Delayed D*: The Proofs

Dave Ferguson Anthony Stentz

CMU-RI-TR-04-51

September 2004

Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

(© Carnegie Mellon University

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 2004 2. REPORT TYPE 00-00-2004 to 00-00-2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Delayed D*: The Proofs 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Carnegie Mellon University ,Robotics I nstitute,Pittsbur gh,PA,15213 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 10
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Analytical Results

In this paper, we prove a number of properties of the Delayed D* algorithm introduced in [1],
including its termination and correctness. In what follows, we deal with the fixed initial state version
of Delayed D* (shown in Figures 1 and 2), but these results can easily be extended, following similar
lines as in [2], to the navigation version.

1.1 Definitions and Heuristics

We first define terms used in our proofs and introduce some heuristic properties.

Let g*(s) denote the cost of a shortest path frera S to the goal. Let*(s, ') denote the cost
of a shortest path from € Stos’ € S. Leth(s,s’) denote the heuristic cost from statec S to
states’ € S. For simplicity, leth(s) denote the heuristic cost from the start statg,,, to state
s€S.

We call a heuristic functiorh admissible if and only if it does not overestimate the shortest
path cost betweeany two states, i.e., if and only (s, s’) < ¢*(s,s’) for all s,s" € S. We call
a heuristic functiom backward consistent if and only if the following holds(s,:..:) = 0, and
h(s) < h(s') + ¢(s', s), for all statess € S ands’ € Pred(s). Note that backward consistent
heuristics are also admissible.

One property of backward consistent heuristics that will be useful to us later is that, for any states
s€S,s" € Pred(s), we haveh(s) < h(s’) + ¢*(s', s). We prove this below.

Theorem 1. If i is a backward consistent heuristic, then for any states € S, h(s) < h(s) +
c*(s',).

Proof. By contradiction. Assume there exist some state@s € S such thati(s) > h(s')+c* (s, s).
Find the state™ € S closest tos’ along a shortest path frori to s for which h(s*) > h(s’) +
c*(s',s*). Lets, € S be the predecessor statestoalong this shortest path. Then,

h(s*) < h(sp) + c(sp, s™) h is backward consistent
< (h(s') + ¢ (s, 5,)) + clsp, 5°) s, hash(s,) < h(s) + (s,)
= h(s") + (c*(¢, sp) + c(sp, 5¥)) rearranging
= h(s') +c*(s,5%) sinces,, is predecessor of* along path.

But we choses* such thath(s*) > h(s’) + ¢*(s', s*). Contradiction. Thus, for all statess’ € S,
h(s) < h(s') 4+ c*(¢,s). O

CalculateKey(s)
01. return [mir(g(s),rhs(s)) + h(Sstart, s); min(g(s), rhs(s)))];

Initialize()
02. U = 0;
03. foralls € S
04. rhs(ss) = g(sq) = o0;
05. 7hs(8g0a1) = 0;
06. InsertU, sgoal, [M(Sstarts Sgoal), 0]);

UpdateVertex(s)
07. if (g(u) # rhs(u))
08. InsertU, s, CalculateKeys));
09. elseif(g(s) = rhs(s)) and(s € U)
10. Removel, s);

UpdateVertexLower(s)
11. if (g(u) > rhs(u))
12. Insert{, s, CalculateKeys));
13. elseif(g(s) = rhs(s)) and(s € U)
14. Removel, s);

ComputeShortestPathDelayed()
15. while (U.MinKey() < CalculateKey(start) OR g(sstart) # rhs(sstart))
16. s=U.Top();
17, if(g(s) > rhs(s))
18. g(s) = rhs(s)

19. Removel, s);

20. forallz € Pred(s)

21. rhs(x) = min(rhs(x), c(x, s) + g(s));
22. UpdateVertexLowex);

23. else

24. Goid = 9(5);

25. gs = 00;

26. forallz € Pred(s) U s

27. if (rhs(z) = c(x, s) + gota ORz = u)
28. f (& # Sgoat) Th5(2) = Minsesuecta) (€@, 2') + 9(&));
29. UpdateVertext);

Figure 1:The Delayed D* Algorithm: Fixed Initial State (Part 1).

