
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson 
Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 1 3. REPORT TYPE AND DATES COVERED 

2010 Technical Report 

4. TITLE AND SUBTITLE 

Aerospace Applications of Adjoint Theory 

6. AUTHOR(S) 

Domenic Bucco 

5.  FUNDING NUMBERS 

7.      PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

DSTO 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.      SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES 

DSTO 
PO Box 1500 Edinburg 
South Australia 5111 Australia 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11.    SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for Public Release. 

12b  DISTRIBUTION CODE 

ABSTRACT (Maximum 200 words) 

The adjoint simulation method is an efficient, computerized method for the performance analysis of linear time varying (LTV) systems 
excited by deterministic and/or stochastic inputs. It is based on the impulse response function (or weighting function) of the so-called 
adjoint system - an associated linear system derived from the original system by clever utilisation of the mathematical principle of duality. 
Once the adjoint system is obtained, the solution process using this method is quite straight forward regardless of the nature and number of 
inputs. In this report, we demonstrate the power of adjoint simulation in the context of guided missile homing loop studies and present a 
MATLAB tool that can be used for its speedy implementation and execution. The tool is demonstrated by using it to analyse the miss 
distance performance of a generic guided missile against an evading target. 

14. SUBJECT TERMS 

DSTO, Australia , Adjoint theory. Adjoint simulation method, Linear time varying (LTV), Mathematicla 
principal of duality. Guided missile homing loop studies. Guided missile. Weapon programs. Practical 
engineering approach, Laning and Battin rules. Simulation diagrams. Feedback paths, MATLAB/Simulink 

15.    NUMBER OF PAGES 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

CLASSIFIED 

18.    SECURITY CLASSIFICATION 
OF THIS PAGE 

  UNCLASSIFIED 

19, SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 

Prescribed by ANSI Std. 239-18 
298-102 

2-89) 



Department of Defi'tut' 
Defence Scieooe and 
Techaolog) (hjNiimntion 

DSTO FELLOWSHIP PROGRAM 

Aerospace Applications 
of Adjoint Theory 

Domenic Bucco 

DSTO       Science and Technology for a Secure World 



DSTO Fellowship Program 
The DSTO Fellowship program encourages scientific innovation and creativity within 

DSTO through a competitive award scheme. DSTO Fellowships recognise and support 

meritorious research activity of potential future value to Defence or National Security 
undertaken by our high-achieving scientists. 

This program is part of the DSTO's Corporate Enabling Research Program (CERP) and 

it is one of the important mechanisms at DSTO for fostering interactions with and 

leveraging from industry, academia, and Australian and overseas research bodies. 

Published by 

Weapons Systems Division 

DSTO Defence Science and Technology Organisation 

PO Box 1500 Edinburgh 

South Australia 5111 Australia 

Telephone: (08) 8259 5555 

Fax: (08) 8259 6567 

© Commonwealth of Australia 2010 

January 2010 

APPROVED FOR PUBLIC RELEASE 



Australian Government 
Department of Defence 

Defence Science and 
Technology Organisation 

Aerospace Applications of Adjoint Theory 

Domenic Bucco 
Weapons Systems Division 

Defence Science and Technology Organisation 

ABSTRACT 
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performance analysis of linear time varying (LTV) systems excited by deterministic 

and/or stochastic inputs. It is based on the impulse response function (or weighting 
function) of the so-called adjoint system - an associated linear system derived from 

the original system by clever utilisation of the mathematical principle of duality. 

Once the adjoint system is obtained, the solution process using this method is 
quite straightforward regardless of the nature and number of inputs. In this report, 

we demonstrate the power of adjoint simulation in the context of guided missile 
homing loop studies and present a MATLAB tool that can be used for its speedy 
implementation and execution. The tool is demonstrated by using it to analyse the 
miss distance performance of a generic guided missile against an evading target. 
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Aerospace Applications of Adjoint Theory 

Executive Summary 

Adjoint theory has widely been employed by various missile companies as a pivotal 

tool in support of their weapons programs. These companies have traditionally 
adopted this practical engineering approach due to its simplicity, accuracy and 

efficiency of use, particularly during the preliminary and conceptual stages of a new 

missile design. In this approach, design parameters for the missile system can be 
readily selected on the basis of sensitivity curves generated by the efficient simulation 
of an associated system adjoint to the missile system under study. 

