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Chapter 2

Frequency Domain Wave Models in the Nearshore and Surf Zones

James M. Kaihatu

Ocean Dynamics and Prediction Branch, Oceanography Division (Code 7322)
Naval Research Laboratory, Stennis Space Center, MS 39529-5004

1. INTRODUCTION

In deep water (kh >> 1, where k is the wave number and / the water depth), second-order wave
nonlinearity can be described as a small correction to the underlying linear wave. Perturbation ex-
pansions in wave steepness € = ka, where a is the wave amplitude, are used (Phillips, 1960), and at
second-order only non-resonant (bound) waves are possible among triads of wave frequencies. Thus
the interacting waves with the frequency-vector wave number combination (g, k1) and (w;, ko)
excite secondary waves at (w1 + wa, k| 4 Kkj3), but these secondary wave amplitudes always remain
small relative to the primary amplitudes. At the next order, resonant interaction occurs between quar-
tets of waves, with the resultant slow energy exchange between the interacting waves.

In shallow water (kh << 1) waves become less dispersive and more collinear, and triads of waves
at second-order begin to more closely satisfy the resonant conditions for wave interaction. The per-
turbation solutions of finite depth do not apply in the nearshore, since significant energy transfer
occurs over much shorter distances (O(10) wavelengths) than in deep water. The Ursell number
Uy = a/k*h3 (Ursell, 1953) is the typical measure for the validity of these perturbation solutions,
which are only applicable if U, << 1. Though the resonant conditions between triads are only ex-
actly satisfied in the collinear, non-dispersive limit, the nonlinearity inherent in shoaling waves in the
nearshore is strong enough for significant energy transfer to occur at near-resonance (Bryant, 1973).
Recourse is often made to the Boussinesq equations (Peregrine, 1967) for simulation of nonlinear
energy transfer in shallow water, as they are valid for U, = O(1), where weak nonlinearity and weak
dispersion are balanced.

1.1. The Frequency Domain

One model framework which has been used in simulating ocean wave propagation in the nearshore
has involved the application of Fourier transforms to the dynamical equations governing the propa-
gation. This transformation involves imposing the following constraint on the dependent variable of
these equations (usually the free surface )

N
n(x,y,t)= Zﬁn(x,y)e““”"’ +icic. (1)

n=1

where w; is the nth frequency in the spectrum, N is the total number of frequency components in
the spectrum, 7,, is a complex Fourier amplitude and c.c. denotes complex conjugate. Assumption
of temporal periodicity is a natural application to ocean waves.

The frequency domain format allows explicit detail of nonlinear wave-wave interaction and wave
transformation properties. Nonlinearities in the equations appear as products of amplitudes at discrete
frequencies in the spectrum, which can then be investigated in detail. Since the resulting equations are
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in terms of evolving amplitudes rather than the free surface, spatial resolution requirements are usu-
ally less restrictive than in time domain models. Overall computational time, however, is a function
of the number of frequency components kept in the simulation, whereas (outside of ensuring suf-
ficient resolution for the shortest waves) this is not germane for time domain models. Additionally,
there is often a disconnect between properties of a time domain model and those of the corresponding
frequency domain models. A good example is seen in Rygg (1988), who used a time domain model
of the classical (shallow water) Boussinesq equations of Peregrine (1967) to simulate intermediate
depth cases of laboratory wave propagation experiments successfully. Similar experiments with cor-
responding frequency domain models (Liu et al., 1985, as used by Kaihatu and Kirby, 1995) have
proven less favorable.

2. CLASSICAL BOUSSINESQ MODELS IN THE FREQUENCY DOMAIN

The Boussinesq equations can be derived from either the Euler equations (Peregrine, 1967) or the
boundary value problem for water waves (Mei, 1983). In shallow water, it is reasonable to assume
that vertical velocities in the water column are much smaller than horizontal velocities. This imposes
the following scales on the independent variables

(x,y) ’ 4 ; VE&ho
= ; = — ' = t 2
2 z I i3 2)

<,y

where L is a characteristic wavelength, %, a characteristic water depth, and the primes denote di-
mensionless variables. These scales are then applied to the physical quantities

h h2
! ! o / 0
V) = ——=(u, v); =—— 3
(u',v") N u,v); w pra ghow 3
n h
17/:-—; h/=—; p/=-——p—- (4)
a ho pga

where a is a characteristic amplitude, (u, v, w) are the water particle velocity components, p is
the pressure and p is the fluid density. When substituted into the Euler equations, the following
dimensionless parameters become evident

a
= (ko) 8= ®)

o

which are measures of frequency dispersion and nonlinearity, respectively. The Boussinesq equations
can be derived by assuming

o~ 0(8) < 0(1) 6)

Using the scaled Euler equations, Peregrine (1967) derived the Boussinesq equations for a varying
bathymetry

e+ V- (h+ =0t su?, 6%) ¢
B h - h? - 4.2 2
ut+u-Vu+gVn=—2-V[V-(hu,)]——6-V[V-u]+0(u ,8u”,8%) ®)

where U is the depth-averaged velocity vector. The quadratic nonlinear terms in the equation above
represent the lowest-order nonlinearity of O(8). Application of Fourier series to these terms requires
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special treatment (see Mei, 1983), and thus gives rise to the triadic cross-spectral energy transfer
which is the manifestation of nonlinearity in the frequency domain. Freilich and Guza (1984) de-
rived frequency domain models from the one-dimensional form of these equations. The first (the
“consistent” model) can be written

h in3k3n2 3ink (") N
Anx + ﬁAn - —”g_A" + 2 Z AjAp_1+2 Z AT A O
=1 =1

where A, are complex amplitudes of the free surface and asterisks denote complex conjugate.
Freilich and Guza (1984) solved the equation in terms of coupled amplitude and phase equations
rather than the complex amplitudes seen in equation (9). The second model (the “dispersive” model)
was also derived from the standard Boussinesq equations, but does not contain the phase-shifting
dispersive term (third term in equation (9)). Instead, the weak dispersion is incorporated through the
use of the dispersion relation for the Boussinesq equations

2
W= —ERE (10)
I+3 (kh)2

One consequence of the use of this dispersion relation is that the wave number &, is no longer a linear
function of w. Thus, the interacting amplitudes (An, Ap+7, Az), while resonant in frequency, are in
near resonance in wave number. Freilich and Guza (1984) then compared both models to field data,
using offshore wave spectra to initialize the model and ably demonstrating the utility of frequency
domain models to nearshore wave propagation problems. Their comparisons of wave spectra showed
that the dispersive shoaling model performed slightly better than the consistent model; however, both
models clearly deviated from the data in the higher frequency range, where kh was no longer small.

Two-dimensional frequency domain models of both the Boussinesq equations (7) and (8) and the
Kadomtsev-Petviashvili (KP) equations (Kadomtsev and Petviashvili, 1970) were developed by Liu
et al. (1985) in the form of parabolic models, which are formulated based on the assumption that the
angle between the wave direction and the x-axis of the grid is small. Kirby (1990) developed angular
spectrum models based on the Boussinesq equations of Peregrine (1967). Periodicity in both time
and longshore direction was assumed, thus imposing resonant interaction among longshore wave
number modes as well as frequency modes.

