2008 – 30 September 2009 Data 

Forecast 
Method 

TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 

Naïve 35.0 173.4 158.8 5.1 63.2 5.3 213.9 187.8 14.5 
Simple 
Exponential 

21.5 152.9 120.4 2.8 25.8 2.3 112.7 97.1 9.2 

Moving 
Average 

24.3 204.9 131.0 2.8 26.4 2.3 116.0 99.1 10.1 

Holt's 13.1 120.9 61.9 1.4 13.1 1.3 57.2 49.3 4.7 
Damped 
Trend 

12.1 120.9 63.5 1.4 13.1 1.1 57.2 49.4 4.7 

Winter's  20.2 212.5 126.2 2.8 26.7 2.8 107.5 95.7 10.4 
Multiple 
Regression 

22.3 80.5 81.7 3.2 23.8 2.7 110.1 84.8 8.8 

Novel 1 18.3 114.1 97.1 2.5 20.4 2.7 51.1 60.0 9.7 
Novel 2 21.3 185.9 100.5 2.3 19.7 3.0 47.7 61.9 8.5 
Novel 3 22.1 184.8 141.6 2.5 20.0 3.0 49.0 65.0 8.7 

 

Table 8 Weekly Forecasts for 1-31 October 2009 Using  
1 June 2009 – 29 September 2009 Data 

Forecast 
Method 

TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 

Naïve 112.6 1445.8 4545.4 74.5 140.4 51.3 274.8 971.2 127.5 
Simple 
Exponential 92.9 2408.4 3061.8 48.5 71.4 18.3 232.8 430.4 111.1 

ADRES 98.7 2452.2 4092.7 50.6 70.1 17.9 318.0 412.3 115.6 
Moving 
Average 127.9 4398.5 2804.6 51.6 84.5 18.7 449.9 404.9 110.7 

Holt's 270.0 4983.4 3006.5 48.5 71.4 20.3 232.8 462.2 111.1 
Damped 
Trend 270.0 5391.3 3057.7 48.5 71.4 22.8 232.8 430.1 111.1 

Winter's  115.2 3856.2 2469.9 38.5 96.2 50.2 379.0 562.2 133.9 
Multiple 
Regression 40.3 20393.9 3724.1 82.4 699.6 88.4 3244.0 2146.6 62.5 

Novel 1 95.3 1389.9 2371.7 40.3 77.3 22.5 383.4 453.9 130.2 
Novel 2 143.3 7882.9 2170.3 37.3 68.4 18.9 254.7 402.5 61.9 
Novel 3 136.4 8360.5 2175.0 34.3 74.5 20.4 278.0 411.4 56.9 
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  Similar to the examination of the daily versus weekly aggregation, in analyzing 

the results of the October 2009 forecasts compared to the December 2009 forecasts, the 

variance in the transload volumes of the forecasting periods also played a role in the 

significance of the forecast results.  When the volume was higher and the relative 

deviation was lower as shown in Table 10, all of the models performed better in October 

than they did in December. 

 The two airfields omitted from the tables above were OA1 and OR5.   The pallet 

data for OA1 exhibited a very random pattern accounting for only 4 deliveries of pallets 

for transload operations.  These 4 deliveries were also spread out over 34 days at 

inconsistent intervals.  The performance of all of the forecasting methods discussed here 

for OA1 were insignificant and therefore, not shown.   

Table 10 Variation of December 2009 Versus October 2009 Transload Volumes 

  TA8 AZ1 KDH KIK O2R O6R OR9 SDA OSM 
Dec Mean 6.1 14.9 17.9 2.0 4.9 2.0 9.5 6.7 1.4 
Dec Std Dev 5.5 13.8 12.9 2.3 4.9 2.4 7.8 6.0 1.7 
% 90 90 70 120 100 120 80 90 120 
Oct Mean 5.8 14.5 18.0 2.2 5.3 2.0 14.6 13.5 3.6 
Oct Std Dev 4.5 10.8 10.5 1.6 5.1 1.5 10.6 9.8 3.0 
% 80 70 60 80 100 70 70 70 80 
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 Table 11 reflects the results of the forecasts for OR5.  Deliveries to OR5 from the 

transload operations at Incirlik AB continued as a routine operation until 31 May 2008, 

after which steady deliveries began to decline and occur with greater and greater 

randomness.  Operations from Incirlik AB to OR5 ceased altogether on 23 October 2008.  