FindRaiseStatesOnPath)
30. s = sgtart, raise = false,loop = false, ctr = 0;
31. while(s # sg0a1 AND loop = false AND ctr < maxsteps)

32. T = argmins’ésucc(s) (0(87 S/) + g(sl))’
33. rhs(s) =c(s,x) + g(x);
34. if(g(s) # rhs(s))
35. UpdateVertext);
36. raise = true,
37. if (z = s)
38. loop = true;
39. else
40. s =x;
41. ctr = ctr + 1;
42. returnraise,
Main()
43. Initialize();
44. ComputeShortestPathDelayed();
45. forever
46. Wait for changes in edge costs;
47. for all directed edge@:, v) with changed edge costs
48. Cotd = c(u,v);
49. Update the edge costu, v);
50. if (cota > c(u,v))
51. rhs(u) = min(rhs(u), c(u,v) + g(v));
52. else if(rhs(u) = coa + g(v))
53. if (u # 8goar) Ths(u) = Miny e guce(w) (c(u, u’) + g(u’));
54. UpdateVertexLower);
55. ComputeShortestPathDelayed();
56. raise = FindRaiseStatesOnPath();
57. while (raisd
58. ComputeShortestPathDelayed();
59. raise = FindRaiseStatesOnPath();

Figure 2:The Delayed D* Algorithm: Fixed Initial State (Part 2).

1.2 Delayed D* Proofs

We now prove a humber of properties of the Delayed D* algorithm, beginning with its termination.
We assume the heuristic function used is nonnegative and backward consistent, and that our state
space is finite.

Theorem 2. ComputeShortestPathDelayed() (CSPD) of the Delayed D* algorithm always termi-
nates.

Proof. By contradiction. Assume that CSPD never terminates. We show this results in a contradic-
tion.
At any point in time, we can patrtition the state space into two sets:

S1: those states that will be expanded again in a finite amount of time
So: those states that will never be expanded again.

Further, because of our assumption, we know thas'setill always be nonempty. Let's choose our
point in time, ¢, to be sufficiently large so that s8t is maximized, i.e., after time all states that
are only expanded a finite number of times will not be expanded again.

We know from our construction of sé} that all members of this set will be expanded again in
a finite amount of time after time Let ¢’ be the first point in time after at which all states irb;
have been expanded at least once since tinfénally, select* to be the first point in time aftef
at which there is an overconsistent state at the top of the queue.

Such at* must exist. To see this, select a tiie> ¢’ at which all states irt; have been ex-
panded at least once since tiieNow, each state can only be expanded once as an underconsistent
state before it must be expanded as an overconsistent state (since underconsistent statesgave their
values set teo, so the next time they are made inconsistent they must have-thealues less than
their g values). Thus, either some state9n was expanded as an overconsistent state between
andt”, or the next state expanded must be an overconsistent state. In either case, we havé a
at which there is an overconsistent state at the top of the queue.

Denote the overconsistent state at the top of the que8eces is overconsistent, we know that
g(s) > rhs(s). Now, rhs(s) = c(s,s’) + g(s’), wheres’ is some successor ef We examine this
states’. Eithers’ is inconsistent at timé*, or it is not.

