
by

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering

Charlotte

1999

Approved by:

A SCALABLE SYSTEM ARCHITECTURE FOR USE WITH FREE SPACE OPTICAL
INTERCONNECTS IN A 3-D STACKED PROCESSOR ENVIRONMENT

James Fleming Rorie, Jr.

Dr. Fouad E. Kiamilev

Dr. Thomas P. Weldon

Dr. Barry Wilkinson

Dr. Hassan M. Razavi

Dr. Tom Reynolds

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
A Scalable System Architecture for Use With Free Space Optical
Interconnects in a 3-D Stacked Processor Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of North Carolina at Charlotte,Department of Electrical and
Computer Engineering ,9201 University City Blvd
,Charlotte,NC,28223-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

148

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 1999
James Fleming Rorie, Jr.

ALL RIGHTS RESERVED

ii

ABSTRACT

JAMES FLEMING RORIE, JR.. A Scalable System Architecture for use with Free Space
Optical Interconnects in a 3-D Stacked Processor Environment

(Under the direction of DR. FOUAD E. KIAMILEV)

iii

This dissertation covers the development of a computer architecture to support syn-

chronous serial communications over free space optical interconnects using the 3-D

stacked processor technology. The architecture is based on existing implementations of

message passing parallel systems, but adapted for the unique needs of an opto-electronic

environment. A novel approach to dynamic clock synchronization over a free-space trans-

mission bus is presented. Development of an architectural specification through identify-

ing the components of a functional description and mapping them to an appropriate

network model is outlined. By applying these techniques, the designer has the advantage

of field tested solutions to the problems that occur in the development of complex, hybrid,

hierarchal opto-electronic architectures and protocols.

DEDICATION

iv

To my family for their love and support.

“If we knew what we were doing, it would not be called research, would it?”
Albert Einstein

ACKNOWLEDGEMENTS

v

I would like to thank my advisor, Dr. Fouad Kiamilev, for his guidance in this project.

Additionally Jeremy Ekman, Premanand Chandramani and Jim Rieve provided invaluable

assistance at times that it was most needed.

This work is sponsored by the Defense Advanced Research Projects Agency

(DARPA) and the Air Force Research Laboratory under agreement number F30602-97-2-

0122.

TABLE OF CONTENTS

vi

........1

.......4

........6

.......6

......6

.....10

......11

.....11

.12

.....12

....13

...14

....15

....16

..17

....18

....19

.......20

.....20

....20

..21
Chapter 1 - Introduction...

1.1 Contributions ...

Chapter 2 - Previous Work...

2.1 Overview..

2.2 Opto-Electronic Architectures ..

2.3 Analysis ...

Chapter 3 - Theoretical Background..

3.1 VCSEL Device Concepts...

3.1.1 Light Amplification and Stimulated Emission

3.1.2 Semiconductor Lasers...

3.1.3 Quantum Confined Semiconductor Lasers

3.1.4 VCSEL’s ...

3.2 Digital Transmission..

3.2.1 Asynchronous Transmission..

3.2.2 Limitations of Asynchronous Transmission

3.2.3 Synchronous Transmission ..

3.2.4 3D-OESP Approach...

Chapter 4 - Development..

4.1 Introduction..

4.1.1 Impetus...

4.2 Mapping Functional Specification to Network Topology

vii

.....21

....23

...26

...26

....28

..29

....30

....31

....32

...33

.......36

.....36

....37

..37

...38

...40

...41

....41

...41

...42

.....42

...42

.....43
4.3 The 3D-OESP Architecture ...

4.3.1 Functional Inferences...

4.4 Application of Topological Concepts ..

4.4.1 Data Transmission Methodology..

4.4.2 Packet Framing ..

4.4.3 Arbitration and Collision Avoidance ...

4.4.4 Optical Backbone...

4.4.5 Routing...

4.4.6 Node Address Assignment...

4.4.7 Multicasting ..

Chapter 5 - Operation ...

5.1 Operational Flow ...

5.1.1 Phase I - Initialization Sequence..

5.1.1.A Training...

5.1.1.B Address Resolution ..

5.1.1.C Instruction/Parameters Upload

5.1.1.D Data Upload ...

5.1.2 Phase II - Execution...

5.1.2.A Transpose ...

5.1.3 Phase III - Termination ...

5.2 Serial Data Format ...

5.2.1 Error Detection and Correction...

5.3 Packet Routing...

viii

......44

......48

.....48

......49

.....50

...51

...53

....54

....55

......55

....57

...58

....60

...61

....62

......64

....66

....66

.....67

.......69

.....69

..69

..71
5.4 System Scaling..

Chapter 6 - Architecture ..

6.1 Overview..

6.2 Processors ...

6.2.1 Processor Interface..

6.3 Tri-State Bus and Bus Arbitration Unit ...

6.3.1 External Communications...

6.4 Interrupt Controller ...

6.4.1 Operation ...

6.5 Free Space Optical Transceiver ..

6.5.1 Interface ...

6.5.2 Horizontal Decoding...

6.5.3 Serial Encoding..

6.5.4 Transmission Clock Synchronization ...

6.5.5 Serial Decoding..

6.6 Crossbar Router ..

6.6.1 Address Resolution ..

6.6.2 Broadcast Resolution ...

6.7 External Data Interface ..

Chapter 7 - Results..

7.1 Simulation Results ...

7.1.1 Link Level Simulation ...

7.1.2 Network Level Flow ..

ix

...73

.......74

....78

...125

...131
7.1.3 Trainer Simulation ..

Chapter 8 - Conclusions..

Appendix A -VHDL Source Files ...

Appendix B -FSOI Timing Diagrams...

Appendix C -Die Timing Diagrams..

LIST OF TABLES

x

TABLE 1. Packet Address Bit Mapping ...40

TABLE 2. External Data Interface ..68

TABLE 3. Performance Parameters for 3D-OESP Architecture.................................74

TABLE 4. Performance Comparison for FFT Processors ...74

LIST OF FIGURES

xi

......2

.......2

........3

......7

.......8

...10

....13

.....14

..15

.....16

......17

.....18

....19

.....22

....23

......24

....26

......27

......28

.....29

....34
FIGURE 1. Planar Multi-Chip Module...

FIGURE 2. Vertical Stacking ...

FIGURE 3. FFT Performance Comparison...

FIGURE 4. Smart-Pixel Parallel Optoelectronic Computing System.......................

FIGURE 5. Hyperplane Architecture...

FIGURE 6. TRANSPAR Network Communication ..

FIGURE 7. Illustration of a Semiconductor Injection Laser

FIGURE 8. Quantum Well Structure ...

FIGURE 9. Vertical Cavity Surface Emitting Laser (VCSEL)...................................

FIGURE 10. Traditional Transmission Techniques ...

FIGURE 11. Asynchronous Serial Data Frame ..

FIGURE 12. Manchester Clock Encoding...

FIGURE 13. Clock Distribution Skew..

FIGURE 14. Block Diagram for the 3D-OESP System...

FIGURE 15. Simplified 3D-OESP Topology ...

FIGURE 16. Applying Subnet Concepts to the Plane ..

FIGURE 17. Equivalent Network Model..

FIGURE 18. Packet Transmission Format..

FIGURE 19. Character Synchronization...

FIGURE 20. Bit Synchronization ..

FIGURE 21. Multicasting Data Flow ...

xii

.....37

.....39

....43

.....44

.....45

....46

.....47

.....49

......50

.....50

.....51

.....52

...52

....53

...54

...55

.....57

.....59

.....60

......60

....61

...62

......62
FIGURE 22. Operational Flow ..

FIGURE 23. Address Resolution During Power-Up ...

FIGURE 24. Cyclic Redundancy Code Block Diagram...

FIGURE 25. Two Stage Routing Diagram...

FIGURE 26. System Scaling - Star Configuration ..

FIGURE 27. System Scaling - Linear Configuration ...

FIGURE 28. Crossbar Address Resolution Flow...

FIGURE 29. 3D-OESP System Test Environment ..

FIGURE 30. FFT Processor ..

FIGURE 31. FFT Processor - Block Diagram..

FIGURE 32. Processor Data Transfer Timing Diagram ..

FIGURE 33. Bus Layout..

FIGURE 34. Bus Arbitration Unit - Block Diagram ...

FIGURE 35. Bus Transfer Timing Diagram ...

FIGURE 36. Interrupt Controller - Block Diagram ...

FIGURE 37. Interrupt Controller - Timing Diagram ...

FIGURE 38. Free Space Optical Transceiver - Block Diagram

FIGURE 39. Horizontal Channel Selection and Serial to Parallel Conversion

FIGURE 40. Data Transfer Across Clock Boundaries ..

FIGURE 41. Serial Encoding..

FIGURE 42. Time Domain Multiplexed Serial Data Stream......................................

FIGURE 43. Clock Synchronization Unit (Trainer) ..

FIGURE 44. Serial Decoding..

xiii

....64

.....64

......65

......67

.....67

....70

....71

....72

.....73

.....73
FIGURE 45. Frame Detection Algorithm ...

FIGURE 46. Crossbar Router - Block Diagram ..

FIGURE 47. Crossbar Router (One Plane Shown) ...

FIGURE 48. Resolution of Broadcast Packets..

FIGURE 49. External Data Interface ...

FIGURE 50. Framing Simulation Block Diagram..

FIGURE 51. Framing Efficiency ..

FIGURE 52. Network Simulation Model ...

FIGURE 53. Bus Synchronization Latency ...

FIGURE 54. Clock Capture at 300MHz ..

equire-

these

 bench-

nt the

l pro-

e par-

nt and

n pro-

 cost and

t while

le

 fabri-

 optical

lt is a

yield
CHAPTER 1 - INTRODUCTION

Future trends in computer development will encompass areas where there is a r

ment of high data throughput to achieve useful operation. Many applications in

areas, which include real-time and adaptive signal processing systems, are the key

marks for performance evaluation of new technologies. These applications prese

new challenges for the next decade of computation.

To meet the requirements of these complex applications, the concept of paralle

cessing must be applied. However, traditional planar VLSI technology supports thes

allel implementations at the expense of die area. The increased transistor cou

routing can be accommodated through the use of larger die and denser fabricatio

cesses. However, these processes are more expensive due to increased fabrication

decreased yields.

The use of advanced packaging strategies can increase total transistor coun

staying within common VLSI processes. Multi-chip Modules (MCM’s) allow multip

VLSI dies to be combined to form a high density logic unit. The process uses cores

cated using traditional processes and bonds them on an external substrate. Wire or

interconnects are used to establish communications between the dies. The resu

slightly larger device that has twice the density of a normal die with a much higher

than a monolithic approach.

2

large

e rout-

n this

 mod-

h sep-

g the

 Each

anded
This technology suffers from a few limitations. Parallel systems can require a

increase in routing between functional units. Using more than two cores can increas

ing geometrically, assuming a point-to-point connection for each bonding pad. It is i

area where planar VLSI technology becomes inefficient. To increase the number of

ules, we must take advantage of the third dimension.

FIGURE 1. Planar Multi-Chip Module

Stacking technology, developed by Irvine Sensors, Inc., is an approach by whic

arate VLSI dies are stacked vertically to form a three dimensional logic unit. By usin

third dimension, the designer can build highly parallel systems in a uniform manner.

parallel functional unit can be designed discretely in a planar fashion and can be exp

through stacking to meet computational needs.

FIGURE 2. Vertical Stacking

Interconnect Bonding Wires

ModuleDie

Die

External
Interconnection
Bus

Alternating
VLSI Dies
and Diamond
Spacers

3

rs of

ed by

f the

ta size

lcula-

 point

r than

mmu-

nitude

uting.

ust be
Evaluations of this new technology have shown the potential for several orde

magnitude increase in processing capability. Figure 3 shows a comparison perform

Betzos[1] of a theoretical 256 x 256 opto-electronic computer with a number o

world’s fastest systems. The benchmark used a 3D Fast Fourier Transform with a da

of 256 x 256 x 128 and plotted the time for the execution of the one stage of the ca

tion. It also assumes a fixed performance of 7 ns per operation using a 64-bit floating

arithmetic. The results showed that for interprocessor communication times greate

100 Mb/s, the opto-electronic computer out performed all the other systems. For co

nication rates greater than 2 Gb/s, the opto-electronic system was two orders of mag

faster.

FIGURE 3. FFT Performance Comparison

However, this new technology presents fundamental problems in the area of ro

Since components are no longer located local to a single die, some novel approach m

10000

1000

100

10

1

0.1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Interprocessor Communication Rate (Gb/s)

T
im

e
pe

r
S

ta
ge

 (
ns

)

Cray YMP
IBM SP2
Cray C90
Fujitsu VPP500

256x256 3D OE System

4

outing

 require

lectro-

mple-

hields.

imen-

s tech-

pace.

gy to

use of

 well

l for

e prob-

d sig-

ified

sign is

 prob-
taken to allow communication between planes. For low speed signals, this global r

can be performed by adding traces around the die stack. But high speed datapaths

a more robust solution. These signals require electrical isolation to prevent stray e

magnetic interference from affecting the transmission. Current planar technologies i

ment high speed datapaths through the use of electrical planes as EMI s

Unfortunately, this approach is not feasible in the stacked processor technology.

There exists a technology suited for dealing the unique constraints of the three d

sional stacked processor environment; Free Space Optical Interconnects(FSOI). Thi

nology uses lasers and optical detectors to transmit information through free s

Previous FSOI technology used discrete lasers and Multiple Quantum Well technolo

create an optical I/O channel. But recent advances in fabrication have allowed the

VCSEL’s, Vertical Cavity Surface Emitting Lasers, as a communications medium.

VCSEL’s are naturally formed in arrays, thus they have the advantage of being

suited for the fabrication of 2-D optical communications matrices. This format is idea

communications between 3-D processing stacks. By use of an optical approach, th

lems associated with the coupling effects of electrical connections carrying high spee

nals are eliminated.

1.1 Contributions

This paper strives to make the following contributions. First, a completely spec

design for an opto-electronic stacked processor architecture is presented. This de

based on behavioral/structural simulations and addresses the low-level functional

lems associated with the unique technologies that are incorporated.

5

tems

, prob-

nown

ide an

.

is unit

Phase

ESP

 tech-

entifi-

, this

n capa-

.

Second, a potentially useful method for modeling hybrid opto-electronic sys

using networking components as models is suggested. Through use of this approach

lems that occur in development can be identified through simple analysis of the k

models. The result is a structured approach to opto-electronic design that could prov

aid for the future development of more complex hybrid opto-electronic architectures

Third, a high speed transmission clock synchronization design is presented. Th

is capable of operating at the full transmission data rate without the need for Digital

Locked Loops (DPLL’s) or clock encoding by taking advantage of the unique 3D-O

environment. By assuming a synchronous clock with negligible drift, this high speed

nique provides data clock synchronization at a minimal hardware cost.

Finally, a power-up address resolution technique to achieve unique processor id

cation is explored. While similar techniques exist in more complex architectures

approach uses the hierarchal nature of the architecture and dynamic interconnectio

bilities of hardware description languages to eliminate application specific hardware

aper, it

-OESP

 can be

pixel

Figure

a pho-

lement

ed by
CHAPTER 2 - PREVIOUS WORK

2.1 Overview

To understand the current state of technology in the areas represented in this p

is advantageous to examine a few systems that bear some resemblance to the 3D

project. Through examination, strengths and weaknesses of each of the systems

identified forming a basis for developing a new design

2.2 Opto-Electronic Architectures

McArdle[14] demonstrates an optically coupled system using a single smart-

processing element array to implement a feedback-type architecture. As shown in

4, each stage in the computing system consists of three functional partitions. First,

todetector array receives data that is external to the device. Next, the processing e

array performs the actual calculations on the data. Finally, optical outputs are provid

the VCSEL array which flow into the next stage.

7

y a

. The

pology

ine is

l pro-

nt for

atrices

f opti-

of one

screte
FIGURE 4. Smart-Pixel Parallel Optoelectronic Computing System

A reflection phase modulating Spatial Light Modulator(SLM) is used to displa

computer generated hologram to dynamically change the interconnection topology

operation of the PE array can be changed on each cycle, and the interconnection to

can also be periodically changed by updating the pattern on the SLM. The mach

therefore completely programmable and is capable of performing a variety of paralle

cessing tasks.

This system has the advantage of a pipelined architecture which is very efficie

applications that can take advantage of this design. This system also uses VCSEL m

for communication between processors similar to 3D-OESP. However the number o

cal devices is high relative to the number of processors. The additional requirement

SLM per stage further increases the total device cost. Finally, the number of di

devices requires considerable effort in post-fabrication alignment.

Photodetector Array

Processing Element

VCSEL Array

8

 large

zed as

ys.

has a

 The

1 Gb/s,

an also

enefits

is per-

ard-to-

ersion

uting
Szymanski[15] presents a terabit, free-space photonic backplane consisting of a

number of parallel reconfigurable optical channels. The parallel channels are organi

a unidirectional ring with channel access protocols implemented by smart pixel arra

FIGURE 5. Hyperplane Architecture

The photonic backplane interconnects 32 Printed Circuit Boards (PCB’s) and

bisection bandwidth of 1 Tb/s, with each PCB receiving a bandwidth of 32 Gb/s.

backplane can be dynamically reconfigured to support 1024 broadcast channels at

32 broadcast channels at 32 Gb/s, or many intermediate values. The backplane c

embed arbitrary graphs, including meshes, hypercubes, shuffles, etc. This system b

from a high speed, high bandwidth optical channel. However, the actual processing

formed by discrete PCB’s thus reducing the performance density of the system.

Neff[23] has developed a free-space interconnect system that functions as a bo

board pipeline for connecting high-speed processing elements. The prototype v

employs an 8-by-8 smart pixel array. Each pixel has its own driver, detector, and ro

D R SPA
N O D E

D R SPA
N O D E

D R SPA
N O D E

D R SPA
N O D E

O ptica l
B ackp lane

9

 1-bit,

.

nnect

 indi-

both

erfect

 each

r it is

 holo-

 opti-

ection

ral-

ughput

om-

yload,

plished

een
electronics. They also have limited signal processing capability implemented by a

20-MHz processor that can perform 16 logic functions and has 4 kb of off-chip RAM

Routing is performed through a lenslet array and a holographic optical interco

element placed over each VCSEL photometer. A four-level hologram containing 64

vidual phase holograms (one per VCSEL) diffract the VCSEL beams. Although

smart pixel arrays are identical, the hologram implements a 2-D, nonseparable p

shuffle interconnection scheme that permits any two channels in the array to talk to

other. This system has potential for simple vector processing applications, howeve

limited by the speed and capability of the processing elements. The addition of the

graphic routing technique increases the total system cost.

