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The total momentum of a thermodynamically closed system is unique, as is the total energy.
Nevertheless, there is continuing confusion concerning the correct form of the momentum and the
energy–momentum tensor for an electromagnetic field interacting with a linear dielectric medium.
Here we investigate the energy and momentum in a closed system composed of a propagating elec-
tromagnetic field and a negligibly reflecting dielectric. The Gordon momentum is easily identified
as the total momentum by the fact that it is, by virtue of being invariant in time, conserved. We
construct continuity equations for the energy and the Gordon momentum and use the continu-
ity equations to construct an array that has the properties of a traceless, diagonally symmetric
energy–momentum tensor. Then the century-old Abraham–Minkowski momentum controversy can
be viewed as a consequence of attempting to construct an energy–momentum tensor from continuity
equations that contain densities that correspond to nonconserved quantities.

I. INTRODUCTION

The energy–momentum tensor is a concise way to rep-
resent the conservation properties of the flow field. For
most types of simple flows, the energy–momentum tensor
is well-defined, with the notable exception of the elec-
tromagnetic field in a linear dielectric material. The
Abraham–Minkoswski controversy [1–9] for the momen-
tum of electromagnetic fields in a dielectric began with
the derivation of the energy–momentum four-tensor by
Minkowski [10]. Noting that the Minkowski tensor is not
diagonally symmetric and therefore contains problems
with conservation of angular momentum, Abraham [11]
proposed an energy–momentum tensor that was symmet-
ric, but at the expense of a new phenomenological force.
In order to address this constraint and additional issues,
Einstein and Laub [7], Nelson [8], and others proposed
variants of the energy–momentum tensor.
The crux of the Abraham–Minkowski controversy is

whether the electromagnetic momentum density in a di-
electric is of the Minkowski form

gM =
1

c
(D×B) (1.1)

or the Abraham form

gA =
1

c
(E×H). (1.2)

Experimental efforts to resolve the theoretical impasse in
one direction or the other have not been definitive. While
some experiments favor the Abraham formula, other ex-
periments support Minkowski’s version. Brevick’s [12]
analysis of experiments performed by Jones and Richards
[13], Ashkin and Dziedzic [14], and others showed that
the allocation of momentum between the field and ma-
terial was the determining factor in whether a particular
experimental result was described by the Abraham or
Minkowski form of electromagnetic momentum. Follow-
ing Brevick [12], the formula for the field momentum has
been shown repeatedly to be essentially arbitrary such
that any of the formulas for the field momentum can be

combined with an appropriate momentum for the mate-
rial to produce the same total momentum [15].
In 1973, Gordon [1] constructed the total momentum

from a microscopic model in which the electromagnetic
field component of the total momentum is said to be the
Abraham momentum and the dielectric is treated as a di-
lute collection of electric dipoles with center-of-mass mo-
tion in the direction of propagation of the field. Gordon
[1] discusses the empirical and experimental validation of
the total momentum density

gG =
n

c
(E×B) (1.3)

and shows that the density gG, integrated over a volume
containing the entire field, is invariant in time. Mikura
[16] subsequently obtained the total momentum using a
more general material model that included polarizabil-
ity, magnetizability, electrostriction, and other material
considerations. Since then, the total momentum has been
constructed using a variety of field and material momenta
[15].
The historical development of the electromagnetic

energy–momentum tensor for the field in a dielectric has
been intertwined with efforts to derive the correct elec-
tromagnetic momentum density. The original Minkowski
and Abraham tensors, like the Minkowski and Abraham
momenta, are now regarded as being associated with
the field, alone, requiring a material component to com-
plete the total energy–momentum tensor [15]. Although
a number of composite energy–momentum tensors have
been constructed [15], the tensor forms that have been
constructed from field and material constituents fail to
satisfy the constraints imposed on the symmetry, trace,
or four-divergence of a total energy–momentum tensor.
The basic tenant of classical continuum electrodynam-