However, one of the difficulties with this approach is the determination of the 
associated adjoint system. Two methods exist for doing this. The adjoint system can 
be obtained via a practical engineering approach or via a more rigorous mathematical 

approach. Traditionally, defence engineers have used the engineering approach. 
This is based on a set of adjoint construction rules developed by Laning and Battin 

(7] while implementing their adjoint equations on an analogue computer. With 
this approach, given the original dynamic system in the form of a simulation block 

diagram with designated inputs and outputs, the adjoint system is constructed 
through manual manipulation of this block diagram in accordance with the Laning 

and Battin rules. 

For very complex simulation diagrams with many feedback paths typically found in 

missile guidance loops, manual application of the adjoint construction rules may 
be extremely tedious, time consuming and prone to error. However, if the original 
simulation block diagram is implemented in a commercially available graphical 

simulation package such as MATLAB/Simulink, then the process required to construct 
the adjoint system can be conveniently automated to minimise or eliminate these 
shortcomings. A tool for doing this is outlined in this report. The tool can be used to 

support preliminary studies into new concepts such as hypersonic vehicles. 

The objectives of this report are to review the classical theory of the adjoint method 
as applied to the guided missile problem, to present a pragmatic engineering 

implementation of the theory using block diagram representation and to outline the 
development of a specialised software package designed to automate the process 
of adjoint system construction within the MATLAB/Simulink environment. Several 

examples drawn from the open literature are used to illustrate the solution process 
for typical problems encountered in Aerospace/Defence science. 
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i. Introduction 
Systems analysts and engineers are often confronted with understanding the 

behaviour and performance of complex, dynamic systems driven by various inputs 
predominantly of a stochastic nature.  Some typical applications include miss 
distance studies of guided missiles, fire control problems, navigation problems and 

analysis of circuits due to random noise. For these systems, the most general method 
of tackling the problem and gaining critical statistical insight into the nature of the 

response is via the use of the Monte Carlo simulation technique (i). However, when 

the system is linear or can be approximated by a linear system, the use of the Monte 
Carlo method would seem somewhat excessive and unwarranted in such cases. 

Instead, the stochastically-driven linear system may be more economically and rapidly 
studied using better matched linear techniques. One such technique is based on 

adjoint theory [2] and is traditionally known as the adjoint simulation method (or 
modified adjoint method). 

The adjoint simulation method is a computerised method for the performance analysis 

of linear time varying (LTV) systems. Mathematically, it is derived from the formal 
theory of linear differential operators and their associated adjoints. Traditionally, the 

technique has been very popular in the study of guided missile homing loops and, in 

general, has been employed during the preliminary and conceptual definition stages 
of many new missile programs. For this work, the LTV system under study is typically 

represented in the form of a simulation block diagram. The associated adjoint system 

is also represented in block diagram form. The adjoint system is constructed by 
manual manipulation of the original system block diagram in accordance with a given 
set of rules. These rules were first proposed by Laning and Battin [7] as part of their 
adjoint simulation work on analogue computers. 

In general, given an LTV system with n inputs and m outputs, the adjoint method can 

be used to determine the sensitivity of any of the outputs at a fixed time to each of 
the n inputs. If the inputs are stochastic in nature, then this approach can be easily 

formulated to compute the Root Mean Squared (RMS) value of the system states of 

interest without resorting to ensemble computations as generally required by the 

Monte Carlo method [1). Hence, the technique provides the analyst with a simple but 

powerful alternative to the Monte Carlo approach in those cases when linearisation 
can be physically justified. 



The purpose of this report is to review the theory of the adjoint simulation method as 

applied to LTV systems, to present a pragmatic implementation of the theory using 

block diagram representation and to outline the development of a software package 

designed to automate the adjoint system construction process within the Matlab/ 

Simulink environment (50]. Several examples drawn from the open literature will be 
used to illustrate the solution process to typical problems encountered in Aerospace/ 

Defence science. 

2. Historical Perspective 
According to Zarchan [2], the adjoint method can be traced back to the Italian 

mathematician Vito Volterra, circa 1870. However, the book by Ince [62] points to 

Lagrange as the discoverer of the method over a hundred years earlier. According 
to Ince, while exploring ways of solving the variable coefficient ordinary differential 
equation with non-zero right hand side, Lagrange was the first to mathematically 

formulate the adjoint differential equation, although he did not use the term 
"adjoint" to describe it. The term was later used by Fuchs in 1873 [62]. 