Wu[16] has developed a networking scheme for transmitting three dimensional

cal packets. The system uses a Carrier-Sense Multiple-Access with Collision Det

(CSMA/CD) protocol modified for operation over ring networks to transmit Optical Pa

lel Data Packets (OPDP’s). Through the use of the parallel packets, higher data thro

is achieved.

The optical path is provided through the use of a 5x8 array of VCSEL’s with acc

panying support logic. The ODPD that operates on this channel contains a data pa

address information and a transmission clock. Synchronous transmission is accom

by aligning data with the optical clock. This allows high speed communication betw

systems with no external synchronization.

10

bined

, the

tation,

d to the

ts. To

 into

cial-
FIGURE 6. TRANSPAR Network Communication

This system shows considerable promise. The parallel optical backbone com

with optical clock results in a very robust design. However, like the other designs

number of optics per processing element is high.

2.3 Analysis

Each of these systems shows a high degree of functionality and a common limi

that of a high number of optical stages per processing element. These stages ad

cost through increased fabrication complexity and additional alignment requiremen

strive to minimize cost while keeping functionality, the optics need to be centralized

one unit. If possible this unit should strive to minimize or eliminate the need for spe

ized routing optics. Thus a high processor to optics ratio can be achieved.

3D-Packet

Data

Data

Address

Node

devel-

otons

ase of

edium

pplica-

cess is

w the

 atom

ulting

e cre-

ran-

ptical

 the-
CHAPTER 3 - THEORETICAL BACKGROUND

3.1 VCSEL Device Concepts

The underlying principles that photo-luminescent devices are based upon were

oped by Albert Einstein around 1916. His work was based on particles known as ph

that could be generated from atoms in a medium under specific conditions. This rele

photons is termed spontaneous emission.

The process by which spontaneous emission occurs begins with atoms in the m

at rest or in the ground state. Energy is then added to the medium through in the a

tion of heat or electrical energy, raising the electrical state for some atoms. This pro

known as pumping. The excited state is somewhat unstable and will, therefore, allo

atom to return to the ground state. However, to return to this lower energy state, the

must first lose its excess charge. This is achieved through the emission of a photon.

This process operates continuously in a photo-luminescent device with the res

photons producing a very efficient light source. This is the process widely used for th

ation of light emitting diodes or LED's. Unfortunately, this method of luminance is

dom and incoherent and thus is not useful for applications such as o

communications. For more uniform light source, we must look further into Einstein's

ory.

12

inter-

 atom

ion is

 same

enerat-

e the

otons.

 other.

toms

he par-

tion

d and

.

hieved

r the

ingent

ricate

nufac-

tion,
3.1.1 Light Amplification and Stimulated Emission

Once the basic principles were developed, Einstein examined the possibility of

action between the excited atoms. He theorized that a photon striking an excited

would release another photon that was essentially a duplicate of the first. This collis

known as stimulated emission. By being identical, the two photons would have the

energy (hence wavelength), polarity and phase. The result would be a method of g

ing a coherent light source.

Since the possibility of one photon striking another is relatively small, to generat

reaction in any usable quantity, one needs a large quantity of excited atoms and ph

This is accomplished through the use of two mirrors placed directly opposed to each

The photons generated in the medium will reflect off of each of the mirrors, striking a

through successive passes until sufficient energy is obtained to escape through t

tially reflective mirror. This process of photon generation is known as light amplifica

through stimulated emission. Light resulting from this process is coherent, polarize

within sharply defined wavelengths; the characteristics that constitute laser emission

3.1.2 Semiconductor Lasers

In 1953, von Neumann proposed the idea that stimulated emission could be ac

through carrier injection across a P-N junction.[2] This theory opened new doors fo

design of high quality laser devices, but was impractical for many years due the str

technological requirements that were inherent in the fabrication of the device. To fab

injection lasers properly, a technique must be used that provides a high degree ma

turing accuracy combined with low cost. With the advent of the computer revolu

13

came

 a P-

here

ately

l feed-

ing the

irror,

appli-

s are

gth of

ssible

ity with
semiconductor fabrication techniques evolved to the point where injection lasers be

both feasible and cost effective.

An injection laser is shown in Figure 7. It operates by applying a forward bias to

N junction. This results in the injection of electrons and holes into the active region w

they recombine, emitting photons. The energy of the emitted photons is approxim

equal to the semiconductor bandgap.

Once the photons are emitted, they must be contained in an appropriate optica

back system. In a semiconductor device, this is usually accomplished through cleav

device on a grain boundary. If properly formed, the interface will function as a m

reflecting the photons back into the cavity.

FIGURE 7. Illustration of a Semiconductor Injection Laser

3.1.3 Quantum Confined Semiconductor Lasers

A technique that is used to increase the efficiency of semiconductor laser is the

cation of quantum structures. Quantum confinement occurs when atomic waveform

trapped in structures that have dimensions comparable to the De Broglie wavelen

the electron itself.[3] The presence of the confinement structure changes the po

energy states achievable by the electron, thus creating an electronic resonance cav

Recombination
Region

Cleaved Mirrors

P-Type Region

N-Type Region

Lasing Region
N-Contact

P-Contact

14

 of the

 laser

only

 three

itional

s.

fes-

semi-

wn in

s with

ses

gests,
a limited number of possible solutions. These cavities can increase the coherence

confined particles for a given energy input, thus increasing the effective output of the

device.

Figure 8 shows a diagram of a two dimensional quantum structure, comm

referred to as a quantum well. This type of structure can be extended to one and

dimensional structures termed quantum wires and boxes, respectively. Each add

dimension of the quantum structure increases the coherence of the confined particle

FIGURE 8. Quantum Well Structure

3.1.4 VCSEL’s

VCSEL’s (Vertical Cavity Surface Emitting LASERS) were first proposed by Pro

sor Kenichi Iga at the Tokyo Institute of Technology during the late 1970s. They are

conductor lasers fabricated using the GaAs/AlGaAs/InGaAs material system. As sho

Figure 9, the vertical laser cavities are created by surrounding the quantum well

alternating layers of epitaxially grown film to form Bragg mirrors. The layer thicknes

in the mirror design define the emission wavelength of the laser. Like their name sug

Well

Barriers

Z-Axis

15

e of the

dge-

 level,

vices,

uch

length

Cur-

reater

ds to

rsam-

ith the
these devices operate in mode such that laser emission is perpendicular to the plan

substrate.

FIGURE 9. Vertical Cavity Surface Emitting Laser (VCSEL)

The key difference between the vertical-cavity and the conventional in-plane e

emitting laser is that the VCSEL can be entirely fabricated and tested at the wafer

while the edge-emitter is only completed once the wafer is cleaved into individual de

thereby forming facet mirrors. Thus, the handling involved in VCSEL fabrication is m

less than other designs. The laser active region of a VCSEL is typically one wave

thick, implying that VCSEL’s always operate in the fundamental longitudinal mode.

rent VCSEL are capable of transmitting data at 6 Gb/s with a potential for much g

speeds.[3][8]

3.2 Digital Transmission

Work in the area of data clock synchronization during data transmission ten

focus on recovery of clocks from embedded data streams through decoding or ove

pling. These approaches require the data being transmitted to either be encoded w

Bragg
Mirror

Bragg
Mirror

Contact

Contact

Quantum
Well

Emission

16

 or the

s, data

o the

s man-

ck sig-

e start

posite
transmitter clock signal, to be transmitted with a separate clock on another channel

receiver to operate at a higher clock rate than the source, as shown in Figure 10.

FIGURE 10. Traditional Transmission Techniques

3.2.1 Asynchronous Transmission

Figure 11 shows an asynchronous serial data frame format. As the name implie

frames transmitted using this technique arrive asynchronously in relationship t

remote system. The term asynchronous is relative since only the frames arrive in thi

ner. The data within each packet is arranged synchronously in relationship to the clo

nal generated from the start bit on the remote side for each packet.

A data frame consists of three components; the start bit, data, and a stop bit. Th

bit consists of a pulse for one baud cycle of an assertion level that is the electrical op

ReceiverTransm itter

Clock

Data

Synchronous with Discrete Clock Channel

ReceiverTransm itter
Clock + Data

Synchronous with Encoded Clock Channel

ReceiverTransm itter

Asynchronous using Oversampling

Data
Clock x16

17

a data

 a new

orien-

B)

ssert-

t can

ect. If

id.

mitter

ect the

ss. To

pically
of the idle level. The purpose of this bit is to serve as a marker for the beginning of

frame. A change from the idle state is used by the remote system to determine that

data frame is being transmitted

FIGURE 11. Asynchronous Serial Data Frame

Next in the frame is the actual data. It consists of 7 or 8 bits of binary data. The

tation can be either most significant bit first(MSB) or least significant bit first (LS

depending on the serial discipline being used.

Finally, the stop bit is transmitted. This designates the end of the data frame by a

ing the communication line to the same level as the idle level. The receiving uni

determine a valid frame by verifying that the levels for the start and stop bits are corr

this is not true, then a frame error is detected and the data is determined to be inval

3.2.2 Limitations of Asynchronous Transmission

It is important for the remote system to be synchronized to the speed of the trans

to properly decode the data stream being received. Even a small variance can aff

frame decode to such a degree that information transmitted will be rendered usele

resolve the synchronization problem, the remote system oversamples the input ty

Start
Bit

Stop
Bit

8 Data Bits

Idle Idle

18

 tech-

ion. It

 data.

arate

ential

ommu-

 stream

nd ’01’

um of

 can be

clock

 rate of
by a factor of 16, reconstructing the clock on the receiving end. This oversampling

nique is difficult to achieve in systems with extremely high system clock rates.

3.2.3 Synchronous Transmission

Synchronous transmission overcomes the limitations of asynchronous transmiss

is characterized by the transmission of a clocking signal simultaneously with the

This is accomplished in one of two ways. First, the clock is transmitted via a sep

channel that is received with the data. This clock signal is used to drive the sequ

logic in the receiver. This method is the easiest to decode, but requires a separate c

nications channel.

FIGURE 12. Manchester Clock Encoding

Second, the clock signal can be encoded with the data. Figure 12 shows a data

that is encoded using the Manchester technique. This approach substitutes a ’10’ a

signal for the 1 and 0 data transitions. Through the addition of this data, the spectr

the transmission has an additional regular frequency component added. This signal

locked onto with a Digital Phase Locked Loop or similar device. Using an encoded

allows the data and clock to be sent over one channel. However, the effective data

the communications channel increases.

Data

Xmit Clock

Manchester
Encoded Signal

Extracted
Clock

Data

19

tions

other

 shown

s with

trans-

 cycle.

re the

ion to
3.2.4 3D-OESP Approach

For fully unsynchronized systems with disjoint clocks, these are the only op

available. However, the unique environment of the 3D-OESP project provides an

possible solution. Each of the stacks is driven by the same external clock source, as

in Figure 13. Because of this, the signal that reaches each stack will be synchronou

respect to frequency, but some phase shift will exist. To achieve fully synchronous

mission, a method to determine the phase shift must be devised.

FIGURE 13. Clock Distribution Skew

The function to determine the phase difference must operate one step per clock

Due to the high speed of the clock, oversampling cannot be used. It must measu

skew in a manner similar to the operation of the receiver for any meaningful calculat

be performed.

Stack B

Clock B

Clock A

∆φ

Master Clock

Phase Differance

Stack A

ber of

ust be

r speed

rchal

cepts

rs the

e area

r and

ction

e cap-

e num-

t are

 rapid

e actual
CHAPTER 4 - DEVELOPMENT

4.1 Introduction

Developing systems involving opto-electronic components can present a num

challenges to the hardware designer. There are a multitude of issues that m

addressed when exchanging data between low speed electrical buses to the highe

optical environment. These hybrid architectures are further complicated when hiera

design strategies are applied.

In an attempt to reduce opto-electronic multiprocessor design complexities, con

from related fields have been applied. Among these fields, network architecture bea

greatest similarity. Many networking concepts have been applied successfully in th

of parallel processing[2] and optoelectronic systems[5][6]. It is obvious that compute

network topologies hold a number of similarities.

4.1.1 Impetus

The device technologies used in the optical area exist mainly in small produ

runs; therefore, their price is considerable relative to other technologies. To maximiz

ital resources during the development cycle, an attempt must be made to reduce th

ber of prototypes required. This requires extensive simulation of designs tha

developed by using sound operational concepts.

In order to accomplish these goals within the time constraints set for a project,

prototyping techniques also need to be applied. But these techniques only speed th

21

p the

odel

he crit-

of an

tional

t of a

chnol-

vice.

density

 other

nects

re the

n pro-

ptical

is the

id the
implementation of the design. Other techniques need to be utilized to quickly develo

architectural specifications.

4.2 Mapping Functional Specification to Network Topology

The first step to in applying this approach is to find an appropriate real world m

for the proposed system and map these concepts to an architectural specification. T

ical decision involved in applying the network topological concepts is the selection

appropriate model. This is accomplished through a careful examination of the func

specification.

4.3 The 3D-OESP Architecture

The 3D Opto-Electronic Stacked Processor project consists of the developmen

custom system architecture based around vertical chip stacking technology. This te

ogy combines individual VLSI die in a three-dimensional fashion to form a cubic de

These stacks are then used with optical interconnects to create a high-speed, high-

computational platform[21].

The architecture needs to support the calculation of two dimensional FFT’s and

digital signal processing functions using VCSEL based free-space optical intercon

for communication between planes (die) and stacks[22]. Major architectural points a

development of reliable high speed serial link and an inter-processor communicatio

tocol. This protocol must account for the unique requirements of the free-space o

interconnects while maximizing the available bandwidth[8]. One such requirement

need to incorporate many simultaneous serial communication links in order to avo

problems of synchronization and skew across bits in a parallel word.

22

 full-

This

clud-

tional

particu-

rmed

unica-

mitted

on

smis-

ing a

d desti-

yn-

 CPU’s

queu-
Inter-stack communication will be accomplished through the design of a robust

duplex optical link centered around two-dimensional VCSEL-detector arrays[20].

link should be self sufficient, containing all necessary logic required for operation in

ing electrical/optical domain transfer circuitry[7].

Figure 14 shows a block diagram of the proposed system. The three major func

blocks are the processor stack, opto-electronic arrays and the crossbar stack. This

lar configuration consists of 16 dies in each of the two stacks. Computation is perfo

in the processor stack, with each plane having four general purpose CPU’s. Comm

tion between dies is accomplished through the opto-electronic arrays. Data is trans

to the crossbar stack, which is rotated 90° relative to the processor stack. This orientati

allows the data to be routed to a different part of the optoelectronic array for retran

sion to the processors.

FIGURE 14. Block Diagram for the 3D-OESP System

Figure 15 shows a simplified block diagram of the 3D-OESP project implement

pair of processor and crossbar dies. In the architecture, the CPU’s are the source an

nations for all packet traffic. The Bus Arbitration Units(BAU’s) provide byte level s

chronization and allocate bus access between CPU’s. The connection between the

and BAU’s is a local tri-state parallel data bus. To provide global communications, a

O ptica l
I/O

Crossbar
M atrix

Processor S tack

O ptical
I/O

23

 and

ix of

vides

. The

 corre-

cally to

igher

s. The

ment.

es for a

16, is
ing crossbar is included to determine the destination BAU for incoming packets

retransmit to that location. BAU-to-crossbar interconnection is provided by a matr

free-space optical interconnects(FSOI). Finally, the External Data Interface(EDI) pro

an electrical connection for transmission of data to and from the 3D-OESP system.

FIGURE 15. Simplified 3D-OESP Topology

4.3.1 Functional Inferences

Using the 3D-OESP specifications, a few simple comparisons can be made

CPU’s function as endpoints for data generated on a tri-state bus. Thus they would

spond to network nodes transmitting on a broadcast bus. Data can be transmitted lo

the plane or to CPU’s that reside on different planes within the system.

Transmission to a different plane would require that the data be forwarded to a h

level component that has knowledge of the physical relationships between the plane

forwarding concept is used for transmitting between subnets in a network environ

Since subnets are local in nature, this concept could be applied stating the boundari

subnet and transmissions within a plane. Forwarding of packets, shown in Figure

CPU

CPU

CPU

CPUBAU

CPU

CPU

CPU

CPU BAU

Crossbar

FSOI FSOI

BusBus

EDI

DieDie

24

ork

entral

k rate

usly

of its

s” are

ed that

ection

cen-

ts des-

ask, it

ddress
provided through the BAU, which is a function traditionally performed by a netw

router.

FIGURE 16. Applying Subnet Concepts to the Plane

Global data in the system is transmitted by the free-space optical link to a c

crossbar. The optical link has a much higher bandwidth capacity due to a higher cloc

than the local parallel buses and is functionally different in its operation. It obvio

requires some type of data conversion and multiplexing to make maximum use

capacity. In large networks, high-speed, global fiber connections, termed “backbone

used to handle the large amount of traffic between subnets. Since we have establish

each of the planes roughly corresponds to a subnet, it follows that the global conn

between these could be represented by a optical fiber backbone.

The job of routing global information in the 3D-OESP system is performed by a

tral crossbar. This device receives information from each of the planes, determines i

tination plane and retransmits it on the appropriate optical channel. To perform this t

must have knowledge of the locations of each of the planes and their associated a

CPU

CPU

CPU

CPUBAU

Die Boundar y

Crossbar
Local Plane

Transmission
Via Bus

Global S ystem
Transmission

Via FSOI

25

onous

input

nforma-

Data

at are

ation

archi-

way.

.

ubsti-

cture

. Each

ted glo-

affic

sed on
ranges. Based on this information, an appropriate model would be an Asynchr

Transfer Mode switch. This device is designed to take network data from multiple

channels, and reroute it to destination ports based on the encapsulated address i

tion.

The final portion of the 3D-OESP architecture to be examined is the External

Interface (EDI). This is a communications interface that provides a link to systems th

not directly part of the system architecture. Its main tasks are to provide the initializ

data for processing and to download the resulting data after computation.

Assuming that we have successfully created a network model for the 3D-OESP

tecture as a whole, it would follow that the EDI could be considered a network gate

This gateway would provide access to the systems external to the basic architecture

Figure 17 shows an equivalent network topology based on the initial analysis, s

tuting an appropriate network component for each functional block in the archite

specification. In the model, the CPU’s are represented as traditional network nodes

of the nodes is connected on a common bus to form a subnet. Subnets are connec

bally through high-speed fiber channels to a central ATM switch. To provide local tr

isolation, each subnet is provided with a router to discriminate between packets ba

their destination address. A gateway is provided for external access to the network.