3. EXTENDED BOUSSINESQ MODELS IN THE FREQUENCY DOMAIN

One fundamental problem with frequency domain models of the classical Boussinesq equations
is their lack of applicability in deeper water than that for which the shallow water theory is valid.
Recent efforts, beginning with Witting (1984), have focused on improving the deep water behavior
of Boussinesq models such that their linear properties (dispersion, shoaling, etc.) better mimic those
of fully-dispersive linear theory for a wide range of water depths. McCowan and Blackman (1989),
Madsen et al. (1991) and Nwogu (1993) represent some of the first attempts to improve time domain
Boussinesq models in this regard; the resulting models were generally dubbed “extended” Boussi-
nesq models because their linear properties were extendable to intermediate and deep water, Madsen
et al. (1991) added terms to the classical Boussinesq momentum equation, multiplied by a free pa-
rameter, which would be zero in shallow water but have significant effect in deeper water. This free
parameter was tuned via Padé approximations so that the dispersion relation of the equations would
compare favorably to that of linear theory for a wide range of depths. Madsen and Sgrensen (1992)
extended the Madsen et al. (1991) model to include varying bathymetry. Madsen and Sgrensen (1993)
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investigated frequency domain formulations of the model of Madsen et al. (1991) for wave evolution
over a flat bottom, and sloping-bottom extensions of this equation became the basis for further de-
velopment in the frequency domain (Eldeberky and Battjes, 1996; Kofoed-Hansen and Rasmussen,
1998; Becq-Girard et al., 1999). The equations of Madsen et al. (1991), and their various nonlin-
ear and dispersive enhancements, have been analyzed extensively by Schiffer and Madsen (1995),
Madsen and Schiffer (1998) and Madsen and Schiiffer (1999).

In contrast, but to the same end, Nwogu (1993) used the velocity variable at an arbitrary location in
the water column (rather than the depth-averaged velocity as in the classical Boussinesq equations) as
a basis for deriving extended Boussinesq equations from the inviscid Euler equations. The resulting
equations contained higher-order terms in both the continuity and momentum equations, and are

2 K2 h
MV lh+pugl+V- |2~ —}aV(V.us + (Zoz -+ §>hV[V - (hug)]

2 6

= ot su2,8%) (11)
i v Za _ 4 2 42
at + 8V + (U - Vg + 2 | V(Y - Uar) + VIV - (huan)]| = O(u*, 647, 8%) (12)

where uy is the horizontal velocity at a location z, in the water column. The dispersion relation of
this set of equations is found by isolating the linear terms and substituting in a periodic, progressive
wave, leading to

2 1= (w+ 3) w2
- 1 — a(kh)? (13

where o is a free parameter related to z, by

2
Ly Za
= 2e 22 14
o <2h2 + n > (14)
This free parameter « is then best-fit to that of fully-dispersive linear theory for a wide range of
water depths. Nwogu (1993) determined that & = —0.390 was the best-fit parameter value for the

range 0 < h/L, < 0.5, where L, is the deep water wavelength. This value of « corresponds to
g = —0.522h.

3.1. Frequency Domain Transformation of the Equations of Nwogu (1993): Linear Properties

Usually the first step undertaken in a frequency domain transformation is to combine the con-
tinuity and momentum equations into one via the use of first-order substitutions. Noting the extra
dispersive terms in both the continuity equation (11) and momentum equation (12), Chen and Liu
(1995) commented on the difficulty in determining a frequency domain form of the equations such
that the linear dispersion relation (see equation (13)) would remain applicable to the resulting equa-
tion. Later, Kaihatu and Kirby (1998) determined a series of first-order substitutions which would
lead to a set of equations retaining the original dispersion relation.

To illustrate the difficulty, we reduce equations (11) and (12) to their linear, one-dimensional form
for a flat bottom

1
Nt + hugx + (a + '3‘> h3uaxxx =0 (15)

ot + 8Ny + ahPuzy =0 (16)
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We follow the procedure of Liu et al. (1985) to formulate the frequency domain model. The first step
involves combining the continuity (15) and momentum (16) equations. We make use of the following
first-order relations

Nt = —hugy (17)
Ugr = —8Nx (18)

We then take the time derivative of equation (15), the x-derivative of equation (16), and combine the
resulting equations. We then use equation (18) to eliminate u,, in favor of 7. This results in

1
Nir — §hnxx + gh377xxxx —8 (0‘ + 5) h377xxxx =0 (19)

To obtain the linear dispersion relation, we substitute
7= Ad kx—0D) (20)

into equation (19) and obtain
1
w?* = ghk? [1 - g(kh)z] (1)

which is essentially the linear dispersion relation to weakly-dispersive Boussinesq theory to within
a binomial expansion. The substitution sequence used to collapse the two equations did not retain
the dispersion relation of the original equation. Schiffer and Madsen (1995) addressed this issue by
applying differential operators of o(u?) (multiplied by free parameters) to the equations of Nwogu
(1993) and then used a Padé [4, 4] expansion to determine the set of parameters which best fit the
linear dispersion and shoaling characteristics from linear theory, with the results of Nwogu (1993)
representing a subset of the parameters. In contrast, Kaihatu and Kirby (1998) used a different series
of substitutions to retain the dispersion properties of the original equation; this is examined here. If
we had taken the time derivative of equation (15), and then used equation (18) to replace u, with 7,
we would have obtained

1
Ner + htbgxe — 8 (C( + §> hanxxxx =0 (22)

We then multiply equation (16) by h and substitute the time derivative of equation (17) to eliminate
Uy . Substituting the result into equation (22) results in

1
Ntt — ghtjxx — ahznxxtt - gh3 (“ + 5) Nxxxx =0 (23)

It can be shown that the linear dispersion relation of equation (23) is equation (13), the orlgmal
dispersion relation of Nwogu (1993).

The complicated substitution sequence required to retain the linear dispersion relation also affects
the shoaling behavior of the frequency domain model. To examine this, we return to the derivation
of equation (23), but retain bottom slope terms. Performing the same series of substitutions and
neglecting Ay and (h x)2 terms leads to

1
Nt — g(hnx)x + 2ehhxnxe + ah®nyxes — gh?(5a + Dhxtrxx — gh’ (a + §> Mexxx =0 (24)
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Substituting equation (20) into equation (24) leads to

Ar+WA=0 25)
where
w — Eke + Fhy 26)
G
1
E = gh+ w?h’a — 6gh> (a + 3) K2 27
F = gk + 20:0%°kh — gh?*(50 + 2)k> (28)
1
G=2 [gkh + w?h2ak — 2gk3H3 (a + 5)] (29)

Though the derivation appears to be fairly straightforward, it will be shown that the linear shoaling
term (equation (26)) compares very poorly to that of linear theory. Further analysis reveals that the
balance between the 71, and g(hnxx)x terms governs the effectiveness of the wave shoaling relation.
Kaihatu and Kirby (1998) addressed this by adding the following term to the equation

B — ghnxx)x =0 (30

which is true at lowest order. In this equation B is a free parameter to be optimized. This changes
equation (24) to

Mt — 8(hnx)x + Qo + B)hhxnxss + ahncxy — gh®(5a +2 + Bhxnxxx

1
_8h3 <a+ §> Nxxxx =0 (€2))]

Carrying the calculation forward to the point of obtaining a shoaling relation results in a slight mod-
ification to the expression F in equation (28)

F = gk + Qo + B)w’kh — gh* (5o + 2 + p)k3 32)

