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Parallel Bifurcation Solver and Model Reduction for Prediction of Wing Rock

Onset

K.J.Badcock and M.A.Woodgate
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April 19, 2007

Abstract

This is the final report for the European Office of Aerospace Research and Development
contract FA8655-06-1-3033, which started in March, 2006. Reports from a previous contract
(FA8655-03-1-3044) covered the literature review and time domain solver, the formulation and
coding of the bifurcation solver, and results from various methods for predicting wing rock on-
set, including time marching, the bifurcation solver, inverse power method and reduced modelling
through Proper Orthogonal Decomposition. The work in the current period has involved the devel-
opment and demonstration of a parallel bifurcation solver and the implementation and demonstra-
tion of reduced order modelling through centre manifold theory. Ken Badcock presented a paper
on the parallel method at the Aerospace Sciences Meeting in Reno, January, 2006. After this a
meeting was held at the Navy Academy with Phil Beran and others to discuss the exploitation of
the techniques in Uncertainty Studies.

In accordance with the terms of the contract, the authors certify that there were no subject
inventions to declare during the performance of this grant.

1 Introduction

Rolling motion about the longitudinal axis of a delta wing has been computed using Compu-
tational Fluid Dynamics (CFD) by several researchers [1, 2, 3, 4]. Recently a comprehensive
numerical study of wing rock was conducted by Saad [7] using a three degree-of-freedom flight
mechanics model for a generic fighter aircraft configuration (forebody,65o leading edge sweep,
and vertical fin). Roll, sideslip and vertical degrees of freedom were included. Including the
sideslip degree of freedom was found to delay the onset of wing rock and reduce the wing rock
amplitude. These problems provide a useful test case for computing flight mechanics instability
since they feature constrained motions and nonlinear aerodynamics.

The computational cost of time domain CFD based predictions can be high. A way of reducing
the cost of computing parametric searches for aeroelastic stability was proposed by Morton and
Beran[8]. Their method uses dynamical systems theory to characterise the nature of the aeroelas-
tic instability, with this additional information concentrating the use of the CFD. In this way the
problem of locating a one parameter Hopf bifurcation was reduced from multiple time marching
calculations to a single steady state calculation of a modified (or augmented) system. This aug-
mented system, solved via Newton’s method, calculates the value of the parameter for which an
eigenvalue of the system Jacobian matrix crosses the imaginary axis.
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This approach was applied to compute the wing rock onset angle [14]. The formulation used a
sparse matrix solver to efficiently solve the linear system arising at each Newton step for the aug-
mented system. A matrix free product was used to evaluate the Jacobian-vector product for the
augmented residual, resulting in convergence to the correct wing rock onset angle for a spatial dis-
cretisation of second order accuracy. However, the Newton iterations were driven to convergence
by the Jacobian matrix of the first order scheme, leading to a loss of quadratic convergence. Note
that the Jacobian matrix we refer to is of the coupled CFD-rolling motion system of equations, and
so involves the derivatives of the CFD spatial discretisation (here based on Osher’s approximate
Riemann solver).

The classical shifted inverse power method (IPM) can be applied to the Jacobian matrix at any
angle of attack to compute the interesting part of the eigenspectrum. This is useful to derive a
starting solution for the augmented solver, and is a fast method for finding the onset angle in its
own right. However, because only the Jacobian of the first order spatial scheme was available in
the previous work it was not possible to exploit the full capability of the IPM.

Recently the analytical Jacobian for the second order spatial discretisation was derived and
coded [15]. This opened up the possibility of applying the Inverse Power Method to calculate
stability. This was exploited for predicting the wing rock onset angle.

This report describes the final approach taken to a parallel IPM solver, focussing on the details
of the sparse linear solver. Results are presented to show the performance of the method for
computing the wing rock onset angle. Then, the formulation and predictions of the reduced order
model based on centre manifold theory are given.

2 Formulation

The coupled rolling motion/Euler equations can be written to emphasise the dependencies as

d

dt





wa

φt

φ



 =





Ra(wa, φ, φt, α)
µClc(wa) + Dφt

φt



 .