In order to examine the effect of the forecasts on a declining operation, the period from 

23 April 2008 to 31 May 2008 was used to determine the model parameters for the daily 

and weekly forecasts.   

 The purpose of examining forecasting the transload volume for OR5 was to 

determine which methods would be adequate for forecasting an airfield that exhibited 

Table 11 Daily and Weekly Forecasts of OR5 Transloads for June 2008 

Forecast 
Method Daily Weekly 

Naïve 159.9 724.9 
Simple 
Exponential 

98.2 4058.0 

ADRES N/A 1357.4 
Moving 
Average 

94.6 1316.7 

Holt's 98.2 1073.1 
Damped 
Trend 

N/A 1242.2 

Winter's  122.2 N/A 
Multiple 
Regression 

73.0 1242.2 

Novel 1 79.0 627.1 
Novel 2 99.0 822.5 
Novel 3 95.7 771.7 
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declining operations.  As was the case with the forecasts for the previous airfields, 

aggregating the pallets at the weekly level did not produce significant results when 

compared with the naïve forecast.  For the daily models, it was expected that Holt’s 

method or the damped trend model would produce significant results, since these account 

for the decreasing nature of the trend.  However, the results of both of these forecasts 

yielded worse results than the naïve model.  Figure 6 shows the decreasing linear trend 

(not to be confused with the trend forecast) of OR5’s deliveries.  In this instance, while 

there was clearly a decrease as shown by the trend line in black, the sporadic deliveries 

during June 2008 and beyond could not be accounted for in the classical time-series 

models.  As was the case with most of the airfields, the models that took into account the 

aircraft delivering the transload shipments performed the best. 

 

Figure 6 Transload Volumes for OR5 23 April 2008 – 23 October 2008 
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 In contrast to the results for OR5, the two airfields with increasing transload 

operations, AZ1 and KDH, demonstrated positive results with Holt’s method and the 

damped trend model.  The difference in the results is mainly explained by the forecasted 

period.  During October and December 2009, AZ1 and KDH did not exhibit the same 

gaps in deliveries that OR5 did during June 2008.  Figure 7 shows the linear trends of 

both AZ1 and KDH during the study period that illustrate this occurrence. 

 

Figure 7 AZ1 and KDH Transload Volumes 
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 It should also be noted that for daily models, no forecasts produced significant 

results for OSM.  While the novel models did exceed the performance of the naïve 

forecast in all cases, the low daily volume paired with a regular delivery schedule caused 

the performance of the naïve forecast to be relatively higher than when it was applied to 

other airfields. 

 For all four scenarios (routine sustainment, declining operations, escalating 

operations, random operations) studied, the only methods producing consistent results 

were the four models that forecasted transload volumes based on inbound aircraft type.  

Of the 28 airfield and forecast period scenarios considered in daily forecasting, multiple 

regression had significant results for 16 of the 28 scenarios, novel 1 had significant 

results for 23 of the scenarios, and both novel 2 and novel 3 produced significant results 

for 20 of the scenarios.  In terms of weekly forecasting, the performance of the naïve 

forecast was improved through aggregation, resulting in less significant results for the all 

of the forecasting methods.  In this case, multiple regression had significant results for 6 

of the 28 scenarios, novel 1 had significant results for 12 of the scenarios, and both novel 

2 and novel 3 produced significant results for 16 of the scenarios.  Considering both daily 

and weekly aggregation of the data in this study, novel 2 and 3 were marginally better at 

producing significant results for any scenario.  However, each of the novel models 

performed better than one another at different times, depending on the specific 

destination airfield.   
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V. Conclusions and Recommendations 

 The results of this research indicated that the performance of forecasts taking into 

account the aircraft type was better than classical time-series forecasts for transload 

operations at Incirlik AB, Turkey.  Furthermore, aggregation of pallet deliveries at the 

weekly level caused an increase in performance of the naïve forecast, resulting in no clear 

conclusion on a specific forecasting method that is best for weekly forecasts. 