Kaihatu and Kirby (1998) determined the free parameters « (for dispersion) and 8 (for shoaling)
using a least squares optimization integrated as a function of h/L,. Two sets of parameters were
found. The first set optimized the shoaling while using the optimum « determined by Chen and
Liu (1995). This set (@ = —0.3855, 8 = —0.3540) was known as the “dispersion optimized” (DO)
set. The second parameter set was determined by finding the values of @ and 8 which minimized
the global error in (o, B) parameter space. This set (¢ = —0.4111, 8 = —0.3188) was denoted the
“dispersion and shoaling optimized” (DSO) parameter set. It is noted that the DSO parameter value
of o = —0.4111 is very close to Witting’s (1984) optimum dispersion parameter value (found via
Pad¢ approximants) of o = —2/5.
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3.2. Frequency Domain Transformation of the Equations of
Nwogu (1993): Nonlinear Parabolic Model

If nonlinearity and two-dimensionality had been retained when deriving equation (31), the result
would have been (Kaihatu and Kirby, 1998)

it — gV - (hVn) = hV - [(Uq - VYU + Qe + FYAVA - Vi + ah> V2 4+ V - (ug)s
1
— gh*>(50.+ 2+ B)Vh - V(VZn) — gh? (a + §> v2vip =0 (33)

Complete elimination of the velocity u, requires assumption of time periodicity for both n and u,.
To eliminate uy from the nonlinear terms, we can use the time-periodic form of equation (18)

. ig .
Uyp = £ Vi, (34)
nw

leading to the time-periodic equation for 7,,. To facilitate convenient numerical treatment, we make
use of the parabolic approximation, first developed by Radder (1979) and Lozano and Liu (1980) for
the linear mild-slope equation. We first make an explicit assumption that the waves are propagating
forward

fip = An(x, y)e' / kn(e.0)dx (35)

The complex amplitudes A, (x, y) represent phase-like behavior in both x and y. The phase function
is integrated only in x; this places all phase-like behavior in y in the complex amplitude A,, while
allowing explicit slow and fast variations in x. The consequence is that the angle between the incident
wave and the x direction of the grid remains small in order to maintain slowly-varying wave-like
behavior of A, in the y direction.

Because of the third and fourth derivatives of 5 present in equation (33), terms proportional to
knx Anx, Anxx, and other higher-order derivatives will be generated. We thus keep a higher degree of
modulation in the y direction than in the x direction (following the ordering of Liu et al., 1985), lead-
ing to a parabolic evolution equation for A,. However, because the phase function in equation (35)
is integrated only in x, but £ is a function of both x and y, a redefinition is required

Ap=ane' S K (x) =k (x,y)dx (36)

where k, is a reference wave number that is the result of averaging along the y direction. With this
redefinition, the model equation reads

2i l:ghkn +n?w’akyh?® — 2gh3k> <a + %)] anx
-2 [ghkn +n2wlak,h? — 2gh3k> (a + %)] (kn — kn)an
+ ilgkn +n%w? Qa + BYknh — gh3k (5a + 2 + B)lhran
+1i |:gh +n2w?ah? — 6gh3k,% (a + %)] knxan
+ [g+n%0P@a + B — gh2 S + 2+ B)] hyany

1
+ [gh +n?w?ah? - 2gh3k,2l (a + §)] Anyy
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n—1 _ _ N-—n o o
i % Z Ralan—lei f(kl+kn—l—kn)dx +2 Z Sa[*an-f-lel f(kn+1—k1—kn)dx =0 (37)
=1 =1
where
2 2,2
gh s nkik,_; ncw
R=—"—[kik,_;(kj + k,_ _— 38
l(n_l)wz[lnl(l+nl)]""l(n_l) * (38)
2 2.2
gh 2, , "kikny @
S=—"——[kik k; — k, + — 39
l(n+l)w2[ thny1ki — kpy )] Tntl) oh (39)

This is the primary result from Kaihatn and Kirby (1998).

Kaihatu (1994) noted that the ambiguity which affected the substitution process in the linear terms
also appears in the formulation of the nonlinear terms, to the effect that several different nonlinear
coefficient sets are possible. Unlike the linear terms, however, there are no corresponding analytical
metrics for determining which set of coefficients have the most desirable properties, outside of com-
parisons to nonlinear permanent form solutions. The general complexity of the Boussinesq equations
of Nwogu (1993), particularly in retaining shoaling and dispersive properties during transformation
into the frequency domain, has motivated investigations into developing simpler forms of the equa-
tions. This is explored in the next section.

3.3. Frequency Domain Transformation of the Equations of Chen and Liu (1995)

Chen and Liu (1995) and Kaihatu and Kirby (1994) investigated using the extended Boussinesq
equations of Nwogu (1993) in the form of velocity potential (rather than velocity) and free surface
elevation. The resulting equations would be an analogue to the Boussinesq equations of Wu (1981),
which were a (¢, n7) form of the classical Boussinesq equations of Peregrine (1967). The use of ve-
locity potential as a dependent variable simplifies the treatment of the extended Boussinesq equations
considerably, since ¢ is a scalar quantity.

Chen and Liu (1995) began with the boundary value problem for water waves, with surface bound-
ary conditions scaled for shallow water waves and expanded to O3, w?2). The derivation is similar
to that seen in Mei (1983), except that the velocity potential is taken at an unknown level in the
water column rather than averaged over depth. Kaihatu and Kirby (1994) expanded the equations to
0, ,u,2, é /1,2), thereby including dispersive effects in the nonlinear terms. The resulting equations
are

2
n+V-[(h+n) Ve ]+ V- [W {zav - (hVéa) + %’vz%]

K2 K3
+ 5 VIV (hVge)] - ?vv%‘x] +T=0 (40)
1 2
$ut + 80+ 5 (Véa)* + [zav - (hVear) + %’szﬁat} +A=0 1)

where ¢, is the velocity potential at zy. The terms Y and A represent terms of O(8u?), which are
zero in Chen and Liu (1995). In Kaihatu and Kirby (1994) they are

T=V-(qVha)+ V-0V I[2aV - (hV¢a)])
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2
4V <%°‘v2¢a) (42)

A=-nV-(hV¢ar) + Vou - [V2a V - (hV@a)] + 2o (Vo - V) (V - (hV o))
1 1
+ Vo - (20 V2 V) + 5 Vuzl - V(V2a) + 3V - (1V40) 43)
Temporal periodicity was assumed for the velocity potential ¢ and the following equation developed

for the amplitudes of the velocity potential b, (Chen and Liu, 1995, although expressed somewhat
differently)

212 212
h 1 h 1
[h + “’"g 2.2 (a + 5) h3k,2,:| bayy +2i Iik,, (h " ‘”"g “) —23n3 (a + 5)} bz

2
+ [1 + 2852 (1 45a+ /T 2a)k,2,h21| hybny
g

2
+i {k,, (1 + 3;3) — k3h2(1 + 50 + V1T 2a)]] Bxbn

. N-n
io Z Rbjby,_je S Citen—1—kn)dx +2 Z Sbl n+lel S Gengi—Fi—kn)dx (44)
=1
where
R=1K2_, +2nkiky—y + (n — Dk} — ah? (lk?kn_, +nk? + (n — l)k,kﬁ_l) (45)
= (n + Dk} — 2nkikyqy — IK2 | + ah? ((n + Dk, — nkPk2L, — 1k,,+,k,3) (46)