Here the vectorRa denotes the discretisation of the spatial terms in the Euler equations, the de-
tails of which follow the formulation described in reference [18], which can be summarised as
discretisation using Osher’s method with MUSCL interpolation on moving multiblock meshes.
The stability of an equilibriumw = w0 which satisfiesR(w0) = 0 is determined by the eigen-
system of the Jacobian matrixA = ∂R/∂w. The matrix can be written out in block format
as

A =







∂Ra

∂wa

∂Ra

∂φt

∂Ra

∂φ

µ∂Clc

∂wa
D 0

0 1 0






=

[

Aaa Aaf

Afa Aff

]

. (1)

The termAaa is a large sparse matrix which represents the Jacobian of the discretisation of the
fluid equations with respect to the fluid variables.

We consider the stability problem when the angle of attackα is the parameter. We are inter-
ested in finding the onset angle for the wing rock and assume that stability is lost through a Hopf
Bifurcation. In this case the Jacobian matrix A has a pair of purely imaginary eigenvalues at the
critical angle.

The Power Method [19] is an algorithm for calculating the dominant eigenvalue/eigenvector
pair of any given diagonalizable matrixA. Its extension to the shifted inverse power method is
practical for finding any eigenvalue provided that a good initial approximation is known. Assume
that then × n matrix A has distinct eigenvaluesλ1, λ2, . . . , λn and consider the eigenvalueλj .
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Then a constantω can be chosen so that1/(λj − ω) is the dominant eigenvalue of the matrix
(A − ωI)−1.

For initial guessx0 and constantω
Fork = 1, 2, . . . Do:

zk = (A − αI)−1xk−1

µk = ||zk||∞
xk = zk/µk

EndDo

(2)

The shifted inverse power method can be used to calculate the location of the critical eigen-
value in the complex plane at a fixed angleα. By computing the location for multiple values of
α, the angle at which the eigenvalue crosses the imaginary axis can be computed. Variations on
this approach are possible and are formulated in detail in reference [14].

3 Linear Solver - Serial

A key part of the computational work in the IPM is the solution of a large sparse linear system.
Eisenstat, Elman and Schultz [17] developed a generalized Conjugate Gradient method that

depends only onA rather thanAT A and is called the Generalized Conjugate Residual (GCR)
algorithm. Saad and Schultz developed the Generalized Minimal Residual (GMRES) algorithm
which is mathematically equivalent to GCR but is less prone to breakdown for certain problems
and requires less storage and arithmetic operations. However GCR remains the easier algorithm
to implement, especially in parallel. The GCR algorithm is:

r0 = b − Ax0

p0 = r0

For j = 0, 1, 2, . . . , until convergence. Do:

αj =
〈rj ,Apj〉
〈Apj ,Apj〉

xj+1 = xj + αjpj

rj+1 = rj − αjApj

βij = −
〈Arj+1,Api〉
〈Api,Api〉

, for i = 0, 1, 2, . . . , j

pj+1 = rj+1 +
∑j

i=0
βijpi

Enddo

(3)

To calculate theβij the vectorArj and the previousApj ’s are required. The number of matrix
vector products per step can be reduced to one ifApj+1 is calculated by

Apj+1 = Arj+1 +

j
∑

i=0

βijApi (4)

This may not be beneficial ifA is sparse andj is large. A restarted version called GCR(m) is
defined so that when the iteration reaches stepm all thepj ’s andApj ’s are thrown away.

For the Block Incomplete Lower Upper (BILU) factorization the matrix is partitioned into
5 × 5 matrix blocks associated with each cell in the mesh. The use of this blocking reduces the
memory required to store the matrix in a sparse matrix format. For clarity matrix elements refer
to these blocks from now on.

Consider a general sparse matrixA whose elements areaij , i, j = 1, . . . , n. A general in-
complete factorization computes a sparse lower triangular matrixL and a sparse upper triangular
matrix U so that the residual matrixR = LU − A satisfies certain contraints, such as having
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entries in a prescribed pattern. A common constraint consists of taking the zero pattern of theL
U factors to be precisely the zero pattern ofA. However the accuracy of the ILU(0) incomplete
factorization may be insufficient to provide an adequate rate of convergence.