26

re are

ned to

 solu-

od of

quire a

nforma-

ission

e data

h the

rcuits
FIGURE 17. Equivalent Network Model

4.4 Application of Topological Concepts

Once an appropriate model is selected, the specifications for the architectu

developed. As decisions concerning functional trade-offs arise, the model is exami

see how it implements a solution. By mapping this to the architectural specification,

tions will become apparent for many problems.

4.4.1 Data Transmission Methodology

The first decision to be examined under the network model is that of a meth

transmission throughout the system. Since transmissions on a broadcast network re

destination address, some form of binding is necessary to associate the address i

tion with its data. Networks accomplish this through the use of a structured transm

packet. This packet format specifies the relationship of the address information to th

being transmitted.

Next, a transmission protocol must be determined. This can be provided throug

establishment of a virtual circuit or by connectionless packet transmission. Virtual ci

Node

Node

Node

NodeRouter

Node

Node

Node

Node Router

ATM

Fiber Fiber

Bus Bus
Gatewa y

SubnetSubnet

27

. They

owever,

and are

e ini-

ssing

. The

ation.

tion,

n, the

sed by

 in the

 later
have overhead relating to the creation and destruction of the communication path

are ideal for extended unicast transmissions by the same source and destination. H

for short bursty traffic, set-up and tear down overhead can be significant.

Connectionless transmissions require the address overhead on each packet

therefore, inefficient for extended data transmissions. However, they do not incur th

tialization overhead of the virtual circuit.

The applications targeted for the 3D-OESP project are of a distributed proce

nature. This means that data will be ordered, yet bursty, similar to ethernet traffic

model in this case dictates a connectionless, packet oriented approach.

FIGURE 18. Packet Transmission Format

Figure 18 shows a layout of the packet format used in the 3D-OESP specific

The packet transmits a 64-bit payload. With the number of CPU’s in the full specifica

6-bits of address are needed to fully identify a destination. Along with the destinatio

source address, offset and mode bits are also specified. This information is mainly u

the destination CPU’s and could therefore be considered to be data. By specifying it

system level packet, this information would be available for future expansion at a

time.

6 B it Target Address

9 Bit B lock O ffset

6 B it Source Address

64 B it Payload1 B it C ontrol

LSB

M SB

28

 para-

 some

ming

hile

es for

cifies

smis-

e data

ded, as

from

oniza-

ring of

mission

ored. If
4.4.2 Packet Framing

Once a packet format has been established, the problem of framing becomes

mount. Data that will be transmitted over a high-speed serial channel must provide

method of explicitly specifying the beginning and end of each of the packets. This fra

information should be sufficient to be positively identified in the presence of errors, w

not providing significant overhead to the packet.

Packet oriented transmission is classified as synchronous in nature and provid

two approaches to providing frame synchronization. Character synchronization spe

data boundaries through the embedding of STX-ETX (Start Transmission, End Tran

sion) characters in the data stream to identify the boundaries of the data. To provid

transparency, STX-ETX characters that appear the in the data packet are prece

shown in Figure 19, with a DLE (Data Link Escape) character to differentiate them

the packet boundaries.

FIGURE 19. Character Synchronization

This concept can also be applied at a lower level through the use of bit synchr

tion. Figure 20 shows a technique known as bit stuffing that uses a consecutive st

1’s or 0’s as a frame boundary sequence. The length can be sized for greatest trans

efficiency as the packet is considered a bit stream and character boundaries are ign

S TX S TX E TX‘A ’ ‘B ’ ‘A ’ ‘& ’D LED LE

‘A ’ ‘B ’ ‘A ’ ‘& ’D LE

O rig ina l P acket

Fram ed P acket

29

 frame

ieved.

refore,

 actual

ed.

ion of

f access

imple-

ols are

and

Once

y from

 ring

state
the data stream contains a sequence of 1’s or 0’s that is equal in length to the

sequence, a 0 or 1 is inserted to break the run. In this way data transparency is ach

FIGURE 20. Bit Synchronization

Either approach is acceptable in the network model that we have created; the

the decision should be based on the factors relevant to the architecture. Since the

nature of the data will vary from each application, some flexibility will be desir

Because of this, the bit stuffing scheme is preferred since it handles the transmiss

binary data or printable characters with similar efficiency.

4.4.3 Arbitration and Collision Avoidance

Since we have several processors that have need of the local bus, some type o

protocol is necessary to prevent collisions. This protocol must be robust, easy to

ment and minimal in resource costs. The three main types of network access protoc

Token Ring, Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Token Bus.

Using a token ring approach, a token would be transmitted to each CPU.

received, that CPU would have access to the bus. Data is transmitted sequentiall

each CPU in the ring until it is forwarded or reaches its ultimate destination. Token

provides the best utilization of the bus, but it would require considerable VLSI real e

for the routing of the ring.

O rig ina l Packet

Fram ed Packet

110010101100011111011111

0111110110010101100011110101111010111110

30

CPU

ously,

gth of

ollec-

um

le bot-

 of a

 on the

 utili-

wever,

 The

central

iter.

ess to

local

 high-

ets, it

e addi-
CSMA/CD would allow each CPU to transmit on the bus as necessary. The

would then listen to its transmission to see if another CPU transmitted simultane

destroying its data. If a collision was detected, each CPU would wait a random len

time and retransmit. CSMA/CA is easily implemented through the use of an open-c

tor interface for each of the CPU’s. However, it only allows up to 20%-40% of maxim

bandwidth before collisions become a problem. Since the parallel bus is the probab

tleneck in the design, this would be inadvisable[10].

Token bus provides the high speed of the token ring with the routing simplicity

broadcast protocol. It transmits the token to each of the CPU’s and data appears

central bus. Token bus also provides excellent throughput, achieving 80% bandwidth

zation of a communications channel[11].

For the given architecture, token bus appears to hold the best performance. Ho

a full implementation is not required because of the close proximity of the CPU’s.

concept can be distilled to its basic concepts, a broadcast based protocol with a

arbitration authority. In the modified protocol, the BAU would serve as a bus arb

Through control lines, it would signal to each of the processors when they have acc

the bus.

4.4.4 Optical Backbone

In the network model, a traditional broadcast connection is implemented for all

communications within the subnet. Global communications are accomplished over a

speed fiber backbone. While not capable of transmitting the aggregate of all subn

does provide a higher capacity channel. This channel is capable of processing th

tional addressing overhead that is required.

31

ge of

e low

 free-

elative

y pass

work.

 that a

twork

mance

t data,

t have

etwork

ing

al sub-

, but

et with

ll appear
A single plane would use a fraction of the FSOI throughput. To take full advanta

the higher bandwidth of the optical channels, multiplexing is used to combine thes

speed data paths. Time domain multiplexing over multiple channels is well suited for

space optical interconnects due to their digital nature, high switching speed and r

immunity to channel crosstalk

Since addressing information is encapsulated into the global packets when the

through the local router, the CPU’s must know something of the topology of the net

This requires a processor that is larger and more application specific. The result is

general purpose CPU would need to be modified to work in this architecture.

4.4.5 Routing

To achieve the lowest transmission latency possible, it is desirable to have all ne

nodes on a common broadcast bus.[12] However, this can drastically reduce perfor

in hierarchical topologies. In these systems it becomes necessary to filter irrelevan

preventing it from being needlessly retransmitted.

To achieve this selective retransmission, the components within the system mus

some knowledge of the address ranges for each of the transmission channels. In a n

environment, routers perform this function, reducing overall traffic by intelligent filter

of packets. Transmissions with local addresses are destined for nodes within the loc

net and are prevented from joining global backbone traffic.

In the network model, the ATM knows of the existence of each of the subnets

nothing of the addressing scheme within them. Therefore data is routed to the subn

the appropriate address range. Since each subnet is broadcast based, the data wi

on the bus allowing the appropriate CPU to recognize its respective data.

32

f the

 to the

 from

 that

will be

t has a

f how

nt, hard-

s are

etwork

ch is

 some

ter an

s not

 since

ar more

es dur-
Applying this to the system architecture, the crossbar would have knowledge o

address ranges for each of the planes. Data that flows through it would be sent

appropriate optical channel. But some mechanism must exist to prevent local data

being transmitted to the crossbar.

The BAU performs this filtering function locally. If a packet appears on the bus

has an address that does not correspond to the allowed range within that plane, it

forwarded to the crossbar for redirection. However, when a packet is transmitted tha

local destination, it appears only within the plane.

4.4.6 Node Address Assignment

One of the key problems in the 3D-OESP architecture was the determination o

CPU’s addresses were assigned. Two approaches are used in a network environme

wired addressing and software update.

Hardwired addresses have the advantage of simplicity. Network addresse

assigned by manually configuring the adapter. This is a good approach for a static n

topology, but in order to implement a dynamic architecture, a more robust approa

required.

Software-updated addresses allow a node to obtain its network address during

initialization phase. The address is received from some central network authority af

initial query. By allowing a system to start in an unknown state, local configuration i

necessary.

Either approach is supported by the model. The software approach is preferable

it allows each processor to be general purpose. However, software addresses are f

complex to create. Ethernet networks use a central authority to assign node address

33

cer-

xist on

r the

 pro-

evel of

rox-

.

tep,

m of

nsmit-

tion of

 capa-

em is

erred

t with

 order
ing adapter initialization using the BOOTP protocol. Thus the configuration, within

tain limitations, doesn’t require hardware changes.

Using the centralized approach, an address server of some description must e

the network. This is accomplished in a number of levels. First, the central authority fo

subnets would obviously be the ATM switch. Due to its location, it would be able to

vide high order addressing bits, roughly analogous to a subnet mask. The second l

authority must reside within the subnet. This task is performed by the BAU. With its p

imity within the subnet, it can assign the final bits of addressing to each of the CPU’s

From this, it follows that the initialization process would be two step. In the first s

the crossbar transmits an information packet to each the of the BAU’s, informing the

their respective high order addresses. The second step would involve the BAU’s tra

ting the complete address to each of the processors on the local bus. At the comple

this step, each of the processors is initialized relative to its location in the bus and is

ble of sending and receiving data.

4.4.7 Multicasting

One of the functions that would be required during start-up of the 3D-OESP syst

the broadcast of initialization data from the EDI to all the CPU’s. Data that is transf

will be identical, differing only in address. The simplest approach is to create packe

a destination for each of the CPU’s but this uses a large amount of bandwidth, on the

of:

(EQ 1)

where,

E = Bytes transferred through system

E nmp=

34

tional

n as

roup

mpt to

nough

 that

s the

 is a

ing
n = Number of planes

m = Number of CPU’s

p = Size of packet in bytes

Given that this operation could be performed numerous times during a computa

cycle, it would be desirable to reduce this overhead.

A technique employed by networks to deals with packets of this nature is know

multicasting is shown in Figure 21. This allows a packet to be transmitted to a g

address. The packets are received by Directory Service Agents (DSA’s), which atte

determine the destination for each of the packets. If the local DSA doesn’t have e

information to determine an address, it forwards a copy of the packet to all DSA’s

could provide more information.

FIGURE 21. Multicasting Data Flow

Using a multicast packet in the network model, we follow the above example. A

packet is transmitted from the EDI, it first encounters the ATM switch. Since this

switching point, it would follow that it operates as the first level DSA. The ATM, be

DSA DSA DSA

DSA

Multicast
Packet

A

Cop ied
Packet

Cop ied
Packet

Cop ied
Packet

35

of the

o oper-

on the

r the

adcast

d N*P
unable to completely decode the destination for the packet, would forward a copy

packet to each subnet. These copies would be received by each router, which is als

ating as a DSA. The local router would complete the address and place the data

local bus for each node to receive.

In the architecture specification, the ATM and BAU would operate as the DSA fo

system. Each would copy the packets and forward them to the next level in the bro

tree. The resulting bandwidth usage for this transmission would be P at the EDI an

over the FSOI with no increase in processor complexity.

f these

 being

isserta-

its and

ializa-

sists of

phase,

on or
CHAPTER 5 - OPERATION

5.1 Operational Flow

The system has three different phases in its operation. Boundaries of each o

phases are not tightly defined as the they are determined by the processing units

used in the architecture and their associated application. For the purposes of this d

tion, we will assume the processing elements are general purpose computational un

the application is a high speed FFT. In the 3D-OESP project, the three phases are:

• Initialization

• Execution

• Termination

Figure 22 shows the relationship between the phases during runtime. In the init

tion phase, the system is configured for the task at hand. The execution phase con

all operations necessary to perform the actual calculations. During the termination

all products of the calculation are off-loaded to an external processor for evaluati

storage.

37

e the

sors are

data.

ust be

iations

ission

ending

ntro-

ariation
FIGURE 22. Operational Flow

5.1.1 Phase I - Initialization Sequence

Immediately after power-up, the system must perform a series of steps to initializ

processor and support hardware. The assumptions being made are that the proces

capable of asserting a ready signal once they are powered up and ready to receive

5.1.1.A Training

Before any data can be transmitted through the optical channels, the receivers m

synchronized with respect to the data clock. The inherent process and thermal var

that can occur in the system could be sufficient to skew the clock and cause transm

errors. Given these changes, the output of a given transistor can change greatly dep

on its location within the stack. In a communication circuit this can result in errors i

duced in the data stream. Therefore, steps must be taken to compensate for this v

in output.

Reset

A ddress
R e so lu tion

D a ta
U p load

Ins truc tion
U p load

Calculate

Data
DownloadTranspose

Calculate

Initialization Execution Termination

Train ing

38

 the

ess is

 trans-

h end

receiv-

it to the

 good.

quence

eivers

errors.

 name

er it is

ring

d itself

ation

 each

ve as

he fol-

essor
To account for potential shift in the data clock, a technique for determining

amount of skew present and compensating for it must be implemented. The proc

referred to as training. The key to the successful use of this technique is that both the

mitter and receiver have reliable clocks and that there will be no drift relative to eac

of the optical channel.

The training sequence begins by transmitting a known sequence to each of the

ers through the FSOI. Each receiver begins decoding this sequence and comparing

expected result. If the transmission is acceptable, that clock channel is marked as

Next, the receivers switch to a slightly more delayed clock and receive the same se

again. This continues until all possible clocks are tested. Once completed, the rec

examine the results and select a clock that is most distant from any transmission

This clock is then selected as the primary reception clock.

5.1.1.B Address Resolution

To communicate with the others in the stack, each processor must both know its

and the name of the destination. This address must exist in one of two ways; Eith

pre-existing(Hardwired) or it is told by a central authority during power-up. Hardwi

the address into each unit is both expensive and time-consuming. It does not len

well to a system that is flexible in design. Therefore, it was decided that an initializ

protocol would be designed to inform each device of its address.

Since each processor must be wired to the BAU for reception of interrupts and

line had to have priority to prevent deadlock, it was determined that this would ser

local processor address for the die. This process, shown in Figure 23, consists of t

lowing. Immediately after reset, the BAU will transmit a packet to a selected proc

39

sor as

 the

dress

l to the

 BAU.

is unit

annot

d, the

e BAU

ves the
with an ID in it. This Address Resolution Packet (ARP) would be used by the proces

its source address. This process would be repeated for each processor on the die.

FIGURE 23. Address Resolution During Power-Up

An additional identification must be made with respect to the individual planes in

stack. Each must be uniquely identified for routing through the crossbar. This ad

must be generated external to the processor stack and reside with an authority loca

die. The crossbar matrix is connected to each die plane in a fashion similar to the

However, there is no compelling reason to prioritize the connections. Regardless, th

can assign an ID through a unique connection established via the FSOI.

After reset and until the BAU receives its plane address, it is in a hold state. It c

process any information from the external data interface. During this same perio

crossbar will transmit a packet to each plane. These packets will be addressed to th

and also have the address for that plane. Once this packet is received, the BAU sa

Crossbar
Router

B AU

P rocessor

P rocessor

P rocessor

B AU P rocessor

A R P
S ent to
B AU ’s

A R P
S ent to
P rocessors

40

egin

ces-

nami-

dded

func-

adcast

seful

ol=0,

ther

er pro-

nsmit-
plane address, exits the hold state. Additionally, if it is BAU 0, it instructs the EDI to b

transmitting data.

5.1.1.C Instruction/Parameters Upload

For compatibility, there is support for uploading instructions to each of the pro

sors. By using an external program download, the system can be reconfigured dy

cally for different functions. However, this step is optional for processors with embe

programs.

The architecture supports two types of control instructions that provide for this

tionality. The address space for these instructions is shown in Table 1. First, the bro

instruction(Control=1, Mode=1) will send the same packet to all processors. This is u

for synchronization instructions. Second, the processor control instruction (Contr

Mode=1, Address=Target) allows point to point transmission of information to ano

processor in the system. This would be targeted for configurations that have a mast

cessor and multiple slaves. Specifics pertaining to the nature of the instructions tra

ted are processor dependent.

TABLE 1. Packet Address Bit Mapping

Unit Control Bit Mode Bit Plane Address Data

Processor 0 0 XXXX XX FFT Data

Processor 0 1 XXXX XX Processor Control Instruction

(Processor Dependent)

Processor 1 0 XXXX XX FFT Instruction/Parameters

BAU 1 0 XXXX 01 See Control Table

EDI 1 0 0000 00 Data for Off-load

Crossbar 1 1 0000 00 Broadcast data

41

 neces-

opriate

to the

 be sig-

 execu-

ding on

rating

s as the

 issues

esyn-

dware

 pro-

ther pro-

ting the

 these
5.1.1.D Data Upload

Once the instructions to the processors have been transferred, the actual data

sary for the calculation must be uploaded. Each packet is generated with the appr

processor address and placed on the EDI bus. The EDI will then inject the data on

plane 0 bus which will route it similar to normal internal traffic.

5.1.2 Phase II - Execution

Once all data has been transmitted, the executional phase can begin. This can

nals by a broadcast command that is transmitted to each of the processors to begin

tion. If necessary, each of the processors can transmit an acknowledgment, depen

the application being performed. At this point the system becomes autonomous, ope

independently of the EDI. Messages and data are exchanged between processor

application requires.

5.1.2.A Transpose

The FFT transpose can be considered a component of the execution phase. Key

relation to this part of execution are the need to provide synchronization or tolerate d

chronization within the system. As the applications can vary greatly, no suitable har

can be designed to provide this level of control in all applications. It will be up to the

cessors to address the issues of deadlock.