Recommendations for Current Initiatives 

 In the sustainment pipeline, the focus of current initiatives is to synchronize the 

flow of material between DLA and the airlift system that supports its movement (Lanier 

2009).  While these initiatives will undoubtedly create linkages that will foster enhanced 

efficiency between supply and distribution, there appears to be some neglect in the latter 

phases of distribution.  While the transition from warehouse to APOE becomes more 

seamless, under the current framework, these efficiencies serve to compress the visibility 

window in the supply chain under which transload ports like Incirlik AB operate.   

 Current methods in determining follow-on missions for transload operations are 

based on real-time data from GATES.  Although not without error, this method produces 

a relatively error-free approach in identifying follow-on requirements.  The drawback to 

the as-is framework is that it gives airlift planners little time to plan missions to 

destinations that are constantly constrained by MOG and other restrictions.  In the 

opinion of the researcher, forecasting these requirements in advance would provide an 
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adjustable baseline to smooth aircraft and materiel flows from the transshipment node to 

the pallet’s APOD. 

 While the capability forecasts completed at Incirlik AB are a step forward, they 

are still only a reflection of what is, not what will be.  In order to boost the efficiency of 

the movement to the final destination, other means need to be implemented.  Whether it 

be forecasting methodologies like those discussed in this paper or enhanced linkages 

between supply and distribution, the tail of the supply chain requires equivalent attention 

as has been given to the earlier stages. 

 Additionally, while the focus of this research was on the final phases of 

distribution, sharing this information with earlier phases in the distribution pipeline may 

yield even greater results.  As part of the overall supply chain management process, 

Lambert (2008) identifies demand management as one of the eight key supply chain 

management processes.  In this framework, demand management is a key synchronizer 

between procurement and distribution.  In the cases where demand uncertainty is high 

(which is arguably the case here), Lambert forwards decreasing flexibility and reducing 

variability as the two primary means to handle the problem.   

 In military airlift, the ability to build in flexibility is low.  Airfields are 

constrained by parking limitations and organic intratheater airlift is further constrained by 

infrastructure and political sensitivities of the host nation where they are based.  

However, there are methods to decrease the variability of distribution.  The forecasts 

presented in this paper identify the volumes for specific airfields based on arrival at 

Incirlik AB as a transshipment node.  As a corollary, however, they also identify the 

throughput from several other APOEs.  If these forecasts were used by the APOEs 
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(primarily CONUS east coast locations), the pallets could be held at the APOE until an 

appropriate level was reached to support a follow-on mission from the transload port.  

The same effect could also be obtained by holding them at the transload location.  This 

would limit the subsequent additional transloads at other ports in theater for the sole sake 

of reducing port hold time.  For the airfields studied in this paper, KIK had the lowest 

average daily volume at 2.6 pallets per day.  Therefore, the average hold time to generate 

an entire C-17 load for KIK would increase to 6 days.  The other APODs studied here 

would require even less port hold time.  Pagh and Cooper (1998) identify this concept as 

logistics postponement—a strategy that is used today in commercial sectors to reduce 

overall logistics costs.  In the case of the DOD, this would limit secondary transload 

operations, saving fuel and manpower.   

 This would, of course, entail a paradigm shift in the way port hold time is used as 

a measure of efficiency. Through a balanced strategy of analyzing the total pallet port 

time under current operations with the proposed concept of holding pallets at a single port 

longer, it is the opinion of the researcher that the cost efficiencies gained may outweigh 

any delays (if realized at all) to the customer.   Proper analysis of forecasted pallet 

deliveries is an avenue to accomplish this task. 