More accurate block Incomplete LU factorisations allowing extra terms to be filled into the
factorisation are often more efficient as well as more robust. Consider updating theaij element in
full Gaussian Elimination (GE). The inner loop contains the equation

aij = aij − aikakj. (5)

If levij is the current level of elementaij then the new level is defined to be

levij = min(levij, levik + levkj + 1). (6)

The initial level of fill-in for an elementaij of a sparse matrixA is 0 if aij 6= 0 and∞
otherwise. Each time the element is modified in the GE process its level of fill-in is updated by
equation 6. Observe that the level of fill-in of an element will never increase during the elimina-
tion. Thus ifaij 6= 0 in the original matrixA, then the element will have a level of fill-in equal to
zero throughout the elimination process. The above gives a systematic algorithm for discarding
elements. Hence ILU(k) contains all of the fill-in elements whose level of fill-in does not exceed
k. The algorithm is given by:

For all non zero elementsaij define levaij = 0
For i = 2, . . . , n Do:

For j = 1, 2, . . . , i − 1 and for levaij < k
aij = aij/ajj

ail = ail − aijajl l = j + 1, . . . , n
Update the levels of fill in for non zeroaij

EndDo
If lev aij > k thenaij = 0

EndDo

(7)

There are two variations used for the preconditioning in the current work. First the linear
solver described above is coded for complex variables. A complex variable formulation has 3
advantages over splitting the variable into real and imaginary parts. First it does not expand the
bandwidth of the matrix. Secondly the precoditioner is faster to calculate and requires less storage.
Thirdly the preconditioner was found to be more robust with respect to dropping off-diagonal
terms.

The Block ILU(k) preconditioner of the Jacobian matrix is also available to precondition the
system with the Jacobian matrix of the second order spatial scheme. The factorisation of the
second order matrix can suffer from instability and often makes a poorer preconditioner than
the factorisation of the matrix from the first order scheme. The first order matrix also has the
advantage that it has 7 non-zero blocks per cell in the fluid grid, whereas the second order matrix
has 13 non-zero blocks.

4 Linear Solver - Parallel

A key develop for making the IPM a practical proposition for full scale problems is the develop-
ment of a parallel implementation of the method. Calculating the steady state and forming the
Jacobian matrix are standard operations in parallel and will not be discussed. The difficult part is
the linear solution and this is described in the current section.
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Figure 1: Effective data decomposition of the Jacobian and right hand side vector

4.1 Matrix Generation and Krylov Method

The data decomposition is done by storing whole blocks of the multiblock grid on a single pro-
cessor. This means that the partitioning of the grid can be consided as a problem of partitioning
the blocks. Each processor stores a certain number of blocks in the grid and their associated fluid
variables. The structural variables are treated in a different way. Each processor stores all the
structural information. This is currently not too expensive as the number of structural equations
is small compared to the number of fluid equations, but might have to be revisited for different
problems.

The residual and Jacobian are decomposed in the method shown in figure 1. Here 4 processors
are assumed and the schematic in the figure indicates the system components

[

Aff Afs

Asf Ass

] [

Rf

Rs

]

.

Processors with no solid boundary conditions will have zeros in theAsf part of the Jacobian.
Since the Jacobian matrix is calculated in 4 distinct partsAff , Afs, Asf andAss, the matrix

vector product is done in 4 parts which are summed together. The products withAfs andAss are
trivial as the structural unknowns are on all processors. The product withAsf requires a “reduce
all” global sum at the end of the multiply to get the information to all the processors.

The ordering of the fluid unknowns within each block is important. The cells are partitioned
as shown in figure 2, with 3 different sets of cells. The matrix-vector product of the internal set
can be updated without any communication and hence it is possible to complete this part of the
product while waiting on the messages to arrive from other processors. The border set are the
cells owned by this processor but which require some communication with other processors to be
fully calculated. The external set is not updated at all on this processor but is used to update the
border points.

To maximise the parallel performance of the code the blocks must be carefully assigned to
the processors. If there is a large number of blocks it is not difficult to get approximately the
same workload onto each processor for the CFD only case. However in the IPM the workload for
non solid wall fluid points is greater than that for any other point - due to the contributions from
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Figure 2: The renumbering scheme used in the Jacobian matrixAff

Asf . Hence the number of fluid points on each processor and the number of solid wall points on
each processor should be balanced. Lastly the number of processor block boundaries needs to be
kept as small as possible. Not only does this keep the size of the messages small but much more
importantly BILU(k) can be calculated with no extra appoximations on block boundaries if both
blocks are on the same processor.

