
Delayed D*: The Proofs

Dave Ferguson Anthony Stentz

CMU-RI-TR-04-51

September 2004

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
SEP 2004 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2004 to 00-00-2004  

4. TITLE AND SUBTITLE 
Delayed D*: The Proofs 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University ,Robotics Institute,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Analytical Results

In this paper, we prove a number of properties of the Delayed D* algorithm introduced in [1],
including its termination and correctness. In what follows, we deal with the fixed initial state version
of Delayed D* (shown in Figures 1 and 2), but these results can easily be extended, following similar
lines as in [2], to the navigation version.

1.1 Definitions and Heuristics

We first define terms used in our proofs and introduce some heuristic properties.
Let g∗(s) denote the cost of a shortest path froms ∈ S to the goal. Letc∗(s, s′) denote the cost

of a shortest path froms ∈ S to s′ ∈ S. Let h(s, s′) denote the heuristic cost from states ∈ S to
states′ ∈ S. For simplicity, leth(s) denote the heuristic cost from the start state,sstart, to state
s ∈ S.

We call a heuristic functionh admissible if and only if it does not overestimate the shortest
path cost betweenany two states, i.e., if and only ifh(s, s′) ≤ c∗(s, s′) for all s, s′ ∈ S. We call
a heuristic functionh backward consistent if and only if the following holds:h(sstart) = 0, and
h(s) ≤ h(s′) + c(s′, s), for all statess ∈ S ands′ ∈ Pred(s). Note that backward consistent
heuristics are also admissible.

One property of backward consistent heuristics that will be useful to us later is that, for any states
s ∈ S, s′ ∈ Pred(s), we haveh(s) ≤ h(s′) + c∗(s′, s). We prove this below.

Theorem 1. If h is a backward consistent heuristic, then for any statess, s′ ∈ S, h(s) ≤ h(s′) +
c∗(s′, s).

Proof. By contradiction. Assume there exist some statess, s′ ∈ S such thath(s) > h(s′)+c∗(s′, s).
Find the states∗ ∈ S closest tos′ along a shortest path froms′ to s for whichh(s∗) > h(s′) +

c∗(s′, s∗). Let sp ∈ S be the predecessor state tos∗ along this shortest path. Then,

h(s∗) ≤ h(sp) + c(sp, s
∗) h is backward consistent

≤ (h(s′) + c∗(s′, sp)) + c(sp, s
∗) sp hash(sp) ≤ h(s′) + c∗(s′, sp)

= h(s′) + (c∗(s′, sp) + c(sp, s
∗)) rearranging

= h(s′) + c∗(s′, s∗) sincesp is predecessor ofs∗ along path.

But we choses∗ such thath(s∗) > h(s′) + c∗(s′, s∗). Contradiction. Thus, for all statess, s′ ∈ S,
h(s) ≤ h(s′) + c∗(s′, s).

II



CalculateKey(s)
01. return [min(g(s), rhs(s)) + h(sstart, s);min(g(s), rhs(s)))];

Initialize()
02. U = ∅;
03. for alls ∈ S

04. rhs(ss) = g(sg) = ∞;
05. rhs(sgoal) = 0;
06. Insert(U, sgoal, [h(sstart, sgoal), 0]);

UpdateVertex(s)
07. if (g(u) 6= rhs(u))
08. Insert(U, s, CalculateKey(s));
09. else if(g(s) = rhs(s)) and(s ∈ U)
10. Remove(U, s);

UpdateVertexLower(s)
11. if (g(u) > rhs(u))
12. Insert(U, s, CalculateKey(s));
13. else if(g(s) = rhs(s)) and(s ∈ U)
14. Remove(U, s);

ComputeShortestPathDelayed()
15. while (U.MinKey() <̇ CalculateKey(sstart) ORg(sstart) 6= rhs(sstart))
16. s = U .Top();
17. if (g(s) > rhs(s))
18. g(s) = rhs(s)
19. Remove(U, s);
20. for allx ∈ Pred(s)
21. rhs(x) = min(rhs(x), c(x, s) + g(s));
22. UpdateVertexLower(x);
23. else
24. gold = g(s);
25. gs = ∞;
26. for allx ∈ Pred(s) ∪ s

27. if (rhs(x) = c(x, s) + gold ORx = u)
28. if (x 6= sgoal) rhs(x) = minx′∈Succ(x)(c(x, x′) + g(x′));
29. UpdateVertex(x);

Figure 1:The Delayed D* Algorithm: Fixed Initial State (Part 1).