Case 1:s' is inconsistent
If s’ is inconsistent, it is either overconsistent or underconsistent. If it is overconsistents.e >
rhs(s"), then it must be on the queue, since any time a state is made overconsistent it is immediately
added (lineq07 - 08; 11 - 12}). But if it is overconsistent, then its key is:

key(s') = [min(g(s'),rhs(s")) + h(s'), min(g(s"), rhs(s"))]
=[rhs(s') + h(s'),rhs(s")] g(s') > rhs(s)
< [rhs(s") + h(s) + c*(s,s"),rhs(s")] heuristic backward consistent
<[g(s") + h(s) + c*(s,5"), 9(s")] g(s") > rhs(s')
= [(c*(s,8") + g(s")) + h(s), g(s")] rearranging
< [rhs(s) + h(s),rhs(s)] rhs(s) computed frony(s’)
=

min(g(s),rhs(s)) + h(s), min(g(s), rhs(s))] g(s) > rhs(s)
). definition of key value.

If this is the case, then we havey(s’) < key(s) when boths ands’ are on the queue, so
would not have been at the top of the queue. Contradiction.

If s’ is underconsistent, i.eg(s’) < rhs(s’), then it may or may not be on the queue. lisibn
the queue, then its key is:

key(s") = [min(g(s'), rhs(s")) + h(s"), min(g(s"), rhs(s"))]
= [9(s) + ("), g(s")] g(s") <rhs(s')
< [g(s") + h(s) + c*(s,5"),g(s")] heuristic backward consistent
= [(c*(s,s") + g(s) + h(s),g(s")] rearranging
< [rhs(s) + h(s),rhs(s)] rhs(s) computed frony(s’)
= [min(g(s),rhs(s)) + h(s), min(g(s),rhs(s))] g(s) > rhs(s)
= key(s). definition of key value.

As above key(s') < key(s) when boths ands’ are on the queue, sowould not have been at
the top of the queue. Contradiction.

If s’ is noton the queue, then the only way we could hay€) < rhs(s’) is if s’ was undercon-
sistent with the value§g(s’), rhs(s’)} when CSPD was called. This is because, during the course
of the algorithm, any time a state is made underconsistent it is immediately added to the queue (lines
{07 - 08}). But we know that at tim&, all states inS; have been expanded at least once. Thus,
states’ could not possibly still have these initial values without being on the queue. Contradiction.

Case 2:s' is consistent
If s’ is consistent at timé*, then let us consider how it could ever become inconsistent again. There
are two possibilities. Thehs value of states’ could increase above itsvalue, or it could decrease
below this value.

For therhs value of states’ to increase, its current best successor state must hayevitsie
increase. In other words, staté for which rhs(s’) = c(s’,s”) + g(s”) must have ity value
increase. Now, either stat¢ is underconsistent at timg or it is not. If it is not, then by the
same argument as in the previous linigs current best successor must havegitgalue increase.

We can repeat this line of reasoning to conclude that there mustriheunderconsistent state

at timet* that is adirect descendantf states’. This states* must be a direct descendant or else
its underconsistency would have no effect on stat&Ve pick the first such underconsistent direct
descendant state?, i.e., the one with highegtvalue.

Because any underconsistent states at tirmsust be on the queue (see argument at end of Case
1 above), this state* must be on the queue at timie It's key value is:

key(s®) = [min(g(s™),rhs(s")) + h(s"), min(g(s"), rhs(s"))]
= l9(s") + ls™), 9(s7)] g(s*) <rhs(s")
<[g(s*) + h(s') + c*(s, %), g(s)] heuristic backward consistent
=[(c*(s',8") + g(s*)) h(s"),g(s*)] rearranging
<lg(s") + h(s"),9(s")] s* is direct descendant of
<[g(s") + h(s) + c*(s,5'), 9(s")] heuristic backward consistent
= [(c*(s,8") + g(s")) + h(s),g(s")] rearranging
< [rhs(s) + h(s),rhs(s)] rhs(s) computed frony(s’)
= [min(g(s),rhs(s)) + h(s), min(g(s),rhs(s))] g(s) > rhs(s)
= key(s). definition of key value.

1In other words, there exists a state that can be reached from stateby always moving from the current vertex
starting ats’, to some successgrthat minimizesc(z, y) + g(y)-

Vi

Thus,key(s*) < key(s) when boths ands* are on the queue, sowould not have been at the
top of the queue. Contradiction.

