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AFIT/GNE/ENP/10-S01 

Abstract 

  The purpose of this research was to investigate the combined effects of 

continuous gigahertz radio frequency signals and gamma irradiation on the threshold 

voltage of metal oxide semiconductor field effect transistors.  The combined effects of 

gigahertz radio frequency waves and gamma irradiation on electronics presents a new 

challenge in electronic warfare and little is known of the combined effect on threshold 

voltage damage and recovery.  The Fairchild NDS352AP, a commonly used commercial 

device, was irradiated by a cobalt-60 source under a +5 V bias with and without a radio 

frequency signal applied to the gate.  The threshold voltage was measured during and 

after irradiation.   During irradiation all devices exhibited an expected negative threshold 

voltage shift.  The application of radio frequency to the gate resulted in a 7.2% increase 

in the rate of change of the threshold voltage during irradiation.  When RF was applied 

after irradiation it produced no observable change when compared to the results of 

samples exposed to gamma radiation alone.  Few conclusions can be drawn about the 

effects of radio frequency on the samples following irradiation owing to the long 

recovery time of the samples.  Before irradiation the radio frequency produced a 5.95% 

increase in drain current for a given drain to source voltage during I-V measurements.  

The threshold voltage also increased by 1.57%.  The power of the radio frequency signal 

was adjusted from 1 to 14 dBm with no measurable effect. 
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THE COMBINED EFFECTS OF RADIO FREQUENCY AND GAMMA 

IRRADIATION ON P-CHANNEL MOSFETS 

I.  Introduction 

1.1  Overview 

           The threat of weapons which disable electronic devices is growing rapidly as our 

societal infrastructure becomes more reliant upon electronics.  A direct attack on these 

systems could be devastating, affecting our defensive systems, telecommunications, and 

personal electronics.  High power microwave (HPM) weapons provide an increasing 

threat in modern electronic warfare.  With portable HPM systems able to affect targets at 

ranges up to 500 m [11], the Air Force and the Department of Defense have a profound 

interest in preventing damage and hardening systems against high power microwave 

effects.   

The metal oxide semiconductor field effect transistor (MOSFET) is a common 

component in many electronic devices including cellular telephones, communication 

systems, and computers.  A disruption in an integrated MOSFET circuit within these 

devices may cause temporary or even permanent damage.  HPM systems are currently 

known to be able to drive large amounts of current which will permanently disable 

electronic components [11]. Ionizing radiation can also cause device damage and can 

effect proper device operation.  An HPM attack combined with ionizing radiation has the 
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potential to disrupt the device or damage it beyond its operational limits.  The purpose of 

this research is to investigate the effects of a gigahertz radio frequency (RF) signal 

applied to the gate of MOSFETs during and after irradiation with an ionizing radiation 

source.   Applying a RF wave to the gate will act to simulate a free field HPM attack, 

representing the power coupled to the gate of the MOSFET. 

1.2  Hypothesis 

 Radiation damage on MOSFETs is a well documented phenomenon.  RF effects 

are less documented but some data is available [11][20][21].  The combined effects are 

not well documented and the outcome was unclear at the beginning of this research.  The 

RF signal applied to the gate will also have an effect on the MOSFET, particularly the 

threshold voltage characteristics, potentially by interacting with holes in the oxide and 

lengthening their time in the oxide.  This would lead to more hole trapping or decrease 

the rate of hole transport and recombination.  The threshold voltage is expected to 

decrease and the recovery time to increase with a RF signal applied to the gate. The 

transfer and output characteristics will also be changed by the introduction of a RF signal 

on the gate.  This is expected because the RF may cause the holes to oscillate within the 

oxide which increases the chance of trapping.  Without a RF signal applied to the gate, 

gamma radiation will cause the threshold voltage to shift negative for a p-channel device.   

Adding a positive gate bias during irradiation is expected to increase the rate of 

negative threshold voltage shift due to the field sweeping electrons from the oxide even 

more rapidly.  The less time each electron spends within the oxide layer, the less chance 

it has for recombination.  Therefore, less recombination will occur within the oxide with 
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a bias applied during irradiation resulting in more holes within the oxide and a lower 

threshold voltage.  Applied gate bias during recovery is expected to accelerate the rate of 

recovery due to the electric field pushing oxide holes to the interface where they can 

tunnel out of the oxide.  The addition of a RF signal to the gate is expected to increase the 

rate of negative threshold voltage shifting and slow or even halt device recovery. 

1.3  Thesis Structure 

This document begins by presenting the fundamental theory behind the MOSFET 

and its response to external influences such as ionizing radiation and RF signals.  A 

historical overview, theory behind the device structure and operation, current-voltage and 

capacitance-voltage relationships for the gate capacitor, ionizing radiation effects, and the 

effects RF are contained in Chapter 2.  Chapter 3 outlines the experimental procedures 

used to characterize the device.  Chapter 4 discusses the results of the data from the 

experimental testing.  Chapter 5 adds suggestions for future research. 
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II.  Theory 

2.1  Overview 

The MOSFET is an electronic device used as a low power gain switch and can be 

used to amplify current in an electronic circuit.  MOSFETs are used for very low current 

circuits and are particularly important for integrated circuit technology where power 

limitations are a major consideration. They are commonly used for integrated circuits 

owing to their low power consumption, greatly reduced heat generation, and the high 

yield of working devices using modern fabrication techniques.   The MOSFET is a 

technological benchmark and is the most widely used transistor in existence, providing 

the cornerstone of nearly all integrated electronics to date [23]. 