One approach is to have each processor transmit a broadcast message to the o

cessors to signal that it is ready to transpose. This had the advantage of enumera

current phase of system, but the system could enter a blocking state if reliance on

messages is enforced.

42

m the

d of this

on is

0, Tar-

pera-

ailing

 serial

iving

eiving

y the

sitate

ation

k.

used

, a high
Second, a robust transposition algorithm could be developed that could perfor

transpose with the processors in various states of readiness. The software overhea

approach is much larger, however the possibility of deadlock is reduced.

5.1.3 Phase III - Termination

This phase consists of off-loading the data through the EDI. The transmissi

accomplished through the use of EDI data packets (Control=1, Mode=0, Plane=000

get=00). These packets will be routed by the BAU to the EDI and off the system. O

tion will continue with the downloading of data in the initialization phase.

5.2 Serial Data Format

This information consists bit level encoded packet consisting of a leading and tr

violation sequence to precisely mark the starting and ending boundaries for the

word. Transmission will be synchronized due to fact that the same clock will be dr

both the transmitter and receiver, removing the need for clock synthesis on the rec

end. However, some clock skew will be present. This skew will be compensated b

aforementioned training sequence

5.2.1 Error Detection and Correction

Errors existing in a transmission, coupled with the need for a reliable link, neces

the use of Error Detection and Correction (EDC). This technique allows communic

lines with less than perfect characteristics to operate as if they were an error free lin

The first step in ensuring a reliable link is error detection. Two methods are

based on the type and amount of data transmitted. For transmissions through FSOI

level of reliability must be maintained.

43

gic,

rrect a

ancy

e fact

dulo 2

h the

aring

eiver.

mation

 of the

ontal

routing
In order to reduce the complexity involved in implementing retransmission lo

redundant information is added to the outgoing data to allow the FSOI receiver to co

limited amount of errors. This is accomplished through the use of a Cyclic Redund

Code(CRC). CRC’s are well adapted for use in this type of transmission due to th

that they are calculated in a serial fashion. A CRC code is calculated by repeated mo

multiplication of a data stream by a generator polynomial.

As shown in Figure 24 the data stream, represented by D(X), is shifted throug

generator circuit. Exclusive-OR’s perform the modulo 2 arithmetic, the result appe

serially as V(X). The resulting code polynomial is then transmitted to the remote rec

Using the same generator polynomial, the receiver then decodes the received infor

giving the actual data. The remainder, also called the syndrome, gives the status

transmission. A non zero value is returned when a single bit error is detected[13].

FIGURE 24. Cyclic Redundancy Code Block Diagram

5.3 Packet Routing

The 3D OESP system employes a two stage routing algorithm divided into horiz

and vertical planes. The differentiation of these planes is due to the 90° rotation of the

stacks relative to each other. To take advantage of this relationship, an asymmetric

Z-1

D(X)

V(X)

Z-1Z-1

Shifter XOR XORShifter Shifter

44

vement

e it is

likely

acket

ckets

. The

address

appro-

 to the

eue to

 mul-

. Each

contains

on each
methodology has been adopted, shown in Figure 25. Because of this approach, mo

through each plane has a different effect on the packet being routed.

The packet’s horizontal plane destination is based on channel availability. Sinc

possible to have multiple packets arriving on each plane simultaneously, it is very

that there will be variations in the time to service a particular channel once the p

arrives. Given this, a simple algorithm is employed to keep track of the number of pa

sent to a plane, and base a channel’s future availability on this factor.

FIGURE 25. Two Stage Routing Diagram

Movement through the vertical plane selects the physical plane destination

crossbar determines the target plane for each packet by examining the destination

contained within it. Once the target is determined, the packet is then routed to the

priate channel. Assuming the channel is free, the packet is immediately transmitted

destination plane. In the case of channel contention, the packet is placed in a qu

await transmission at a later time

5.4 System Scaling

There are two physical topologies for the 3D-OESP system when operating with

tiple processor stacks. Figure 26 shows the system operating in a star configuration

processor stack is arranged around a central crossbar stack. The crossbar stack

one crossbar die for each processor stack per plane. This dies are interconnected

Horizontal
Plane

Routing

Vertical
Plane

Routing

Based
On
Target
Location

Based
On
Channel
Availability

Data

Processor Stack Crossbar Stack

45

ution is

of note

te clock

ed in a

bar/pro-

tage of
plane to facilitate communications between the processor stack. The address resol

between crossbars is carried out on this bus, as well as runtime data transfer. Also

is the clock phase variation between stacks. The crossbar operates on the opposi

period as each of the processors. This provides a further level of synchronization.

FIGURE 26. System Scaling - Star Configuration

Figure 27 shows the system in a linear topology. The crossbar stack are arrang

line with one stack per processor stack. The clock phases alternate between cross

cessor stack pair. Each adjacent stack being opposite in phase. The primary advan

this configuration is that is can be scale indefinitely.

P

X P

P

P

Clock

Clock

X

X

X X

Interplane
Bus

Crossbar
Die

46

sion of

 by the

ificant

uests

f the

 query

t with

 of the

ible. If a
FIGURE 27. System Scaling - Linear Configuration

The addressing of multiple processing stacks are supported through an exten

the power up address resolution protocol as shown in Figure 28. Operation begins

crossbar transmitting a query packet to any potential recipient on the Least Sign

Databus(LSD). The crossbar will then wait for a period of time equal to:

(EQ 2)

Where B is the number of bits in the address space. If during this time any req

are received on the Most Significant Databus (MSD), they are queued.

If an acknowledgment packet is received, it will contain the source address o

sending crossbar. From this, the receiving system, can determine its address. If a

packet was received from the MSB, the crossbar must transmit an acknowledgmen

its address as the data.

If the time-out expires before an acknowledgment is received, such as the case

last device on a chain, the crossbar assumes the value of the lowest address poss

request was received, it is acknowledged with the proper value.

X

P P

X

P

X X

P P

X

Clock

Clock

t x() 2B=

47
FIGURE 28. Crossbar Address Resolution Flow

X

P P

X

P

X

Clock

Clock

#2:REQ

#3:ACK

#1:REQ

#4:ACK
LSD MSDLSD MSDLSD MSD

allows

s are
CHAPTER 6 - ARCHITECTURE

6.1 Overview

The 3D OESP system consists of the following components:

• Processors

• Bus and Associated Control Logic

• Free Space Optical Transceivers (FSOT)

• Crossbar Routing Matrix

• External Data Interface (EDI)

Figure 29 shows the system in its proposed silicon testbed. The testbench

alignment of the optics and supplies power to each of the stacks. Additional optic

present to provide the necessary gain at the receiving stack.

49

. How-

tion of

ned for

calcu-

pera-
FIGURE 29. 3D-OESP System Test Environment

6.2 Processors

The architecture is designed to support a number of general purpose processors

ever, for the purposes of this paper the processor being used to support the applica

the 3D-OESP consortium is presented. This processor, shown in Figure 30, is desig

general purpose calculations such as high speed FFT transforms, FIR and IIR filter

lations. Developed with a scalable internal architecture, this device is designed for o

tion in highly parallel configurations such as 3D-OESP.

16x16
VCSEL
Array

Bump
Bonding

Diamond
Spacers

2.5cm

CPU
Stack

X-Bar
Stack

© 3D-OESP Consortium

Focusing
Optics

50

shown

terrupt

nter-

his line

dlock.
FIGURE 30. FFT Processor

6.2.1 Processor Interface

The processor communicates through a 85-bit bidirectional parallel data bus as

in Figure 31. This bus is divided into data and address vectors. The bus supports in

driven I/O with bus contention being resolved externally.

FIGURE 31. FFT Processor - Block Diagram

The following control lines, shown in Figure 32, are provided to the processor i

face. The Data Ready line signals the bus that the processor is ready to send data. T

is captured by the Interrupt Request Unit and the data is buffered to prevent dea

Data Ready

Data[0-63]

Load

Address[0-20]

Busy

Generic
Processor

51

and not

 data

hrough

duced,

he bus

unica-
Busy is a signal generated externally to instruct the processor that the bus is busy

to transmit data. Finally, the load signal is provided to inform the processor that valid

is present on the bus to be transferred.

FIGURE 32. Processor Data Transfer Timing Diagram

6.3 Tri-State Bus and Bus Arbitration Unit

The 3D OESP system uses a centralized tri-state databus for communications t

a die as shown in Figure 33. By using this centralized approach, routing area is re

saving time and equalizing propagation delay. Since all components connected to t

operate independently of each other, some mechanism is required for orderly comm

tion. The Bus Arbitration Unit performs this task.

Clock

Data Ready

Load

ZData[0-63]

Address[0-20] Z

Busy

FF Z FF Z

FF Z FF Z

52

pro-

e cen-

rrupt

ther

g of a

 Fig-
FIGURE 33. Bus Layout

The Bus Arbitration Unit (BAU) shown in Figure 34 is the interface between the

cessors local to the die, external data interface and the optical interconnects. It is th

tral authority for communications along the central databus. The BAU receives inte

signals from interrupt controller indicating a processor attempting to transmit.

FIGURE 34. Bus Arbitration Unit - Block Diagram

As shown in Figure 35, the priority of a request is determined relative to o

requests that may be pending. A higher level interrupt received before the processin

lower level event will result in the higher level being processed first. This is shown in

Bus Arbitration Unit

Optical Transceivers

Processor IR
Q

Processor

IR
Q

Processor IR
Q

Processor

IR
Q

Bus
Arbitration

Unit

Ready*

Data[0-63]

Address[0-20]

Load

IRQ[0-3]

Data[0-63]

Address[0-20]

Load

ACK[0-3]

*Open Collector Output

E
D

I

53

ceiver

 of four

est to

an on

phys-

ucting

 optical

nica-

hro-
ure 35. In the current configuration, a request from the Free Space Optical Trans

(FSOT) overrides any processor requests. Since the FSOT operates at an average

times the data rate of any of the processors, it would necessarily be a priority requ

provide optimal throughput.

FIGURE 35. Bus Transfer Timing Diagram

Once the interrupt is serviced, the BAU must determine whether the request is

or off chip destination. This is accomplished by translating the local destination to a

ical destination address internally. On chip addresses are completed by simply instr

the appropriate processor to load the data. Off chip addresses are routed to the

interface, along with the translated destination address.

6.3.1 External Communications

The BAU also acts as the arbiter for the External Data Interface(EDI). Commu

tion with the EDI provides a particular challenge since it is driven by multiple async

Clock

ZData[0-63]

Address[0-20] Z

IRQ0

Z

Z

ACK0

IRQ1

ACK1

IRQ2

ACK2

54

to the

 open

uits

s driv-

blem

r each

om the

will

 of the

t Con-

 inter-

cessor

e logic
nous drivers. This multiple driver issue is due to the nature of the EDI connections

processor stack. To resolve the multiple driver issue, all outputs from the BAU are

collector, allowing multiple drivers on a single line without the possibility of short circ

between fighting outputs. However, the problem of collisions still exists.

To address the collision issue, there must be a method for eliminating extraneou

ers that do not have direct communication with each other from the EDI. The pro

draws a solution from the fact that each BAU must have a unique address in order fo

packet to have a destination. This address is used to isolate unneeded drivers fr

EDI. Using this approach, only BAU0 will communicate with the EDI. Other planes

be electrically isolated via the tri-state data and address buses with the exception

previously mentioned Ready line.

6.4 Interrupt Controller

Since each of the processors is general purpose, it will be the job of the Interrup

troller provide the required logic to facilitate transfers between the processor, optical

connects and the data bus. Shown in Figure 36, its job is to queue data from the pro

and route it to its respective destination. It provides the special purpose handshak

that, in conjunction with the BAU, allows orderly sequential access to the data bus.

FIGURE 36. Interrupt Controller - Block Diagram

Interrupt
ControllerData[0-63]

Address[0-20]

IRQ

Address[0-20]

Data[0-63]

Load

ACK

55

r, as

 bus is

r, this

fore a

d with

sor is

to sus-

is trans-

arallel

The

ever,
6.4.1 Operation

The Interrupt Controller intercepts the interrupt request line from the processo

shown in Figure 37. The IC then signals the BAU to request access to the bus. If the

ready, then the data is transferred directly to the destination by the BAU. Howeve

may not always be the case.

FIGURE 37. Interrupt Controller - Timing Diagram

Since the processor may not be capable of bus transfers during the period be

request is received, a potential deadlock situation could occur if the bus was occupie

transmitting to the requesting processor. To prevent this occurrence, the proces

allowed to transmit the data to the IC for queueing. The processor is then signaled

pend any further transmissions. Once the BAU allows bus access, the queued data

ferred to its destination and the cycle is completed.

6.5 Free Space Optical Transceiver

The Free Space Optical Transceiver operates as a full duplex, high speed, p

communications link. Transmission is performed over a 16x16 matrix of VCSEL’s.

parallel interface permits high-speed access via traditional tri-state bus logic. How

Clock

IRQ

ACK

ZData[0-63]

Address[0-20] Z

Z

Z

Data Transfer For 1 Clock Cycle

56

l trans-

ability

 lines

ion to

ata is

 data,

equire

 of the

ust be

ing the

uni-

st add

 that

gh use

othing

sed to

nt of

bined

stacks,
actual transmission over the interconnects is performed through simultaneous seria

missions. This approach overcomes two major obstacles. First is the inherent unreli

of parallel transmission over distance. Unequal propagation delay between multiple

can cause significant delays between data lines. If this delay is of sufficient durat

interfere with the setup and hold times of connected logic, errors result.

Serial transmission does not suffer from this setback. Since each packet of d

transmitted of the same channel, any propagation delay is applied equally to all

resulting in a reliable, but delayed transmission. However, serial transmission does r

additional overhead, in the form of framing headers.

Second is the need for development of a scalable transmission link. Because

90° rotation of the stacks relative to each other, a change in the number of planes m

accompanied by an equal change in the number of transmission channels. Expand

data path with a given data set width results in an incomplete utilization of the comm

cations channel. To overcome this using a parallel transmission scheme, one mu

hardware based on the specific circumstances.

The use of a serial protocol however does not have this limitation. Hardware

would already be present to determine available channels can be built scalable throu

of high level design languages. A change in the number of planes would require n

more that a corresponding change in a VHDL variable. It is this approach that is u

guarantee future scalability.

A final requirement for the FSOT is the need for ease of fabrication. Developme

specific transmitter/receiver circuits requires more resources than the use of a com

approach. By creating a symmetric architecture that uses the same device on all

57

factor

pace

wing

 trans-

Ready

nsfers

which

ate in.

n is

re the
fabrication cost is reduced through economies of scale. Die yields would be less of

since any device can be used as a substitute for another.

6.5.1 Interface

The interface for the FSOT is shown in Figure 38. Optical[0-15] are the free s

optical interconnects. The 86-bit parallel input supports the full databus width allo

the processor and associated logic to perform transfers every clock cycle. Data is

ferred to and from the FSOT by the DataIn and DataOut signals respectively. Data

signals that there is valid data on the bus for the FSOT to receive. The Load line tra

data from the FSOT to the processor bus.

Since some of the routing optimization for the transceivers varies depending on

stack it is located on, there is an external signal to designate which mode to oper

This signal is designated Route. By pulling this line high or low, the routing functio

modified. To incorporate this into the design, each of the two stacks would hardwa

signal to a different level

FIGURE 38. Free Space Optical Transceiver - Block Diagram

Free
Space

Datain[0-85]

Dataout[0-85]

LoadOptical
Transceiver

Optical[0-15]

Data Ready

Route*

*Externally Bonded Signal

58

laced

of 88

ycles,

SOI

ration

e hor-

Hori-

erial

ction,

nes on

, this

 due to

ossible

ange

orrect
6.5.2 Horizontal Decoding

Channel availability is determined by serial conversion time. Once a packet is p

into a channel register, that register will not be able to accept data for a minimum

FSOT clock cycles. This time period corresponds to 22 processor bus clocks c

excluding additional framing information. In the current configuration, there are 16 F

channels, so it can be seen that some delays will occur due to limited bandwidth.

The Free Space Optical Transceiver performs the first of a two stage routing ope

when Route is asserted. As shown in Figure 39, first stage routing is performed on th

izontal plane. This routing is based on channel availability. It is determined by the

zontal Decode Logic(HDL). The HDL module keeps track of the state of all s

channels and routes information to the current open channel. By tracking this sele

the FSOT can optimize transmission speed by routing data to currently unused pla

the destination stack.

Although horizontal routing makes the maximum use of the channels available

feature must be disabled for data transmitted back from the crossbar matrix. This is

the fact that once a channel is selected on the processor side, there is only one p

channel available from the crossbar for the return trip. Allowing the FSOT to ch

channels because of availability would result in the data being transmitted to the inc

destination.

59

ry from

associ-

rication

ersion

clocks

resent

in Fig-
FIGURE 39. Horizontal Channel Selection and Serial to Parallel Conversion

The transfer of data from the databus to the PISO registers crosses the bounda

the low speed processor clock to the high speed FSOT clock. The processor and

ated logic need to operate at speeds that are accommodated by standard VLSI fab

technologies. However, the FSOT is capable of higher clock frequencies. This conv

allows both of these technologies to operate at maximum performance. Since both

are synchronized relative to the other, problems associated with clock skew are not p

assuming that a wait state is inserted in the high speed logic’s load cycle as shown

ure 40.

...
88-Bit Register

S
er

ia
l 0

S
er

ia
l 1

S
er

ia
l 1

5

88-Bit Databus

88-Bit Register

88-Bit Register

H
or

iz
on

ta
l D

ec
od

eLoad

High Speed

Clock Boundary

60

 actual

rma-

termi-

erial

own in

m.
FIGURE 40. Data Transfer Across Clock Boundaries

6.5.3 Serial Encoding

Once the data is in its proper channel, the serial encoding process begins. The

loading of the data into the register is accompanied by the loading of the framing info

tion as shown in Figure 41. This information is added to the data to allow precise de

nation of the starting and ending bits.

FIGURE 41. Serial Encoding

Once loaded, the information is shifted out of the serial output resulting in a s

datastream. This datastream is then applied to the input of an optical driver as sh

Figure 42. The driver transmits the data via an optical channel to the receiving syste

FSOT Clock

Processor Clock

Ready

Z
Datain[0-85]

Z

Load[0]

FF

A BPacket

...
Serial Out

BUS

61

 the

sually

pling

fferent

own

 with

 drive
FIGURE 42. Time Domain Multiplexed Serial Data Stream

6.5.4 Transmission Clock Synchronization

A key problem that appears in the architecture is providing a clock signal on

receiver that is synchronized with the data being transmitted. Clock recovery is u

accomplished through the use of a Digital Phase Locked Loop (DPLL) or an oversam

technique. However, to achieve the data rates specified in the architecture, a di

approach was necessary.