ics is that the electrodynamic properties of a linear ma-
terial can be characterized by macroscopic parameters.
In this long wavelength limit, the material is modeled as
a simple linear dielectric with a linear refractive index
n. In reflection, the electromagnetic field exerts radia-
tion pressure on the dielectric. Neither the motion of an
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unrestrained dielectric nor the forces of restraint on a sta-
tionary dielectric are coupled to the macroscopic Maxwell
equations of motion for the electromagnetic field. For
that reason, we limit our consideration to the case of neg-
ligible reflection in which the consequences of radiation
pressure vanish. The total electromagnetic momentum
for the closed system consisting of the macroscopic elec-
tromagnetic field and a negligibly reflecting linear dielec-
tric is unique. Here, we identify the Gordon momentum
[1] as the total momentum by the fact that it is invariant
in time and therefore conserved in an isolated system.
The total energy is shown to be similarly conserved. In
order to satisfy the constraints imposed on an energy–
momentum tensor, we perform a simple change of vari-
ables and derive continuity equations for the total energy
and the total momentum. The continuity equations are
then used to construct an array that has the properties
of a traceless, diagonally symmetric energy–momentum
tensor, but in a coordinate system with time-like coordi-
nate ct/n.

II. ENERGY–MOMENTUM TENSOR OF

NONINTERACTING PARTICLES

In the continuum limit, the density of any property of
identical noninteracting particles can be treated as the
number density multiplied by the amount of the property
that can be attributed to each particle. The continuity
equation corresponding to a specific property, such as
mass, charge, or energy, is then obtained by substitution
of the specific property density for a placeholder number
density. For an infinitesimal element of volume in an
inviscid sourceless flow, the continuity equation

∂ρ

∂t
+∇ · ρu = 0 (2.1)

is derived by applying the divergence theorem to a Taylor
series expansion of the property density field ρ and the
vector velocity field u = (ux, uy, uz) of the flow [17]. The
continuity equation reflects the conservation of a contin-
uous scalar property in a flow in terms of the equality of
the net rate of flux out of the volume and the time rate
of change of the property density ρ inside the volume.
Depending on the context, the three-vector

g = ρu (2.2)

is known as the momentum density, the flux, or the cur-
rent density of the property. Specifically, g corresponds
to the linear momentum density if ρ is a mass density
and corresponds to the charge current density if ρ is the
electric charge density.
Some conserved properties, such as momentum, are

vectors. For a flow, the density of a conserved vector
property can be represented as ρρ = (ρx, ρy, ρz). Applying
the scalar formalism to the three orthogonal components
of the property density vector yields scalar continuity

equations

∂ρx

∂t
+∇ · ρxu = 0 (2.3a)

∂ρy

∂t
+∇ · ρyu = 0 (2.3b)

∂ρz

∂t
+∇ · ρzu = 0. (2.3c)

At this point, we adopt a four-dimensional notation
where repeated indices are summed. We take Roman in-
dices to run from 1 to 3 and we identify the coordinates
xi with the Cartesian coordinates, such that x1 = x,
x2 = y, and x3 = z. Greek indices run from 0 to 3
and x0 is identified with the time-like coordinate ct. The
Minkowski space-time metric is diag(−1, 1, 1, 1). Finally,
partial differentiation with respect to the indexed coor-
dinates is represented by ∂α = ∂/(∂xα).
The four continuity equations (2.1) and (2.3) can be

concisely represented by

∂βG
αβ = 0, (2.4)

where

Gαβ =







c2ρ cuxρ cuyρ cuzρ
cρx uxρx uyρx uzρx

cρy uxρy uyρy uzρy

cρz uxρz uyρz uzρz






. (2.5)

In order for this representation to be unique, we must
specify the relation between the continuity equations,
that is, the relation between elements in different rows
of Gαβ in Eq. (2.5) [18]. For a closed system, conserva-
tion of angular momentum requires Gαβ to be symmetric
[18]

Gαβ = Gβα. (2.6)

Therefore, the vector property ρρ must represent the flux
of the conserved scalar quantity ρ such that ρρ = ρu. Con-
versely, the flux ρu of a scalar property of the particles
is a conserved vector property of the flow. The covariant
form of the continuity equation is the four-divergence,
Eq. (2.4), of the energy–momentum four-tensor