A silicon MOSFET was chosen for this research because silicon is one of the 

most common elements used to fabricate electronics.  It is one of the most common 

materials used in MOSFETs owing to a relatively simple and low cost production method 

and because it forms a very good semiconductor-to-insulator interface with SiO2.  

Thermally grown Si/SiO2 interface technology has developed greatly over several 

decades to be of high quality, having a lower defect density, and resulting in a very 

abrupt junction at the interface. 

Standard silicon MOSFETs can be classified as one of two types depending on 

the doping in the channel region.  A p-channel field effect transistor (PFET) has a 

channel region that conducts holes when turned on with a substrate that is doped n-type.  

An n-channel field effect transistor (NFET) has a channel region that concuts electrons 

when turned on with a substrate that is doped p-type.  N-channel silicon MOSFETs tend 
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to be more prominent in radiation testing owing to p-type silicon having more 

vulnerability to ionizing radiation.  For the purpose of this research a p-channel MOSFET 

was chosen because it is one of the essential components of metal oxide semiconductor 

(MOS) memory and is less sensitive to ionizing radiation than the n-channel MOSFET.  

It was expected that high sensitivity to dominant ionizing radiation effects may have lead 

to the lack of substantial RF results in this research.  

2.2  Historical Overview 

 The MOSFET was first proposed in 1925 by Dr. Julius E. Lilienfield [27].  

However, its potential was not fully realized until the mid 1960’s.  This delay was due to 

problems with growth and processing particularly in interfacing with oxide layers.  The 

first MOS transistor was built in 1960 at Bell Laboratories.  Kahng and Atalla, are 

credited with the discovery of the MOSFET in 1960 [23].  During the mid 1960’s the 

MOSFET and MOS integrated circuits were further demonstrated.  The MOSFET 

replaced the Bipolar Junction Transistor (BJT) (invented in 1945 at Bell Laboratories) in 

most electronic applications by the 1980's [23].  The usefulness of the MOSFET in 

integrated circuit technology was a primary reason for the boom of the now multi-billion 

dollar semiconductor device industry [27].  MOSFET technology has laid the 

groundwork and served as a catalyst for microelectronic use and integrated circuit 

technology to date.   

2.3  Device Specifics of a P-Channel MOSFET 

 A typical p-channel MOSFET has the structure shown in Figure 1. 
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Figure 1. Cross sectional view of the p-channel MOSFET 
 
 
 
 The device chosen for this thesis is the Fairchild NDS352AP enhancement mode 

p-channel MOSFET.  P-channel defines the primary carriers in the channel region as 

holes, which means that holes are the majority carrier which flow through the channel 

when the transistor is in conduction mode.  The channel region is defined as the area 

under the gate which connects the source and the drain.  The device chosen is also an 

enhancement mode device.  Enhancement mode means that it is normally in the off state.  

The MOSFET has a negligible source to drain current when no voltage is applied to the 

gate.  When a negative gate voltage is applied to a p-channel MOSFET the majority 

carriers (electrons) will be depleted in the channel.  When the magnitude of the field from 

the gate voltage is sufficient the minority carriers (holes) form a conduction channel at 

the Si/SiO2 interface.  This conduction channel allows current to flow between the source 

and drain regions.   This behavior is demonstrated in Figure 2.  
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Figure 2. Behavior of p-channel region in an enhancement mode MOSFET 
 
 
 
At this point the channel is considered to be on.  The minimum voltage needed to turn on 

the device is known as the threshold voltage and will be more thoroughly examined in 

section 2.7.  

2.4  I-V Characteristics 

In the case of the MOSFET the output and transfer characteristics are key design 

and performance parameters.  The output characteristics are illustrated by plotting the 

drain-to-source current against the drain-to-source voltage.  An example curve, with 

varying gate bias, is shown in Figure 3. 
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Figure 3. Example MOSFET I-V output characteristics [23]  
 
 
 
For a p-channel MOSFET, the I-V characteristics can change as shown in Figure 

3.  By changing the gate voltage the curves will shift but the threshold voltage of the 

device will not change.  Ionizing radiation or a RF signal can cause the I-V curve at a 

given gate voltage to shift, resulting in changes in threshold voltage. The downward shift 

labeled (1) occurs due to decreasing the magnitude of the gate voltage or an increase in 

trapped oxide holes (discussed in detail later).  The downward shift in the drain current 

relates to a negative threshold voltage change and is referred to as a negative shift in the 

I-V curve.  Similarly increasing the magnitude of the gate voltage or fewer trapped oxide 

holes will cause an upward shift, labeled as (2), and an increase in threshold voltage.  The 

behavior labeled in (2) is considered a positive I-V shift for p-channel devices.  In the 

case of p-channel and n-channel MOSFETs a primary difference is the sign of the voltage 

applied to the gate to turn on the devices.  Other differences include cost, mobility, 
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timing, and functionality.   The primary cause for differences in timing and functionality 

relates to the mobility of the primary carrier within the channel.  Electrons have a 

mobility of 20 cm2V-1s-1 within SiO2 at room temperature [15].  The mobility of holes is 

temperature and field dependent but is always orders of magnitude lower than electrons, 

ranging from 10-4 to 10-11 cm2V-1s-1 in SiO2 [15]. When measuring p-channel MOSFETs 

the interest is the voltage between the gate and source.   