The first practical use of the adjoint method was subsequently developed by Bliss 

while serving as a mathematical expert at the Army Proving Ground at Aberdeen, 

Maryland, US, in 1918 [3]. Bliss used a property of the adjoint method to study the 
effects of perturbations on a system of equations associated with the flight of shells. 
Ballisticians then used the method in connection with their theoretical studies of 

artillery hit dispersions [4]. 

In the early 1950s, Bennett [5] employed the adjoint method for statistical 
performance analysis of linear systems on an analogue computer. Subsequently, 
Laning and Battin [6] described the use of the method for the statistical analysis 
of time variable networks. However, it seemed that the adjoint method was still 

relatively unknown until 1956 when Laning and Battin [7] included a discussion and 
proof of the method in their book on random processes. This book helped popularise 

adjoint simulation and is still a highly referenced resource on the method. 

In the 1960s, many references appeared on the applications of the adjoint method 
to systems analysis using analogue computers. Books by Rogers & Connolly [8|, 

Fifer [9] and Leondes [10] devoted chapters to the technique while Thorson [11] 

examined the method more closely while undertaking research as part of a Master of 
Science program. Peterson [12], and later Howe [13] and Tarrant [14), illustrated how 



the method could be easily applied to the performance analysis of generic guided 
missile systems. In fact, with regards to guided missile studies, the Peterson book 

is referenced often. Several other references [15-17] discuss the adjoint simulation 
approach and its application on the analogue computer. In all these applications, 

the adopted methodology for the construction of the adjoint system followed that 

proposed by Laning and Battin in the form of their adjoint construction rules [7]. 

During the same time frame, a slightly different mathematical approach applying the 

adjoint operator to linear differential equations was being developed and presented 

by Sussman [18]. Similar expositions using the state space representation of the 
governing equations were published [19-20] relating the more mathematical approach 
to the so-called modified adjoint system. State space methodologies were also 
developed to handle discrete time systems [21-22]. Willems [23] used a combination 
of the state space approach with the more traditional block diagram approach to 

investigate the performance of a generic ground to ground missile guidance system. 

The adjoint method had become a common analysis tool by the 1970s and 1980s and 

was being used on preliminary design studies by various companies in the missile 

industry. Advances to the basic adjoint methodology, such as the use of shaping 

filters to model target manoeuvres [24-26], adjoint representation of discrete systems 
[2| and applications to non-linear systems [27] extended the overall capability of 
the method. The extension to non-linear systems utilised the concept of statistical 

linearisation and is known as the Statistical Linearisation Adjoint Method (SLAM). An 
excellent report outlining the use of the adjoint method for sensitivity analysis and 
miss distance studies of generic guided missile homing loops is given by Bibel [28). 

During the 1990s, the book by Zarchan [2] on "Tactical and Strategic Missile 

Guidance" helped promote the use of the adjoint method as a staple engineering tool 
for the performance analysis of homing missile guidance loops. Other practitioners 

used the method in conjunction with the SLAM concept to explore the effects of 

various noise sources on the miss distance of a radar homing missile [29-30). The 

SLAM approach also featured in research undertaken as part of postgraduate degrees 
[31-32]. Also during this period, an interesting development saw the introduction of 

specialised software that automated the adjoint construction process using the Laning 

and Battin rules [33-34]. This provided faster turn around for analysis purposes while 
at the same time minimised potential errors during the adjoint construction phase. 



Within the last decade, the application space for the adjoint simulation method has 
expanded considerably. A new state space framework to handle continuous and 

discrete system analysis by the adjoint method has been proposed by Weiss [35] and 

applied to mid-course guidance problems [36-37). Raytheon has shown renewed 

interest in the traditional method with applications to the preliminary analysis and 

study of Ballistic Missile interceptors [38]. In addition, Raytheon researchers have 

extended the basic adjoint method to allow assessment of more complex homing 

guidance loops (39]. The method has also been used for comparison and evaluation 

of various missile guidance laws [40-41]. Further extensions of the method include 

the determination of appropriate shaping filters for estimating higher order statistics 

[42], performance analysis of guidance loops under model uncertainty [43], for robust 

guidance performance [44] and for conducting missile overload requirement analysis 

in terminal guidance using the Li approach [45]. For non-linear homing loop analysis, 

a different approach to SLAM was proposed which made use of infinite dimensional 
linearisation to reduce the equations to linear form prior to applying the adjoint 

process [46]. There have also been investigations carried out into non-traditional 
uses of the method including applications to soft kill and survivability studies [47-48]. 