From the second-order dynamic free surface boundary condition, the nonlinear relation between the
amplitudes of ¢ and those of the free surface 5 can be derived

i 20n0h%k 3
Wnla hybny _ wn‘); n by — wn;a n hyby

iw
an = ?"ath,,yy +

(u,,ozh2

knxbn + 21 — ak2h? — 20hkn (Bp — kn))bn
g

1
4_ ZR bib, lel Stk —kp)dx _ ) Z Sbl +lel S Fnyi—F kn)dx) (47
=1
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where
R =kikp_y (48)
§ = kyky (49)

The extension to O (8 uz) results in the nonlinear coefficients (Kaihatu and Kirby, 1994)

R=R—ah? (01 = DK} + @1 — Dk + (0 + Dk, + 1K)

_ N2 _ 2
_nh2<(n D2+1n—1)+1 )kzkﬁz 50)

In—1D

S=35+an? (lk4 1+ @A DRk + (0= DR — (0 + l)k;‘)

+D2 I+ +12
+nh2<(n )l(nf:’l) Lt >k1kr2;+s 1)
= ., 3 =D+l =)+ 12 5
R=F- [k,k N ,] h e kK2, (52)

(53)

~r . D2 -1 n+12
S=S'—ah2[k1k3+l+kl3k,,+l]——h2|:(n+) (ntD+ ]k,kz

In+1) n+l

The O(5u?) terms generally tend to induce a slower growth in the generated higher harmonics
in shoaling wave applications. Truncation of the extended Boussinesq model to O(u?) (with all
nonlinearity retained) was performed by Wei et al. (1995). We note that the ambiguities which arose
in the previous frequency domain treatment of the equations of Nwogu (1993) are not present here.

3.4. Model Evaluation

We noted earlier that a primary motivation for development of the extended Boussinesq models
was to impart linear properties which mimicked those of fully-dispersive linear theory for a wide
range of water depths, thus removing a substantial obstacle to general model application. In this
section we examine how well the resulting frequency domain models capture wave shoaling, having
insured (via the substitution process) that linear dispersion is well represented. Additionally, because
the resulting models are parabolic, we will also examine the wide-angle behavior of the equations.

3.4.1. Wave Shoaling

As mentioned previously, one of the consequences of frequency domain transformation of the
equations of Nwogu (1993) has been the lack of any guarantee that the characteristics of the original
equations survive the transformation process. Great care had to be exercised in the combination of
the equations such that the advantageous linear dispersion properties could be maintained. Additional
steps were required for handling shoaling. In contrast, the equations of Chen and Liu (1995) were
relatively simple to transform into the frequency domain, particularly with respect to retaining the
dispersion relation of the equations of Nwogu (1993).
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Madsen and Sgrensen (1992) noted that the most reliable measure of the effectiveness of the
shoaling mechanism was the shoaling gradient
Ale _ hx

ar -’

4

where y is the shoaling gradient. While deviation of the shoaling gradient from linear theory may
exaggerate that seen in the shoaling model itself, particularly in intermediate water depth (Chen and
Liu, 1995), it is a convenient measure since integration is not required. The resulting expressions
for y for the shoaling models compared herein can be found in the original publications. Kaihatu
and Kirby (1998), as mentioned previously, used two sets of parameters: the DO parameters (o =
—0.3855, 8 = —0.3540) and the DSO parameters (¢ = —0.4111, B = —0.3188). To demonstrate the
effect of the 8 term, we also include the (o = —0.3855, B = 0) case; this is what would result if the
ambiguity in the substitution process detailed earlier had not been realized. The shoaling mechanisms
of Madsen and Sgrensen (1992) and Chen and Liu (1995) will be used with the optimized free
parameters determined by the authors in the original publications. We note that the model of Kaihatu
and Kirby (1994) shares the same shoaling characteristics as that of Chen and Liu (1995).

As a benchmark, the shoaling gradient from fully-dispersive linear theory is used (Madsen and
Sgrensen, 1992)

G’(I -+ %_—G’{I - costhh))

= (1+G"? 69
where
G - 2kh (56)

" sinh2kh

Figure 1 shows a comparison between the different shoaling mechanisms and that of linear theory. Of
the five shoaling mechanisms, those of Madsen and Sgrensen (1992) and Kaihatu and Kirby (1998)
with DSO parameters compare the best, with a slight improvement yielded by the free parameteriza-
tion of the latter model. In contrast, the shoaling mechanisms of Chen and Liu (1995) and Kaihatu
and Kirby (1998) with 8 = 0 compare poorly, particularly the latter model. The model of Kaihatu
and Kirby (1998) may represent the limit of optimum shoaling performance possible with two free
parameters. Schéffer and Madsen (1995), using a Padé [4, 4] approximation and more free parame-
ters, developed an expression for y which exhibited virtually no deviation from linear theory for the
complete range of water depths.

3.4.2. Wide-Angle Behavior of the Parabolic Equations

One consequence of the parabolic approximation is the assumption that the angle between the
x-coordinate of the grid and the incident wave direction remains small. Methods for ameliorating
this problem have generally taken the form of retention of higher-order derivative terms with coeffi-
cients which can be determined by Padé approximations (Booij, 1981; Kirby, 1986a) or by rational
approximations (Kirby, 1986b), and have been shown to work well for parabolic approximations of
the mild-slope equation (Berkhoff, 1972; Smith and Sprinks, 1975). The suitability for parabolic ap-
proximations of the Boussinesq equations, however, have not been established except by comparisons
with data (for example, Kirby, 1990). In this section we analyze the effectiveness of the parabolic
approximation used in the development of the frequency domain extended Boussinesq models. We
note that the models of Chen and Liu (1995) and Kaihatu and Kirby (1994; 1998) reduce to the same
basic parabolic form in the linear limit.
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Figure 1. Comparison of shoaling mechanisms from various extended Boussinesq models to that of linear theory.

Numerical treatment of parabolic wave models generally involves the Crank-Nicholson discretiza-
tion scheme, which is second-order accurate in both horizontal directions. A tridiagonal matrix is
formed at each x location and is usually solved using a Thomas algorithm. The highest order deriv-
ative of A which would allow this treatment is Axyy (Kirby, 1986a), which was not retained in our
previous development. Expanding the time-periodic form of equation (33) into its horizontal com-
ponents, neglecting nonlinear and bottom slope terms, substituting in equation (35) and retaining the
Axyy term that results yields

1 1
2 [ghk + w?kh? — 2g (k)3 (a + 5)] Ax+ l:gh + w?h?a — 2gn3k? <a + 5)] Ayy

1
+ digh’k <a + 5) Axyy =0 (57)

We note that many terms were truncated in the substitution process used to derive equation (57),
specifically third and fourth derivatives with respect to y. Additionally, similar derivatives with re-
spect to x are represented only in the differentiation of the phase function, generating terms propor-
tional to k*. To ascertain the effect this truncation has on the accuracy of wave propagation, we need
to transform the equation back into 7 by

A= feikx (58)

leading to

1 1
2i [ghk + w?kh?a — 2gk3n> (a + 5)] Ay +2k I:ghk + w?kh?a — 2gk3 13 <a * 5)] A
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1\] . . Ly .
+ [gh + o?h’a - 2gh°k? (a + 5)] flyy +4igh’k (a + §> Doy

Iy .
+ 4k%gh3 <a + 3) fiyy =0 (59)
Making a final substitution
= aei(kxx+kyy) (60)

where kyx and ky denote wave number vector components in the x and y directions, respectively, we
can obtain an expression for ky in terms of k and ky