The transfer characteristics are illustrated by plotting the drain-to-source current 

against the gate-to-source voltage.  A graph that illustrates the transfer characteristics of a 

MOSFET is shown in Figure 4. 

 
 

 

Figure 4. Example I-V transfer characteristics of a p-channel MOSFET [7]  
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2.5  Capacitance-Voltage Characteristics 

During the Capacitance-Voltage (C-V) measurement the voltage on the gate is 

increased causing the MOSFET to transition from accumulation to inversion while 

constantly measuring the capacitance.   Accumulation and inversion will be explained 

further in sections 2.8.1 and 2.8.3 respectively.  As shown in Figure 1, the MOS structure 

forms a permanent capacitor through the oxide layer.  This layer contributes to an oxide 

capacitance within the circuit.  When a negative gate voltage is applied, the electrons 

within the silicon move away from the channel region.  This creates a second, variable 

capacitor out of the space charge left behind.  The space charge capacitance is in series 

with the oxide capacitor.  The C-V measurement provides a response to the combined 

oxide and semiconductor capacitances in series and can be used to determine threshold 

voltage or the quality of the interface.  A simulated C-V measurement illustrating the 

capacitance as a function of applied voltage for a p-channel MOSFET is shown in   

Figure 5. 
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Figure 5. C-V measurement of a p-channel  MOSFET modeled as (a) ideal (b) common production impurities (c) 
radiation damaged or poorly manufactured [23] 

 
 
 

The regions are marked for the curve labeled (a).  The following assumptions are 

used to model the curves shown in Figure 5 [23].  Curve (a) assumes an ideal MOSFET.  

Curve (b) includes the flat band voltage shift that originates from nonzero work function 

difference (φms), fixed charge (Qf), oxide trapped charges (Qot), or mobile ionic charges 

(Qm).  These impurities are often introduced in the production of the MOSFET.  Curve (c) 

illustrates the addition of very large amounts of oxide trapped charges which vary with 

surface potential and additional interface traps within the semiconductor, resulting in a 

change of shape.  The distortion of the shape is due to the interface trapped charges while 

the parallel shift of the curve is due to the oxide trapped charges [23].  Radiation damage 

commonly increases the number of oxide trapped holes.  These trapped oxide charges 

will displace the C-V curve even further as shown in Figure 5 condition (c).  
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2.6  Flat Band Voltage 

 While the Si/SiO2 interface is widely used and is nearly ideal, the commonly used 

metal electrodes can affect MOS characteristics.  The work function is the energy 

difference between the vacuum level and the Fermi level and it varies with doping 

concentration [23].  For Si/SiO2 the work function difference is typically non-zero.  Work 

function differences cause band bending downward while in equilibrium.  In order to 

achieve an ideal flat band condition a voltage must be applied which is equal to the work 

function difference.  An energy band diagram of the flat band condition is shown in 

Figure 6.  

 

 

Figure 6. Energy band diagram for a p-channel MOSFET in flat band condition [15] 
 
  

 
Figure 6 uses the following abbreviations: Ec is the conduction band energy level, EF is 

the Fermi level, Ei is the intrinsic energy level and Ev is the valence band energy level.  

This same notation will follow in all figures containing energy band diagrams.  This 

applied voltage is called the flat band voltage and is given by equation (1).  Equations 

used throughout this chapter were developed using chapter 5 of Sze as a model [23].   
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     ( )FB m sV q φ φ= −     (1) 

In equation (1),  qφm is the work function of the metal and qφs is the work 

function of the substrate.  The work function has units of volts.  For metal-Si-SiO2 the flat 

band voltage is not expected to be over 2V, depending on the electrode materials and 

silicon doping concentration.  For a non-equilibrium state or an arbitrary space charge 

distribution within the oxide, a general equation for flat band voltage is given as: 

    
( )

0

1 1 d

FB
o

V x x dx
C d

ρ
 −

=  
  
∫

.    (2) 

In equation (2) Co is the oxide capacitance per unit area, d is the thickness of the oxide, x 

is the location within the oxide, and ρ(x) is the volume charge density within the oxide. 

 Aside from the materials used in the device there are three other factors that 

influence the flat band voltage.  These factors include fixed oxide charge, oxide trapped 

charge and mobile ionic charge.  The fixed charge, denoted by Qf, is located within 3 nm 

of the Si-SiO2 interface [23].  The fixed charge is dependent on the oxidation conditions, 

annealing conditions, and silicon orientation.  The oxide trapped charges, Qot, are directly 

related to the defects in the silicon dioxide.  The mobile ionic charges, Qm, are dependent 

on electric field and temperature conditions.  Under high bias or high temperature 

conditions the mobile ionic charges move throughout the oxide layer and cause shifts in 

the C-V characteristics.  The fabrication process reduces mobile ionic charges; hence, 

their effect on flat band voltage and C-V characteristics is greatly reduced. 
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When the value of the work function difference is non-zero and the interface-

trapped charges are negligible, then the C-V characteristic curves will be shifted from the 

theoretical amount, given by equation (1), by the flat band voltage given in equation (3). 