More recently, a new framework has been proposed for the analysis of hybrid systems 
consisting of multi-rate subsystems that may be characterised by non-periodic discrete 

events [49]- This facilitates the study of the effects of uplinks on the performance of a 
guidance system with the use of the adjoint method. 

Following [33] which had been based on the MATRIXx environment, effort has 

continued on the software development front but with a major shift to the MATLAB 
environment [50-53]. The last decade has also seen much interest in the method as a 

topic for further research within the academic domain [54-59]. 

The adjoint technique has also received considerable attention in the teaching of 
aerospace guidance and navigation courses |6o|. 



3. The Adjoint Simulation Method 

3.1 Deterministic Inputs 

Consider a linear time varying (LTV) system described by the following ordinary 

differential equation 

at at at 

where y denotes the system output u, is the deterministic system input and the 

coefficients are functions of time. 

According to linear systems theory [7], the solution to the above differential equation 
is given by 

y(t) = f u(x)w(t,x)dx (2) 

where tt is the time at which the input is applied while w(r.x) denotes the system 
weighting function or impulse response function. Physically, the function w(t,x), 

represents the response of the system at time f to a unit impulse applied at the input at 
time x. With the aid of this weighting function, the system described by equation (1) 
is conveniently represented in block diagram form as shown in Figure 1. 

u(t) 
w(t,x ) j^V 

Figure 1. Linear time varying system 

While equation (2) gives the formal solution to the problem posed in Figure 1, its 
practical usefulness is limited. The problem here lies in the fact that the variable of 

integration corresponds to the impulse application time. Thus, in order to generate 
w(f.x) required for the above solution, it becomes necessary to simulate the system 
response for each impulse application time x . Once the weighting function is 
obtained in this manner, it is then necessary to carry out the integration in equation 
(2) numerically. 



Since every linear time-varying system has a corresponding adjoint system, a better 

and more efficient alternative is to reformulate equation (2) in terms of the weighting 

function of the associated adjoint system. To this end, utilising the so-called modified 

adjoint technique [7, 20] has the effect of requiring only one computer simulation run 

to yield the desired weighting function. 

By definition, the differential equation that describes the modified adjoint system 

corresponding to the above system but with u = 0 is given by 

£z    +    rf-|fl..,(f)=l    +    ...    +    rffcO-M    + .)z    m   Q (3) 
dt ' di ' <lt 

where 2 is a function of adjoint time f = ff - t and f/; denotes final time. Note that 

the term "modified" adjoint system is used here to indicate a time reversal in the 
conventional adjoint system differential equation by definition of adjoint time f'. 

Now, if the adjoint system, described by the above differential equation, is subjected 

to an impulsive input at timer', then the resulting system response, known as the 

adjoint weighting function, will be denoted by w'(t\x'). 

A fundamental relationship exists between a linear time varying system and its 
corresponding adjoint system [2], namely, 

w'(tF-r,tr-t) = w(r,T) (4) 

where T , f and f( are the impulse application, response observation and final time, 
respectively, of the original system. Thus, on substitution of equation (4) into equation 

(2) and, after a change of variable, 11 = f( — T we get 

v(f)= f'"'u{tp-r\)w\r\ttF-t)dr\ (5) 
J 1, -1 

It is clear now that the variable of integration appears as the first argument in the 
adjoint weighting function and thus the solution for the output can be computed with 
just one computer simulation run. For example, if the input to the system is a step of 
magnitude K which is applied at time zero, and we seek the solution at final time ty, 

then equation (5) becomes 



y(tF)-Kf'B
Fw\r),0)dr\ (6) 

Consequently, the original system response at final time can now be computed in one 

simulation run by integrating the weighting function of the corresponding adjoint 

system. This is represented in block diagram form in Figure 2, where b(t') denotes the 

standard Dirac delta function or impulse function. 

&(*•) Time Varying 
Adjoint 
System 

w"(f,0) K 
s 

y«F) 

Figure 2. Adjoint solution for system with step input 

This procedure can be extended to include many step input disturbances as well as 

other types of deterministic inputs such as ramp or sinusoidal inputs. Furthermore, 

since the system is linear, the superposition principle allows one adjoint computer 

simulation to yield the system response to a combination of disturbances, along 

with a detailed error budget showing how each disturbance influences total 

system performance. 