4.2 Preconditioning

Now, the crucial issue is the parallel implementation of the linear solver. The calculation of
the LU factors and the forward and backward substitutions on these factors are both sequential
operations. It is possible to ignore terms in the Jacobian matrixA which couple the system
between processors. However, this can have a very bad influence on the convergence of the
Krylov iterations for the systems being considered in the IPM. The decoupling of blocks through
dropping terms localises the approximation to the solution of the linear system.

Calculating LU factors only has a limited amount of parallelism. In general a partitioning
algorithm minimizes the number of interface elements by reducing the area of the boundaries.
Then each processor can independently factor its set of nodes. This is a completely local opera-
tion. The interior nodes are then eliminated for the interface rows forming a reduced matrixAI

corresponding to interface nodes only. Finally all the processors factorAI . This final operation
is where all the difficulty in parallel sparse factorisations resides. The factorisation ofAI is done
in stages in a nested fashion untilAI is factored. The full factorisation has not been implemented
in the current work. The library EUCLID was used to test a parallel implementation of ILU and
the performance of the algorithm was not found to be satisfactory due to the inherent limitations
of the approach.

To improve the coupling between processors at the preconditioning stage a polynomial pre-
conditioner was considered. In polynomial preconditioning the matrixM is defined by

M−1 = s(A)

wheres is a low degree polynomial. The polynomials is derived from the Neumann series
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expansion
I + N + N2 + N3 + . . . + N s whereN = I − A.

Then
M−1A = (1 − N s+1).

There is no limitation to implementing this preconditioner in parallel because it consists simply
of matrix-vector products.

The option finally selected for the preconditioner used a combination of the localised BILU
preconditioner with the first order polynomial preconditioner. The idea is that the polynomial
preconditioner brings in some of the global information through matrix-vector products that is
lost by the localisation of the BILU factorisation.

5 Test Case and Time Marching Results

There is a considerable amount of published experimental data for80o sweep delta wings. Hence
this sweep angle was selected for the current study. The geometry of the wing was identical to that
used by Arena and Nelson [5]. The wing has a flat upper and lower surface with a45o windward
bevel and a root chord of 0.4222m. The moment of inertia for this wing was given asIxx =
0.00125 Kg-m2. The experiment was performed at a Reynolds number of1.5 × 105. Since the
flow solver here is compressible, a Mach number of 0.2 was used to avoid convergence difficulties
at the very low Mach numbers used in the experiments. The freestream air density is used to non-
dimensionalise the moment of inertia of the wing for the computations. The freestream air density
in the experiment was unavailable and so the value was assumed to be1.23Kgm−3 (sea-level ISA
conditions).

A fine grid for the Euler simulations was created with approximately 1.6 million points. From
this grid two levels were extracted by removing every second grid point in each direction. A
RANS grid was also generated. The comparison of the pressure distributions along a spanwise cut
with measurements from Arena and Nelson [5] is shown in figure 3. The RANS predictions agree
well with the measurements, with only a slight under-prediction of the secondary separation. The
medium grid Euler results predict the suction level close to the measured value. The Euler results
do not predict the secondary separation, as this is associated with boundary layer separation.
Simulations of free-to-roll motion at15o and20o angle of attack were conducted on the medium
grid using the Euler equations. The roll angle histories for both simulations are shown in figure
4. At 15o angle of attack the solution is dynamically stable (i.e. the amplitude of the oscillations
decreases due to aerodynamic damping). However at20o angle of attack, the initial roll angle of
10o initiates a wing rock response with the amplitude of the motion increasing with time.

6 Prediction of Wing Rock Onset Angle

6.1 Coarse Grid Tests

As a first test of the second order Jacobians and the linear solver, the IPM was used to calculate the
wing rock onset angle on the coarse grid. 3 Levels of fill-in were used for the preconditioner which
allowed the residual of the linear system to be driven down 11 orders in less than 60 iterations.

At 22 degrees, after 7 inverse power iterations the critical eigenvalue had converged to 6
significant figures. The value is−1.381245 × 10−4 ± i0.223497. At 23 degrees the converged
value is1.805895 × 10−4 ± i0.232095. These angles bracket the onset angle, which can be
estimated by linear interpolation as22.4 degrees. This is in agreement with the results of other
methods for the coarse grid [14].
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Figure 5:Linear solver convergence for BILU(k) and Polynomial/BILU(2) on the coarse grid and 1
processors.