Gαβ =







c2ρ cρux cρuy cρuz

cρux ρuxux ρuxuy ρuxuz

cρuy ρuyux ρuyuy ρuyuz

cρuz ρuzux ρuzuy ρuzuz






. (2.7)

The continuity equation (2.4) with the four-tensor (2.7)
is valid for any conserved extensive quantity in a simple
flow, not just for the mass of a fluid.
The energy–momentum tensor (2.7) has some essential

properties. First, the four-divergence of each row vector

∂βG
αβ = 0 (2.8)
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is a continuity law corresponding to the conservation of
the property represented by the property density in the
first element of that row. Second, the tensor is diagonally
symmetric

Gαβ = Gβα (2.9)

corresponding to the absence of unbalanced shear forces
and conservation of angular momentum in a closed sys-
tem [18]. Third, as a consequence of diagonal symmetry,

∂αG
αβ = 0, (2.10)

the four-divergence of each column vector is a continuity
law corresponding to the conservation of the property
represented by the property density in the first element
of that column. It should also be noted that the simple
energy–momentum tensor is based on the properties of
an unimpeded flow. If the flow is redirected by impact
with a macroscopic object then one is obligated to include
the equations of motion of the object or the forces of
restraint.

III. THE ABRAHAM AND MINKOWSKI

ENERGY–MOMENTUM TENSORS

The Abraham and Minkowski energy–momentum ten-
sors are examples of a number of different tensors that
have been been proposed for the electromagnetic field in a
dielectric [15]. The Minkowski tensor can be constructed
from the continuity equations for energy flux and mo-
mentum flux by the same procedure that was used to
construct the array (2.5). The Minkowski tensor is not
diagonally symmetric and therefore would admit viola-
tions of angular momentum conservation if it were to
be considered the total energy–momentum tensor of a
closed system. Instead, the Minkowski tensor is consid-
ered to be a representation of the energy and momen-
tum of the field-only component of a system. In this
section, we outline the construction of the Minkoswski
tensor and describe how the procedure is modified to ob-
tain the Abraham tensor. Neither the Minkowski tensor,
nor the Abraham tensor, satisfy the requirements of a
total energy–momentum tensor. The Minkowski tensor
is not symmetric while the Abraham tensor contains a
phenomenological volume force.
The macroscopic Maxwell equations of continuum elec-

trodynamics are the basis for deriving continuity equa-
tions for electric and magnetic fields in a dielectric. For
a dielectric with no free charges in a regime of negligible
absorption and dispersion, the Maxwell equations may
be written as

∇×E = − ∂B

∂(ct)
(3.1a)

∇×B =
∂n2E

∂(ct)
(3.1b)

∇ ·B = 0 (3.1c)

∇ · n
2

c2
E = 0 (3.1d)

in Heaviside–Lorentz units. The electric and magnetic
fields can be defined in terms of the vector potential A
as

E = − ∂A

∂(ct)
(3.2a)

B = ∇×A (3.2b)

for transverse fields in the Coulomb gauge.
The macroscopic Maxwell equations are the axioms of

classical continuum electrodynamics. Poynting’s theo-
rem,

∂

∂(ct)

[

1

2

(

n2E2 +B2
)

]

+∇ · (E×B) = 0, (3.3)

can be derived by multiplying the Faraday law (3.1a)
by B and adding it to the Maxwell–Ampère law (3.1b)
multiplied by E. Poynting’s theorem can also be derived
by substituting the Maxwell equations into the temporal
derivative of the energy density

ρe = (1/2)(n2E2 +B2) (3.4)

using a vector triple-product identity. Poynting’s theo-
rem is a continuity equation for the Poynting energy-flux
vector

SP = c(E×B) = (s1P , s
2
P , s

3
P ). (3.5)

The theorem

∂

∂(ct)

(

n2E×B
)

= −B× (∇×B) +B(∇ ·B)

− n2E× (∇×E) +E(∇ · n2E) (3.6)

is derived, in a manner similar to Poynting’s theorem,
by substituting Maxwell’s equations into the temporal
derivative of the Minkowski momentum density, gM =
(n2/c)(E × B). The right-hand side of Eq. (3.6) can be
recast, approximately, as the negative of the divergence
of the Maxwell stress tensor [19] with components