The Clock Synchronization Unit, shown in Figure 43, operates by receiving a kn

sequence through the FSOI channels multiple times using different clocks, each

slight delay relative to the others. Once a reliable delay is found, that clock is used to

the receiver.

PISO PISO PISOPISO

SIPO SIPO SIPOSIPO

O
ptical T

ransceiver

O
ptical T

ransceiver

Demux

Mux

Demux

Mux

...

Demux

Mux

Demux

Mux

...

Time Mux Bit Stream

Time Mux Bit Stream

62

 clock

lection

nd a

ailable

un. As

mon-

d to
The training process is controlled by a finite state machine which operates on a

separate from the trainer receiver. Spikes in the receiver clock during the delay se

are resolved by use of full coverage combinational logic design in the multiplexor a

latch system. Delays are provided by the use of precision 100ps delay elements av

in the VLSI process.

FIGURE 43. Clock Synchronization Unit (Trainer)

6.5.5 Serial Decoding

Once data is received at the other stack, the Serial Decoding conversion is beg

shown in Figure 44, this is accomplished with a finite state machine that continually

itors the data stream looking for framing information. This information is then use

determine the validity of the data being received.

FIGURE 44. Serial Decoding

...
Serial DataSerial In

Delay

Delay

Delay

Delay

E rror
D etector

CLK

C lock
S elector

A B86 Bit Data

...
Serial In

Violation
Detector

Ready

63

oni-

rt of a

ins to

chieve

eceived

e tail

ing

rror is

 This is

ction

cess,

y the

 from

nt for at

sent a
In the current architecture, the following algorithm is used. The frame detector m

tors the link until a violation is received. It makes the assumption that this is the sta

header and that data will directly follow. It then resets an internal counter and beg

count the number of bits that are received. Bits inserted into the data stream to a

data transparency are discarded as they are received. This continues until it has r

a total of 86 plus sufficient bits to be evaluated for a violation. It then tests to see if th

of the frame is in violation. If it is, a READY signal is asserted to inform the receiv

system that a valid frame had been received and has been converted. If an e

detected, then the circuit asserts an ERROR signal and begins the process again.

summarized in Figure 45. Assuming a reasonably noise free link, the framing dete

circuity can resync if a framing error occurs. However, during this realignment pro

some data loss is inevitable.

Finally, the data is transmitted to the low speed bus. This transfer is initiated b

receiving bus on reception of the data ready signal from the FSOT. Synchronization

a high speed bus to the low speed bus is not an issue as long as the data is prese

least 8 FSOT clock cycles. Under the current architecture this constraint will not pre

problem.

64

outer

ansmit

 the

for the

T and
FIGURE 45. Frame Detection Algorithm

6.6 Crossbar Router

The actual routing of data from plane to plane is performed by the crossbar r

which is shown in Figure 46. This logic resides in a stack rotated 90° relative to the orien-

tation of the processor. Because of this relationship, each router can receive and tr

to each of the processor planes.

FIGURE 46. Crossbar Router - Block Diagram

The operation of the crossbar is shown in Figure 47. Once data arrives from

FSOT, the 6 bit destination address is examined to determine the desired output

switch. If the selected port is open, then the data is placed directly back onto the FSO

while(! B) { //Do nothing };

// B is true Wait for data and check header

// WAIT 87 CLOCK CYCLES

int loop = 0;

while(loop++ < 86){ //Do nothing}

if(A && B)

assert READY;

else

assert ERROR;

while(1) {

}

Crossbar
Datain[0-85]

Dataout0-85]

LoadRouter
Data Ready

65

nel is

and con-

ced on

iously

coming

. This
is recorded as busy for the next 22 clock cycles. However, if the destination chan

already busy, the crossbar places the data in the associated queue for that channel

tinues processing. When the destination port becomes available, then the data is pla

the output bus to the FSOT.

FIGURE 47. Crossbar Router (One Plane Shown)

In the event of a packet simultaneously arriving at the same time that a prev

queued packet’s channel become available, the queued packet takes priority. The in

packet is placed in the queue and the outgoing packet is directed to the FSOT

approach guarantees that packet will arrive in with the least amount of reordering.

...
...

F
S

O
T

 P
ar

al
le

l B
us

Queue 0

Queue 1

Queue 15

Select[0-3]

Dataout[0-85]

P
ac

ke
t Q

ue
ue

P
ac

ke
t Q

ue
ue

P
ac

ke
t Q

ue
ue

......
Datain[0-85]

66

r the

it is in

ledge

ckets

ontrol

ress of

forma-

ation,

ckets.

es and

at the

proach,

n the
6.6.1 Address Resolution

Another function of the crossbar is that of resolving transmission addresses fo

planes during initialization. Since the crossbar maintains a physical link to each die,

the unique position of being able to discriminate between them at start up. This know

must be provided to the BAU on each die in order for them to process on/off chip pa

properly.

To accomplish this task, immediately after reset the crossbar transmits a c

packet to each of the planes. This packet contains no data, just the destination add

the die being transmitted to. It is then received by the BAU and the plane address in

tion is saved for later use. Once all BAU’s in the system have received this inform

the system is ready to begin processing information.

6.6.2 Broadcast Resolution

One final function of the crossbar is resolving final addresses for broadcast pa

On reception of a packet addressed to itself, the crossbar creates multiple copi

retransmits them to each of the BAU’s as shown in Figure 48. Each BAU would repe

process, transmitting a packet to each of the processors in its node. Using this ap

only one initial packet is necessary to communicate with all the components withi

system.

67

 Inter-

 of the

. This

ation

n pur-

 would
FIGURE 48. Resolution of Broadcast Packets

6.7 External Data Interface

The transmission of data external to the system is handled by the External Data

face. This interface exists as a number of electrical connections that surround each

stacks as shown in Figure 49. These common connections injects data to the BAU

information is then routed to the appropriate target based on the address inform

stored in the packet. This connector exists in the system for testing and verificatio

poses. In a fully closed system, the external data connector would not be used. Data

be supplied by the optical interconnects.

FIGURE 49. External Data Interface

Crossbar

Copy Addressed

Broadcast

Router

From
EDI

to BAU0

Copy Addressed
to BAU1

Copy Addressed
to BAUx

FFT
Processor

Stack

External Data Bus

68

pro-

OAD

he data

l con-

d the

ternal

ies of

y scan

 will
The following signals shown in Table 2 are routed externally. The CLOCK signal

vides the necessary synchronization for all sequential devices within the system. L

indicates that an external device has placed data on the EDI bus. It expects that t

will be captured on the next clock cycle. POWERUP is an internally generated signa

nected to the BAU’s informing the outside that initialization has been performed an

system is ready to receive data.

TABLE 2. External Data Interface

READY is an indication that the system has data on the bus destined for the ex

system. DATA is the bidirectional bus that all data is transferred on. TEST is a ser

pins present to support runtime testing such as the implementation of JTAG boundar

hardware. Finally, the number of PWR and GND pins are currently unspecified and

be dictated by the power requirements.

Pins Name Description

1 CLOCK External Clock

1 LOAD EDI Data on Bus

1 POWERUP System is ready for data

1 READY BAU Data on Bus

86 DATA[0-85] Bidirectional Data bus

4 TEST[0-3] External Test Pins

X PWR/GND Power/Ground as needed

 cre-

dels

ibe the

layers

ency

m of

eate a

ses and

e 18.

escape

ed the
CHAPTER 7 - RESULTS

7.1 Simulation Results

Upon completion of the architectural specification, VHDL and C++ models were

ated for each of the major functional components within the system. The VHDL mo

were created under Synopsys, using both behavioral and structural code to descr

components. Simulations on this code were performed at the Link and Network OSI

to explore the feasibility of the 3D-OESP design.

7.1.1 Link Level Simulation

This lowest level simulation performed was created in C++ to examine the effici

of the FSOI link for different packet payload lengths. Figure 50 shows a block diagra

the simulation model. The packet generator used the C++ rand() library routine to cr

string of pseudorandom data in user specified lengths. Randomly generated addres

control information where added to fully model the packet previously shown in Figur

The data was then passed to a bit stuffing algorithm that created the necessary

sequences to properly frame the data. At this point, the finalized packet possess

encoding that would occur in the FSOI serial datastream.

70

 to its

f sim-

n this

qual

ased

 to 4,

would

 better

te of

8 bits.

deter-
FIGURE 50. Framing Simulation Block Diagram

On completing the framing process, the encoded packet’s size was compared

original raw form. The result of the comparison was averaged over a large number o

ulation cycles. The simulation was repeated with varying packet and bit run lengths.

Figure 51 shows the results of 50 MB of data transmitted through the system. I

graph a theoretical maximum of 100% efficiency would occur with a frame packet e

in length to its original raw size (0% overhead). Simulations showed a trend of incre

efficiency for larger packet sizes. Peak efficiency was shown at bit run lengths of 3

depending on packet size. From this result, it was determined that a 32-bit payload

result in an unacceptable level of throughput. 128 and 64 bit payloads showed far

results with 69%-80% framing efficiency. This translates to an effective channel ra

690-800 Mb/s assuming 1 Gb/s raw throughput and packet sizes of either 64 or 12

The trade-off between 128 bit payloads relative to VLSI real estate has not been

mined at this time and must be examined to fully weigh this decision.

Packet
Generator

Frame
Generator

Raw Packet

Escaped Packet

71

. Its

el. Of

n uti-

nd one

Linear

r each

traffic.

 chip

nnec-

itted

where
FIGURE 51. Framing Efficiency

7.1.2 Network Level Flow

This next level of simulation was performed at the network level under VHDL

purpose was to examine the flow of traffic through the channels at the packet lev

particular interest was the efficiency of the bus arbitration technique. This simulatio

lized pseudo-random data created by four CPU Packet Generators(CPG), a BAU a

Free-Space Optical Transceiver(FSOT) shown in Figure 52.

Packets were transmitted in a pseudorandom fashion through the use of a

Feedback Shift Register driving a counter. This created a staggered time interval fo

source and allowed the CPG’s to generate packets in a manner similar to random

The BAU functioned to allow orderly access to the bus and to direct packets with off

addresses to the FSOT.

The FSOT was minimal implementation, operating basically as a loopback co

tion. It received data from the parallel bus, converted it to serial format and transm

back to itself. To resolve destinations for off chip transmissions, all addresses

Transmission Efficiency vs. Bit Run Length

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

Bit Run Length

E
ffi

ci
en

cy 128 Bits

64 Bits

32 Bits

72

ld be

hput

 proto-

dvan-

ck fre-

e local

ke up

ptical
stripped of their high order bits (modulo 4). When the packet was received, it wou

routed to a CPG that corresponded to the modified address.

FIGURE 52. Network Simulation Model

The simulation showed that the system performed with approximately 5% throug

loss due to clock synchronization latency. Delays associated with the bus arbitration

col were not present due to the pipelined request technique used by the BAU.

Figure 53 shows an example of the clock latency within the system. To take a

tage of its higher bandwidth, the free space optical channel operates at a higher clo

quency than the local bus. Data that travels through the optical channel arrives at th

bus relative to the FSOI clock. Since there is a clock differential, the bus clock can ta

to four FSOI clock cycles before it synchronizes and removes the data from the o

buffer.

BAU

Bus Access Control

CPG CPGCPG CPG

Plane Bus

FSOT

O ptica l Loopback

73

wn in

iden-

rve is

e will

 analy-
FIGURE 53. Bus Synchronization Latency

7.1.3 Trainer Simulation

Simulation of the clock synchronization trainer showed expected results. As sho

Figure 54, within minor variations of the clock, the receiver was capable of correctly

tifying the training dataset and selecting an acceptable clock skew. The falloff cu

approximate because of the limitations of behavioral simulations. The actual curv

vary based on the device parameters of the target VLSI process being used. Timing

sis showed a potential to operate in excess of 300 MHz.

FIGURE 54. Clock Capture at 300MHz

FSOI

Bus

Ready

Packet
Arrival Bus

Sync
Latency

-300-600-900

Picoseconds

Capture

Failure

e per-

 Issues

act to

es for

evices

ition
CHAPTER 8 - CONCLUSIONS

Table 3 shows the performance numbers for the current system architecture. Th

formance of the FSOI as a communications conduit appears to be close to optimal.

relating to the latency and synchronization do not appear to have sufficient imp

degrade its performance.

TABLE 3. Performance Parameters for 3D-OESP Architecture

Table 4 shows a comparison between a number of commerically availble devic

FFT computation. In this table the 3D-OESP system out performs each of these d

by several orders of magnitude while maintaining a realtively small footprint. In add

the system has the advantage of providing additional functionality beyond the FFT.

TABLE 4. Performance Comparison for FFT Processors

Parameter 256 Mhz Bus, 1 Ghz FSOI 256 Mhz Bus and FSOI

Bisection Bandwidth 256 Gb/s 64 Gb/s

Packet Transmission Delay over FSOI
(Assuming 20% Framing Overhead)

105 ns 422 ns

Point to Point Packet Transmission Time 230 ns 864 ns

Calculation Time 1024x1024, 32 Bit Dataset 1.32 us 5.28 us

Time to Transpose 1024x1024, 32 Bit Dataset 108 us 430 us

Retraining Time 50 ns (Estimated) 200 ns

Data Load Time 2 ms 2 ms

Device Precision (bits) 1K x 1K Speed (ms)

AD 21060 32 (Float) 920

TI C80 32 (Float) 326

Plessy 16 (Fixed) 192

Sharp 24 (Fixed) 174

75

 to be

esign

t this

 be

ta to

t inter-

plica-

ce that

 over

rithm

ow-

ealing
To implement the current clock synchronization design, the system clock needed

reduced to 256 Mhz due to the limitation of the current CMOS process. Further d

optimizations could allow speeds in excess of 500 Mhz, however, it appears tha

approach is limited for future applications if the full capabilities of the FSOI are to

explored.

The obvious bottleneck in the architecture is the EDI. The ability to transfer da

and from the system is the major factor in its speed. Since the EDI is merely a tes

face, this should not impact the evaluation of the design as a whole. Commercial ap

tions of the system would use another form of input such as a charge coupled devi

would provide data through the optical channels.

A further increase in speed could be achieved through use of 128 bit packets

FSOI. By expanding the packet size, the control data overhead in the bit stuffing algo

would be reduced. This would increase transfer efficiency by approximately 10%. H

ever the increased chip area taken by the wider bus might make this an unapp

option.

Projected 24 (Fixed) 16

Actual 32 (Fixed) 1.4

Device Precision (bits) 1K x 1K Speed (ms)

REFERENCES

76

rchi-
terna-
nio,

-

1997

pti-
A/

z, S.
 a 3D
uly

naly-

rth

r-
ary
1. G. Betzos, P. Mitkas, “Performance Evaluation of 3D Optoelectronic Computer A
tectures Based on the FFT and Sorting Benchmarks”, Proceedings of the 2nd In
tional Conference on Parallel Processing Using Optical Interconnects”, San Anto
TX, Oct 23-27, 1995

2. P. Cheo, Handbook of Solid State Lasers, Marcel Dekker(1989), p. 2.

3. M. Inguscio, R. Wallenstein, Solid State Lasers: New Developments and Applica
tions, New York, Plenum Press, p. 83.

4. A. Mainwaring, S. Schleimer, “System Area Network Mapping”, 9th Annual ACM
Symposium on Parallel Algorithms and Architectures, Newport, RI, June 22-25,

5. B. Anglis, H. Hinton, “A Dynamically reconfigurable Token-based Optical Back-
plane”, IEEE/LOES Summer Topicals: Smart Pixels, July 1998.

6. J. Wu, C. Kuznia, C. Chen, B. Hoanca, A. Sawchuk, “Network with Free Space O
cal Data Packet Using Carrier-Sense Multi-Access with Collision Detection (CSM
CD) Protocol”, IEEE/LOES Summer Topicals: Smart Pixels, July 1998.

7. J. Rorie, P. Marchand, P. Chandramani, J. Ekman, F. Kiamilev, F. Zane, V. Ozgu
Esener, “A System Architecture for use with Free Space Optical Interconnects in
Stacked Processor Environment”, IEEE/LOES Summer Topicals: Smart Pixels, J
1998.

8. S. Esener, P. Marchand, “3D Opto-electronic Stacked Processors: Design and A
sis” OC Computing '98, Bruges, Belgium, June 1998.

9. F. Halsall, “Data Communications, Computer Networks and Open Systems”, Fou
Edition, Addison Wesley, Harlow, England, 1996

10. J. Hammand, “Performance Analysis of Local Computer Networks”, Addison-
Wesely, Reading, MA

11. B. Stuck, “Calculating the Maximum Throughput Rate in Local Area Networks”,
IEEE Computer

12. S. Leong, B. Dewar, “The Effect of Traffic Locality on Network Architecture Perfo
mance”, Proceedings of the IASTED International Conference, Orlando, FL Janu
8-10, 1996

77

d-

H.
ace
-

lane
 Mas-

Opti-
/

 mul-

rk
296-

m-
,

lly

es,

ee-
s-
13. Johnson, Barry W., “Design and Analysis of Fault Tolerant Digital Systems”, Rea
ing: Addison Wesley, 1989. 95-112.

14. N. McArdle, M. Naruse, T. Komuro, H. Sakaida, M. Ishikawa, Y. Kobayashi and
Toyoda, “A Smart-Pixel Parallel Optoelectronic Computing System with Free-Sp
Dynamic Interconnections”, Proceedings of the International Conference on Mas
sively Parallel Processing

15. T. Szymanski, H. Scott Hinton, “Design of a Terabit Free-Space Photonic Backp
for Parallel Computing”, Proceedings of the Second International Conference on
sively Parallel Processing Using Optical Interconnections, 1995

16. J. Wu, C. Kuznia, C. Chen, B. Hoanca, A. Sawchuk, “Network with Free Space
cal Packet Using Carrier-Sence Multiple-Access with Collision Detection (CSMA
CD) Protocol, IEEE/LOES Summer Topicals: Smart Pixels, July 1998.