    

( )f m ot
FB ms

o

Q Q Q
V

C
φ

+ +
= −

    (3) 

2.7  Threshold Voltage 

 Threshold voltage is defined as the gate voltage at which an inversion layer forms 

at the interface between the insulating oxide and the substrate.  This occurs when there 

are enough holes within the inversion layer to create a low resistance, conductive path 

from source to drain (through the channel region). The threshold voltage is calculated 

from the following: 

    
( )2 2

2s A B
T B

o

qN
V

C
ε ψ

ψ= +
.
    (4) 

In equation (4), q is the charge of an electron, NA is the acceptor concentration, Co is the 

oxide capacitance, and ψB is the potential required to bend the energy bands down to the 

intrinsic condition at the surface.  The permittivity of silicon, εs, is given by: 

    s r oε ε ε= .      (5) 

In equation (5), εr is the permittivity associated with silicon and εo is the permittivity of 

free space.  For silicon εs is 1.05×10-12 m-3kg-1s4A2 and εr is 11.7 [13]. Equation (6) 
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contains an approximation for the surface potential, ψs, near inversion.  It is assumed that 

near inversion the electron concentration at the surface is equal to the substrate impurity 

concentration, NA.  This yields the following: 

    ( ) 22 ln A
s B

i

NkTinv
q n

ψ ψ
 

≈ =  
  .

   (6) 

In equation (6), k is the Boltzmann constant, T is the temperature, and ni is the intrinsic 

concentration.  For silicon the intrinsic concentration is 9.86 ×109 cm-3 [13].  When not 

near inversion the surface potential is given as: 

    
2

2
A

s
s

qN Wψ
ε

=
.
      (7) 

In equation (7), W is the width of the surface depletion region given by: 

    A

gate

qNW
Q

=
.
      (8) 

In equation (8), Qgate is the total charge placed on the gate.  Charge neutrality governs the 

depletion width forcing the width to adjust in order to always balance the gate charge.  A 

maximum width will eventually be reached and is described by: 

    2
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2

A
s

i
m

A

NkT
n

W
q N

ε
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 
 =

.
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Precise control of the threshold voltage of MOSFETs in an integrated circuit is essential 

for reliable circuit operation [23].  Therefore, changes to the threshold voltage are of key 

importance to this research and will be a primary characteristic that is monitored and 

analyzed. 

2.8  Modes of Operation 

Assuming  no residual charge in the oxide, once voltage is applied to the gate, the 

flat band condition no longer applies and the MOSFET can operate in one of three modes 

(depending on the magnitude and sign of the voltage applied to the gate).  These modes 

are accumulation, depletion, and strong inversion.  Each mode will cause a unique device 

response.  These are outlined and discussed in the following subsections. 

2.8.1  Accumulation Mode 

 While the gate voltage is positive and decreasing in magnitude to zero, the 

MOSFET is in accumulation mode.  While in this mode the electric field from the voltage 

applied at the gate attracts electrons to the Si/SiO2 interface.  The electrons are at a 

greater concentration at the Si/SiO2 interface than in the n-type silicon substrate bulk.  

This accumulation terminates the field lines at the gate and produces a dielectric 

thickness approximately equal to the thickness of the oxide layer.  This condition 

produces the maximum capacitance within the device and is equal to the capacitance of 

the oxide layer.  The band diagram of the MOS diode while in accumulation mode is 

illustrated in Figure 7.  While in accumulation mode the majority carriers, electrons, still 

maintain a greater concentration at the Si/SiO2 interface than the holes. 
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Figure 7. Energy band diagram for a p-channel MOSFET in accumulation mode [15]  
 
 
  

2.8.2  Depletion Mode 

As the gate voltage become negative and begins to approach the threshold voltage 

the MOSFET is considered to be in depletion mode.  This occurs because the majority 

carriers, electrons, begin to repel away from the interface and diffuse throughout the bulk.  

This lack of electrons leaves an area of depleted carriers.  While in this mode the negative 

electric field from the voltage applied at the gate begins to attract the holes to the Si/SiO2 

interface.  The holes begin to accumulate in significant numbers at the silicon and oxide 

interface.  The charge of the holes within the depleted layer will counter the applied gate 

voltage until the threshold voltage is reached.  As the depletion layer expands the 

effective dielectric length increases which causes a decreasing capacitance as the voltage 

is increased.  The capacitance of the channel region will add to the capacitance of the 

oxide layer in series as shown in equation (10). 
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    1 1 1

ox chan totC C C
+ =      (10) 

In equation (10), Cox is the oxide capacitance, Cchan is the capacitance of the channel, and 

Ctot represents the total measured capacitance of the MOSFET.  The energy band diagram 

for a p-channel device in depletion mode is shown in Figure 8. 

 
 

 

Figure 8. Energy band diagram for a p-channel MOSFET in depletion mode [15]  
 
 
 
 

2.8.3  Strong Inversion Mode  

Once the threshold voltage is reached and the gate voltage is further increased the 

MOSET enters strong inversion mode.  Once in strong inversion all charge within the 

MOSFET is assumed to be within the inversion layer and the depletion region.  The 

voltage at which strong inversion occurs is equivalent to the threshold voltage for a 

MOSFET.  Strong inversion occurs when the concentration of holes near the interface is 

equal to the substrate doping level.  The silicon surface begins behaving as if it is p-type 

owing to the high hole concentration.  Once inversion is reached the depletion width and 
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the effective dielectric length can no longer increase.  The depletion width is at its 

maximum value.  This is because the bands are bent downward far enough that a small 

increase in band bending will result in a small increase in depletion layer width which 

results in a large increase in charge within the inversion layer.  This rapid increase in 

inversion layer charge with gate voltage shields the interior of the semiconductor from 

any additional charge (or electric field) placed on the gate.  The energy band diagram for 

a p-channel device in strong inversion is illustrated in Figure 9.   