For therhs value of state’ to decrease, some successos’ofiould need to loweits cost value
(i.e., states” such thatg(s’) > gnew(s’) = c(s',5”) + gnew(s”)). We can repeat this reasoning to
create a sequence of state’s,s”, s””’, etc. Eventually, one state in this sequence has to be on the
queue in order to bring about the changes to those preceding it.

Further, during the course of the algorithm, states can only be made overconsistent when an
overconsistent state is expanded (lifi28 - 22} ¥. Thus, some state in this sequence must be on the
gueue at time*, with its rhs value holding its futurg value (which we have denoted..,).

So this overconsistent state, calkit, must exist on the queue wheris expanded. Its key value

is:
key(s*) = [min(g(s*),rhs(s*)) + h(s*),min(g(s*),rhs(s*))]
= [rhs(s*) + h(s*),rhs(s")] g(s*) > rhs(s*)
% [Gnew(s™) + h(8"), Gnew(s™)] Ths(s*) = Gnew(s™)
< gnew(s™) + h(s") + c*(s',8*), Gnew (s)] heuristic backward consistent
= [(c*(8',8") + gnew(s™)) + h(s), Gnew(s™)] rearranging
i [gnew(s/) + h(S/), gnew(sl)} gnew(sl) caused anew(S*)
< [Gnew(s") + h(s) +c*(s,5"), Gnew(s")] heuristic backward consistent
<[(e*(5,8) 4 gnew(s")) + h(s), Gnew(s')] rearranging
< [rhs(s) 4+ h(s),rhs(s)] rhs(s) lowered byg,ew(s')
= [min(g(s), ths(s)) + h(s), min(g(s),hs(s))] g(s) > rhs(s)
= key(s). definition of key value.

Thus,key(s*) < key(s) when boths ands* are on the queue, sowould not have been at the
top of the queue. Contradiction.
Conclusion:
Our assumption that séY is nonempty has led to a contradiction. Therefore Ssanust be empty
and so CSPD must terminate in finite time.
O

Theorem 3. After ComputeShortestPathDelayed() terminates, fos allS with key(s)<key(sssart)
we havey(s) < rhs(s).

Proof. Suppose is a state withy(s) > rhs(s) after ComputeShortestPathDelayed() has terminated.
We wish to show thakey(s) > key(ssiart)-

There are only three possible ways in Delayed D* that a state can ever find itself witveiise
greater than itshs value. Firstly, it could have had iishs value lowered to become less thangts
value by a changed arc cost, at lifg® - 51}. If this occurred, the state would have been added to
the queue at ling54}.

Secondly, it could have had ités value lowered to become less thamgitgalue by the expansion
of an overconsistent successor state, at lfrés- 21}. Again, if this occurred, the state would have
been added to the queue at lif#2}.

2when an underconsistent statds expanded, the predecessor states whicheuse their rhs values are updated, but
there is no way this could result in a decrease of their values: if the cost of using some other state is less than the cost of
usingz given its previoug(x) value, then that other state has hadjitsalue decrease since the last time e value for
the current state was computed. But if jtsvalue has decreased, then when it decreasedtbheralue for the current state
would have been updated. Thus, ttes value of the current state can only increase.

VIl

Finally, it could have been expanded as an underconsistgrtand had itg value set taxo, at
line {25}. If this occurred, the state would have hadrits value updated at linef26 - 29}. If its
newrhs value was less thato, the state would have been put back on the queue afliag.

If s hasg(s) > rhs(s) after CSPD terminates, then one of these three events had to have
occurred most recently. In other words, the last time stdtad itsg or rhs value change, it had
to have been put back on the queue. But this means that it was on the queue when the function
terminated. Since the function doesn’t terminate until the minimum key value on the queue is at
least as large as the key of the start state, we must concludecth(@) > key(ssiart)-

Thus, for alls € S with key(s) < key(sstart), g(s) < rhs(s) when ComputeShortestPathDe-
layed() terminates. O

Theorem 4. After ComputeShortestPathDelayed() terminates, fos @l.S with key(s)<key(sstart)
we havey(s) < g*(s).