17. A. Louri, S. Furlonge, C. Neocleous, “Experimental demonstration of the optical
multi-mesh hypercube: scalable interconnection network for multiprocessors and
ticomputers”, Applied Optics, December 10, 1996, pg 6906-6919

18. A. Louri, S. Furlonge, “Feasibility study of scalable optical interconnection netwo
for massively parallel processing systems”, Applied Optics, March 10, 1996, pg 1
1307

19. T. Pinkston, U. Efron, M. Cambell, “Applying Optical Interconnects to the 3-D Co
puter: A Performance Evaluation”, Journal of Parallel and Distributed Computing
October, 1994

20. O.Sjölund, D. A. Louderback, E. R. Hegblom, J. Ko, and L. A. Coldren, “Individua
optimized bottom-emitting vertical-cavity lasers and bottom-illuminated resonant
photodetectors sharing the same epitaxial structure”, Optics in Computing, Brug
Belgium, June 1998.

21. Irvine Sensors Corporation, Costa Mesa, CA, 92626

22. M. Hibbs-Brenner, Y. Liu, R.Morgan, J. Lehman, “VCSEL/MSM Detector Smart
Pixel Arrays”, IEEE/LOES Summer Topicals: Smart Pixels, July 1998.

23. J. Neff, C. Chen, T. McLaren, A. Mao, “VCSEL/CMOS Smart Pixel Arrays for Fr
Space Optical Interconnects”, Proceeding of the International Conference on Ma
sively Parallel Processing Using Optical Interconnects

78

n this

Also
APPENDIX A - VHDL SOURCE FILES

Included on the following pages are the source files for the simulations used i

document. The files are written in VHDL for use in both Epoch and Synopsys.

included are the test benches for the associated components.

79

ress-

n-

ata-

of
--
-- Program: 3DOESP.vhd
-- Author: Jim Rorie
-- Purpose: Top Level Entity.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;

package LocalDefines is
constant DataBusWidth : integer := 64;
constant ProcessorAddressWidth : integer := 2;
constant PlaneAddressWidth : integer := 4;

constant AddressBusWidth : integer := ProcessorAddressWidth + PlaneAdd
Width + 1;

constant EDIIndex : integer := 0;
constant FSOIIndex : integer := 1;

constant RunLength : integer := 5;
constant FrameLength : integer := DataBusWidth + RunLength;

-- Derived Constants

constant Planes : integer := 2 ** PlaneAddressWidth;
constant Processors : integer := 2 ** ProcessorAddressWidth;
constant VCSELChannels : integer := Planes;
CONSTANT DataWidth : Integer := DataBusWidth + 2;

TYPE VCSELArray IS Array (0 to Planes - 1) of STD_LOGIC_VECTOR(VCSELCha
nels -1 downto 0);

TYPE SerialRegisters IS ARRAY (Planes - 1 downto 0) of STD_LOGIC_VECTOR (D
Width - 1 downto 0);

TYPE MemoryWord IS ARRAY ((Processors * Planes) -1 downto 0)
STD_LOGIC_VECTOR (DataBusWidth - 1 downto 0);

end LocalDefines;

80

nto
--
-- Program: ADD_TEST.vhd
-- Author: Jim Rorie
-- Purpose: Testbench for address decoder.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;
USE ieee.numeric_std.all;

ENTITY test_system IS
END test_system;

ARCHITECTURE testbench OF test_system IS

component AddressDecoder
PORT (
 AddressBus : IN STD_LOGIC_VECTOR(AddressBusWidth - 1 downto 0);
 Valid : OUT STD_LOGIC_VECTOR(Processors - 1 downto 0);
 CLK, Reset : IN STD_LOGIC;
 Forward, Control : OUT STD_LOGIC;
 PlaneAddress : IN STD_LOGIC_VECTOR(PlaneAddressWidth - 1 downto 0)
);
END COMPONENT;

-- Declaration of the component under test

SIGNAL CLK : STD_LOGIC:=’0’;
SIGNAL Reset, Forward, Control : STD_LOGIC:=’0’;

SIGNAL Address : STD_LOGIC_VECTOR(AddressBusWidth - 1 downto 0);
SIGNAL Valid : STD_LOGIC_VECTOR(Processors - 1 downto 0);
SIGNAL PlaneAddress : STD_LOGIC_VECTOR(PlaneAddressWidth - 1 dow
0);

for dut : AddressDecoder use entity work.AddressDecoder(behavior);

BEGIN

CLK <= not (CLK) after 35 ns;

81

 =>
 Pla-
process begin
 wait for 10 ns;
 Reset <= ‘0’;
 Address <= (others => ‘0’);

PlaneAddress <= “1111”;

wait until clk’event and clk = ‘1’;

 Reset <= ‘1’;

wait until clk’event and clk = ‘1’;
 Address <= “0111100”;

wait until clk’event and clk = ‘1’;
 Address <= “0111111”;

wait until clk’event and clk = ‘1’;
Address <= “0110011”;

wait until clk’event and clk = ‘1’;
 Address <= “0111100”;

wait until clk’event and clk = ‘1’;
 Address <= “0111101”;
wait until clk’event and clk = ‘1’;
 Address <= “0111110”;
wait until clk’event and clk = ‘1’;
 Address <= “1111111”;
wait;

end process;

dut : AddressDecoder PORT MAP (Addressbus => Address, Valid => Valid, CLK
CLK, Reset => Reset, Forward => Forward, Control => Control, PlaneAddress =>
neAddress);

END testbench;

82

s-
--
-- Program: ADD_DEC.vhd
-- Author: Jim Rorie
-- Purpose: address decoder.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE work.LocalDefines.all;
-- USE ieee.numeric_std.all;

ENTITY AddressDecoder IS
PORT (
 AddressBus : IN STD_LOGIC_VECTOR(AddressBusWidth - 1 downto 0);
 Valid : OUT STD_LOGIC_VECTOR(Processors - 1 downto 0);
 CLK, Reset : IN STD_LOGIC;
 Forward, Control : OUT STD_LOGIC;
 PlaneAddress : IN STD_LOGIC_VECTOR(PlaneAddressWidth - 1 downto 0)
);
END AddressDecoder;

ARCHITECTURE Behavior OF AddressDecoder IS

BEGIN

Decode : process(CLK, RESET, AddressBus, PlaneAddress)

BEGIN

if(Reset = ‘0’) then

Valid <= (Others => ‘Z’);
Forward <= ‘0’;

else

if(AddressBus(AddressBusWidth - 2 downto ((AddressBu
Width - 2) - PlaneAddressWidth) + 1) = PlaneAddress) then

-- Same Plane address, figure local address
Forward <= ‘0’;

-- if control not bit set
if(AddressBus(AddressBusWidth - 1) = ‘0’) then

Valid <= (Others => ‘0’);

83

-
Valid(conv_integer(AddressBus(Processor
AddressWidth - 1 downto 0))) <= ‘1’;

Control <= ‘0’;
else

Valid <= (others => ‘0’);
Control <= ‘1’;

end if;

else
Forward <= ‘1’;
Valid <= (others => ‘0’);
Control <= ‘0’;

end if;

end if;

END Process;

END behavior;

84

d-

-

N

0)
--
-- Program: BAU.vhd
-- Author: Jim Rorie
-- Purpose: Bus Arbitration Unit.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE work.LocalDefines.all;
-- USE ieee.numeric_std.all;

ENTITY BAU IS
PORT (

DataBus, EDIBus : INOUT
STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);

PlaneAddress : OUT STD_LOGIC_VECTOR(PlaneA
dressWidth - 1 downto 0);

ACK : OUT STD_LOGIC_VECTOR(Processors + 1 down
to 0);

CLK, Reset, Control, DataReady, EDIReady : I
STD_LOGIC;

BAU0Ready, Online: OUT std_logic;
IRQ : IN STD_LOGIC_VECTOR(Processors + 1 downto

);
END BAU;

ARCHITECTURE Behavior OF BAU IS
Signal InitState : STD_LOGIC;

Signal LocalAddress : Integer;

BEGIN

HandleIRQ : process(CLK, RESET, IRQ)
Variable CurrentIRQ : Integer;

BEGIN

if(Reset = ‘0’) then

ACK <= (Others => ‘0’);
CurrentIRQ := 0;

elsif(CLK’Event AND CLK = ‘1’) then

85

t-

in
ACK <= (Others => ‘0’);

if(IRQ(EDIIndex) = ‘1’) then -- EDI is maximum priority,
but only for short periods

-- If I have received my address and it is 0
if(InitState = ‘0’ AND LocalAddress = 0) then

ACK(EDIIndex) <= ‘1’;
end if;

elsif(IRQ(FSOIIndex) = ‘1’) then -- IRQ0 is the highest run
ime priority

ACK(FSOIIndex) <= ‘1’; -- Tell the source to
put the data on the bus

else
-- CurrentIRQ exists to use the irqs in a round rob

approach
for I in 2 to Processors + 1 loop

CurrentIRQ := CurrentIRQ + 1;
if(CurrentIRQ > Processors + 1) then

CurrentIRQ := 2;
end if;

if(IRQ(CurrentIRQ) = ‘1’) then
ACK(CurrentIRQ) <= ‘1’; -- Tell the

source to put the data on the bus
exit; -- Process Nothing else

end if;
END LOOP;

END IF;

END IF;

END Process;

HandleData : process(CLK, RESET, DataReady)
BEGIN
if(Reset = ‘0’) then

InitState <= ‘1’;
BAU0Ready <= ‘0’;
Online <= ‘0’;
DataBus <= (Others => ‘Z’);

PlaneAddress <= (others => ‘0’);
LocalAddress <= 0;

elsif(clk’event AND clk = ‘1’) then

86

 1

d-
for I in 0 to Processors loop

-- Get initialization data first
if(InitState = ‘1’ AND DataReady = ‘1’ AND Control = ‘1’)

then

PlaneAddress <= DataBus(PlaneAddressWidth -
downto 0);

LocalAddress <= conv_integer(DataBus(PlaneA
dressWidth - 1 downto 0));

InitState <= ‘0’;

if(LocalAddress = 0) then
Online <= ‘1’;

end if;
exit;

end if;

end loop;
if(EDIReady = ‘1’) then

DataBus <= EDIBus;
else

DataBus <= (others => ‘Z’);
end if;

 end if;

END Process;

END behavior;

87

d-

-

N

0)

’0’;

nto
--
-- Program: Bau_TEST.vhd
-- Author: Jim Rorie
-- Purpose: Testbench for bau.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;
--USE ieee.numeric_std.all;

ENTITY test_system IS
END test_system;

ARCHITECTURE testbench OF test_system IS

component BAU
PORT (

DataBus, EDIBus : INOUT
STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);

PlaneAddress : OUT STD_LOGIC_VECTOR(PlaneA
dressWidth - 1 downto 0);

ACK : OUT STD_LOGIC_VECTOR(Processors + 1 down
to 0);

CLK, Reset, Control, DataReady, EDIReady : I
STD_LOGIC;

BAU0Ready, Online: OUT std_logic;
IRQ : IN STD_LOGIC_VECTOR(Processors + 1 downto

);
END COMPONENT;

-- Declaration of the component under test

SIGNAL CLK : STD_LOGIC:=’0’;
SIGNAL Reset, Control, DataReady, BAU0Ready, DataPresent : STD_LOGIC:=
SIGNAL DataBus : STD_LOGIC_vector(DatabusWidth - 1 downto 0);
SIGNAL PlaneAddress : STD_LOGIC_VECTOR(PlaneAddressWidth - 1 dow
0);
SIGNAL ACK, IRQ : STD_LOGIC_VECTOR(Processors downto 0);

for dut : BAU use entity work.bau(behavior);

88
BEGIN

CLK <= not (CLK) after 35 ns;

process begin
 wait for 10 ns;
 Reset <= ‘0’;
 Databus <= (others => ‘Z’);

 IRQ <= (others => ‘0’);

wait until clk’event and clk = ‘1’;

 Reset <= ‘1’;

wait until clk’event and clk = ‘1’;
IRQ(0) <= ‘1’;

wait until clk’event and clk = ‘1’;
IRQ(1) <= ‘1’;
IRQ(0) <= ‘0’;

wait until clk’event and clk = ‘1’;
IRQ(1) <= ‘0’;

wait until clk’event and clk = ‘1’;
wait until clk’event and clk = ‘1’;
wait;

end process;

Process (reset, ack, DataReady)
Variable OutputData : Integer;

begin

if(reset = ‘0’) then
OutputData := 0;

 DataReady <= ‘0’;
else
--elsif(clk’event and clk = ‘1’) then

if(DataReady = ‘1’) then
DataReady <= ‘0’;
OutputData := 0;

end if;

89

K =>
IRQ
for i in 1 to Processors loop
if(ack(i) = ‘1’) then

DataReady <= ‘1’;
OutputData := 1;

end if;
end loop;

if(OutputData = 1) then
DataBus <=

“1000”;
else

DataBus <= (others => ‘Z’);
end if;

end if;

Control <= DataBus(DataBusWidth -1);

end process;

dut : BAU PORT MAP (Databus => Databus, PlaneAddress => PlaneAddress, AC
ACK, CLK => CLK, Reset => Reset, Control => Control, DataReady => DataReady,
=> IRQ, BAU0Ready => BAU0Ready);

END testbench;

90
--
-- Program: EDI.vhd
-- Author: Jim Rorie
-- Purpose: External Data Interface Stub.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;

ENTITY EDI IS
PORT (
 CLK, Reset : IN STD_LOGIC;
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth-1 downto 0);
 ACK, BAU0Ready, Online : IN STD_LOGIC;
 IRQ, EDIReady : OUT STD_LOGIC
);
END EDI;

ARCHITECTURE Behavior OF EDI IS

BEGIN

Process(clk, reset)
begin

if(Reset = ‘0’) then
DataBus <= (others => ‘Z’);
IRQ <= ‘0’;
EDIReady <= ‘0’;

else
end if;

end process;

END behavior;

91

nto
--
-- Program: Frame_Recv.vhd
-- Author: Jim Rorie
-- Purpose: Serial Receiver.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;
-- USE ieee.numeric_std.all;

ENTITY FrameRecv IS

PORT (
SyncClk, Reset : IN STD_LOGIC;

 PacketBus : OUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
FrameReady : OUT STD_LOGIC;
SerialInput : IN STD_LOGIC;

);
END FrameRecv;

ARCHITECTURE Behavior OF FrameRecv IS

-- Input register must be large enough to hold data plus the trailing frame marker
SIGNAL FrameData : STD_LOGIC_VECTOR((FrameLength+ RunLength) - 1 dow
0);

BEGIN

--
-- Find the frame markers and signal when a packet has been received.
-- Bit stuffing is used as the method of frame termination
--

GetData : Process (SyncClk, Reset, SerialInput)

Variable CurrentRunLength : Integer range 0 to RunLength;
signal InFrame: Std_Logic;
Variable BitCount : Integer range 0 to FrameLength;

BEGIN

92

a

)

ra-
 if(Reset = ‘0’) then
CurrentRunLength := 0;
FrameData <= (Others => ‘0’);
InFrame <= ‘0’;
FrameReady <= ‘0’;
BitCount := 0;

elsif(SyncClk’event and SyncClk = ‘1’) then

if(FrameReady = ‘1’) then
FrameReady <= ‘0’;

end if;

-- If the runlength is near, check the next bit
if(CurrentRunLength = RunLength) then

if(SerialInput = ‘1’) then -- if a violation occurs, must be
frame marker

if(InFrame = ‘1’) then
if(BitCount < FrameCount + RunLength

else -- Too Short, must be out of sync
InFrame <= ‘1’;
BitCount := 0;

else
FrameReady <= ‘1’;
InFrame <= ‘0’;

else
InFrame <= ‘1’;
BitCount := 0;

end if;
end if; -- Do nothing if a ‘0’ is received

else

if(SerialInput = ‘1’) then
CurrentRunLength := CurrentRunLength + 1;

else
CurrentRunLength := 0;

end if;

FrameData(FrameLength - 2 downto 0) <= FrameData(F
meLength - 1 downto 1);

FrameData(FrameLength - 1) <= SerialInput)

93
BitCount := BitCount + 1;

end if;

End Process;

END Behavior;

94

nto

ed.
--
-- Program: Frame_Xmit.vhd
-- Author: Jim Rorie
-- Purpose: Serial Transmitter.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;
-- USE ieee.numeric_std.all;

ENTITY FrameXmit IS

PORT (
SyncClk, Reset, Load : IN STD_LOGIC;

 PacketBus : IN STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
Idle : OUT STD_LOGIC;
SerialOutput : OUT STD_LOGIC

);
END FrameXmit;

ARCHITECTURE Behavior OF FrameXmit IS

-- Input register must be large enough to hold data plus the trailing frame marker
SIGNAL FrameData : STD_LOGIC_VECTOR((FrameLength+ RunLength) - 1 dow
0);
type StateType is (NoData, StartFrame, Data, EndFrame);

Signal CurrentState, NextState : StateType;

BEGIN

--
-- Generate frame markers and signal when a packet has been transmitt
-- Bit stuffing is used as the method of frame termination
--

SendData : Process (SyncClk, Reset)

Variable CurrentRunLength : Integer range 0 to RunLength;
Variable BitCount : Integer range 0 to FrameLength;

BEGIN

95

<=

ra-
 if(Reset = ‘0’) then
CurrentRunLength := 0;
FrameData <= (Others => ‘0’);
NextState <= NoData;
BitCount := 0;

else

case CurrentState is
when NoData =>

if(Load = ‘1’) then
FrameData((FrameLength - RunLength) - 1 downto 0)

PacketBus;
NextState <= StartFrame;
Idle <= ‘0’;

BitCount := 0;
CurrentRunLength := 0;

else
NextState <= NoData;
Idle <= ‘1’;

end if;

when Data =>
-- If the runlength is near, check the next bit
if(BitCount = FrameLength) then -- Data Sent, Send Frame Now

BitCount := 0;
SerialOutput <= ‘0’;
NextState <= EndFrame;

else
SerialOutput <= FrameData(FrameLength - 1);
FrameData(FrameLength-1 downto 1) <= FrameData(F

meLength - 2 downto 0);
BitCount := BitCount + 1;

end if;
when EndFrame =>

if(CurrentRunLength = RunLength) then
SerialOutput <= ‘0’;
NextState <= NoData;

else
BitCount := 0;

end if;
when StartFrame =>

96
if(CurrentRunLength = RunLength) then
SerialOutput <= ‘0’;
NextState <= Data;

else
BitCount := 0;

end if;

end case;

end if;

End Process;