III



FindRaiseStatesOnPath()
30. s = sstart, raise = false, loop = false, ctr = 0;
31. while(s 6= sgoal AND loop = false AND ctr < maxsteps)
32. x = argmins′∈succ(s)(c(s, s

′) + g(s′));
33. rhs(s) = c(s, x) + g(x);
34. if (g(s) 6= rhs(s))
35. UpdateVertex(x);
36. raise = true;
37. if (x = s)
38. loop = true;
39. else
40. s = x;
41. ctr = ctr + 1;
42. returnraise;

Main()
43. Initialize();
44. ComputeShortestPathDelayed();
45. forever
46. Wait for changes in edge costs;
47. for all directed edges(u, v) with changed edge costs
48. cold = c(u, v);
49. Update the edge costc(u, v);
50. if (cold > c(u, v))
51. rhs(u) = min(rhs(u), c(u, v) + g(v));
52. else if(rhs(u) = cold + g(v))
53. if (u 6= sgoal) rhs(u) = minu′∈Succ(u)(c(u, u′) + g(u′));
54. UpdateVertexLower(u);
55. ComputeShortestPathDelayed();
56. raise = FindRaiseStatesOnPath();
57. while (raise)
58. ComputeShortestPathDelayed();
59. raise = FindRaiseStatesOnPath();

Figure 2:The Delayed D* Algorithm: Fixed Initial State (Part 2).

IV



1.2 Delayed D* Proofs

We now prove a number of properties of the Delayed D* algorithm, beginning with its termination.
We assume the heuristic function used is nonnegative and backward consistent, and that our state
space is finite.

Theorem 2. ComputeShortestPathDelayed() (CSPD) of the Delayed D* algorithm always termi-
nates.

Proof. By contradiction. Assume that CSPD never terminates. We show this results in a contradic-
tion.

At any point in time, we can partition the state space into two sets:

S1: those states that will be expanded again in a finite amount of time

S2: those states that will never be expanded again.

Further, because of our assumption, we know that setS1 will always be nonempty. Let’s choose our
point in time,t, to be sufficiently large so that setS2 is maximized, i.e., after timet all states that
are only expanded a finite number of times will not be expanded again.

We know from our construction of setS1 that all members of this set will be expanded again in
a finite amount of time after timet. Let t′ be the first point in time aftert at which all states inS1

have been expanded at least once since timet. Finally, selectt∗ to be the first point in time aftert′

at which there is an overconsistent state at the top of the queue.
Such at∗ must exist. To see this, select a timet′′ > t′ at which all states inS1 have been ex-

panded at least once since timet′. Now, each state can only be expanded once as an underconsistent
state before it must be expanded as an overconsistent state (since underconsistent states have theirg

values set to∞, so the next time they are made inconsistent they must have theirrhs values less than
their g values). Thus, either some state inS1 was expanded as an overconsistent state betweent′

andt′′, or the next state expanded must be an overconsistent state. In either case, we have at∗ ≤ t′′

at which there is an overconsistent state at the top of the queue.
Denote the overconsistent state at the top of the queues. Sinces is overconsistent, we know that

g(s) > rhs(s). Now, rhs(s) = c(s, s′) + g(s′), wheres′ is some successor ofs. We examine this
states′. Eithers′ is inconsistent at timet∗, or it is not.