W ij =

[

−n2EiEj −BiBj +
1

2

(

n2E ·E+B ·B
)

δij

]

,

(3.7)
where terms involving the gradient of n2 have been ne-
glected. Then the temporal derivative of the Minkowski
momentum density, Eq. (3.6), can be expressed using the
vector divergence operator, ∇∇∇ ·, as

∂

∂(ct)
(n2E×B) +∇∇∇ ·W = 0. (3.8)
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The array

Tαβ
M =







ρe s1P /c s2P /c s3P /c
cg1M W 11 W 12 W 13

cg2M W 21 W 22 W 23

cg3M W 31 W 32 W 33






, (3.9)

known as the Minkowski energy–momentum tensor, is
constructed from continuity equations (3.3) and (3.8).
Using the summation convention, we can write Poynt-
ing’s theorem in Eq. (3.3) as

∂0T
00
M + ∂jT

0j
M = 0 (3.10)

for continuity of the energy flux and Eq. (3.8) as

∂0T
i0
M + ∂jT

ij
M = 0 (3.11)

for continuity of the momentum flux. Then, each row of
TM corresponds to a four-divergence

∂βT
αβ
M = 0. (3.12)

Because the array Tαβ
M in Eq. (3.9) is not diagonally sym-

metric, Abraham proposed the energy–momentum tensor

Tαβ
A =







ρe s1P /c s2P /c s3P /c
cg1A W 11 W 12 W 13

cg2A W 21 W 22 W 23

cg3A W 31 W 32 W 33






, (3.13)

where gA is given by Eq. (1.2). The four divergence of
this tensor is

∂βT
αβ
A = −fβ, (3.14)

where fβ is the Abraham force. The Cartesian compo-
nents of the Abraham force

f =
∂

∂(ct)

(

(n2 − 1)E×B
)

(3.15)

are obtained by substituting the Abraham momentum
density into the continuity equation (3.8) and the time-
like coordinate component is f0 = 0.
It has been widely reported in the literature that nei-

ther TM nor TA is the total energy–momentum tensor
[15]. Instead, they are considered to be two of many ar-
bitrary forms of the electromagnetic part, Tfld, of a total
energy momentum tensor

T = Tfld + Tmatl (3.16)

composed of energy–momentum tensors for the field and
material subspaces, however those subspaces are defined.

IV. TOTAL MOMENTUM

A well-defined quantity for the physical momentum is
not derivable solely from the macroscopic Maxwell equa-
tions without additional conditions. However, the total

momentum of an isolated system must be constant in
time. In this section, we identify the unique total mo-
mentum using this constraint. We consider the case of a
quasi-monochromatic electromagnetic field, in the plane-
wave limit, entering a linear medium from vacuum at
normal incidence. The medium is taken to be a sim-
ple linear dielectric in the regime of negligible dispersion
and absorption. A dielectric slab is partially reflecting
and the material acquires a kinematic momentum that is
twice the momentum of the reflected field, but in the di-
rection of the incident field. In the absence of reflection,
there is no momentum given to the dielectric slab and it
remains stationary. We adopt this case of a stationary
dielectric in which reflections can be neglected by assum-
ing that an antireflection coating has been applied to the
dielectric or that the refractive index of the dielectric is
only slightly greater than unity.
Gordon [1] used a microscopic model of the dielectric

as a vapor of weakly polarizable atoms and derived the
material momentum as the continuum average of the me-
chanical momentum of the atoms. Assuming a rarefied
vapor of atoms in order for reflections to be negligible,
Gordon obtained the momentum