Sequential: Process(SyncClk, Reset, NextState)
BEGIN

if(Reset = ‘0’) then
CurrentState <= NoData;

elsif(SyncClk’Event AND SyncClk = ‘1’) then
CurrentState <= NextState;

end if;

End Process;

END Behavior;

97

nto
--
-- Program: FSOI.vhd
-- Author: Jim Rorie
-- Purpose: FSOI Comm. Network.
--
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;
-- USE ieee.numeric_std.all;

ENTITY FSOI IS

PORT (
CLK, Reset : IN STD_LOGIC;

 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
DataPresent, ACK, AddressEnable : IN STD_LOGIC;
DataReady, IRQ : OUT STD_LOGIC;
Output : OUT STD_LOGIC_VECTOR(Planes - 1 downto 0);
Input : IN STD_LOGIC_VECTOR(Planes - 1 downto 0)

);
END FSOI;

ARCHITECTURE Behavior OF FSOI IS

SIGNAL PISOLoad, PISOBusy, SIPOBusy : STD_LOGIC_VECTOR(Planes - 1 dow
0);

SIGNAL PISO, SIPO : SerialRegisters;
signal DataReadyOut : Std_logic;

BEGIN

--
-- Accepts data from the Parallel bus and shifts it out the serial channels
--

HandleLoad : process(CLK, RESET, DataPresent)

BEGIN

if(Reset = ‘0’) then

98

nto
PISOLoad <= (Others => ‘0’);
PISOBusy <= (Others => ‘0’);
for i in 0 to Planes - 1 loop

PISO(i) <= (Others => ‘0’);
end loop;
Output <= (others => ‘0’);

elsif(CLK’Event AND CLK = ‘1’) then

-- if data is on the bus and I am selected

if(DataPresent = ‘1’ AND AddressEnable = ‘1’) then

-- This loop finds an open channel to put databus i
for I in 0 to Planes - 1 LOOP

if(PISOBusy(I) = ‘0’) then
PISOBusy(I) <= ‘1’;
PISO(I)(DataWidth - 2 downto 1) <=

DataBus;
PISO(I)(DataWidth -1) <= ‘0’;
PISO(I)(0) <= ‘1’;
exit;

end if;
end loop;

end if;

-- This loop shifts all busy PISO’s

for I in 0 to Planes - 1 LOOP
if(PISOBusy(I) = ‘1’) then

for J in 0 to DataWidth-2 LOOP
PISO(I) (J) <= PISO(I) (J+1);

end loop;
Output(I) <= PISO(I)(0);

end if;
end loop;

end if;

END Process;

99

n-
--
--
--

HandleShift : process(CLK, RESET, ACK)

Variable ChannelLocked, Index : Integer range 0 to Planes -1;
Variable OutputChannel : Integer range 0 to Planes -1;

BEGIN

if(Reset = ‘0’) then

DataBus <= (Others => ‘Z’);
SIPOBusy <= (Others => ‘0’);
OutputChannel := 0;
ChannelLocked := 0;

IRQ <= ‘0’;
DataReadyOut <= ‘0’;
Index := 0;

elsif(CLK’Event AND CLK = ‘1’) then

if(DataReadyOut = ‘1’) then
DataReadyOut <= ‘0’;

end if;

for I in 0 to Planes - 1 loop

-- if a valid frame is received, stop shifting that cha
nel and IRQ

if(SIPO(I)(0) = ‘1’ AND SIPO(I)(DataWidth -1) =
‘0’) then

SIPOBusy(I) <= ‘1’;

-- else shift
elsif(SIPOBusy(I) = ‘0’) then

FOR J IN 0 TO DataWidth - 2 LOOP
SIPO(I) (J) <= SIPO(I) (J+1);
SIPO(I) (DataWidth -1) <= Input(I);

100

2

d

END LOOP;

end if;

end loop;

if(ACK = ‘1’) then
DataBus <= SIPO(OutputChannel)(DataWidth -

downto 1);
DataReadyOut <= ‘1’;
SIPOBusy(OutputChannel) <= ‘0’;
SIPO(OutputChannel) <= (Others => ‘0’);
ChannelLocked := 0;
IRQ <= ‘0’;

else
DataBus <= (others => ‘Z’);

end if;

if(ChannelLocked = 0) then
Index := OutputChannel;
for I in 0 to Planes - 1 loop

if(SIPOBusy(Index) = ‘1’ AND Index /=
OutputChannel) then

OutputChannel := Index;
ChannelLocked := 1;
IRQ <= ‘1’;
exit; -- stop once I found it

end if;
Index := (Index + 1) mod (Planes - 1);

end loop;
if(ChannelLocked = 0) then

OutputChannel := (OutputChannel + 1) mo
(Planes - 1);

end if;
end if;

end if;

END Process;

DataReady <= DataReadyOut;

END behavior;

101

th

dy,

;

--
-- Program: FSOI_Test.vhd
-- Author: Jim Rorie
-- Purpose: Testbench for FOSI.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE work.LocalDefines.all;
--USE ieee.numeric_std.all;

ENTITY test_system IS
END test_system;

ARCHITECTURE testbench OF test_system IS
COMPONENT FSOI
PORT (

CLK, Reset : IN STD_LOGIC;
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);

DataPresent, ACK : IN STD_LOGIC;
DataReady, IRQ : OUT STD_LOGIC;
Output : OUT STD_LOGIC_VECTOR(Planes -1 downto 0);
Input : IN STD_LOGIC_VECTOR(Planes - 1 downto 0)

);

END COMPONENT;

-- Declaration of the component under test

SIGNAL CLK : STD_LOGIC:=’0’;
SIGNAL Reset : STD_LOGIC:=’0’;
SIGNAL IDataBus, ODataBus : STD_LOGIC_vector(DatabusWid

- 1 downto 0);
SIGNAL DUH, ACK, IRQ, IDataPresent, ODataPresent, IDataRea

ODataReady : STD_LOGIC;
SIGNAL Input, Output : STD_LOGIC_vector(Planes - 1 downto 0)

for dut1 : FSOI use entity work.FSOI(behavior);
for dut2 : FSOI use entity work.FSOI(behavior);

function OutputData(c:integer) return Std_Logic_vector is
variable Index : Integer;

102

s-
variable Data : Std_Logic_vector(DataBusWidth -1 downto 0);
begin

Index := 0;
while (Index < DataBusWidth) loop

Data(Index) := ‘0’;
Index := Index + 2;

 end loop;

Index := 1;
while (Index < DataBusWidth) loop

Data(Index) := ‘1’;
Index := Index + 2;

 end loop;

return Data;
end OutputData;

BEGIN

CLK <= not (CLK) after 35 ns;

Process begin
wait for 10 ns;

 Reset <= ‘0’;
 IDatabus <= (others => ‘Z’);
 ODatabus <= (others => ‘Z’);

 IDataPresent <= ‘0’;
 ODataPresent <= ‘0’;

wait until clk’event and clk = ‘1’;
 Reset <= ‘1’;

wait until clk’event and clk = ‘1’;
IDataBus <= CONV_STD_LOGIC_VECTOR(122, DataBu

Width);
 IDataPresent <= ‘1’;

wait until clk’event and clk = ‘1’;
 IDataPresent <= ‘0’;

IDataBus <= (Others => ‘Z’);

wait until clk’event and clk = ‘1’;

103

s-

s-

s-

s-

s-
wait until clk’event and clk = ‘1’;
wait until clk’event and clk = ‘1’;

IDataBus <= CONV_STD_LOGIC_VECTOR(1817, DataBu
Width);
 IDataPresent <= ‘1’;

wait until clk’event and clk = ‘1’;
IDataBus <= CONV_STD_LOGIC_VECTOR(543556, DataBu

Width);
 IDataPresent <= ‘1’;

wait until clk’event and clk = ‘1’;
IDataBus <= CONV_STD_LOGIC_VECTOR(23452, DataBu

Width);
 IDataPresent <= ‘1’;

wait until clk’event and clk = ‘1’;

IDataBus <= CONV_STD_LOGIC_VECTOR(6745656, DataBu
Width);
 IDataPresent <= ‘1’;

wait until clk’event and clk = ‘1’;
IDataBus <= CONV_STD_LOGIC_VECTOR(836465, DataBu

Width);
 IDataPresent <= ‘1’;

wait until clk’event and clk = ‘1’;
 IDataPresent <= ‘0’;

IDataBus <= (Others => ‘Z’);

wait until clk’event and clk = ‘1’;
wait until clk’event and clk = ‘1’;

wait until clk’event and clk = ‘1’;

for I in 0 to DataBusWidth + 2 loop
wait until clk’event and clk = ‘1’;

end loop;

wait;

end process;

104

K =>
t =>

LK =>
tput
dut1 : FSOI PORT MAP (Databus => IDatabus, DataPresent => IDataPresent, CL
CLK, ACK => DUH, IRQ => DUH, Reset => Reset, DataReady => IDataReady, Inpu
Input, Output => Output);

dut2 : FSOI PORT MAP (Databus => ODatabus, DataPresent => ODataPresent, C
CLK, ACK => ACK, IRQ => IRQ, Reset => Reset, DataReady => ODataReady, Ou
=> Input, Input => Output);

ACK <= IRQ;

END testbench;

105

(63

(63
--
-- Program: Node.vhd
-- Author: Jim Rorie
-- Purpose: Node Stub.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY Node IS
PORT (
 MainDataBus, LowDataBus, HighDataBus : INOUT STD_LOGIC_VECTOR
downto 0);
 DestinationAddress : INOUT STD_LOGIC_VECTOR(9 downto 0);
 EDIReady, CLK, Reset : IN STD_LOGIC;
 BAU0Ready : OUT STD_LOGIC
);
END Node;

ARCHITECTURE behavior OF Node IS

COMPONENT ProcessorStack
PORT (
 DataBus : INOUT STD_LOGIC_VECTOR(63 downto 0);
 SourceAddress : INOUT STD_LOGIC_VECTOR(9 downto 0);
 DestinationAddress : INOUT STD_LOGIC_VECTOR(9 downto 0);
 EDIReady, CLK, Reset : IN STD_LOGIC;
 BAU0Ready : OUT STD_LOGIC
);
END COMPONENT;

COMPONENT FSOI
GENERIC (

DataBusWidth : integer := 64;
AddressBusWidth : integer := 10;
Planes : integer := 16

);

COMPONENT XBarPlane IS
PORT (
 LocalDataBus, LowDataBus, HighDataBus : INOUT STD_LOGIC_VECTOR
downto 0);

 CLK, Reset, BusReady : IN STD_LOGIC;
XBarReady: OUT STD_LOGIC

106

ess,
);
END COMPONENT;

BEGIN

ProcStack : ProcessorStack PORT MAP (
 DataBus => DataBus,

SourceAddress => SourceAddress,
DestinationAddress => DestinationAddress,

 EDIReady => EDIReady,
CLK => CLK,

 BAU0Ready => BAU0Ready,
 Reset => Reset
);

FSOI0 : FSOI PORT MAP (DataBus, SourceAddress, DestinationAddr
Halt(0), BusReady(0), CLK, Reset, CPUReady(0), IRQ(0), FSOIOutput, FSOIInput);

END Behavior;

107

taP-

nto
--
-- Program: Plane_Test.vhd
-- Author: Jim Rorie
-- Purpose: Testbench for Plane.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;
--USE ieee.numeric_std.all;

ENTITY test_system IS
END test_system;

ARCHITECTURE testbench OF test_system IS

component ProcessorPlane
PORT (
 CLK, Reset : IN STD_LOGIC;
 DataBus, EDIBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
 EDIReady, EIRQ : IN STD_LOGIC;
 BAU0Ready, Online, EACK : OUT STD_LOGIC;
 FSOIOutput : OUT STD_LOGIC_VECTOR(Planes-1 downto 0);
 FSOIInput : IN STD_LOGIC_VECTOR(Planes-1 downto 0)
);
END COMPONENT;

-- Declaration of the component under test

SIGNAL CLK : STD_LOGIC:=’0’;
SIGNAL Reset, EIRQ, EDIReady, EACK, Control, DataReady, BAU0Ready, Da
resent : STD_LOGIC:=’0’;
SIGNAL DataBus, EDIBus : STD_LOGIC_vector(DatabusWidth - 1 downto 0);
SIGNAL PlaneAddress : STD_LOGIC_VECTOR(PlaneAddressWidth - 1 dow
0);
SIGNAL ACK, IRQ : STD_LOGIC_VECTOR(Processors downto 0);
signal FSOIInput, FSOIOutput : STD_LOGIC_VECTOR(Planes-1 downto 0);

for dut : ProcessorPlane use entity work.ProcessorPlane(behavior);

BEGIN

108
CLK <= not (CLK) after 35 ns;

process begin
 wait for 10 ns;
 Reset <= ‘0’;
 Databus <= (others => ‘Z’);

 IRQ <= (others => ‘0’);

wait until clk’event and clk = ‘1’;

 Reset <= ‘1’;

wait until clk’event and clk = ‘1’;
IRQ(0) <= ‘1’;

wait until clk’event and clk = ‘1’;
IRQ(1) <= ‘1’;
IRQ(0) <= ‘0’;

wait until clk’event and clk = ‘1’;
wait until clk’event and clk = ‘1’;

IRQ(0) <= ‘0’;
wait until clk’event and clk = ‘1’;
wait;

end process;

Process (reset, ack, DataReady)
Variable OutputData : Integer;

begin

if(reset = ‘0’) then
OutputData := 0;

 DataReady <= ‘0’;
else
--elsif(clk’event and clk = ‘1’) then

if(DataReady = ‘1’) then
DataReady <= ‘0’;
OutputData := 0;

end if;

109

abus,
=>
for i in 1 to Processors loop
if(ack(i) = ‘1’) then

DataReady <= ‘1’;
OutputData := 1;

end if;
end loop;

if(OutputData = 1) then
DataBus <=

“1000”;
else

DataBus <= (others => ‘Z’);
end if;

end if;

Control <= DataBus(DataBusWidth -1);

end process;

dut : ProcessorPlane PORT MAP (CLK => CLK, Reset => Reset, Databus => Dat
EDIBus => EDIBus, EDIReady => EDIReady, EIRQ => EIRQ, BAU0Ready
BAU0Ready, FSOIOutput => FSOIOutput, FSOIInput => FSOIInput);

END testbench;

110
--
-- Program: Processor.vhd
-- Author: Jim Rorie
-- Purpose: Processor Stub.
--
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
USE work.LocalDefines.all;
--USE ieee.numeric_std.all;

ENTITY Processor IS
PORT (
 CLK, Reset : IN STD_LOGIC;
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
 ACK, DataPresent, AddressEnable : IN STD_LOGIC;
 DataReady, IRQ : OUT STD_LOGIC
);

END Processor;

ARCHITECTURE behavior OF Processor IS
Signal Counter : integer range 0 to 64;

BEGIN

GenData: Process(Clk, Reset, ACK)
Begin

if(Reset = ‘0’) then
Counter <= 0;

elsif(clk’event and clk = ‘1’) then

if(Ack = ‘0’) then
IRQ <= ‘1’;

else
Counter <= counter + 1;

end if;

111

r,
end if;

end Process;

Xmit: Process(Clk, Reset, ACK)
Begin

if(Reset = ‘0’) then
Databus <= (Others => ‘Z’);
DataReady <= ‘0’;

elsif(clk’event and clk = ‘1’) then

if(Ack = ‘1’) then

DataBus <= CONV_STD_LOGIC_VECTOR(Counte
DataBusWidth);

DataReady <= ‘1’;

else

Databus <= (Others => ‘Z’);
DataReady <= ‘0’;

end if;

end if;

end Process;

END behavior;

112

d-

-

N

0)
--
-- Program: Processor_Plane.vhd
-- Author: Jim Rorie
-- Purpose: One VLSI PLane.
--
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;

ENTITY ProcessorPlane IS
PORT (
 CLK, Reset : IN STD_LOGIC;
 DataBus, EDIBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
 EDIReady, EIRQ : IN STD_LOGIC;
 BAU0Ready, Online, EACK : OUT STD_LOGIC;
 FSOIOutput : OUT STD_LOGIC_VECTOR(Planes-1 downto 0);
 FSOIInput : IN STD_LOGIC_VECTOR(Planes-1 downto 0)
);
END ProcessorPlane;

ARCHITECTURE behavior OF ProcessorPlane IS

COMPONENT BAU
PORT (

DataBus, EDIBus : INOUT
STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);

PlaneAddress : OUT STD_LOGIC_VECTOR(PlaneA
dressWidth - 1 downto 0);

ACK : OUT STD_LOGIC_VECTOR(Processors + 1 down
to 0);

CLK, Reset, Control, DataReady, EDIReady : I
STD_LOGIC;

BAU0Ready, Online: OUT std_logic;
IRQ : IN STD_LOGIC_VECTOR(Processors + 1 downto

);
END COMPONENT;

COMPONENT Processor
PORT (
 CLK, Reset : IN STD_LOGIC;
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
 ACK, DataPresent, AddressEnable : IN STD_LOGIC;

113

;

ownto
set,

=>

(X),
 DataReady, IRQ : OUT STD_LOGIC
);
END COMPONENT;

COMPONENT FSOI
PORT (

CLK, Reset : IN STD_LOGIC;
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);

DataPresent, ACK, AddressEnable : IN STD_LOGIC;
DataReady, IRQ : OUT STD_LOGIC;
Output : OUT STD_LOGIC_VECTOR(Planes - 1 downto 0);
Input : IN STD_LOGIC_VECTOR(Planes - 1 downto 0)

);
END COMPONENT;

component AddressDecoder
PORT (
 AddressBus : IN STD_LOGIC_VECTOR(AddressBusWidth - 1 downto 0);
 Valid : OUT STD_LOGIC_VECTOR(Processors - 1 downto 0);
 CLK, Reset : IN STD_LOGIC;
 Forward, Control : OUT STD_LOGIC;
 PlaneAddress : IN STD_LOGIC_VECTOR(PlaneAddressWidth - 1 downto 0)
);
END component;

SIGNAL DataReady, ACK, IRQ : STD_LOGIC_VECTOR(Processors + 1 downto 0)
signal Control, DataPresent, Forward : std_logic;
signal Valid : std_logic_vector(Processors - 1 downto 0);
signal PlaneAddress : std_logic_vector(PlaneAddressWidth-1 downto 0);