Proof. By contradiction. Assume there is some nonempty set of sfamtaining alls € .S such
thatkey(s) <key(sstart) @andg(s) > g*(s) after CSPD terminates. We know that we can also define
a nonempty set of stat&€3 containing alls € S such thatey(s) < key(sstart) @andg(s) < g*(s).
This setO is guaranteed to be nonempty because, at the very least, the goal will be a member.

Supposses is an element ik for which anoptimal successas in setO3. Such ans must exist,
as the optimal successors of each stat® itan be followed to the goal, which is in 3@t so there
must be some state iR for which an optimal successor is in get.

Now, the optimal successor of this statecall this s’, hasg(s’) < ¢*(s') as it is in setO.
But whens’ had itsg value set to this value, it would have updated the values of all possible
predecessor states (lin€20 - 22}). Each of these states would y$€') to update its-hs value if
this would provide a lower value than its curretts value. Thus,

rhs(s) < c(s,s") + g(s') rhs(s) updated to be at least as lowds, s’) + g(s')
< c(s,8) +g7(s) g9(s") < g7(s)
= g*(s) s’ is optimal successor af

But this means thatis notin R. Contradiction. Thus, our assumption that Bas nonempty is
incorrect. O

Theorem 5. After FindRaiseStatesOnPath() (FRSOP), if no underconsistent states have been added
to the queue, then an optimal solution path can be followed &p@; t0 s40.; by moving from the
current states, starting atss;q+, to any successot' that minimizes:(s, s’) + g(s').

Proof. If, after FRSOP, no states have been added, then we have arrived at the goal by starting at
sstart @nd repeatedly moving from the current state any successot that minimizesc(s, s’) +

g(s") (line {32}). Further, we have not encountered any statdeng this path witty(s) < rhs(s)

(line {34}). Now, all states along this path must also have key values les&#yés.,..+), since

they each contribute to the currepwvalue of states,;,... Thus, according to Theorem 4, each of
these stateshasg(s) < ¢g*(s). Butif we were able to traverse the entire path without encountering
any states with g(s) < rhs(s), then every state on this path is consistent, andyth&lue of each

3In other words, if all states were consistent and had their opgimvalues, thery*(s) = c(s, ') + g*(s’), for some
successos’. We call this state’ anoptimal successoof s.

4The only exception is ifio element in seR has a path to the goal, in which case all element? maveg* values ofco,
so clearly cannot have thegjrvalues greater than thegji* values - a contradiction.

VIII

state must in fact equal its actual cost when following thih p&ince the actual cost from any state

s cannot possibly be less thati(s), we must havey(s) = g * (s) for each state along this path,
including the state,;,,;. Since these costs were derived from following the traversed path, this path
must be an optimal path. O

Theorem 6. The Delayed D* algorithm always terminates and when it does, an optimal solution
path can be followed froms..,+ t0 s404; Dy moving from the current statg starting atsg;q,¢, t0
any successot’ that minimizes:(s, s’) 4+ g(s’).

Proof. The only nontrivial portion of the Delayed D* algorithm is the loop at lif&3 - 59}. We
have already shown, in Theorem 2, that CSPD will always terminate. Further, Theorem 4 proved
that when it does terminate, we hayg) < g*(s), for all s € S such thatcey(s) < key(sstart)-
Now, when FRSOP terminates (which it must, since it has a counter that expires:afteteps),
either some underconsistent states have been found along the current pas, ffero 5.4, Or
an optimal solution path exists (by Theorem 5). In the latter case;dfee flag is set tofalse
and the Delayed D* update phase (the loop at lif\ed - 59}) terminates. In the former case, the
underconsistent states are added to the queue and CSPD is called. We can show that this loop will
only be performed a finite number of times as follows.

