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ABSTRACT 

Few experimental investigations can be found in the literature in which free-air blast 
parameters from cylindrical charges have been measured. As part of the work to update the 
DOEtTlC Manual 1 1268, “Prediction of Blast and Fragment Loadings on Structures,” these free-air 
blast data were reviewed and analyzed. One of these sets of experimental data was used to 
develop graphs of equivalent spherical weights for cylindrical charges with length-to-diameter ratios 
of 1/4, 1/1, and 4/1. The actual peak side-on overpressure and impulse data from Pentolite 
cylindrical charges initiated at one end were scaled to standard sea level conditions using Sachs’ 
scaling factors and the charge weights converted to equivalent TNT values based on Pentolite 
spherical charge test data. Then, equivalent spherical weights were determined using the standard 
air blast curves for spherical TNT detonations in free-air. Side-on pressure and impulse data 
measured along eight radials at 22.5’ increments and at scaled distances of about 3 to 15ft/lb’’3 
were used to develop the equivalent spherical mass ratios. These results show the significant 
difference a cylindrical charge geometry has on the free-air blast loads as compared to spherical 
charges. To demonstrate further this difference, impulse amplitude ratios for one cylindrical charge 
versus a spherical charge were computed and applied to the reflected impulse loads on a flat 
surface from a free-air burst. 
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INTRODUCTION 

A considerable volume of data can be found in the literature which characterize the air blast 
wave generated by a spherical high explosive charge detonated in free-air. For example, 
Goodman[11 compiled a large number of free-air measurements from spherical Pentolite 
experiments dating from World War I I  to 1960. Using these data, Goodman developed a set of 
"standard" curves for Pentolite. Baker provides an excellent historical summary of free-air 
measurements up to 1970. He also developed a set of standard curves for spherical charges using 
energy as the scaling parameter making them directly applicable to any high explosive. In 1984, 
Kingery and B~lmash[~~ compiled experimental and computational data for TNT and Pentolite to 
develop an updated set of scaled standard curves for TNT spherical charges in free-air and TNT 
hemispherical charges on the ground. These updated curves were developed to revise the TNT 
standard curves in the triservice manual, Structures to IWW the I=Lffects of Accidental Fx~losiMs 
['I. Revision 1 of this manual Iq includes these curves. To apply these curves to spherical charges 
of explosives other than TNT, TNT equivalent weights are used. 

For non-spherical free-air denotations fewer expenmental studies can be found reported in 
the literature. For a non-spherical charge, the shock wave will not enter the surrounding air as a 
spherical wave, nor at the same instant over the entire charge surface. The shape and strength 
of the shock wave entering the air will depend both upon charge geometry, and upon the relative 
location at which initiation occurred. The blast parameters will be functions not only of radial 
standoff, but also of azimuth and possibly elevation. Several experimental programs, such as 
those reported in References 6 through 14, investigated the blast field around non-spherical 
explosives of regular geometries such as cylinders, cubes, wcones. In many instances the charges 
were detonated in free-air, but measurements are sometimes only of reflected parameters and 
along one axis. 

As part of the work to update DOE3TIC Manual 11 268 [Iq, data found in the literature from 
cylindrical charges were reviewed and analyzed. In Reference 15, the results of an analysis by 
Plooster"61 of free-air side-on pressures calculated from time-of-anival measurements made by 
WisotsM and Snye+la and by Parks and Weeding["l were used as a method to estimate side-on 
pressures from free-air cylindricat charges of three aspect ratios for a limited range of scaled 
distances. The results presented in Reference 16 are multi-parameter curve fits which relate the 
peak side-on pressure P, to the scaled distance Z, to the length-to-diameter ratio UD, and to the 
azimuth angle 0 (the angle between the longitudinal axis of the cylinder and the measurement 
axis). These were modified slightly in Reference 15 to make them applicable to TNT charges at 
sea levd conditions. 
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In the recent work at Southwest Research Institute (SwRI) to revise Reference 15, direct 
measurements of side-on pressure and impulse from a more recent test program of cylindrical 
charges conducted by P l o o ~ t e ~ ~ ~ ~  were found in the literature search. Reference 19 reports on 
the experimental measurements made from end-initiated cylindrical charges detonated in free-air. 
These more recent data were analyzed by SwRl to develop equivalent spherical weights for 
cylindrical charges with UD of 1/4, 1/1, and 4/1. The results were included in DOE/TIC Manual 
1 1268, Revision 1 [ml. This paperwill present these results as well as some of the results of additional 
analysis to develop pressure and impulse amplitude ratio curve fits for certain azimuth angles from 
a cylindrical charge with an aspect ratio of 4/1. 