3.2 Stochastic Inputs 

Suppose the linear system is driven by some noise process n(t). The system output is 

now random in nature and given by 

v(r) = fii(T)w(t,x)dx (7) 

Squaring both sides of equation (7) and taking expectations yields the mean square 

value of the output, namely. 

E[y(t)] = f<Pn(T)w2{t,T)dT (8) 

where we have assumed the noise input to be non-stationary white noise with 

autocorrelation function R(t,x) = <J>0(f)6(7 —X), For stationary white noise input, 

the output mean square value reduces to 



E[y1(t)] = %fw2(r,x)dx (9) 

where the white noise power spectral density <I>M is double sided with dimension 

unit-'/Hz. Again, the problem with computation of the weighting function can be 

circumvented by considering the corresponding adjoint system. In this case, we have 

E[y2(t)]mQ0f^[w\y\,tF-t)fdt\ (10) 

If the noise input begins at f. = o and the observation time is taken as final time ff, the 

mean square response simplifies to 

E[y2U,)]    =   *o/0"[w(i1,0)],rfri (u) 

Thus the mean square response of the original system due to a white noise input 
can be determined by computing the weighting function of the adjoint system in 

one computer simulation run. This is conveniently depicted in block diagram form 
in Figure 3. 

E[y\tF)] 

Figure 3. Adjoint solution for white noise input 

Because of the superposition principle, the above procedure can be extended to 

the case of many white noise inputs. In this case, one adjoint simulation run yields 
an exact statistical solution of the noise-driven system including an error budget 

showing how each white noise error source contributes to the total system response. 
Coloured noise inputs can be treated in a similar fashion by the use of appropriate 
shaping filters. 



3-3 Adjoint Construction Rules 

From the above theory, it is clear that, for linear time varying systems, the 

adjoint simulation method offers tremendous efficiencies over other methods 

as a performance projection tool. This fact had been realised early on by many 
weapons analysts and cleverly utilised in the preliminary design stages of many 

current missile systems. 

One of the difficulties with this approach is the construction of the adjoint system from 

which the desired weighting function must be computed. Although several methods 
for the construction process have appeared in the literature, by far the most popular 

method has been that proposed by Laning and Battin [7). This method works directly 

on the original simulation block diagram by application of a set of rules. 

The adjoint construction rules are: 

1. Convert all system inputs into equivalent systems driven by impulses or 
white noise processes, 

2. Reverse all signal flow directions, 

3. Switch all system inputs to adjoint outputs and all system outputs to 

adjoint inputs, 

4. Change all summing points to branch points and all branch points to 

summing points, 

5. Replace time in all time varying elements with adjoint time f' where f" = f. - f, 

6. Apply an impulse signal to the selected output of the original system, 

7. At all the adjoint system stochastic output points, add the adjoint solution 
sequence as illustrated in Figure 3 to yield the mean square value of the 
system response. 



3.4 Example of Adjoint System Construction 

Traditionally, the construction of an adjoint system has been carried out manually by 

following the above set of rules. As an example consider the following simple system 
described by 

=2- + (tF-tfy-u(t) 
dt 

v(0) = 2 (12) 

where the input is given by u(t) = s\n(t) and th denotes final time. This simple example 

has two inputs and one output. Suppose we are interested in the sensitivity of y(t}) 

due to each of the inputs. The problem is then ideally suited to adjoint analysis. 

Firstly, we re-cast the system into block diagram form. The block diagram 

representation is given in Figure 4 

y (0)- 2 

u{t) +r ~\ 
1 
5 

y{t) 

- I 

/,       ,\2 
VF 

Figure 4. Block diagram representation of the system 

After application of rule 1 in the adjoint construction process, the above block 

diagram is converted to that shown in Figure 5. Here, the input 6(f) represents the 
impulse function. 



6(0 
,s-+l 

6(0    » 

it, -I)' 

v(0 

Figure 5 Modified block diagram following application of rule 1. 

After applying the rest of the adjoint construction rules to the system block diagram 
shown in Figure 5, we obtain the adjoint system associated with the original system. 
This is given in block diagram form in Figure 6. 