Next, the use of the first order Jacobian to calculate the preconditioner for the linear system
which uses the second order Jacobian is examined. The system used to test the linear solver was
generated at 21 degrees incidence. There are two preconditioners used: the BILU factorisation
with 1, 2 and 3 levels of fill-in, and the Polynomial preconditioner combined with BILU(2). The
calculations shown in figure 5 were done on 1 processor and so the BILU factorisation involves no
extra approximation. We first evaluate the results in terms of iterations to convergence since we
are ultimately concerned with how the performance of the Krylov method scales in parallel. The
number of iterations to convergence reduces as expected as the level of fill-in is increased. The
number of iterations in each case is significantly larger than when the preconditioner is calculated
for the second order Jacobian matrix, when 3 levels of fill-in are required. The increase in the
number of iterations is from 60 to 168 although each iteration is around twice as expensive for the
second order matrix preconditioner. Using the polynomial preconditioner on top of BILU(2) in
this case does nothing to change the number of iterations to convergence.

The cost of computing the eigenvalues in terms of multiples of steady state calculation cost is
2.80 for BILU(0), 2.34 for BILU(1), 2.44 for BILU(2) and 3.70 for the Polynomial preconditioner
in addition.

Next we test the scaling of the methods in parallel. Here the BILU factorisations are blocked
on each processor and it is the influence of this that is the key concern. The convergence using
BILU(2) with and without polynomial preconditioning on one and four processors is shown in
figure 6. The number of iterations using the BILU preconditioner roughly doubles between 1 and
4 processors. Using the polynomial preconditioner actually reduces the number of iterations to
convergence when moving from 1 to 4 processors. These results are encouraging in the sense that
the polynomial precondioner is bringing in enough global information about the solution of the
system to allow scaling to larger numbers of processors.
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Figure 6:Linear solver convergence for BILU(2) and Polynomial/BILU(1) on the medium grid and 1
and 4 processors.

6.2 Medium Grid Tests

The test of the parallel solver is whether the medium grid can be solved, which it cannot in
serial because of the memory requirements of the method (estimated 5.6Gb to store the Jacobian
and preconditioner). To evaluate this the medium grid was calculated on 16 processors. The
convergence of the linear solver is shown in figure 7. The system used here was generated at 15
degrees incidence.

First the BILU(2) results are shown for reference and the performance of the linear solver
becomes very poor due to the localisation of the precondioner on each processor. The polynomial
preconditioner significantly cuts the number of iterations to convergence. Results are shown using
different levels of fill-in, and the number of iterations to convergence cluster between 200 and 260
iterations. The number of iterations will inevitably increase as the size of the grid increases, even
sequentially.

The performance of the IPM is summarised in table 1. First, the improvement in the per-
formance of the linear solver from using the polynomial preconditioner is clear. The number of
linear solver steps to convergence is reduced by roughly a factor of 3. The resulting improvement
in the time to convergence of the IPM is roughly 25-40%. Finally, the table shows the bifurcation
happens between 16 and 17 degrees. This is consistent with the behaviour of the time domain
solver shown in figure 4.

7 Reduced Order Model Implementation

7.1 Summary of Method

The wing rock onset angle is only one part of the information needed about the system. In addition
the damping below the critical angle and the limit cycle amplitude above it are required. From
the stability calculation we have the critical angle, the frequency and the critical eigenvector. Two
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Figure 7: Linear solver convergence for BILU(2) and Polynomial/BILU(k) on the medium grid and
16 processors.

α CPU CPU Linear Linear Eigenvalue
Polynomial BILU(2) Polynomial BILU(2)

15o 2.91 3.80 229 596 ±0.172i − 7.53 × 10−4

16o 2.53 4.08 214 641 ±0.183i − 2.25 × 10−4

17o 2.31 4.00 202 704 ±0.192i + 2.01 × 10−4

18o 2.69 4.38 265 774 ±0.202i + 6.32 × 10−4

Table 1: Summary of Timings on Medium Grid on 16 processors

methods were presented in the previous report to exploit this information to develop a small order
model for the prediction of this extra information.

The implementation of the first method is described below. This method has the following
features:

• change of variables by projecting the full order solution onto the critical eigenvector

• Taylor expansion of the full order residual, up to and including third order terms

• Use of centre manifold theory to include the influence of the non-critical part of the solution
on the critical part.