 Recommendations for Future Initiatives 

 Soon IGC will come on-line as a replacement to GTN, combining supply side 

data and distribution data accessible under a single interface.  While this is certainly a 

huge step in achieving end-to-end visibility, the ability to use this supply side data 

effectively to forecast transportation requirements deserves additional study.  While this 
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study did not limit its focus to DLA-produced pallets only, an initial attempt was made to 

establish a relationship between the supply side data from DLA’s warehouse at 

Susquehanna, Pennsylvania (DDSP) and the arrival time of a given order at the 

transshipment port.  The goal here was that looking back in the supply chain, there would 

be enough materiel data at the transportation control number (TCN)-level to forecast 

requirements effectively at least a week in advance of a pallet’s arrival.  DLA tracks their 

orders through many steps in the acquisition process from order placement, receipt at the 

warehouse and departure from the warehouse.  While order placement was the earliest 

visibility in the sustainment flow, on average being 40 days in advance of the shipment 

from the warehouse, the variance was too large to be of any use at 522357 days2.  Much 

more consistent was the receipt of the order at the warehouse.  From this date to the date 

that a shipment arrived at the transload APOD was 6 days with a variance of 13 days2.  

Yielding a standard deviation of over 3 days, it is doubtful that this measure would 

produce more accurate results than forecasting at the pallet level.   

 Complicating the usage of TCN data for forecasting airlift requirements is that a 

single pallet TCN is often made up of several hundred individual orders.  With the 

establishment of the pure pallet program, it is difficult to identify in advance when an 

order will be received and subsequently what orders will be combined to form the pure 

pallet.  In this sense, the pure pallet program, in terms of forecasting transportation 

requirements is a victim of its own efficiency. 

 It is no secret that many successes in commercial logistics have come from 

establishing linkages between different nodes in the supply chain.  The promise of a 

system like IGC is that it will provide the linkage that has been missing in the DOD 
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between supply and distribution to improve visibility in the supply chain.  When used to 

forecast transportation requirements, it is essential that the enhanced data set provide 

more than just a combination of the two systems that comprise it.  In that vein, further 

analysis is necessary to correlate what variables contained within IGC will be of interest 

to the transportation forecaster.  If information can be gleaned from the data such that 

when an order is placed, it triggers a notional delivery date and, therefore a transportation 

requirement, transportation planners can use this information to plan missions weeks and 

sometimes months in advance.  The ripple of such an action would be felt all the way to 

the final APOD.  When given exact requirements with such a long lead time, there would 

be less juggling of missions at the last minute to get priority cargo to its destination.  

Recommendations for Further Research    

 The research discussed in this paper focuses on the forecast methodologies 

themselves.  What may be of greater importance is developing bounds to their accuracy.  

In order to effectively implement any method, it is essential that the model produce 

results that are usable.  It would do little good if the forecasts produced results that 

created more effort without greater gains in efficiency and effectiveness.  For this reason, 

a further area of research in forecasting transload requirements should focus on the 

acceptable level of error of the forecast.  If the tolerance is zero, then the as-is framework 

is the only method that will work.   

 Furthermore, the forecasting methods in this paper were judged based on their 

MSE.  However, Yokum and Armstrong (1995) identified that accuracy of a forecast may 

not be the only, nor the most important, measure of interest to decision makers.  Their 
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study reported a meta-analysis of several studies, to include their own, on the importance 

of accuracy and other measures.  While they did find that accuracy was consistently 

ranked as the most important measure, other measures were nearly as important such as 

ease of implementation.  Such a study is warranted to determine what measures would be 

used as the criterion for selecting forecasting methodologies in the DOD. 

  Additionally, the models presented in this paper are by no means all-

encompassing.  There may be other variables not examined in this research that may 

produce better forecasts.  For this reason, continued analysis of metrics within GATES 

and IGC is needed to discern their ability in forecasting requirements for missions 

subsequent to transload operations. 

Final Thoughts 

  It is true that forecasts are always wrong; however, doing nothing goes against 

every planning effort that the DOD undertakes.  This paper demonstrated that forecasting 

methodologies can be used to produce results that are quantifiable and useable.  We can 

synchronize flows of transportation from the warehouse to the APOE, but neglecting the 

tail end of the supply chain can undo any efficiencies gained by such action.  As we are 

further constrained on the use of a finite organic fleet of airlifters, we cannot afford to do 

less. 
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