ANALYSIS OF CYLINDRICAL DATA 

In the test program described in Reference 19, experiments were conducted with end-initiated 
cylindrical Pentolite charges. Pressure-time recordings were made along radials at 22.5' 
increments as shown in Figure 1 and at several standoff distances. Most of the tests used cast 
Pentolite, 8 Ib cylindrical charges with a few 16 Ib charges also being fired. Some tests using 8 Ib 
Pentolite spheres were fired throughout the program for internal calibration purposes. The test 
arena was laid out with two radial lines of side-on pressure transducers (6 sensors per line) placed 
90' apart. Thus, each test generated pressure-time histories at two angles. The cylindrical charges 
were fired with their axes horizontal as indicated in Figure 1 and 12 ft above the ground to minimize 
ground reflections from interfering with the initial blast wave at the transducer locations. The pencil 
gages were also mounted at an elevation of 12 ft and at radial distances ranging from 7 to 31 ft. 
To obtain data at 22.5' intervals, the cylindrical charge was rotated relative to the two orthogonal 
transducer radials from test to test. Thus, data were obtained at each angle of interest in 5 tests. 

Pentolite cylindrical charges of seven UD ratios were used. However, measurements were 
made at all nine of the 22.5' intervals and in multiple firings only for charges with UD ratios of 1/4, 
1/1, and 4/1, Consequently, the analyses performed in rewriting Reference 15, and in writing this 
paper, used data only from tests using these 3 aspect ratios. Tabulations of the peak pressure P, 
and positive impulse is dataas measured at an average ambient pressure of 1 1.9 psiaare presented 
in Reference 19. These data are also plotted in that reference scaled to a charge weight of one 
pound and to sea-level ambient pressure as a function of UD for different scaled distances for a 
particular azimuth angle 8, and as a function of 8 for different scaled distances for a particular UD. 
Note that since cylindrical charges often generate secondary shock waves which are comparable 
or of greater amplitude than the leading shock, the pressure data tabulated in Reference 19 include 
any such significant peak pressures. 
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To provide stnrctural designers using Reference 20 with at least approximate correction 
factors to account for-cylindrical charge geometry in determining blast loads, the data from 
Reference I9 were used to develop graphs of equivalent spherical weights as a function of scaled 
distance for each azimuth angle and aspect ratio. The side-on pressure and impulse data from 
Reference 19 for 8-lb Pentolite, free-air cylinders with aspect ratios of 1/4, 1/1, and 4/1 were first 
adjusted to standard sea-level ambient pressure using Sachs' scaling factors as discussed in 
Reference20. The same scaling was also applied to the spherical free-air data recorded throughout 
the test program described in Reference 19. 

Since the experiments were performed with Pentolite charges, the next step in standardizing 
the data was to convert them to TNT equivalent data. Separate TNT equivalency adjustments 
were made to the pressure data and to the positive impulse data. TNT equivalency is defined as 
the ratio of the charge weight of TNT to the weight of the high explosive in question that will yield 
the same amplitude of a blast parameter at the same radial distance from each charge. 