Consider the first underconsistent state encountered along the path traversed in FRSOP the first
time the loop is entered. Call this stateSince this state was reached from the start state,:, by
always moving from the current vertexto some successgrthat minimizes:(z, y) + g(y), (line
{32}) itis a direct descendant ef;,,+. Since this state is tHfgst underconsistent direct descendant
of s4¢q,¢ @long this path, we must havés;a,¢) > ¢*(Sstare, 5) + g(s)°. Then,

key(s) = [min(g(s), rhs(s)) + h(s), min(g(s), rhs(s))]
= [g(s) + h(s),g(s)] g(s) < rhs(s)
< [9(8) + h(Sstart) + *(Sstart,), 9(8)] h is backward consistent
= [(g(s) + " (sstart, 5)) + h(sstart), 9(5)] rearranging
< [9(8start) + h(Sstart); 9(Sstart)] 9(Sstart) > €*(Sstart;) + g(s)
= key(sstart) definition of key value

wherekey(ssiart) 1S the key of the start state before CSPD is called. Since the only difference in
CSPD between the upcoming call and its last call is that there have been some underconsistent states
added to the queue, there is no way that the key value of the start statea@anasaluring this call
to CSPD. Thus, sinckey(s)<key(ssiqrt) When CSPD is called, aricky(s) cannot decrease until
g(s) decreases (which will not happen untils expanded), we know thatwill be expanded during
this call of CSPD. This means thats made overconsistent at some point during this call of CSPD.
Now, s may be made underconsistent again, during this call of CSPD or some subsequent call.
But, during this update phase (i.e., while the loop at lif&8 - 59} is still being performed), it will
never again be the first underconsistent state encountered along the path traversed in FRSOP. This is
because, it is made underconsistent again, then it is automatically put back on the queue, at lines
{29; 07 - 08}. Ifs is then later encountered as the first underconsistent state encountered along the
path traversed in FRSOP, then from before we know that its key value is:

SOtherwise, ifg(sstart) < ¢*(sstart, s) + g(s), then there is some other statebetweens,;q,+ ands along this path
with g(s’) < rhs(s’). Contradiction.

key(s) = [min(g(s),rhs(s)) + h(s), min(g(s),rhs(s))]
=[g(s) + h(s),g(s)] g(s) < rhs(s)
<[g(s) + h(sstart) + " (Sstart, 5), g(s)] h is backward consistent
= [(g(s) + c*(Sstart, $)) + P(Sstart), 9(5)] rearranging
< [g(sstart) + h(SstaTt):g(Sstart)] g(sstm-t) > C*(Sstarta S) + g(S)
= key(sstart) definition of key value.

But we know thats is on the queue, so if its key value is less than the key value of the start state,
then it would have been expanded the previous call to CSPD. Contradiction. Thus, once a state
has been the first underconsistent state encountered along the path traversed in FRSOP, it will never
again be in this position. Since our state space is finite, this means that FRSOP can only-teturn
a finite number of times. Thus, eventually FRSOP will retfitiise and the entire update phase will
terminate, leaving an optimal solution path from the start to the goal (by Theorem 5). O

2 Acknowledgement

This work was sponsored by the U.S. Army Research Laboratory, under contract “Robotics Collab-
orative Technology Alliance”. The views contained in this document are those of the authors and do
not represent the official policies or endorsements of the U.S. Government.

References

[1] D. Ferguson and A. Stentz, “The Delayed D* Algorithm for Efficient Path Replanning,” submit-
ted tolEEE International Conference on Robotics and Automation (ICRA), 2005.

[2] M. Likhachev and S. Koenig, “Lifelong Planning A* and D* Lite: The Proofs,” College of
Computing, Georgia Institute of Technology, Tech. Rep., 2001.