] 20k — ky) [ghk + 2kh2a — 2gk3h3 (a + %)}

ky = \| gh [4h2(k2 —kky) (a + %) —+ [1 + “)Zgﬂ —2k2p2 (a + %_):H

(61)

The neglect of the Axyy term would have the effect of zeroing out the kky term in the denominator
of equation (61). The baseline for comparison is the circle

ky = k2 — k2 ©2)

which was derived by substitution of equation (60) into the Helmholtz equation. Additionally, we

also compare to the small-angle parabolic approximations used in the mild-slope equation (Kirby,
1986b)

ky = /20,2 — kky) (63)
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Figure 2. Analysis of the parabolic approximations used for various models. Relation from elliptic model is
benchmark.
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and the wide angle expression from the Padé approximation of Kirby (1986a)

_ ke
oo | #0-%)

o)

Figure 2 shows a comparison of the above expressions relating &y to ky . It appears that the parabolic
models of the extended Boussinesq equation have slightly worse characteristics at oblique angles
than the small-angle approximation of the mild-slope equation, with the Ayyy term imparting no
appreciable improvement. This could be due to the considerable amount of information contained
in the V2V2n terms (among others) discarded when the form (equation (35) is substituted and the
parabolic approximation made. Optimizations similar to Kirby’s (1986a; 1986b) developments with
the mild-slope equation could be implemented here.

(64)

4. NONLINEAR MILD-SLOPE EQUATION MODELS

An alternative approach to developing nonlinear frequency domain models involves incorporating
nonlinear effects into models already equipped with fully-dispersive transformation characteristics.
The mild-slope equation (Berkhoff, 1972; Smith and Sprinks, 1975) simulates wave refraction, shoal-
ing and diffraction over mildly-varying bathymetry; its applicability has been greatly increased with
the advent of the parabolic approximation (Radder, 1979; Lozano and Liu, 1980) encountered in
earlier sections.

Bryant (1973, 1974) first studied the efficacy of developing fully-dispersive models with second-
order nonlinear characteristics. He developed a spatially-periodic solution to the truncated Laplace
boundary value problem (thereby retaining full frequency dispersion) and compared numerical eval-
uations of this solution to those from various forms of the Korteweg-deVries (KdV)equation. Fur-
thermore, Bryant (1974) also demonstrated that three harmonic amplitudes of his spatially-periodic
solution matched those of third-order Stokes waves, as did the nonlinear dispersion characteristics.

Keller (1988) derived coupled nonlinear equations derived from the shallow water equations, the
Boussinesq equations and the Euler equations, all truncated to two harmonics. He showed that, in the
shallow water limit, the equations reduced to identical forms.

Agnon et al. (1993) developed a unidirectional shoaling model based on a nonlinear extension
of fully-dispersive linear shoaling. The linear part of the resulting model contained fully-dispersive
shoaling, and triad interactions between wave components described the nonlinear evolution. This
was later extended to two-dimensional propagation by Kaihatu and Kirby (1995), Tang and Ouelette
(1997) (both parabolic models) and Agnon and Sheremet (1997) (hyperbolic model). The paper by
Kaihatu and Kirby (1995) also detailed the inclusion of a surf zone dissipation mechanism. Tang
and Ouelette (1997) extended the model of Kaihatu and Kirby (1995) by including diffraction and
bottom slope effects in the nonlinear terms of their model.

To explain some of the subtle points outlined later in this section, we briefly outline the develop-
ment of the nonlinear mild-slope equation described by Kaihatu and Kirby (1995). We start from the
boundary value problem for water waves, with free surface conditions expanded to second-order in
wave amplitude. We first assume that the solution can be expressed as a superposition

N
¢y, 20 =Y Fr@ulx, )" +c.c. (65)

n=1
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where ¢,, is complex, and

~n - COShkn (h + Z) (66)
coshknh

where the dispersion relation is that of linear theory

w2 = gky tanhkyh 67

We then make use of Green’s Second Identity on the variables f, n and (]3,1 , and then use resonant triad
interaction theory to create a time-periodic evolution equation for ¢,,. We then assume a propagating
wave

‘i;n _ —EA,,e" S kndx (68)

(27

We substitute equation (68) and its conjugate into the time-periodic equation for (ﬁn, and employ the
parabolic approximation to justify neglecting 32A,,/ dx? terms in the resulting equation. We then
make use of a phase function redefinition similar to that done for the extended Boussinesq models in
earlier sections. This results in

2i(kccg)nanx - 2(kccg)n (I;n —kn)an + i(kccg)nxan * [(ch)n (an)y]y

-1 N—n
1% (T 7 ST 7 _%
— Z Z Yalan—lel f(k[-f-k,,,[ —kn)dx +2 Z Za[*an-i-lel [ K1~k —ky)dx (69)
=1 i=1

where

g
WjWp—|

Y=

[w2kikn—1 + (ki + kn—1)(@n 1k + @rkp_1)0n]
oy 2 2
- f(wl + wjwp_g + @) (70)

g

W W]
w% 2 2

- ?(wl — @@t + @5 p) 7

7z =

[w2kikyi1 + (kntt — ki) (@ t1k) + 01kt on]

Equation (69) comprises the model of Kaihatu and Kirby (1995).
Equation (68) is derived from the first-order dynamic free surface boundary condition

ot +gn=0; z=0 72

and is a transformation from amplitudes of velocity potential to those of the free-surface elevation.
This transformation is first-order, and does not include the nonlinear terms inherent in the dynamic
free surface boundary condition. Eldeberky and Madsen (1999) determined that the neglect of these
second-order terms had the effect of underpredicting the nonlinear energy transfer, particularly with
respect to the superharmonic energy transfer. They used successive approximations to invert the
second-order dynamic free surface boundary condition and eliminate the velocity potential, resulting
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in an evolution equation that could be conveniently solved for the free surface amplitudes alone. The
linear terms are the same as those of earlier models, but the nonlinear coefficients are

+ wl%

r
V=Y — —5 Itonkik,_; + (@F + wjon_| +w?_) 73)
W] Wp ]
Z=7——% ok —F_wzmﬂ—qow +w2,) (74)
- W1wp4 Akl 8~ Skl sl
where
= 2(k; +kn—y _kn)cgn (75)
(27
2(k —k; —kp)C
r~ = ( n+l 1 n) gn (76)

wn

Eldeberky and Madsen (1999) demonstrated that the above terms contributed substantially to the
superharmonic energy transfer. We note here that Tang and Ouelette (1997) also took the second-
order terms in this transformation into account, though in a manner different than Eldeberky and
Madsen (1999).