1 
yitFiu 

2 
A 

1 1 

S 

4                    r ^ 
,v2+l 

»- 

i 

, 
1 

i fie') 

Figure 6. Block diagram representation of the associated adjoint system for 
deterministic input 

It is clear from Figure 6 that the adjoint solution to the problem gives the sensitivity of 

y(th) to each of the given inputs in one simulation run. 



If, instead, the input to the system u(t) is stochastic in nature and represented as a zero 

mean, white noise process characterised by the power spectral density <t>M, then the adjoint 

simulation diagram has the form presented in Figure 7, where the mean and variance of 

the output at time tb are are denoted by y (t ) and a2 (tF ), respectively. 

°,"M„ 
<- *0 

1 

s 
()- 

y(ff)\,c 

1 

^J 
A- 

Figure 7. Block diagram representation of the associated adjoint system for 
stochastic input 

4. The Adjoint Software Tool 
For very complex systems with many feedback paths, application of the adjoint rules 

can be extremely tedious, time consuming and error prone. If the original simulation 
block diagram is implemented in Simulink, then the process required to construct 

the adjoint system can be conveniently automated to minimise these shortcomings. A 
tool has been developed to achieve this. This tool, which forms part of a suite of tools 
known as COVAD [50], is briefly described below. 

4.1 COVAD Toolbox Overview 

The COVAD toolbox has been designed as a general analysis package consisting of 

a Graphical User Interface (GUI) built using the Matlab 2007b GUI API. Via the GUI 

one is able to interact with Simulink models, such as a missile homing loop in order 

to perform a number of analysis types including the adjoint method or the Monte 
Carlo method. 

The GUI also provides a means to store and retrieve the results of simulations 
conducted in MATLAB/Simulink by storing them within a doc block (a built-in 



Simulink block) that is added into a Simulink model. 

Viewing the results of the simulation is facilitated by the GUI via a link to the 

Matlab 2007b graph viewing facility. The GUI toolbox allows the user to filter from 
the simulated results a suitable subset for which graphs may need to be generated 

for analysis and then pipes this information across to the Matlab 2007b graph 

viewing facility. 

It should be noted that the GUI is built with the intention of supporting both the 

novice and the advanced analyst. For the novice analyst, a wizard is used to guide 
the user through the steps required to configure a model and to perform the desired 
analysis type. As the model is configured, a display panel on the GUI is updated so 

that a quick summary of the state of the model configuration is always easily viewable 
by the analyst. For the advanced user, a scripting space has been introduced within 
the GUI, where the analyst can write, within some guidelines, M-code that is able to 
configure the model in a more flexible way. Even with this scripting facility, it has been 
broken into steps so that after a gap between analysis efforts, the time to familiarise 

oneself with progress so far is not tedious. There is even the ability to mix and match 

between script and wizard, thanks to the modular design under the hood, employed 

when configuring the model via steps. 

While the toolbox is envisaged to work across different versions of Matlab, presently it 

is able to function in 2007b and upwards only, since much of it was developed within 
Matlab 2007b from scratch. 

4.2 Use-Case for Adjoint Analysis 

1. User invokes the COVAD GUI via the MATLAB command line. 

2. User then creates a project. A project is a space where multiple models on 
which different sets of related analyses are packaged together in a bundle. 

3. Once the project is created, the user starts to populate the project with 

Simulink models. 

4. For each model, the user then selects the analysis type to be applied to that 

model via a list of possible analysis options. With respect to this report, the 

user would select the Fwd + Adjoint analysis option. 

5. This then configures the wizard to cater for the particular analysis type. The 
steps of the wizard will alter depending on the analysis combination chosen. 

13 



6. Now the user walks through the wizard steps and then setup of the inputs, 

outputs, and model parameters of the Simulink model subject to analysis via 

the GUI. The setup can involve setting up the ranges for the variables that are 

parameters for the various model blocks and selective enabling of the noise 

and target manoeuvre inputs to be included in the model. Via a Create Adjoint 

button found on one of these types, the user will invoke a script that will then 

automatically build the adjoint for the selected model in accordance with the 

rules described earlier in the paper. 

7. Once this is complete, the user is able to go ahead and run the simulation on 

the model via the Simulate button on the GUI. This will generate run data that 

will be displayed on the GUI as well as being saved into Doc Block, added to 

the model, which will serve as a repository of simulation run history for the 

model with associated analysis type. 