GG =

∫

V

dv gG =

∫

V

dv
n

c
(E×B) (4.1)

by adding the material momentum to the Abraham mo-
mentum. In continuum electrodynamics, the electrody-
namic properties of a material are characterized only by
a macroscopic refractive index. Therefore, the micro-
scopic origin of the Gordon momentum (4.1) is of no
consequence in the formalism of continuum electrody-
namics. Following Gordon, we will demonstrate that the
momentum (4.1) is invariant in time and, because it is
conserved, can be identified as the total momentum. Be-
cause the Gordon momentum depends on the material
only through the refractive index, it is the unique total
momentum for all cases in which the medium behaves,
to a good approximation, as a linear dielectric with re-
fractive index n.
Propagation of a field in a linear medium is governed

by the wave equation,

∇2A− n2

c2
∂2A

∂t2
= 0, (4.2)

written in terms of the vector potential A, B = ∇×A.
For quasi-monochromatic plane waves, it is convenient
to write the vector potential in terms of a slowly vary-
ing envelope function, A(z, t), a rapidly varying carrier,
and a unit vector, ek, in the direction of propagation as
A = A(z, t)e−i(ω0t−kz)ek. For a plane-wave entering a
dielectric at normal incidence, reflections are negligible if
δn = n− 1 is small. In this limit, there is no momentum
given to the bulk material, which remains stationary, and
we can apply the Fresnel relation

At

Ai

=
2

n+ 1
=

(

1 +
δn

2

)

−1

, (4.3)
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where Ai is the incident amplitude and At is the trans-
mitted amplitude. Comparing Eq. (4.3) with a series
expansion of 1/

√
n in the limit of small δn, we find that

the vector potential amplitude inside the dielectric, At,
is reduced by a factor of

√
n from the incident amplitude

Ai.
For plane cw waves, and approximately for slowly vary-

ing waves, the relation between the amplitudes of the
fields simplifies to

|B| = n|E| = nω

c
|A|. (4.4)

Then, the electromagnetic energy density, ρe =
(1/2)(n2E2 +B2), can be written as

ρe =
n2ω2

c2
|A|2. (4.5)

Applying the Fresnel amplitudes to relate the fields in-
side and outside the medium, At = Ai/

√
n, we find that

the energy density inside the material is a factor of n
larger than the energy density of the same field in the
vacuum. The region occupied by the field in the mate-
rial is compressed spatially by a factor of n due to the
reduced speed of light within the medium, such that the
total energy

U =

∫

V

dvρe =

∫

V

dv
n2ω2

c2
|A|2 (4.6)

is conserved. Numerical solutions of the wave equation
for a field entering a linear material through a gradient-
index anti-reflection coating indicate that the field in the
material is a factor of

√
n smaller and a factor of n nar-

rower than the field in the vacuum, independent of the
magnitude of n, as long as reflections are suppressed [20].
Having demonstrated the conservation properties of

the electromagnetic energy, we demonstrate the conser-
vation properties of the Gordon electromagnetic momen-
tum by a similar procedure. The Gordon momentum [1]
is obtained by integrating the momentum density (1.3)
over all three-dimensional space. Comparing the Gordon
momentum, expressed in terms of the envelope functions

GG =

∫

V

dv
n

c
(E×B) =

∫

V

dv
n2ω2

c3
|A|2ek, (4.7)

with the total energy, Eq. (4.6), we see that conserva-
tion of total energy implies conservation of the Gordon
momentum. The total momentum of a closed system is
unique and the Gordon form of total momentum is con-
served. Therefore, the Gordon momentum can be iden-
tified as the total momentum of the thermodynamically
closed system. By uniqueness, neither the Minkowski
momentum nor the Abraham momentum is conserved.
We point out that, in the macroscopic limit in which

the dielectric is described by a refractive index n, the
question of what portion of the energy given by Eq. (4.6)
resides in the field or dielectric is improperly posed. Com-
paring Eqs. (4.6) and (4.7), we see that the same holds
true for the apportionment of the momentum into field
and dielectric components.