Case 1:s′ is inconsistent
If s′ is inconsistent, it is either overconsistent or underconsistent. If it is overconsistent, i.e.,g(s′) >

rhs(s′), then it must be on the queue, since any time a state is made overconsistent it is immediately
added (lines{07 - 08; 11 - 12}). But if it is overconsistent, then its key is:

key(s′) =̇ [min(g(s′), rhs(s′)) + h(s′),min(g(s′), rhs(s′))]
=̇ [rhs(s′) + h(s′), rhs(s′)] g(s′) > rhs(s′)
≤̇ [rhs(s′) + h(s) + c∗(s, s′), rhs(s′)] heuristic backward consistent
<̇ [g(s′) + h(s) + c∗(s, s′), g(s′)] g(s′) > rhs(s′)
=̇ [(c∗(s, s′) + g(s′)) + h(s), g(s′)] rearranging
<̇ [rhs(s) + h(s), rhs(s)] rhs(s) computed fromg(s′)
=̇ [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))] g(s) > rhs(s)
=̇ key(s). definition of key value.

V



If this is the case, then we havekey(s′) <̇ key(s) when boths ands′ are on the queue, sos
would not have been at the top of the queue. Contradiction.

If s′ is underconsistent, i.e.,g(s′) < rhs(s′), then it may or may not be on the queue. If itis on
the queue, then its key is:

key(s′) =̇ [min(g(s′), rhs(s′)) + h(s′),min(g(s′), rhs(s′))]
=̇ [g(s′) + h(s′), g(s′)] g(s′) < rhs(s′)
≤̇ [g(s′) + h(s) + c∗(s, s′), g(s′)] heuristic backward consistent
=̇ [(c∗(s, s′) + g(s′)) + h(s), g(s′)] rearranging
<̇ [rhs(s) + h(s), rhs(s)] rhs(s) computed fromg(s′)
=̇ [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))] g(s) > rhs(s)
=̇ key(s). definition of key value.

As above,key(s′) <̇ key(s) when boths ands′ are on the queue, sos would not have been at
the top of the queue. Contradiction.

If s′ is noton the queue, then the only way we could haveg(s′) < rhs(s′) is if s′ was undercon-
sistent with the values{g(s′), rhs(s′)} when CSPD was called. This is because, during the course
of the algorithm, any time a state is made underconsistent it is immediately added to the queue (lines
{07 - 08}). But we know that at timet∗, all states inS1 have been expanded at least once. Thus,
states′ could not possibly still have these initial values without being on the queue. Contradiction.

Case 2:s′ is consistent
If s′ is consistent at timet∗, then let us consider how it could ever become inconsistent again. There
are two possibilities. Therhs value of states′ could increase above itsg value, or it could decrease
below this value.

For therhs value of states′ to increase, its current best successor state must have itsg value
increase. In other words, states′′ for which rhs(s′) = c(s′, s′′) + g(s′′) must have itsg value
increase. Now, either states′′ is underconsistent at timet∗ or it is not. If it is not, then by the
same argument as in the previous lines,its current best successor must have itsg value increase.
We can repeat this line of reasoning to conclude that there must besomeunderconsistent states∗

at timet∗ that is adirect descendantof states′1. This states∗ must be a direct descendant or else
its underconsistency would have no effect on states′. We pick the first such underconsistent direct
descendant state,s∗, i.e., the one with highestg value.

Because any underconsistent states at timet∗ must be on the queue (see argument at end of Case
1 above), this states∗ must be on the queue at timet∗. It’s key value is:

key(s∗) =̇ [min(g(s∗), rhs(s∗)) + h(s∗),min(g(s∗), rhs(s∗))]
=̇ [g(s∗) + h(s∗), g(s∗)] g(s∗) < rhs(s∗)
≤̇ [g(s∗) + h(s′) + c∗(s′, s∗), g(s∗)] heuristic backward consistent
=̇ [(c∗(s′, s∗) + g(s∗)) + h(s′), g(s∗)] rearranging
<̇ [g(s′) + h(s′), g(s′)] s∗ is direct descendant ofs′

≤̇ [g(s′) + h(s) + c∗(s, s′), g(s′)] heuristic backward consistent
=̇ [(c∗(s, s′) + g(s′)) + h(s), g(s′)] rearranging
<̇ [rhs(s) + h(s), rhs(s)] rhs(s) computed fromg(s′)
=̇ [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))] g(s) > rhs(s)
=̇ key(s). definition of key value.