BEGIN

Decoder : AddressDecoder port map (AddressBus => DataBus((DatabusWidth - 1) d
(((DatabusWidth - 1) - AddressBusWidth) + 1)), Valid => Valid, clk => clk, reset => re
Forward => Forward, Control => Control, PlaneAddress => PlaneAddress);

-- Expand this to 4 processors
Procs: FOR X in 1 to Processors GENERATE

CPU : Processor PORT MAP (DataBus => DataBus, Ack
Ack(X),

DataPresent => DataPresent, AddressEnable => Valid

114

=>

la-
l =>
y =>

bus,
, Da-
CLK => CLK,
Reset => Reset, DataReady => DataReady(X), IRQ

IRQ(X));

end generate;

BAU0 : BAU PORT MAP (Databus => DataBus, EDIBus => EDIBus, P
neAddress => PlaneAddress, ACK => Ack, CLK => CLK, Reset => Reset, Contro
Control, DataReady => DataPresent, EDIReady => EDIReady, BAU0Read
BAU0Ready, Online => Online, IRQ => IRQ);

VCSELS: FSOI port map (clk => clk, reset => reset, DataBus => Data
DataPresent => DataPresent, ACK => Ack(FSOIIndex), AddressEnable => Forward
taReady => DataReady(FSOIIndex), Input => FSOIInput, Output => FSOIOutput);

DataReady(EDIIndex) <= EDIReady;

process(DataReady)
begin
for I in 0 to Processors - 1 loop

DataPresent <= DataPresent OR DataReady(i);
end loop;

end process;

END behavior;

115

aBus,
t(i),
--
-- Program: Processor_Stack.vhd
-- Author: Jim Rorie
-- Purpose: Stakc of Planes.
--
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE work.LocalDefines.all;

ENTITY ProcessorStack IS
PORT (
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
 EDIReady, CLK, Reset : IN STD_LOGIC;
 BAU0Ready : OUT STD_LOGIC;
 FSOIOutput : OUT VCSELArray;
 FSOIInput : IN VCSELArray

);
END ProcessorStack;

ARCHITECTURE behavior OF ProcessorStack IS

COMPONENT ProcessorPlane
PORT (
 CLK, Reset : IN STD_LOGIC;
 DataBus : INOUT STD_LOGIC_VECTOR(DataBusWidth - 1 downto 0);
 EDIReady : IN STD_LOGIC;
 BAU0Ready : OUT STD_LOGIC;
 FSOIOutput : OUT STD_LOGIC_VECTOR(15 downto 0);
 FSOIInput : IN STD_LOGIC_VECTOR(15 downto 0)
);
END COMPONENT;

BEGIN

-- Because ORCAD doesn’t have a $&$%^%*&#^$ Generate Statement
Planes: FOR i in 0 to 15 GENERATE

Slice : ProcessorPlane PORT MAP (CLK => CLK, Reset => Reset, DataBus => Dat
EDIReady => EDIReady, BAU0Ready => BAU0Ready, FSOIInput => FSOIInpu

116
FSOIOutput => FSOIOutput(i));

END GENERATE;

END behavior;

117

 =>
--
-- Program: Trainer.vhd
-- Author: Jim Rorie
-- Purpose: Synchronization Trainer.
--
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY Trainer IS
PORT (

 DataIn, Train, CLK, Reset : IN STD_LOGIC;
 SyncClk: OUT STD_LOGIC
);
END Trainer;

ARCHITECTURE behavior OF Trainer IS

COMPONENT TrainerFSM
PORT (

 Train, CLK, Reset : IN STD_LOGIC;
 CurrentPass : OUT Integer range 0 to 3;

 Store, TrainClk, Compare: OUT STD_LOGIC
);
END COMPONENT;

Signal DataReg : Std_Logic_Vector(7 downto 0);
Signal CurrentClk, Equal, Store, TrainClk, Compare : Std_logic;
Signal DelayCLK : Std_Logic_Vector(3 downto 0);
Signal GoodCLK : Std_Logic_Vector(3 downto 0);
Signal CurrentPass : Integer range 0 to 3;

BEGIN
FSM : TrainerFSM port map (CLK => CLK, Train => Train, Reset => Reset, Store
Store, TrainClk => TrainClk, CurrentPass => CurrentPass, Compare => Compare);

--
-- This shifts the data in from the serial input
--

118
Shifter : Process(CurrentClk, Reset, DataIn)
Begin

if(Reset = ‘0’) then
DataReg <= (Others => ‘0’);

elsif(CurrentClk’event AND CurrentClk = ‘1’) then
DataReg(7 downto 1) <= DataReg(6 downto 0);
DataReg(0) <= DataIn;

end if;

end Process;

--
-- Creates a number of delayed clocks from a single clock source
--

ClockGen : Process(Clk, Reset)
Begin

DelayClk(0) <= Clk;
DelayClk(1) <= clk After 100 ps;
DelayClk(2) <= clk After 200 ps;
DelayClk(3) <= clk After 300 ps;

end Process;

--
-- Check the data coming in to determine if the clock is good
-- enough to use
--
-- This process operate asynchronously, thus no clock inference.
--

ClockSelect : Process(Reset, DelayClk, CurrentClk, TrainClk)
Begin

if(Reset = ‘0’) then

119
GoodClk <= “0000”;
else

if(Compare = ‘1’) then
if(Equal = ‘1’) then

GoodClk(CurrentPass) <= ‘1’;
else

GoodClk(CurrentPass) <= ‘0’;
end if;

end if;

if(TrainClk = ‘1’) then
CurrentClk <= DelayClk(CurrentPass);

else
for i in 3 downto 0 loop

if(GoodClk(i) = ‘1’) then
CurrentClk <= GoodClk(i); -- This should

make the lowest good one active
end if;

end loop;
end if;

SyncClk <= CurrentClk;
end if;

End Process;

--
-- Compare the data to a know value and generated a Equal signal
-- It is important that the data is not symetric with time so that
-- false equals will not be generated
--

Comparator : Process(DataReg)
Begin

if(DataReg = “11111010”) then
Equal <= ‘1’;

else
Equal <= ‘0’;

end if;

end Process;

120
END Behavior;

121

set :
--
-- Program: TrainerFSM.vhd
-- Author: Jim Rorie
-- Purpose: FSM for Trainer.
--
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY TrainerFSM IS
PORT (

 Train, CLK, Reset : IN STD_LOGIC;
 CurrentPass : OUT Integer range 0 to 3;

 Store, TrainClk, Compare: OUT STD_LOGIC

);
END TrainerFSM;

ARCHITECTURE behavior OF TrainerFSM IS
type StateType is (Idle, GetFrame);

Signal CurrentState, NextState : StateType;
Signal BitCount, BitReset, IncrementPass, PassCount, PassRe

Std_logic;

BEGIN
Compare <= BitCount;

--
-- Combinational next state logic
--

Combinational: Process(CurrentState, PassCount, BitCount, Reset, Train)
BEGIN
-- Reset: Start from known state

if(reset = ‘0’) then
IncrementPass <= ‘0’;
BitReset <= ‘0’;
PassReset <= ‘0’;

122
TrainClk <= ‘0’;
else

case CurrentState is
-- Train is asserted, begin counters

when IDLE =>
TrainClk <= ‘0’;
if(Train = ‘1’) then

NextState <= GetFrame;
BitReset <= ‘1’;

end if;

-- If Terminal Count, goto Idle, else increment counters

when GetFrame =>
TrainClk <= ‘1’;
BitReset <= ‘0’;
PassReset <= ‘0’;
IncrementPass <= ‘0’;
if(PassCount = ‘1’ AND BitCount = ‘1’) then

PassReset <= ‘1’;
BitReset <= ‘1’;
NextState <= Idle;

elsif(BitCount = ‘1’) then
BitReset <= ‘1’;
IncrementPass <= ‘1’;

end if;

end case;
end if;

End Process;

--
-- Count to eight bits and reset when ordered
--

BitCounter : Process(Clk, Reset, BitReset)
Variable CurrentBit : Integer range 0 to 7;

Begin

if(Reset = ‘0’) then

123
CurrentBit := 0;
BitCount <= ‘0’;

elsif(Clk’event and Clk=’1’) then
if(BitReset = ‘1’) then

CurrentBit := 0;
BitCount <= ‘0’;

else
CurrentBit := CurrentBit + 1;
if(CurrentBit = 7) then

BitCount <= ‘1’;
else

Bitcount <= ‘0’;
end if;

end if;

end if;

end Process;

--
-- Count for 4 passes and reset when ordered
--

PassCounter : Process(Clk, Reset, IncrementPass, PassReset)
Variable LocalPass : integer range 0 to 3;

Begin

if(Reset = ‘0’) then
LocalPass := 0;
PassCount <= ‘0’;

elsif(Clk’event and Clk=’1’) then
if(PassReset = ‘1’) then

LocalPass := 0;
PassCount <= ‘0’;

elsif(IncrementPass = ‘1’) then
LocalPass := LocalPass + 1;
if(LocalPass = 3) then

PassCount <= ‘1’;
else

Passcount <= ‘0’;

124
end if;

end if;
CurrentPass <= LocalPass;
end if;

end Process;

--
-- Sequential Logic
--

Sequential: Process(Clk, Reset, NextState)
BEGIN

if(Reset = ‘0’) then
CurrentState <= IDLE;

elsif(CLK’Event AND CLK = ‘1’) then
CurrentState <= NextState;

end if;

End Process;

END Behavior;

125

r the
APPENDIX B - FSOI TIMING DIAGRAMS

Included on the following pages are the simulation results from Synopsys fo

FSOI link.

126

127

128

129

130

131

 local
APPENDIX C - DIE TIMING DIAGRAMS

Included on the following pages are the simulation results from Synopsys for the

bus operation.

132

133

134

135

	A Scalable System Architecture for use with Free Space Optical Interconnects in a 3-D Stacked Pro...
	James Fleming Rorie, Jr.

	Chapter 1 - Introduction
	FIGURE 1. Planar Multi-Chip Module
	FIGURE 2. Vertical Stacking
	FIGURE 3. FFT Performance Comparison
	1.1 Contributions

	Chapter 2 - Previous Work
	2.1 Overview
	2.2 Opto-Electronic Architectures
	FIGURE 4. Smart-Pixel Parallel Optoelectronic Computing System
	FIGURE 5. Hyperplane Architecture
	FIGURE 6. TRANSPAR Network Communication

	2.3 Analysis

	Chapter 3 - Theoretical Background
	3.1 VCSEL Device Concepts
	3.1.1 Light Amplification and Stimulated Emission
	3.1.2 Semiconductor Lasers
	FIGURE 7. Illustration of a Semiconductor Injection Laser

	3.1.3 Quantum Confined Semiconductor Lasers
	FIGURE 8. Quantum Well Structure

	3.1.4 VCSEL’s
	FIGURE 9. Vertical Cavity Surface Emitting Laser (VCSEL)

	3.2 Digital Transmission
	FIGURE 10. Traditional Transmission Techniques
	3.2.1 Asynchronous Transmission
	FIGURE 11. Asynchronous Serial Data Frame

	3.2.2 Limitations of Asynchronous Transmission
	3.2.3 Synchronous Transmission
	FIGURE 12. Manchester Clock Encoding

	3.2.4 3D-OESP Approach
	FIGURE 13. Clock Distribution Skew

	Chapter 4 - Development
	4.1 Introduction
	4.1.1 Impetus

	4.2 Mapping Functional Specification to Network Topology
	4.3 The 3D-OESP Architecture
	FIGURE 14. Block Diagram for the 3D-OESP System
	FIGURE 15. Simplified 3D-OESP Topology
	4.3.1 Functional Inferences
	FIGURE 16. Applying Subnet Concepts to the Plane
	FIGURE 17. Equivalent Network Model

	4.4 Application of Topological Concepts
	4.4.1 Data Transmission Methodology
	FIGURE 18. Packet Transmission Format

	4.4.2 Packet Framing
	FIGURE 19. Character Synchronization
	FIGURE 20. Bit Synchronization

	4.4.3 Arbitration and Collision Avoidance
	4.4.4 Optical Backbone
	4.4.5 Routing
	4.4.6 Node Address Assignment
	4.4.7 Multicasting
	(EQ 1)
	FIGURE 21. Multicasting Data Flow

	Chapter 5 - Operation
	5.1 Operational Flow
	FIGURE 22. Operational Flow
	5.1.1 Phase I - Initialization Sequence
	5.1.1.A Training
	5.1.1.B Address Resolution
	FIGURE 23. Address Resolution During Power-Up

	5.1.1.C Instruction/Parameters Upload
	TABLE 1. Packet Address Bit Mapping

	5.1.1.D Data Upload

	5.1.2 Phase II - Execution
	5.1.2.A Transpose

	5.1.3 Phase III - Termination

	5.2 Serial Data Format
	5.2.1 Error Detection and Correction
	FIGURE 24. Cyclic Redundancy Code Block Diagram

	5.3 Packet Routing
	FIGURE 25. Two Stage Routing Diagram

	5.4 System Scaling
	FIGURE 26. System Scaling - Star Configuration
	FIGURE 27. System Scaling - Linear Configuration
	(EQ 2)
	FIGURE 28. Crossbar Address Resolution Flow

	Chapter 6 - Architecture
	6.1 Overview
	FIGURE 29. 3D-OESP System Test Environment

	6.2 Processors
	FIGURE 30. FFT Processor
	6.2.1 Processor Interface
	FIGURE 31. FFT Processor - Block Diagram
	FIGURE 32. Processor Data Transfer Timing Diagram

	6.3 Tri-State Bus and Bus Arbitration Unit
	FIGURE 33. Bus Layout
	FIGURE 34. Bus Arbitration Unit - Block Diagram
	FIGURE 35. Bus Transfer Timing Diagram
	6.3.1 External Communications

	6.4 Interrupt Controller
	FIGURE 36. Interrupt Controller - Block Diagram
	6.4.1 Operation
	FIGURE 37. Interrupt Controller - Timing Diagram

	6.5 Free Space Optical Transceiver
	6.5.1 Interface
	FIGURE 38. Free Space Optical Transceiver - Block Diagram

	6.5.2 Horizontal Decoding
	FIGURE 39. Horizontal Channel Selection and Serial to Parallel Conversion
	FIGURE 40. Data Transfer Across Clock Boundaries

	6.5.3 Serial Encoding
	FIGURE 41. Serial Encoding
	FIGURE 42. Time Domain Multiplexed Serial Data Stream

	6.5.4 Transmission Clock Synchronization
	FIGURE 43. Clock Synchronization Unit (Trainer)

	6.5.5 Serial Decoding
	FIGURE 44. Serial Decoding
	FIGURE 45. Frame Detection Algorithm

	6.6 Crossbar Router
	FIGURE 46. Crossbar Router - Block Diagram
	FIGURE 47. Crossbar Router (One Plane Shown)
	6.6.1 Address Resolution
	6.6.2 Broadcast Resolution
	FIGURE 48. Resolution of Broadcast Packets

	6.7 External Data Interface
	FIGURE 49. External Data Interface
	TABLE 2. External Data Interface

	Chapter 7 - Results
	7.1 Simulation Results
	7.1.1 Link Level Simulation
	FIGURE 50. Framing Simulation Block Diagram
	FIGURE 51. Framing Efficiency

	7.1.2 Network Level Flow
	FIGURE 52. Network Simulation Model
	FIGURE 53. Bus Synchronization Latency

	7.1.3 Trainer Simulation
	FIGURE 54. Clock Capture at 300MHz

	Chapter 8 - Conclusions
	TABLE 3. Performance Parameters for 3D-OESP Architecture
	TABLE 4. Performance Comparison for FFT Processors
	1. G. Betzos, P. Mitkas, “Performance Evaluation of 3D Optoelectronic Computer Architectures Base...
	2. P. Cheo, Handbook of Solid State Lasers, Marcel Dekker(1989), p. 2.
	3. M. Inguscio, R. Wallenstein, Solid State Lasers: New Developments and Applications, New York, ...
	4. A. Mainwaring, S. Schleimer, “System Area Network Mapping”, 9th Annual ACM Symposium on Parall...
	5. B. Anglis, H. Hinton, “A Dynamically reconfigurable Token-based Optical Backplane”, IEEE/LOES ...
	6. J. Wu, C. Kuznia, C. Chen, B. Hoanca, A. Sawchuk, “Network with Free Space Optical Data Packet...
	7. J. Rorie, P. Marchand, P. Chandramani, J. Ekman, F. Kiamilev, F. Zane, V. Ozguz, S. Esener, “A...
	8. S. Esener, P. Marchand, “3D Opto-electronic Stacked Processors: Design and Analysis” OC Comput...
	9. F. Halsall, “Data Communications, Computer Networks and Open Systems”, Fourth Edition, Addison...
	10. J. Hammand, “Performance Analysis of Local Computer Networks”, Addison- Wesely, Reading, MA
	11. B. Stuck, “Calculating the Maximum Throughput Rate in Local Area Networks”, IEEE Computer
	12. S. Leong, B. Dewar, “The Effect of Traffic Locality on Network Architecture Performance”, Pro...
	13. Johnson, Barry W., “Design and Analysis of Fault Tolerant Digital Systems”, Reading: Addison ...
	14. N. McArdle, M. Naruse, T. Komuro, H. Sakaida, M. Ishikawa, Y. Kobayashi and H. Toyoda, “A Sma...
	15. T. Szymanski, H. Scott Hinton, “Design of a Terabit Free-Space Photonic Backplane for Paralle...
	16. J. Wu, C. Kuznia, C. Chen, B. Hoanca, A. Sawchuk, “Network with Free Space Optical Packet Usi...
	17. A. Louri, S. Furlonge, C. Neocleous, “Experimental demonstration of the optical multi-mesh hy...
	18. A. Louri, S. Furlonge, “Feasibility study of scalable optical interconnection network for mas...
	19. T. Pinkston, U. Efron, M. Cambell, “Applying Optical Interconnects to the 3-D Computer: A Per...
	20. O.Sjölund, D. A. Louderback, E. R. Hegblom, J. Ko, and L. A. Coldren, “Individually optimized...
	21. Irvine Sensors Corporation, Costa Mesa, CA, 92626
	22. M. Hibbs-Brenner, Y. Liu, R.Morgan, J. Lehman, “VCSEL/MSM Detector Smart Pixel Arrays”, IEEE/...
	23. J. Neff, C. Chen, T. McLaren, A. Mao, “VCSEL/CMOS Smart Pixel Arrays for Free- Space Optical ...

	Appendix A - VHDL Source Files
	Appendix B - FSOI Timing Diagrams
	Appendix C - Die Timing Diagrams