Kaihatu (2001) took a different approach and derived the required correction to make the result-
ing equations consistent. This correction was derived from the second-order dynamic free surface
boundary condition, and is applied whenever the free surface is required

—~1 N—n
1 (% T T T e
Gn = an + E Z Y//alan—lel Jkitkp_—kn)dx +2 Z Z//al*an-i—lel S k1 ~k1—kp)dx an
=1 I1=1

where dj, is the total amplitude of the free surface to second-order, a, is the solution to equation (69),
and

kik,
Y = of + o + ol — g2 -1 (78)
W] Wy ]
kikpyg
Z//=w2_ w2 _ 2—ﬂ+ 79
| T WOy T W — 8 — a9

Kaihatu (2001) also investigated the effect of this correction by comparing permanent form solutions
of the one-dimensional version of equation (69), with and without the correction (equation (77)), to
third-order Stokes theory. While the correction did not noticeably enhance phase speed comparisons
to the theory, it did improve comparisons of the respective free surfaces. Additionally, Kaihatu (2001)
also extended the parabolic model to include wide-angle propagation terms, which notably improved
model performance when compared to laboratory measurements of waves propagating over a shoal
(Chawla et al., 1998). These wide-angle propagation terms are essentially those of Kirby (1986a) and
therefore share the same accuracy in oblique-angle propagation as equation (64).
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5. BREAKING WAVE MODELS

For general utility in solving nearshore wave propagation problems, consideration of wave break-
ing and surf zone decay is required. Due to the nature of the evolution equations, such breaking and
decay descriptions must necessarily be statistical. Two formulations are generally used for this ap-
plication; those of Battjes and Janssen (1978) and Thornton and Guza (1983), though several others
are extant (for example, Dally, 1990; Battjes and Groenendijk, 2000).

Battjes and Janssen (1978) assumed that the probability distribution of breaking waves could be
described as a Rayleigh distribution, where the percentage of breaking waves at a particular location
is related to the area under the truncated probability distribution. This percentage Qp was determined
by solution of the following implicit relation

2
1"Qb____(l'lrms> (80)
In Qp Hpyox

where Hy,s is the root-mean-square wave height and Hy,x the maximum wave height in the distri-
bution. Framing the energy dissipation from breaking waves as an energy balance

(E\@)x =—¢ 381)

where E is wave energy, Battjes and Janssen (1978) determined an expression for the energy dissi-
pation ¢,

1 _
b= 70T reHpa (82)

where f is the average frequency of the spectrum. The maximum wave height Hy,qx is determined
by

0.88 pkh
Hmax = ‘E— tanh ((};—8—8> (83)

where & is the average wave number. An expression for 7 based on the deep water wave steepness
was found by Battjes and Stive (1985).

Thornton and Guza (1983) extended the Battjes and Janssen (1978) model by accounting for the
transformation of the wave height probability distribution through the surf zone. They hypothesized
a distribution of breaking waves as being a weighted Rayleigh distribution with tunable parameters.
The energy dissipation for a single bore was then integrated through this probability distribution to
obtain

o= VT B3F Hpys
4/gh  v4hs

where B and ¥ are free parameters. Reasonable fit to field data was found with 7 = 0.42 and
B = 1.3 — 1.7 (Thornton and Guza, 1983). Mase and Kirby (1992) incorporated this dissipation
mechanism into their “hybrid KdV” shoaling model, which used full linear shoaling with shallow
water nonlinearity. This particular study also detailed a laboratory experiment in which a spectrum
of waves was allowed to shoal and break over a long sloping bottom. The unique feature of this
experiment is that the energy at the peak of the spectrum is in intermediate water depth at the wave
maker; this would serve as a severe test of shoaling models, and would invalidate those limited to

(84)
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weak dispersion (for example, models based on the classical Boussinesq equations). This dissipation
mechanism was also included in the linear spectral parabolic model of Chawla et al. (1998), as well
as the nonlinear shoaling model of Kaihatu and Kirby (1995).

Both Battjes and Janssen (1978) and Thornton and Guza (1983) developed their dissipation mech-
anisms purely as lumped parameter models, dependent only on integrated properties of the spectrum
with no other details. For use in phase-resolving frequency domain models such as those detailed in
this study, some assumptions concerning the distribution of the dissipation over the frequency range
must be made. The majority of nonlinear models of this type assume an equal weighting of dissipa-
tion across the entire frequency range (Eldeberky and Battjes, 1996; Eldeberky and Madsen, 1999);
this assumption is also used in linear spectral models (Chawla et al. 1998). Alternatively, Mase and
Kirby (1992), Kaihatu and Kirby (1995) and Kirby and Kaihatu (1996) used a distribution which as-
sumes a frequency-squared weighting of the dissipation term, thus accounting for nonlinear transfer
of energy from low to high frequencies due to triad interactions. Chen et al. (1997) demonstrated
(using the model of Chen and Liu 1995) that, while the frequency-squared weighting did not affect
the spectral shape significantly, it did offer greater accuracy in estimating skewness and asymmetry.
Both quantities are indications of wave shape; for example, negative asymmetry corresponds to a
forward-pitched shape of the wave field, redolent of surf zone waves.

The dissipation mechanisms are usually formulated in terms of energy E. Some manipulation is
required to implement these into complex-amplitude evolution equations. Mase and Kirby (1992)
implemented the Thornton and Guza (1983) dissipation by starting with the conservation of energy
flux equation with a damping term added

anx

A
nx + 2Cen

Ap+aA,=0 (85)
where & is the dissipation coefficient. Multiplying this equation by the conjugate amplitude, adding

it to its conjugate equation, then summing over all components, we obtain

N r

N
> (Cenldnl?) ==2" @Conl4nl? (86)

n=1 n=1

Then, assuming shallow water and switching to an energy definition, we obtain

N
(EVeh) =pev/gh | Y anlanl? ®7)
n=1

where p is mass density of water. Equating this to the dissipation function in equation (84) yields

N 3 5 N
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We now require a frequency distribution for &,. Mase and Kirby (1992) investigated the trends
evidenced in a back-calculation of &, from the data, and determined that a strong fn2 dependence for
the dissipation existed, analogous to a frequency domain transformation of the Burgher’s equation
with viscous damping. A reasonable representation of this frequency dependence can be achieved by
assuming the following form for &,

2
ap =0, + < ) Qi (89)

peak
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where

&no = FB(x) (90)

2 N 2
fpeak Zn:l |An]
N
net fit|An|?

This essentially splits the frequency dependence into a balance between one that is flat across the
frequency range (&,0) and one that is weighted to the square of the frequency (&,). This split is
controlled by the parameter F. Mase and Kirby (1992) found that F =0.5 seemed to work best for
their experimental data, though Chen et al. (1997) noted that F = 0 worked best if the comparison at
the shallowest gauge of the experiment (= = .025 m) was neglected.

Eldeberky and Battjes (1996) and Eldeberky and Madsen (1999) both used the dissipation of Bat-
tjes and Janssen (1978), and assumed that the dissipation was weighted equally across all frequencies.
By realizing that amplitude changes are half those of changes in energy, they found that

&n1 = (B() — &m0 ) o1

- 1 €p
T25N Conlanl?

where the denominator represents the total energy flux in the spectrum. Eldeberky and Madsen (1999)
show comparisons of their model (with the inclusion of the second-order relation between ¢ and n
discussed earlier) with the data of Mase and Kirby (1992). While they showed improved comparisons
of skewness relative to the original model of Kaihatu and Kirby (1995), they were unable to repli-
cate the increase in negative asymmetry seen in the data. Kaihatu (2001), using the fn2 dissipation
weighting detailed in Mase and Kirby (1992) as well as the second-order transformation between ¢
and 7, demonstrated improved asymmetry predictions relative to those seen in Eldeberky and Madsen
(1999) by using F = 0 in equation (90).