8. Finally the user can take the run results and then, depending on the data 
collected, be able to select columns for the x and y axis to produce relevant 

plots, e.g. miss distance versus flight time, for both forward and adjoint time 
simulation runs and subsequent analysis. 

4.3 Verification and Validation of the Toolbox 

It is envisaged that the COVAD toolbox will be verified and validated against results 
given in the open literature such as those given by Zarchan [2]. The verification and 
validation steps are: 

a. Compare the simulink homing loop block diagrams for various configurations 
to those given by Zarchan [2] in both forward and adjoint time to verify that the 

models have been built correctly. 

b. Compare the forward run and adjoint run simulation results with 

corresponding results given by Zarchan [2] for validation purposes. 
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5. Missile Applications 
Consider the planar missile-target engagement geometry depicted in Figure 8. Here we 
have a radio frequency (RF) guided missile intercepting an incoming target. 

Missile 

Target 

>'(/) 

w^- 

Figure 8. Missile target engagement geometry 

Both missile and target speed are assumed constant. Initially, both missile and target 
are on a collision course. The governing equations describing small perturbations 
about the collision course are given as follows [2] (assuming a near head-on case). 

By inspection of Figure 8, the relative acceleration is approximately 

Similarly, the expression for the line of sight angle o can be approximated by 

(13) 

o =y I R(t) (14) 

For a head-on case, the closing velocity V reduces to 

V = V   +V (15) 

The linearised range equation R(t) is approximated by the expression 
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R(t)-Vc(tF-t) (16) 

where tf denotes the total flight time of the engagement. 

In this example, the quantity of interest is the miss distance. This is defined as the 

relative separation between missile and target at the end of the flight, that is. 

MD = y(tF) (17) 

The above equations can be represented in block diagram form as shown in Figure 9 

aT   + T-O 
a M 

MD = y(tF) 
i < 

J, 1 

s 
y , 1 

s 

1 
)  ' 

r 
K(*r-t) 

 W 

Figure 9. Block diagram representation of linearised geometry equations 

For homing guidance, the missile relies on its RF seeker to track the target. Thus to 
complete the homing loop in Figure 9, a model of the seeker is required. The signals 
from the seeker are then used by the guidance computer to generate the guidance 

commands for the autopilot. The autopilot stabilises the missile and deflects the fins 
to cause the desired manoeuvre. The missile then reacts aerodynamically and alters 

the flight path. 

In this example, the seeker, autopilot and aerodynamic response of the missile 
are modelled using transfer functions. The guidance law used is the proportional 

navigation guidance law and has the form ac = N' Vr(j where N is the effective 
navigation ratio, V is the closing velocity, O is the rate of change of sight line angle 
and a denotes the missile commanded acceleration. 

16 



The complete linearised homing loop model for this example is represented in block 

diagram form in Figure 10. 

Radar noise, which contaminates the seeker's measurement of the line of sight to the 

target, is added in the model in the form of glint and receiver (fading) noise. These are 

modelled as zero mean white noise processors. 

Ainopilol 

Figure 10. Linearised homing loop model 

The target model for this example is developed as follows. Prior to intercept, the target 
is assumed to execute, at random, an evasive step manoeuvre of magnitude A. The 

random time T for execution of the target manoeuvre is uniformly distributed between 
zero and final homing time t, with probability density function given by 

/',<'> = 

0        , otherwise 

(18) 

It has been shown in [24-26I, that the above target model can be represented by a linear 

shaping filter driven by white noise. This model, which is shown in Figure 11, has the 
same statistical characteristics, up to second order, as that based on equation 18. The 
power spectral density of the zero mean, input white noise processor is given by 
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s 

Figure 11. Shaping filter equivalent of random step manoeuvre 

Table 1 summarises the parameter values used in this example. 

Table 1. Nominal values of system parameters 

Parameter Nominal 
Value 

Parameter Nominal Value 

Time of Flight, f, 5S Tgt Man Mag, A 3g 

Seeker Time Const., Ts 0.05 s Glint Noise PSD, <H(. 2 m'/Hz 

Filter Time Const., 7"„ 0.1 s Fading Noise PSD, <I>( io' rad'/Hz 

Autopilot Time Const., TA 0.1 s PN Ratio, N 4 

After inclusion of the target model into the homing loop block diagram of Figure 10 
and entering the parameter values, given in Table i, into COVAD, we obtain the GUI 

information displayed in Figure 12. 
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Figure 12. Parameter values entered into COVAD 
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The preview pane in the figure displays a functional representation of the entered data 

and is there to provide the user with an indication of the structure of the simulation 

model that will be built in block diagram form in Simulink. Once the Next button is 

pressed, the Simulink model representation of this data is automatically generated. 