V. TOTAL ENERGY–MOMENTUM TENSOR

In the previous section, we identified the unique to-
tal momentum for the system of an electromagnetic field
in a dielectric for the case of negligible reflections. In
this section, we construct the corresponding total energy–
momentum tensor from continuity equations for the en-
ergy and momentum.
A continuity equation is a differential form of a con-

servation law applied to an element of volume in a con-
tinuous flow. In Sec. II we showed that the energy–
momentum tensor for dust is constructed from continu-
ity equations in which the differential operators act on
the densities of conserved quantities. The operand of
the time derivative in the continuity equation (3.8) is
the Minkowski momentum density. Because the volume
integral of the Minkowski momentum density is not a
conserved vector quantity, we do not consider Eq. (3.8)
to be a suitable continuity equation with which to con-
struct an energy–momentum tensor. Instead, we write
Eq. (3.8) as

n

c

∂

∂t
cgG +∇∇∇ ·W = 0, (5.1)

in terms of the Gordon momentum density gG =
(n/c)(E ×B) whose volume integral is a conserved vec-
tor quantity. Equation (5.1) provides three continuity
equations for our energy–momentum tensor. The addi-
tional continuity equation is obtained by writing Poynt-
ing’s theorem in (3.3) as

n

c

∂ρe
∂t

+∇ · [n(E×B)] =
∇n

n
· n(E×B) (5.2)

using the densities of conserved quantities. We are con-
sidering the case of a closed system in which there are
no reflections. As this is assumed to be accomplished by
a gradient-index antireflection coating, we can drop the
term containing ∇n and write Poynting’s theorem in Eq.
(5.2) as

n

c

∂ρe
∂t

+∇ · [n(E×B)] = 0. (5.3)

In Maxwell’s equations, expressed in terms of 3-
vectors, time is not a coordinate. We make a simple
change of time variable to τ = t/n and write the conti-
nuity theorems (5.1) and (5.3) as

1

c

∂

∂τ
cgG +∇∇∇ ·W = 0 (5.4a)

1

c

∂ρe
∂τ

+∇ · cgG = 0, (5.4b)

where the Gordon momentum density is given in Eq.
(1.3). However when writing Maxwell’s equations as ten-
sor equations, time is one of the four space–time coordi-
nates and we define the time-like coordinate

x̄0 = cτ =
ct

n
. (5.5)



6

Then the four scalar continuity equations, Eqs. (5.4a)
and (5.4b), can be written concisely as a single equation,
as in Section 2. We define an operator

∂̄α =

(

∂

∂x̄0
, ∂x, ∂y, ∂z

)

(5.6)

and an array

Tαβ =







ρe cg1G cg2G cg3G
cg1G W 11 W 12 W 13

cg2G W 21 W 22 W 23

cg3G W 31 W 32 W 33






, (5.7)

such that

∂̄βT
αβ = 0. (5.8)

The array (5.7) has a number of notable properties.
The array is diagonally symmetric

Tαβ = T βα (5.9)

and has a vanishing trace

Tα
α = 0. (5.10)

The operator (5.6) applied to the rows of (5.7) generates
a continuity law for a demonstrably conserved electro-
magnetic energy or momentum property. The operator
(5.6) applied to the columns

∂̄αT
αβ = 0 (5.11)

generates the same continuity equations as a consequence
of symmetry. These are the properties that we associate
with an energy–momentum tensor.

VI. CONCLUDING REMARKS

For many years, the Abraham–Minkowski contro-
versy has been resolved by postulating a total energy–
momentum tensor that is comprised of separate field and
matter tensors, an approach that involves assumptions
about the behavior of matter in the presence of an elec-
tromagnetic field. In continuum electrodynamics the in-
teraction of the field and matter is described in terms
of a single macroscopic parameter, the refractive index
n. We showed that the total momentum of a thermody-
namically closed system consisting of a quasimonochro-
matic field and negligibly reflecting linear dielectric in
the continuum limit is the Gordon momentum. We de-
rived continuity equations from the Maxwell equations
and used a time variable transformation to write the
continuity equations in terms of densities of conserved
energy and Gordon momentum quantities. When writ-
ten in four-dimensional tensor form with time-like coor-
dinate ct/n, the continuity equations are obtained from
the four-divergence of a traceless, diagonally symmetric
energy–momentum tensor.
In summary, we constructed the energy–momentum

tensor in Eq. (5.7) from continuity equations that were
derived from the macroscopic Maxwell’s equations. It is
interesting to note that a time coordinate transformation
was required in order to write the continuity equations as
the four-divergence of the symmetric energy–momentum
tensor.
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