92)

6. COMPARISONS TO DATA

6.1. Whalin (1971)

In this section we compare several of the described models to the experimental data of Whalin
(1971), who conducted a laboratory study to investigate the limits of linear refractive wave propa-
gation theory. He generated sinusoidal waves with periods of 1, 2 and 3 seconds and ran them over
bathymetry resembling a tilted cylinder. The plan view of the experimental layout is shown in Fig-
ure 3. Wave gauges located down the centerline of the tank measured the free surface elevation; these
measurements were then processed to yield wave harmonic amplitudes. The experimental conditions
ranged from deep (/,Lz A2 2) to shallow (/142 2 (.2) water at the wave maker. We will concentrate on
the 1 second period case. Comparisons to other cases in the experiment are detailed in the original
papers.

For this T = 1 s case (@, = 0.0195 m) N = 2 harmonics were used. This is in concert with the
work detailed in the original studies; the inclusion of additional harmonics did not make a signif-
icant difference. For each case, all wave energy was placed in the first harmonic, with the higher
harmonics initialized with zero energy. We compare the following models: the extended Boussi-
nesq model of Kaihatu and Kirby (1998) with DSO parameters (@ = —0.4111, 8 = —0.3188); the
extended Boussinesq model (expressed in terms of ¢ and 7) of Kaihatu and Kirby (1994); and
the nonlinear mild-slope equation model of Kaihatu and Kirby (1995) with the second-order cor-
rection of Kaihatu (2001). The exclusion of the second-order correction of Kaihatu (2001) did
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Figure 3. Plan view of experiment of Whalin (1971). Bathymetric contours labeled in meters.

not yield significant difference relative to inclusion. Additionally, comparisons between the DO
(o = —0.3855, 8 = —0.3540) and DSO parameters for this experiment are shown in the original
paper of Kaihatu and Kirby (1998) and are not included here. Lastly, the model of Chen and Liu
(1995) was not used in these comparisons; they used a second-order bound wave solution to force
their model for the T =1 s case, citing a large phase mismatch between the free and bound second
harmonic otherwise. However, we are more interested in testing the model in general wave propaga-
tion scenarios, where a priori consideration of the free or bound wave nature of the forcing would
not be desirable. Linear wave forcing of the model of Chen and Liu (1995) for this case reveals
significant oscillation of the second harmonic over the domain.

Comparisons of the model to the T =1 s, a, = 0.0195 m case are shown in Figure 4. In this
case the model of Kaihatu and Kirby (1995) with the second-order correction (Kaihatu, 2001) seems
to work best for capturing evolution characteristics of both harmonics. The extended Boussinesq
models of Kaihatu and Kirby (1994; 1998) appear to underpredict the energy transfer to the second
harmonic in the focal region. The oscillations in the second harmonic as predicted by Kaihatu and
Kirby (1994) are of the same order as those shown in Chen and Liu (1995), and are less severe than
would be seen if the Chen and Liu (1995) model had been forced with a linear wave. This indicates
that the presence of 0(5u?) terms appear to have a stabilizing effect on the model, as commented
by Tang and Ouelette (1997). We also note here that the model of Chen and Liu (1995) with bound
wave forcing agrees with the second harmonic data for this case better than the model of Kaihatu and
Kirby (1994) with linear wave forcing. Lastly, Tang and Ouelette (1997) show a better match to the
T =1 s case than seen here, possibly due to the inclusion of nonlinear diffraction terms.

6.2. Mase and Kirby (1992)

Mase and Kirby (1992) conducted a series of laboratory experiments in which irregular waves
(Pierson-Moskowitz spectrum) were generated and allowed to shoal and break over a slope. The
experimental set-up is shown in Figure 5. The case studied here had a peak period Tp =1 s, leading
to kh ~ 2 at the wave maker. Significant wave breaking occurred in this experiment beginning near
the gauge at 2 =0.175 m. Time series of free surface elevations were collected at 20 Hz and divided
into 7 realizations of 2048 points each. Each realization was then put into a Fast Fourier Transform
(FFT); the resulting energy density spectra were both Bartlett-averaged across all seven realizations
and band-averaged across eight neighboring frequency bands. A gauge located 0.20 cm offshore
of the toe of the slope provided the initial condition. Tests with N =300 and N = 500 frequency
components were run through the models for each realization, leading to a maximum frequency of
3 Hz and 5 Hz respectively.

‘We compare two models to the experimental data: the nonlinear mild-slope equation model of Kai-
hatu and Kirby (1995), with corrections by Kaihatu (2001); and the extended Boussinesq frequency
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Figure 4. Comparison of nonlinear frequency domain models data of Whalin (1971). Solid line: model of Kai-
hatu and Kirby (1998) with DSO parameters. Dashed line: model of Kaihatu and Kirby (1995) with corrections
from Kaihatu (2001). Dash-dot line: model of Kaihatu and Kirby (1994). Top: first harmonic amplitudes. Bottom:
second harmonic amplitudes.

domain model of Kaihatu and Kirby (1998) with the DSO parameters. Both models were equipped
with the dissipation mechanism of Thornton and Guza (1983) and the frequency-distribution method-
ology detailed by Mase and Kirby (1992). Both F =05 and F = 0 were used, the latter correspond-
ing to a full frequency-squared weighting of dissipation.

Comparisons of spectra at various locations are shown in Figure 6, with N = 300 and F = 0.
It is apparent that, while both models tend to compare well to the data at the frequency peak and
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Figure 5. Layout of experiment of Mase and Kirby (1992).
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Figure 6. Comparisons of spectra from models to data from Mase and Kirby (1992): N = 300 frequencies,
F = 0. Solid line: data. Dashed line: model of Kaihatu and Kirby (1995) with correction of Kaihatu (2001).
Dash-dot line: model of Kaihatu and Kirby (1998) with DSO parameters. Top left: # = 0.47 m. Top right:
h = 0.2 m. Bottom left: 4 =0.125 m. Bottom right: # = 0.05 m.

lower, the extended Boussinesq model of Kaihatu and Kirby (1998) significantly underpredicts the
high frequency evolution (f > 1.75 Hz). The case of N = 500 components reveal similar trends. No
significant differences occur between the F =0 and F = 0.5 cases.
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Figure 7. Comparisons of skewness and asymmetry from models to data from Mase and Kirby (1992): N = 500
frequencies. Open circles: data. Solid and dashed lines: model of Kaihatu and Kirby (1995) with correction of
Kaihatu (2001) with F = 0.5 and F = 0, respectively. Dash-dot and dash-x lines: model of Kaihatu and Kirby
(1998) with DSO parameters and F = 0.5 and F = 0, respectively. Top: skewness. Bottom: Negative asymmetry.