1In other words, there exists a states∗ that can be reached from states′ by always moving from the current vertexx,
starting ats′, to some successory that minimizesc(x, y) + g(y).

VI



Thus,key(s∗) <̇ key(s) when boths ands∗ are on the queue, sos would not have been at the
top of the queue. Contradiction.

For therhs value of states′ to decrease, some successor ofs′ would need to lowerits cost value
(i.e., states′′ such thatg(s′) > gnew(s′) = c(s′, s′′) + gnew(s′′)). We can repeat this reasoning to
create a sequence of states,s′, s′′, s′′′, etc. Eventually, one state in this sequence has to be on the
queue in order to bring about the changes to those preceding it.

Further, during the course of the algorithm, states can only be made overconsistent when an
overconsistent state is expanded (lines{20 - 22})2. Thus, some state in this sequence must be on the
queue at timet∗, with its rhs value holding its futureg value (which we have denotedgnew).

So this overconsistent state, call its∗, must exist on the queue whens is expanded. Its key value
is:

key(s∗) =̇ [min(g(s∗), rhs(s∗)) + h(s∗),min(g(s∗), rhs(s∗))]
=̇ [rhs(s∗) + h(s∗), rhs(s∗)] g(s∗) > rhs(s∗)
=̇ [gnew(s∗) + h(s∗), gnew(s∗)] rhs(s∗) = gnew(s∗)
≤̇ [gnew(s∗) + h(s′) + c∗(s′, s∗), gnew(s∗)] heuristic backward consistent
=̇ [(c∗(s′, s∗) + gnew(s∗)) + h(s′), gnew(s∗)] rearranging
<̇ [gnew(s′) + h(s′), gnew(s′)] gnew(s′) caused bygnew(s∗)
≤̇ [gnew(s′) + h(s) + c∗(s, s′), gnew(s′)] heuristic backward consistent
≤̇ [(c∗(s, s′) + gnew(s′)) + h(s), gnew(s′)] rearranging
<̇ [rhs(s) + h(s), rhs(s)] rhs(s) lowered bygnew(s′)
=̇ [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))] g(s) > rhs(s)
=̇ key(s). definition of key value.

Thus,key(s∗) <̇ key(s) when boths ands∗ are on the queue, sos would not have been at the
top of the queue. Contradiction.

Conclusion:
Our assumption that setS1 is nonempty has led to a contradiction. Therefore, setS1 must be empty
and so CSPD must terminate in finite time.

Theorem 3. After ComputeShortestPathDelayed() terminates, for alls ∈ S withkey(s)<̇key(sstart)
we haveg(s) ≤ rhs(s).

Proof. Supposes is a state withg(s) > rhs(s) after ComputeShortestPathDelayed() has terminated.
We wish to show thatkey(s) ≥̇ key(sstart).

There are only three possible ways in Delayed D* that a state can ever find itself with itsg value
greater than itsrhs value. Firstly, it could have had itsrhs value lowered to become less than itsg

value by a changed arc cost, at lines{50 - 51}. If this occurred, the state would have been added to
the queue at line{54}.

Secondly, it could have had itsrhs value lowered to become less than itsg value by the expansion
of an overconsistent successor state, at lines{20 - 21}. Again, if this occurred, the state would have
been added to the queue at line{22}.

2when an underconsistent statex is expanded, the predecessor states which usex for their rhs values are updated, but
there is no way this could result in a decrease of theirrhs values: if the cost of using some other state is less than the cost of
usingx given its previousg(x) value, then that other state has had itsg value decrease since the last time therhs value for
the current state was computed. But if itsg value has decreased, then when it decreased therhs value for the current state
would have been updated. Thus, therhs value of the current state can only increase.

VII



Finally, it could have been expanded as an underconsistent state and had itsg value set to∞, at
line {25}. If this occurred, the state would have had itsrhs value updated at lines{26 - 29}. If its
newrhs value was less than∞, the state would have been put back on the queue at line{08}.