 
 

 

Figure 9. Energy band diagram for a p-channel MOSFET in strong inversion mode [15]  
 
 
 

The maximum depletion width for silicon while in strong inversion mode is 

shown in Figure 10. 
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Figure 10. Maximum depletion layer width for silicon in strong inversion [23]  
 
 
 

Once the depletion layer width reaches its maximum value, the total capacitance 

per unit area remains at a minimum value which effectively remains constant as 

described in   Equation (11). 

    min  ox

ox
m

s

C
d W

ε
ε
ε

=
 

+  
 

     (11) 

     
In equation (11) εox is the permittivity of the oxide layer and d is the width of the oxide 

layer.  εs and Wm are described in equations (5) and (9) respectively.  
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2.9 Radiation Effects on MOSFET Devices 

When modern electronics are exposed to ionizing radiation, holes are created 

within the substrate and oxide and lead to changes in device performance.  Many modern 

MOSFETs, especially ones used for space based applications, operate in harsh radiation 

environments.  Therefore, it is important to understand these effects and the damage that 

they can cause within a device.  For this research a Co-60 source was chosen for 

irradiation due to its emission of relatively high energy gamma rays.  Gamma rays are 

defined as quanta of electromagnetic energy with wavelengths between 10-13 and 10-11 m 

emitted from the decay of the nucleus [17].  When an atom undergoes radioactive decay 

an excited daughter nucleus is sometimes produced.  This daughter nucleus de-excites to 

a lower energy state releasing energy in the form of gamma radiation.  Co-60 beta decays 

(β-) to stable Ni-60 and releases two gammas with energy 1.17 and 1.33 MeV [13].  

When exposed to ionizing radiation electrons and holes are created by electron-

hole pair production.  The electrons quickly move out of the oxide region but the holes 

are persistent and will remained trapped within the oxide layer even after the MOSFET is 

removed from the radiation source [15].  This will directly affect the Qot term in equation 

(3).  This increase causes a negative flat band and threshold voltage shift [10].  Charges 

within the oxide, rather than on the oxide surface are responsible for most of the device 

total ionizing dose degradation [10].  Threshold voltage shifts are assumed to be caused 

by trapped charge in the gate oxide.  This assumption is made owing to the oxide charges 

influencing threshold voltage much more than negative charge trapping or interface trap 

buildup [15].  The shift labeled (1) in Figure 3 demonstrates the expected shift in I-V 
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characteristics after exposure to gamma radiation.  With more holes in the oxide, the 

negative electric field required to reach strong inversion (and threshold) increases.  This 

means that the magnitude of the (negative) bias applied to the gate must be greater in 

order to obtain pre-irradiation drain current levels through the channel. 

As total dose increases the trapped charges begin to saturate the device.  High 

dose rates, typically higher than 106 rad/s, can induce currents high enough to interfere 

with proper device operation [15].  In this study, rates of irradiation remain below 100 

rad/s so total dose as a function of time irradiated will be emphasized.  As total dose 

increases a saturation dose can be reached.  The saturation dose in SiO2 is found to be 

108-109  rad(Si) [6].  However, interface trapped charge may saturate at a higher total 

dose than oxide trapped charge.  Interface trapped charge has been observed to saturate at 

doses between 1010 and 1012 rad(Si) [9].  In order to avoid SiO2 saturation total dose in 

this study did not exceed 106 rad(Si).   

  The radiation induced trapped oxide charge decreases more rapidly with oxide 

thickness than interface trapped charge.  The radiation induced interface trapped charge 

remains a major factor in limiting integrated circuit performance in modern integrated 

circuits.  This is associated with reduced circuit speed owing to high radiation doses at 

low dose rates.  Therefore, newer technology with thinner oxide layers, may begin to 

experience higher rates of device failure, in similar radiation environments, when 

compared to devices with thicker oxide layers. 
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2.10  RF Effects on MOSFET Devices 

 Gigahertz RF interference on modern devices can cause severe upsets in device 

operation [21].  A continuous wave (CW) gigahertz frequency source applied to a 

MOSFET circuit can cause significant changes in output current, transconductance, 

output conductance, and breakdown voltage [11].  Kim et al. suggest that sensitivity to 

RF effects is greatly diminished beyond the 5 GHz range [11].  Therefore, the RF applied 

to devices in this study was below 5 GHz.  Kim also suggests that the primary changes 

induced will be present in the I-V output characteristics.  Changes such as saturation and 

linearity in the amplification region or failure to turn on are likely to occur.  Previous 

studies have demonstrated the changes in I-V output characteristics which are shown in 

Figure 11 and Figure 12. 
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Figure 11. 15 dBm RF effects on I-V output characteristics of an n-channel MOSFET [11]  
 
 
 
 The 15 dBm RF signal applied to the gate causes the I-V curves to shift in the 

positive direction as shown in Figure 11.  The shift for an n-channel is the inverse of a p-

channel MOSFET.  A positive shift means a lower threshold voltage for n-channel 

MOSFETs.  The RF signal is interacting with the holes within the oxide and de-trapping 

them.  The de-trapped holes move toward the channel region and either become trapped, 

recombine, or exit the oxide.  More holes within the oxide explain the positive increase in 

the I-V curve.  Therefore, the RF is increasing the number of trapped holes owing to 

oscillation within the oxide layer and an increased  trapping probability.  The saturation 

region has a positive slope owing to the hot electron effect.  The RF is acting to add 
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energy to the electrons in the conduction band and changing their conduction mechanism 

through the channel [15].   