Differences between the # = 0 and F = 0.5 cases begin to appear when companng skewness and
asymmetry. Figure 7 shows a comparison of both models, each using F =0.5and F =0, to the skew-
ness and asymmetry values from the data for the case of N = 500. (It was shown by Kaihatu, 2001
that good comparisons to higher-order moments required N = 500 frequency components.) Both
skewness and asymmetry are better predicted by the model of Kaihatu and Kirby (1995), with cor-
rections by Kaihatu (2001), than with the extended Boussinesq model of Kaihatu and Kirby (1998).
Additionally, F = 0.5 results in a slightly better skewness prediction and a slightly worse asymmetry
prediction than F=0, except for the gauge nearest to shore. At that location the modeled asymme-
try falls off dramatically if ¥ = 0 in either shoaling model. The reason for this sudden dropoff is
not clear. We note here that this behavior at the last gauge is not an indictment of the ¥ = 0 value;
Kennedy et al. (2000) showed excellent agreement between the time domain Boussinesq model of
Wei et al. (1995) and the Mase and Kirby (1992) data. An eddy viscosity mechanism was used for
dissipation in the time domain model, the formulation of which is equivalent to F =0 in the fre-
quency domain. Rather, the problem in the frequency domain may lie in the use of the bulk energy
dissipation mechanism used here; it is quite likely that a frequency domain formulation of the local
eddy viscosity mechanism in the Kennedy et al. (2000) model would address the problems seen at
the shallowest gauge.
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6.3. Discussion

Based on the data-model comparisons shown, it appears that frequency domain formulations of
the extended Boussinesq model of Nwogu (1993) may be inferior to those based on the nonlinear
mild-slope equation (Kaihatu and Kirby, 1995; Kaihatu, 2001). One possible reason for the relatively
poor performance of the frequency domain model of Kaihatu and Kirby (1998) may lie in the order
of truncation of the original equations of Nwogu (1993). These equations were truncated to retain
only O(3, u2) terms. As seen in the (¢, ) model of Kaihatu and Kirby (1994), it is possible to retain
O(8u?) terms and still treat the equations using the frequency domain transformation; perhaps the
inclusion of these terms in the frequency domain model of Kaihatu and Kirby (1998) would improve
the results (though, in the author’s experience, the derivation process is exceedingly complicated and
ambiguous).

Interestingly, however, Wei and Kirby (1995) show very good agreement between their numer-
ical treatment of the model of Nwogu (1993) and the Mase and Kirby (1992) data. As mentioned
early in the chapter, there is often some discrepancy between the performance of the original time
domain model and its corresponding frequency domain formulation. Additionally, Kofoed-Hansen
and Rasmussen (1998) showed that the model of Madsen and Sgrensen (1993) (a frequency domain
shoaling model based on the extended Boussinesq model of Madsen et al., 1991) demonstrates fa-
vorable agreement with the Mase and Kirby (1992) data set, despite the order of truncation being the
same as that in Kaihatu and Kirby (1998). This is likely due to differences in the underlying time
domain equations and in the derivation procedure of the corresponding frequency domain models.

7. STOCHASTIC MODELS

While frequency domain models offer great utility in simulating shallow water processes, this is
done at some computational expense, particularly when they are initialized with smoothed spectra
(as would be the case for field studies, for example). Initial phases are required for these models,
so multiple temporal realizations are run with random initial phases and the results averaged until
acceptably smooth, which can require considerable computation time. This has motivated research
into stochastic models of triad interactions. In this section, we briefly describe a few approaches,
referring interested readers to the papers cited herein and the overview of Agnon and Sheremet
(2000) for further details.

Abreau et al. (1992) developed a statistical model for triad wave evolution, suitable as a source
function in a spectral balance model such as WAM (Komen et al., 1994) or SWAN (Booij et al., 1999).
The model was developed using the non-dispersive asymptote, with the concomitant assumption
that resonant interactions are only possible among collinear shallow water waves. This inherently
disallows vector-sum interactions among spectral components in the wave field, negating a significant
portion of the potential nonlinear behavior.

Eldeberky and Battjes (1995) developed a parameterized triad energy exchange mechanism which
depends on the evolution of the biphase, a higher-order statistical quantity of the wave train which
is zero at low nonlinearity (low Ursell number) and asymptotically approaches —x/2 as the Ursell
number increases. The evolution of this quantity was determined from experimental measurements
as a function of Ursell number. Additionally, nonlinear interaction was further limited to self-self
interactions at the spectral peak. This allowed energy to move from the peak to its second harmonic,
but did not allow for any feedback transfer. This parameterized model is a selectable option in the
SWAN model (see Chapter 5).

Recently, much has been done on developing stochastic models from the phase-resolving dynami-
cal equations (for example, Boussinesq equations). The evolution equation and its conjugate are each
multiplied by their corresponding conjugates, then added together, resulting in an energy equation
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with triple products of amplitudes in the nonlinear summations. These triple products are related to
the bispectrum (a higher-order spectrum), for which an additional evolution equation is needed for
system closure. The bispectral evolution equation is derived by applying the triple product defini-
tion of the bispectrum to the original evolution equation, resulting in an equation for bispectra with
quadruple products of amplitudes in the nonlinear terms (the trispectrum). At this point a Gaussian
closure assumption is made, which has the effect of reducing the trispectrum to products of the spec-
trum, thus creating a finite system of equations. Herbers and Burton (1997) developed a directional
stochastic model from the Boussinesq equations of Peregrine (1967) using the same periodicity as-
sumptions as Kirby (1990) and the procedure described above. Agnon and Sheremet (1997) worked
from the nonlinear dispersive model of Agnon et al. (1993) to develop a stochastic model using the
same closure hypothesis as Herbers and Burton (1997), but in the form of a single equation model
for the spectral energy. Kofoed-Hansen and Rasmussen (1998) operated on the extended Boussinesq
equations of Madsen and Sgrensen (1993) and developed a corresponding stochastic model. They
showed that good model comparisons were possible so long as the Ursell number U, < 1.5, was in
accord with the observations of Agnon and Sheremet (1997). Eldeberky and Madsen (1999) revis-
ited Agnon and Sheremet (1997) and rederived a stochastic model, taking an additional second-order
effect (noted earlier) into account.

One potential limitation has been the specification of the closure required to truncate the system
to a finite number of solvable equations; the subset of trispectra used in the bispectral evolution
equation represent the lowest order contributions. However, Holloway (1980), in the context of triad
interactions among internal waves, hypothesized a different closure for the system. Rather than dis-
carding a significant portion of the trispectra, Holloway (1980) suggested that the trispectrum is also
proportional to the bispectrum; this, in addition to the products of energy terms, make up the con-
tributions from the trispectrum. Becq-Girard et al. (1999), working from the extended Boussinesq
model of Madsen and Sgrensen (1993), developed a stochastic model with Holloway’s (1980) clo-
sure hypothesis included. This inclusion essentially adds a linear term (multiplied by an empirical
proportionality coefficient) to the bispectral evolution equation, with the effect of broadening the
resonance condition, and adding higher-order contributions that may improve overall performance at
moderate Ursell numbers.

8. CONCLUSIONS

Nonlinear frequency domain models have undergone rapid development, apace with correspond-
ing advances in the time domain realm (particularly with respect to Boussinesq models). They have
also increased in utility with the incorporation of enhanced frequency dispersion effects, improved
shoaling and energy dissipation from wave breaking. We investigated several formulations for nonlin-
ear frequency domain models; ensuing data-model comparisons demonstrate that nonlinear models
based on the mild-slope equations appear to be more accurate than frequency domain transformations
of the extended Boussinesq equations explored herein.

Initial phases of the irregular wave train were available to drive the models for data-model com-
parisons to the laboratory data. In most general field situations, however, smoothed spectra from
pressure gauges, wave buoys or forecast model output would be the only source of data. Using
smoothed spectra as an initial condition requires multiple runs of the model with random phases, a
time consuming task. With the advent of the SWAN model, the consideration of triad interactions
(even in the parameterized form used by the model) has become more widespread, and the need for
a useful operational form of these interactions more apparent. This is particularly evident as more
model systems linking wave, hydrodynamic and sediment modules are developed. The stochastic
models described previously exhibit great potential for operational use; more development in this
area is warranted.
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Z'  — nonlinear coefficient from Eldeberky and Madsen (1999)
Z" — nonlinear coefficient from Kaihatu (2001)
z —  vertical coordinate
V  —  horizontal gradient operator
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