If s hasg(s) > rhs(s) after CSPD terminates, then one of these three events had to have
occurred most recently. In other words, the last time states had itsg or rhs value change, it had
to have been put back on the queue. But this means that it was on the queue when the function
terminated. Since the function doesn’t terminate until the minimum key value on the queue is at
least as large as the key of the start state, we must conclude thatkey(s) ≥̇ key(sstart).

Thus, for alls ∈ S with key(s) <̇ key(sstart), g(s) ≤ rhs(s) when ComputeShortestPathDe-
layed() terminates.

Theorem 4. After ComputeShortestPathDelayed() terminates, for alls ∈ S withkey(s)<̇key(sstart)
we haveg(s) ≤ g∗(s).

Proof. By contradiction. Assume there is some nonempty set of statesR containing alls ∈ S such
thatkey(s)<̇key(sstart) andg(s) > g∗(s) after CSPD terminates. We know that we can also define
a nonempty set of statesO containing alls ∈ S such thatkey(s) <̇ key(sstart) andg(s) ≤ g∗(s).
This setO is guaranteed to be nonempty because, at the very least, the goal will be a member.

Supposes is an element inR for which anoptimal successoris in setO3. Such ans must exist,
as the optimal successors of each state inR can be followed to the goal, which is in setO, so there
must be some state inR for which an optimal successor is in setO4.

Now, the optimal successor of this states, call this s′, hasg(s′) ≤ g∗(s′) as it is in setO.
But whens′ had itsg value set to this value, it would have updated therhs values of all possible
predecessor states (lines{20 - 22}). Each of these states would useg(s′) to update itsrhs value if
this would provide a lower value than its currentrhs value. Thus,

rhs(s) ≤ c(s, s′) + g(s′) rhs(s) updated to be at least as low asc(s, s′) + g(s′)
≤ c(s, s′) + g∗(s′) g(s′) ≤ g∗(s′)
= g∗(s) s′ is optimal successor ofs.

But this means thats is not in R. Contradiction. Thus, our assumption that setR is nonempty is
incorrect.

Theorem 5. After FindRaiseStatesOnPath() (FRSOP), if no underconsistent states have been added
to the queue, then an optimal solution path can be followed fromsstart to sgoal by moving from the
current states, starting atsstart, to any successors′ that minimizesc(s, s′) + g(s′).

Proof. If, after FRSOP, no states have been added, then we have arrived at the goal by starting at
sstart and repeatedly moving from the current states to any successors′ that minimizesc(s, s′) +
g(s′) (line {32}). Further, we have not encountered any statess along this path withg(s) < rhs(s)
(line {34}). Now, all states along this path must also have key values less thankey(sstart), since
they each contribute to the currentg value of statesstart. Thus, according to Theorem 4, each of
these statess hasg(s) ≤ g∗(s). But if we were able to traverse the entire path without encountering
anystates with g(s) < rhs(s), then every state on this path is consistent, and theg value of each

3In other words, if all states were consistent and had their optimalg values, theng∗(s) = c(s, s′) + g∗(s′), for some
successors′. We call this states′ anoptimal successorof s.

4The only exception is ifnoelement in setR has a path to the goal, in which case all elements inO haveg∗ values of∞,
so clearly cannot have theirg values greater than theirg∗ values - a contradiction.

VIII



state must in fact equal its actual cost when following this path. Since the actual cost from any state
s cannot possibly be less thang∗(s), we must haveg(s) = g ∗ (s) for each state along this path,
including the statesstart. Since these costs were derived from following the traversed path, this path
must be an optimal path.

Theorem 6. The Delayed D* algorithm always terminates and when it does, an optimal solution
path can be followed fromsstart to sgoal by moving from the current states, starting atsstart, to
any successors′ that minimizesc(s, s′) + g(s′).

Proof. The only nontrivial portion of the Delayed D* algorithm is the loop at lines{57 - 59}. We
have already shown, in Theorem 2, that CSPD will always terminate. Further, Theorem 4 proved
that when it does terminate, we haveg(s) ≤ g∗(s), for all s ∈ S such thatkey(s) < key(sstart).
Now, when FRSOP terminates (which it must, since it has a counter that expires aftermaxsteps),
either some underconsistent states have been found along the current path fromsstart to sgoal, or
an optimal solution path exists (by Theorem 5). In the latter case, theraise flag is set tofalse

and the Delayed D* update phase (the loop at lines{57 - 59}) terminates. In the former case, the
underconsistent states are added to the queue and CSPD is called. We can show that this loop will
only be performed a finite number of times as follows.