The current report describes the calculation of the difficult terms arising from the higher order
derivatives, and then presents the initial results for the roll response.

7.2 Calculation of High Order Derivatives

As described in the previous report, the method of model reduction is
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1. calculateα0, p, q andω from the direct solver. Hereq is the critical right eigenvector of the
Jacobian matrix,p is the critical right eigenvector of the transpose of the Jacobian matrix,
α0 is the wing rock onset angle and±iω is the critical eigenvalue.

2. calculateB(q,q) andB(q,q). Here B is the second Jacobian operator

B(w1,w2) =
1

2

∂2R

∂w2
w1w2

3. solve
{

(2iωI − A)h20 = B(q,q)
Ah11 = B(q,q)

(8)

4. formC(q,q,q). Here

C(w1,w2,w3) =
1

6

∂3R

∂w3
w1w2w3

is the third Jacobian operator.

5. formg20, g11, g21 where

g20 = 〈p, B(q,q)〉 g11 = 〈p, B(q, q̄)〉

and

g21 = 〈p, C(q,q, q̄)〉

− 2〈p, B(q, A−1B(q, q̄))〉 + 〈p, B(q̄, (2iωI − A)−1B(q,q))〉

+
1

iω
〈p, B(q,q)〉〈p, B(q, q̄)〉

−
2

iω
|〈p, B(q, q̄)〉|2 −

1

3iω
|〈p, B(q̄, q̄)〉|2

6. calculate the terms from the parameter expansion

α00 = 〈q,
∂R

∂α
〉

α01 = 〈q, Aαp〉

α10 = 〈q, Aαp̄〉

Note that the terms arising from
α2 = 〈q, Aαy〉

lead to quadratic terms inz andz̄ after exploiting of the centre manifold expression. These
terms were found to be small and so were approximated as zero in the final calculations.

7. time march

˙̄z = iωz +
1

2
g20z

2 + g11zz̄ +
1

2
g02z̄

2 +
1

2
g21z

2z̄ + α̂(α00 + α01z + α10z̄)

For the implementation a number of issues were tackled. First, the parameter terms, including
the termAα was calculated. This was done using finite differences, requiring only 2 residual
evaluations.

Secondly, the second and third order Jacobian products were calculated using matrix free
products againstq, p and their complex conjugates. This was tackled in previous work on aeroe-
lastic instabilities. The first step is to rewrite the required derivatives in real and imaginary parts
as follows Denoting

Q = Q1 + iQ2, Q ∈ Cn Q1,Q2 ∈ Rn.
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then the following identities can be derived

B(Q,Q) = B(Q1,Q1) − B(Q2,Q2) + 2iB(Q1,Q2)
B(Q, Q̄) = B(Q1,Q1) + B(Q2,Q2)
C(Q,Q, Q̄) = C(Q1,Q1,Q1) + C(Q1,Q2,Q2) + iC(Q1,Q1,Q2) + iC(Q2,Q2,Q2).

Further, the following identities can be derived:

B(v + w, v + w) = B(v, v) + 2B(v,w) + B(w,w)
B(v − w, v − w) = B(v, v) − 2B(v,w) + B(w,w)

so thatB(v,w) can be expressed as

B(v,w) =
1

4
[B(v + w, v + w) − B(v − w, v − w)] .

A similar set of identities hold forC

C(v + w, v + w, v + w) = C(v, v, v) + 3C(v, v, w) + 3C(v,w,w) + C(w,w,w)
C(v − w, v − w, v − w) = C(v, v, v) − 3C(v, v, w) + 3C(v,w,w) + C(w,w,w)

and henceC(v, v, w) can be expressed as

C(v, v, w) =
1

6
[C(v + w, v + w, v + w) − C(v − w, v − w, v − w) − 2C(w,w,w)] .