 

 

Figure 12. 30 dBm RF effects on I-V output characteristics [11]  
 
 
 

The RF signal applied to the gate is driving the MOSFET into deep inversion to 

an approximately uniform channel as shown in Figure 12 [11].  Saturation is not 

occurring owing to the channel not pinching off and the result is a channel that acts as an 

ohmic resistor.  The RF signal is increasing the number of holes within the oxide by 

forcing the holes to oscillate, increasing the probability of hole trapping.  The field in the 



26 

 

channel region is then stronger than that produced by the drain-to-source voltage and the 

channel does not saturate and pinch off as expected when not under the effects of RF. 

The probability of a device upset increases when the frequency of the RF on the 

gate matches a resonance of the target device.  When a signal matches resonance, it 

allows the power of the field to couple into the device more efficiently.  This will result 

in the absorption of more of the signal's energy and induce larger currents.  A wide band 

RF signal will not couple into the device as well and would induce much smaller 

currents.  This would not be as likely to cause RF damage to the device.  Most electronic 

systems are vulnerable to RF in the 0.5-5 GHz range [11].  Hence this is the frequency 

range that will be used in this research. 
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III.  Experimental Setup 

3.1 Introduction 

 In order to characterize the Fairchild NDS352AP MOSFET devices, a number of 

different measurements needed to be conducted.  The measurements included pre- 

characterization, RF signal on the gate only, in situ gamma cell measurements only, and 

the combined effects of an RF signal on the gate while being irradiated in the gamma 

cell.    

A Keithley 4200 Semiconductor Characterization System (SCS) was used to 

characterize the samples.  First, the pre-irradiation response of all of the selected samples 

was recorded in order to get baseline measurements to compare with irradiation results.  

RF measurements with varying frequencies and power levels and Standing Wave Ratio 

(SWR) tests were performed.  The Agilent E8247C Signal Generator  was used to 

perform the RF testing and the Hewlett Packard (HP) 8720C Network Analyzer was used 

to perform the SWR testing.  Once these pre-characterization measurements were 

performed, the samples and experimental setup were moved to the Ohio State University 

(OSU) research reactor.  Once there, the samples were irradiated and measured under a 

variety of conditions.  In order to easily differentiate samples a naming convention was 

used which correlates the samples to the effects that they were exposed to. This 

convention is listed in Table 1.  
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Table 1. Naming convention for different experimental conditions 

 

 
 
 
More details of each experiment are listed in the following sections. 

3.2 Sample Preparation 

 After the Fairchild NDS352AP MOSFET samples arrived, they were unpackaged 

and stored in miniature plastic sample containers as shown in Figure 13. 

 
 

Sample Designation
Sample 
Name

RF 
Exposure

Radiation 
Exposure

RF and 
Radiation 
Exposure

5 V Gate 
Bias During 
Irradiation 

and 
Recovery

C1 No No No N/A
C2 No No No N/A
R1 No Yes No No
R2 No Yes No Yes
R3 No Yes No Yes
M1 Yes No No N/A
M2 Yes No No N/A
M3 Yes No No N/A
M4 Yes No No N/A

MR1 Yes Yes Yes Yes
MR2 Yes Yes Yes Yes
MR3 Yes Yes Yes Yes

C-Control

R-Radiation

M-Microwave/RF

MR-Microwave/RF 
and Radiation 

exposure
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Figure 13. Sample container and MOSFET used For this research 
 
 
 

For these measurements it was necessary to interchange MOSFETs quickly.  

Therefore, a solder free connection was used.  In order to facilitate this need, a cradle that 

fit these devices and designed for use with high frequency applications was used.  The 

cradle is a model number SOT23-3 from Emulation Technologies.  Further specifications 

can be found in Appendix C. Emulation Technology SOT23-3 Cradle Specifications.  

The cradle is illustrated in Figure 14 and is shown seated in the testing platform in Figure 

15.  
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Figure 14. Cradle used to measure all MOSFETs 
 
 
 
A testing platform was designed around this cradle as well as the SMA adapters needed 

for RF signal propagations and the coaxial and triaxial style BNC cabling native to the 

SCS.  The platform is shown in Figure 15. 



31 

 

 

Figure 15. Testing platform with mounted MOSFET cradle used for all measurements 
 
 
 
With this platform, the samples could be connected to any of the systems needed to 

conduct measurements for this research.  