The average pressure or impulse measured on the spherical tests at each of the six scaled 
distances was used to determine a TNT equivalency for each blast parameter using the standard 
free-air TNT curve developed by Kingery and B~lmash[~]. The average pressure or impulse at 
each scaled distance was determined from as many as ten measurements. The equivalency 
factors at the six scaled distances ranging from about 3 to 15 Wlb''3 (corrected to sea-level) were 
then averaged to obtain one value for pressure and one value for impulse which was then applied 
to the cylindrical data. The average TNT equivalency factor based on the side-on pressure data 
from the spherical charges was determined to be 1.08. The average TNT equivalency factor based 
on side-on impulse was 0.9. With these factors, TNT scaled distances for the side-on pressures, 
and TNT scaled impulses and their corresponding scaled distances were computed from the 
cylindrical test data already corrected to sea-level conditions. 

SPHERICAL EQUIVALENCY FACTORS 

With the cylindrical data from Reference 19 scaled to sea-level ambient pressure and in 
equivalent TNT form, the standard TNT curves were used as the basis for computing spherical 
equivalency factors. Figure 2 shows one example of a comparison between the side-on pressures 
from a cylindrical charge of UD = 441 measured at azimuth angles of 22.5', 45', 67.5', and 90' 
and the spherical TNT curve. 

The spherical equivalency factors were determined in a similar way as TNT equivalency 
weights are generally found. For each cylindrical side-on pressure or impulse data point, an 
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equivalent spherical weight was determined that would produce the same side-on pressure or 
impulse at the same distance, R. Thus, for side-on pressure, the ratio of the charge weight of a 
sphere W,, to that of a cylinder W, is 

likewise, for side-on impulse 

In these equations, i&, is the scaled distance Wg1'3 and &,,, is the scaled distance FUWs,1'3, 

Equivalent spherical mass ratios for cylindrical charges with an aspect ratio of 1/4, 1/1, and 
4/1 based on side-on pressure measurements at different azimuth angles are presented in Figures 
3 through 7. A similar set of ratios based on side-on impulse data are presented in Figures 8 
through 12. As mentioned before, the cylindrical charges were initiated at the 180' end (see Figure 
1). Consequently, the data is somewhat unsymmetric about the 90' line. For example, Figure 13 
shows the pressure-based equivalency factorsfor acylinderwith UD =4/1 at all the azimuth angles. 
If a cylindrical charge was to be initiated at the longitudinal center, one would expect similar blast 
load amplitudes at symmetric angles about the 90' radial, such as 0' and 180', 45' and 135', etc. 
Therefore, to apply the end-initiated cylindrical data to a centrally initiated cylinder, the results in 
Figures 3 through 12 may be used for angles of 0' to 90' and assume the same amplitudes for 
corresponding angles greater than 90' up to 180'. 

BLAST LOADS FROM A CYLINDRICAL CHARGE 

In Reference 20, simple examples are used to show how the data presented in Figures 3 
through 12 can be used to determine side-on pressures from a cylindrical charge. In one example, 
the side-on pressures generated by a cylindrical charge of UD = 1/1 and a TNT equivalent weight 
of 57.4 Ib are estimated at a standoff distance R of 25 ft and azimuth angles 0 of o', 45' and 90". 
Using Figures 3, 4, and 6 to find the equivalent spherical weight at each angle, and the standard 
TNT free-air curve for a spherical charge in Reference 20 to find the corresponding pressure, the 
results were as follows: 
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57.4 

A spherical charge of the same explosive weight of 57.4 Ib at the same standoff distance R 
of 25 ft would produce aside-on pressure P, of 16.3 psi. Thus, the difference in the blast pressures 
produced by the cylindrical charge at that distance can also be presented as ratios of the side-on 
pressure from the cylindrical charge Pmq, to that from the spherical charge PsVh. Therefore, for the 

above example, the pressure amplitude ratios are: 

25 6.48 0" 1.8 103.3 5.33 25.0 

45" 1.5 86.1 5.66 21.9 

90' 0.86 49.4 6.81 14.7 

57.4 I 25 I 6.48 I 0' 

Pm - P%Yl 
(p2) (PSI) ps,, 

25.0 16.3 1.53 

21.9 16.3 1.34 

14.7 16.3 0.90 

Similar amplitude ratios can be computed using the equivalent spherical mass ratios based on 
impulse. Note that, in general, the pressure amplitude ratios are quantitatively different from the 
corresponding spherical mass ratios. 