This is shown in Figure 13. 
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Figure 13. Simulink implementation of the missile homing loop 

The adjoint toolbox in COVAD may now be invoked to automatically convert the 

Simulink model of the original system into an associated Simulink adjoint system for 

further analysis. The Simulink adjoint system is shown in Figure 14. 

Note that the impulse response of the adjoint system has been computed by imposing 

an initial condition of unity on integrator in the diagram. Standard Simulink tools 

can now be utilised for further analysis of the system. 

Figure 14. Corresponding adjoint system in Simulink 
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Figure 15 compares the results from the adjoint simulation with those generated using 

a Monte Carlo method. The results give the RMS miss distance of the engagement as 

a function of flight time. The adjoint results were obtained in one simulation run of 

the Simulink system. The Monte Carlo results are based on the physical model of the 

target manoeuvre (as opposed to the shaping filter approach required for the adjoint 

model) and required 200 runs for each value of flight time ff considered. 

5 

4 

i 3 MC set 200 
Adjoint 

0 
0 12 3 

tF (s) 

Figure 15. RMS miss distance comparison - Adjoint vs Monte Carlo results 

In addition to the total RMS miss distance results, the adjoint solution also provides, 

within the same simulation run, an error budget consisting of the contributions that 
each input has on total system performance. The error budget information is displayed 

in Figure 16. 
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Figure 16. Adjoint solution generates error budget 



It is clear from the error budget plot that, in this example, glint noise is the biggest 
contributor to miss distance. 

As another example, let us now use the software to investigate the performance 

of the missile against other possible target manoeuvres. If instead of the random 

step manoeuvre, the target executes a sinusoidal manoeuvre at some time prior to 

intercept, where, as previously, the time Tat which the manoeuvre is initiated is 

assumed to be uniformly distributed over the interval | o, t, | with probability density 
function given by equation (18), then such a manoeuvre can be modelled as shown 
in Figure 17. 

u. 
CO 

2 2 
S   +0) 

a, 

Figure 17. Random sinusoidal target manoeuvre model. 

The parameter <o appearing in the figure denotes the frequency, in rad/s, of the 

sinusoidal target manoeuvre. The RMS miss distance adjoint simulation results for 
this form of the target manoeuvre are summarised in Figure 18 for selected values 
of the parameter eo . Note that all other nominal values for the system parameters as 
given by table 1 remain the same here. 
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Figure 18. Random sinusoidal target manoeuvre effects on miss distance 
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As a final example, we investigate the performance of the interceptor when the 

target executes a random telegraph manoeuvre. The random telegraph manoeuvre 

represents a policy, starting at time zero, in which the target executes either a 

maximum positive or negative acceleration such that the number of sign changes 

per second follows a Poisson distribution, and the average number of sign changes 

is u per second [26]. A typical realisation of a 3g Poisson target manoeuvre is shown 
in Figure 19. 

40 
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Figure 19. Random telegraph target manoeuvre 

The shaping filter equivalent of a Poisson target manoeuvre can be represented by 

white noise through a low pass filter as shown in Figure 20 [61]. 
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Figure 20. Shaping filter equivalent of random telegraph target manoeuvre 



In the Figure, u represents the average number of sign changes while |} denotes the 

magnitude of the target manoeuvre, in this case, 3g. Also in the figure, the white noise 

input has spectral density 

<*>„=£- (19) 
V 

Using the same parameter values as previously, the adjoint block diagram can be 

readily constructed using COVAD. The results of the adjoint simulation for selected 

values of the parameter u are given in Figure 21. 
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Figure 21, Random telegraph manoeuvre effects on miss distance 
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6. Conclusion 

Mathematicians have long been paying attention to the adjoint operator and duality 

theorems in their studies of the existence of solutions to differential equations. In this 

report, the adjoint simulation method has been employed to investigate the response 

and sensitivity of linear time varying systems to a combination of deterministic 

and stochastic inputs. MATLAB/Simulink software has been developed to facilitate 

applications of the method to problems encountered in Aerospace/Defence science. 
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