3.3 I-V and Threshold Voltage Procedures 

 The SCS was connected to the testing platform by using a custom built SMA-to-

BNC adaptor box consisting of the necessary adapters, an aluminum hobby box, wiring, 

and solder.  A picture of the conversion box is shown in Figure 16. 
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Figure 16. Conversion box used to connect cables from RF signal generator and Keithley 4200 to the testing 
platform 

 
 
 

For both measurements, a program was written and used to automate the 

collection of data.  For the I-V measurement, the gate voltage was set to a voltage, 

usually -2 V, and then the voltage on the drain was changed, sweeping between 0 and 1 V 

at 0.01 increments.  The source had no voltage applied during this measurement.  While 

this was occurring, the drain current, IDS, was measured and plotted against drain to 

source voltage, VDS.  The gate voltage was incrementally increased by steps of -1 V and 

the curves are plotted.  The result resembled the results illustrated in Figure 3.  
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For the threshold voltage measurements the gate voltage was swept between -2 

and -5 Volts at increments of -0.01 V.  A constant bias of -2 V was applied to the drain 

and the source was left with no bias.  While sweeping the drain current, IDS, was 

measured and plotted against the gate voltage, VG.  The standard curve produced should 

be similar to that shown in Figure 17.  Experimentally the threshold voltage was obtained 

by extracting the x intercept of the IDS vs VG data shown in Figure 17.  The curve, 

however, does not lend itself to a straightforward calculation of threshold voltage.  In 

order to measure the threshold voltage consistently every time, the following method was 

used.  First the midpoint was found on the S shaped curve, the program then searches for 

the value which is closest to this value in the actual data.  The changes in IDS, dI, and VG, 

dV, were computed and the ratio of the two was stored in an array.  Using the midpoint 

and the slope, dI/dV was found and used.  Using the point slope equation of a line, given 

in the equation (12), a line was plotted and the x intercept was taken as the measured 

threshold voltage, VTmeas.  

    ( )DS DSo G Go
dII I V V
dV

− = −     (12) 

The point is given by the Cartesian coordinate (VGo,IDSo) and dI/dV is the slope.  An 

adjustment was needed to account for the bias on the drain.  The following equation 

adjusts the measured threshold voltage: 

2
D

T Tmeas
VV V= − .     (13) 
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Where VT is the adjusted threshold voltage and VD is the drain voltage used in the 

measurement.  Using this adjustment would yield a threshold voltage of -0.83 V for the 

NDS352AP MOSFET if used with the measurements in this work.  Fairchild 

semiconductors reports the threshold voltage of the MOSFET used in this work should be 

-1.7 V.  This adjustment was not used for this work due to the large discrepancy it 

produced when compared to the manufacturer reported threshold voltage.  Figure 17 

shows an illustrative example of the output graph and threshold voltage computational 

method. 

 
 

 

Figure 17. Example I-V curve used to calculate threshold voltage 
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This method was used to compute all threshold voltage measurements.  Each MOSFET 

was characterized using the I-V and threshold voltage measurement techniques, outlined 

in this chapter.  No less than five measurements of each sample were taken.  The 

threshold voltage derived from this threshold voltage computational technique was 

averaged and the standard deviation was computed for each set.  All MOSFET results 

were then averaged and the standard deviation was calculated by taking the square root of 

the sum of the variances (the standard deviation squared).  The average threshold voltage 

of all samples was found to be -1.827 V.  More importantly, the maximum standard 

deviation of any given sample (measured multiple times) was found to be 0.0005020 V.  

The standard deviation will be assumed to be the error of this measurement technique, 

which is approximately 0.02% per standard deviation.  The error in this measurement 

technique is so minimal that it does not affect any reported threshold voltage 

measurements.  All threshold voltage measurements are reported to three decimal places.  

3.4  RF Experimental Procedures 

 In order to ensure that an RF signal is reaching the MOSFET, a SWR test was 

performed using a Hewlett Packard 8720C Network Analyzer.  The network analyzer 

measures the sample by varying the frequency range on the sample and plotting the 

transmittance against frequency.  The resulting values of the transmittance clearly show 

which points have the most resonant coupling and which points are reflecting most of the 

signal.  This measurement was performed using frequencies ranging from 1 to 5 GHz and 

1 to 10 GHz.  It was also repeated while the leads were attached to the gate and drain as 

well as to the gate and source.  Both measurements were expected to be the same but 
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were both performed in order to be thorough.  The results of this measurement are shown 

in chapter 4.   

 Once the optimum transmittance was known, an Agilent E8247C signal generator 

was used on the four MOSFETs chosen for RF exposure only. The MOSFETs were 

exposed to a frequency of 2.77 GHz at power levels of 1 dBm, 7 dBm, and 14 dBm.  A 

bias tee was used to combine the direct current (DC) from the SCS and the alternating 

current (AC) from the signal generator.  The bias tee allowed measurement of the sample 

while keeping the RF constantly applied to the gate.  Results of this measurement are 

shown in chapter 4 and further explained. 

3.5 Gamma Irradiation Procedures 

 Once the RF vulnerability and the initial threshold voltages were known, 

irradiation in a gamma cell was performed using an identical measurement system.   A 

platform that can be raised and lowered by an electric lift was used to insert and remove 

the testing platform from exposure to the gamma source.  The MOSFET was mounted in 

the cradle and lowered into the gamma cell with 25 feet of SMA cabling connecting the 

testing platform to the SCS.  A picture of the gamma cell and testing platform is shown in 

Figure 18. 
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Figure 18. Gamma cell at the OSU research reactor complex 
 
 
 