By the use of directional derivatives it is then possible to evaluate the bilinear and trilinear
functionsB(x, y) andC(x, y, z) on any set of coinciding real vectors. These derivatives can be
approximated using finite differences,

B(v, v) =
1

h2
[R(w0 + hv, µ0) − R(w0 − hv, µ0)] + O(h3) (9)

and

C(v, v, v) =
1

8h3
[−R3 + 8R2 − 13R1 + 13R−1 − 8R−2 + R−3] + O(h4) (10)

whereh is small andRl = R(w0 + lhv, µ0).
The evaluation of these finite differences suffers from truncation error for values ofh which are

too large, and from rounding error for values which are too small. To overcome the second limit,
quad-double arithmetic was used for the residual evaluation. A high precision version of algebraic
and transcendental functions is also be required, in this case because of the contributions of such
functions in Osher’s flux function. The QD library [23] was used to obtain this functionality. This
library allows extension of existing code to double-double precision and quad-double precision
without major recoding, by using operator overloading.

To test the accuracy of the reduced model terms, the convergence of the third Jacobian term,
for the second order spatial discretisation, withh is considered. The third Jacobian term is more
sensitive to rounding error than the second term, and also the parameter terms. The convergence
is shown in table 2 and there is a good range of values forh where satifactory values are obtained.

7.3 Limit Cycle Predictions

The model reduction was exercised on the coarse grid using the first order spatial scheme. The
onset angle was previously computed as 24.3 degrees. The model coefficients were computed and
the two degree of freedom model was run for different values ofᾱ = α − 24.3. The comparison
with the full order model is shown in figure 8.
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Figure 8: Comparison of the response of the full order and reduced order models on the coarse grid
using a first order spatial discretisation.



15

h Re 〈q, C(p,p, p̄)〉 Im 〈q, C(p,p, p̄)〉
4 5.5347700126789234e-01 6.2858220561002369e+00
6 3.5505862837191756e+02 2.3350599906148987e+03
8 3.1526220567128992e+04 1.6834102453444750e+05
10 1.9147851302829609e-04 1.1694372975048235e-02
12 1.9147851302829441e-04 1.1694372975048255e-02
14 1.9147851302817110e-04 1.1694372975048051e-02
16 1.9147858912814422e-04 1.1694373075537749e-02

Table 2: Convergence of reduced order model third Jacobian contribution with finite difference step
size. These results are on the coarse grid using the second order spatial discretisation.

Finally, the reduced model predictions for the second order spatial scheme on the coarse grid
were calculated. The growth of the limit cycle oscillation compared with time domain results is
shown in figure 7.3. For the full order predictions the calculations took 1-2 days to settle to a limit
cycle oscillation. The reduced model predictions were obtained almost instantaneously for any
angle after the reduced model ccoefficient were derived, an operation that takes no more than 30
minutes using a laptop for this grid. The comparison is excellent within a few degrees of the wing
rock onset angle and gradually becomes worse as the angle of attack becomes larger. It is expected
that the Taylor series and centre manifold approximations will become worse as we move away
from the bifurcation point. However, the most useful information is close to the onset angle, and
the reduced model tells use the expected amplitude immediately after the onset angle is passed.

8 Conclusions

Two achievements have been reported. First, a parallel version of an eigenvalue based stability
prediction method has been demonstrated. The key development was to use a polynomial based
preconditioner on top of a localised BILU factorisation to reduce the effect of the localisation on
the convergence of the linear solver. Calculations were successfully carried out on the medium
delta wing grid on 16 processors. The performance of these calculations showed that the eigen-
value at each angle of incidence could be computed in a computational cost between 2 and 3 times
the cost of a steady state CFD calculation. It seems likely that better forms of the polynomial pre-
conditioner could be developed that take advantage of the fact that we know the eigenvalue that
the IPM is converging to is also an eigenvalue of the coefficient matrix if the linear system. It
seems likely that this slows down the convergence of the linear solver.

Secondly, the application of the projected reduced order model to wing rock limit cycle pre-
diction was made. Key difficulties for the wing rock problem was the need to use the angle of
attack as the bifurcation parameter. This means that the parameters terms in the reduced model
needed to include derivatives of the CFD residual function and its Jacobian with the respect to
the angle of attack. The predictions from the two degree of freedom ROM of the limit cycle os-
cillation amplitudes were in excellent agreement with calculations using the full order system, at
dramatically reduced computational cost.

Future work would involve applying these techniques to full sized aircraft problems, and to
integrating the methods into a framework for parametric searches for stability (both aeroelastic
and flight mechanics), including the assessment of uncertainty.
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Figure 9: Comparison of the predicted Wing Rock amplitudes ofthe full order and reduced order
models on the coarse grid using a first order spatial discretisation.
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