Consider the first underconsistent state encountered along the path traversed in FRSOP the first
time the loop is entered. Call this states. Since this state was reached from the start state,sstart, by
always moving from the current vertexx to some successory that minimizesc(x, y) + g(y), (line
{32}) it is a direct descendant ofsstart. Since this state is thefirst underconsistent direct descendant
of sstart along this path, we must haveg(sstart) ≥ c∗(sstart, s) + g(s)5. Then,

key(s) =̇ [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))]
=̇ [g(s) + h(s), g(s)] g(s) < rhs(s)
≤̇ [g(s) + h(sstart) + c∗(sstart, s), g(s)] h is backward consistent
=̇ [(g(s) + c∗(sstart, s)) + h(sstart), g(s)] rearranging
<̇ [g(sstart) + h(sstart), g(sstart)] g(sstart) ≥ c∗(sstart, s) + g(s)
=̇ key(sstart) definition of key value

wherekey(sstart) is the key of the start state before CSPD is called. Since the only difference in
CSPD between the upcoming call and its last call is that there have been some underconsistent states
added to the queue, there is no way that the key value of the start state candecreaseduring this call
to CSPD. Thus, sincekey(s)<̇key(sstart) when CSPD is called, andkey(s) cannot decrease until
g(s) decreases (which will not happen untils is expanded), we know thats will be expanded during
this call of CSPD. This means thats is made overconsistent at some point during this call of CSPD.

Now, s may be made underconsistent again, during this call of CSPD or some subsequent call.
But, during this update phase (i.e., while the loop at lines{57 - 59}is still being performed), it will
never again be the first underconsistent state encountered along the path traversed in FRSOP. This is
because, ifs is made underconsistent again, then it is automatically put back on the queue, at lines
{29; 07 - 08}. Ifs is then later encountered as the first underconsistent state encountered along the
path traversed in FRSOP, then from before we know that its key value is:

5Otherwise, ifg(sstart) < c∗(sstart, s) + g(s), then there is some other states′ betweensstart ands along this path
with g(s′) < rhs(s′). Contradiction.

IX



key(s) =̇ [min(g(s), rhs(s)) + h(s),min(g(s), rhs(s))]
=̇ [g(s) + h(s), g(s)] g(s) < rhs(s)
≤̇ [g(s) + h(sstart) + c∗(sstart, s), g(s)] h is backward consistent
=̇ [(g(s) + c∗(sstart, s)) + h(sstart), g(s)] rearranging
<̇ [g(sstart) + h(sstart), g(sstart)] g(sstart) ≥ c∗(sstart, s) + g(s)
=̇ key(sstart) definition of key value.

But we know thats is on the queue, so if its key value is less than the key value of the start state,
then it would have been expanded the previous call to CSPD. Contradiction. Thus, once a state
has been the first underconsistent state encountered along the path traversed in FRSOP, it will never
again be in this position. Since our state space is finite, this means that FRSOP can only returntrue

a finite number of times. Thus, eventually FRSOP will returnfalse and the entire update phase will
terminate, leaving an optimal solution path from the start to the goal (by Theorem 5).

2 Acknowledgement

This work was sponsored by the U.S. Army Research Laboratory, under contract “Robotics Collab-
orative Technology Alliance”. The views contained in this document are those of the authors and do
not represent the official policies or endorsements of the U.S. Government.

References

[1] D. Ferguson and A. Stentz, “The Delayed D* Algorithm for Efficient Path Replanning,” submit-
ted toIEEE International Conference on Robotics and Automation (ICRA), 2005.

[2] M. Likhachev and S. Koenig, “Lifelong Planning A* and D* Lite: The Proofs,” College of
Computing, Georgia Institute of Technology, Tech. Rep., 2001.

X