To demonstrate how a cylindrical geometry affects blast loads, amplitude factors as shown 
above were determined for a cylinder with an UD = 41. A hypothetical problem was devised so 
that only data from azimuth angles of 22.5' to 90' would be required. Using only the impulse data 
for the six scaled distances at which measurements were made, amplitude ratios were derived for 
each of the six scaled distances and smooth curves fitted to extrapolate the data to smaller scaled 
distances and to interpolate between scaled distances. The results are presented in Figure 14. 
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Assuming that reflected impulse will have the same amplitude ratios as side-on impulse, the 
results presented in Figure 14 were used to estimate the impulsive loads on a flat surface from a 
free-air cylindrical charge as illustrated in Figure 15. Note that the standoff distance R of 20 ft and 
the charge weight W of 300 Ib were selected such that the cylindrical charge was at a perpendicular 
scaled distance of 3 ft/lb''3. Thus, very little extrapolation was necessary in using the curves 
presented in Figure 14. The loads on the flat surface from a spherical charge were first estimated 
using the computer code CONWEP[*'' which has its own set of assumptions. Since the problem 
is symmetric in two axes, only one quarter of the surface (25 x 15 ft) was used to make the 
calculations and plot impulse contours as shown in Figure 16. For this case, the average impulse 
on the quadrant as computed by CONWEP is 21 0 psi-ms. As expected, the impulse contours are 
concentric circles. The impulse at the center of each grid element was then adjusted using the 
curves from Figure 14 for its corresponding azimuth angle and scaled distance. The amplitude 
ratio curves were interpolated linearly for in between azimuth angles. An impulse contour plot for 
the cylindrical charge is shown in Figure 17. The contours in this figure are no longer concentric 
circles and depict quite vividly the effect of the cylindrical charge geometry on the impulse 
distribution. The average impulse on the quadrant from the cylindrical charge is 325 psi-ms. In a 
recent limited study by SwRl reported in Reference 22, a similar analysis was used to estimate 
reflected pressures and impulses on a vertical wall from the detonation of a vertical bomb at the 
ground surface. In that study, extrapolation of the test data was necessary to a scaled distance 
of 1.24 wi b1'3. 

CLOSURE 

Experimental side-on pressure and impulse data found in the literature from cylindrical 
charges in free-air were analyzed and used to develop spherical equivalency factors for nine 
azimuth angles ranging from 0 to 180'. The cylindrical charges of length-to-diameter ratios of 114, 
1/1, and 4/1 were initiated at the 180' end and measurements made along radial increments of 
22.5'. The spherical equivalency factors show the significant difference a cylindrical geometry has 
on the side-on pressure and impulse, particularly at the smaller scaled distances. These 
equivalency factors are based on data found in the literature that were measured at scaled distances 
of about 3 to 15 ft/lb"3. Consequently, the application of this analysis should be limited to scaled 
distances in this range. 

To demonstrate the effect a cylindrical geometry has on blast loads, amplitude factors based 
on the impulse measurements were computed, extrapolated slightly, and applied in a hypothetical 
problem to the reflected impulsive loads on a flat surface. In this application it was assumed that 
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reflected impulse would have the same amplification factors as side-on impulse. The resulting 
contour plots depict& quite well the significant difference a cylindrical charge makes on the 
impulsive loads as compared to a spherical charge. 

Considerably more experimental research and data analysis are needed to characterize air 
M a s t  loads from cylindrical and other nonspherical exploshre charges. In particular, measurements 
of normally and obliquely reflected pressure and impulse are almost nonexistent at small scaled 
distances where the effects of geometry are most significant. Data are lacking not only from free-air 
charges, but also from charges on the ground surface. It would be very interesting to determine 
how close to reality the amplification factors for the illustrated problem really are. The spherical 
mass ratios presented in this paper provide a means for estimating loads from cylindrical charges 
of three aspect ratios at scaled distances of about 3 to 15 Wl bm. Additional data closer to the 
charge and with cylinders of other aspect ratios would increase the confidence of the curves 
presented here. 
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