The exposure rate, as a function of position, as of 4/6/2010 of the gamma source 

is shown in Figure 19.  The dose rate of the gamma source at the time of the experiment 

was 66.7 krad/hr (1111.67 rad/min) [19].  This data is based upon calibrated dosimetry 

measurements performed on Jan 28, 2002.  The dose rate is calculated based on the 

theoretical decay of the radioactive source from the calibration date. 
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Figure 19. Dose curve for gamma irradiation cell at OSU's research reactor facility [19]  
 
 
 

Samples were irradiated and measured in-situ for variable amounts of time.  This 

procedure was used because threshold voltage damage is a function of total dose (which 

is higher for longer exposure times).  During and after irradiation, MOSFET R2 had a +5 

V gate bias while sample R1 did not.  For clarity, +5 V gate bias is used to refer to the 

bias on the gate while the sample is not being measured.  Measurement requires the bias 

on the gate to change.  Therefore, a DC power supply providing +5 V on the gate was 

applied to the sample and removed while measurements were taken.  Measurements 

require a maximum of 60 seconds so the time the sample is removed from the power 

supply is minimal compared to the overall irradiation and anneal time.  The gate bias is 

assumed to be constant during irradiation and annealing. 
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The in situ gamma irradiation measurements established a threshold voltage 

damage curve which allowed for the comparison of damage effects from gamma 

radiation only and gamma radiation with a RF signal applied to the gate.  MOSFETs 

MR1 and MR2 were irradiated with a gate bias of +5 Volts and a 2.77 GHz RF signal at 

14dBm power.   The bias and RF signal ideally should be constant during recovery but 

were interrupted for an hour while the setup was moved to another location for 

monitoring.  The results at the time indicated a need for a third set of measurements.  

During the third set of measurements MOSFET R3 did not have RF applied to the gate 

but had a +5 V bias during irradiation and throughout its recovery period.  MR3 was 

irradiated with the same RF signal as earlier samples and kept under a +5 V bias and RF 

after it was removed for its entire recovery time. 
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IV.  Results and Analysis 

4.1  Results From I-V and Threshold Voltage Pre-characterization Measurements 

 The pre-characterized MOSFETs exhibited the expected I-V relationships as 

shown in Figure 17 of chapter 3.  The samples were all measured before performing any 

irradiation or RF experiments.  The threshold voltages before any bias, gamma, or RF 

effects are all plotted in Figure 20.  

 
 

 

Figure 20. Pre-characterization threshold voltage measurements 
 
 
 
  
The expected threshold voltage provided by the manufacturer is -1.7 V.  The measured 

results ranged from -1.791 V to -1.852 V.  The average value of these measurements is    

-1.827 V with a standard deviation of 0.0126 V.  The maximum percent difference 

between the minimum and maximum value is 3.25%.  The difference in manufacturer 
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value to my measured value is likely the method of calculation but could also be due to 

lab condition and temperature differences.  Due to the lack of spread in the values it will 

be assumed that the device operates at -1.83 V at room temperature.   

 For the I-V data the expected theoretical shape modeled in Figure 3 was not 

observed.  The saturation region was not observed in the I-V measurements.  This 

problem was caused by the SCS hitting compliance at 0.1 A during the measurement.  

Even though the saturation regions are not present, the linear region can be seen.  A 

comparison, of two samples which exhibited the largest difference, is shown in Figure 21. 

 
 

 

Figure 21. Pre-characterization I-V data 
 
 
 

By selecting the samples demonstrating the largest differences, the upper and 

lower bounds of all measurements can be shown.  This demonstrates the largest deviation 
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in the measurements.  In the -2V gate voltage curves the linear region between sample C1 

and C2 shows a maximum 7.46 % difference at 0.28 V.  The average of all points with a 

-2 V bias, however, is only 1.46%.  This difference diminishes to a maximum of 1.81% at 

-3 V gate bias and 1.07% at a -4 V gate bias.  In Figure 21, the C1 and C2 data for a -4 V 

gate bias overlaps so much that the points are barely distinguishable.  As the gate voltage 

increases the linear region of the device has a greater slope and the difference in IDS at a 

fixed gate voltage reduces.  The measurement differs as the gate voltage changes owing 

to the strength of the electric field produced by the gate bias.  As the negative bias 

increases, more holes are attracted to the channel region, increasing the hole density in 

the channel region.  These holes produce a stronger electric field within the channel.  

Therefore, the drain to source voltage must be higher to pinch off the channel.  For a 

higher negative gate bias, more drain to source current flows through the channel for a 

given voltage and the saturation (or pinch off) occurs at a higher drain to source voltage. 

4.2 Results of High Power Microwave Measurements 

 For the SWR measurement, the goal was to determine the optimum transmittance 

of the experimental cradle setup in order to ensure that a RF signal was coupling into the 

MOSFET device.  The results of these measurements are shown in Figure 22, Figure 23, 

and Figure 24. 
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Figure 22. Gate to drain transmittance of RF Signals into the experimental cradle setup 
 
 
 
From Figure 22 it is evident that there are 2 major transmittance frequencies shown, 2.32 

GHz and 2.77 GHz.  In order to select a frequency the gate to source transmittance was 

also measured and is shown in Figure 23. 
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Figure 23. Gate to source transmittance of RF signals into the experimental cradle setup 
 
 
 
The gate to source test yielded data similar to that of the gate to drain, as expected.  The 

two optimum frequencies are 2.32 GHz and 2.77 GHz.  At 2.77 GHz the transmittance is 

greater, therefore, that was chosen as the best device frequency for resonant coupling.  In 

order to be thorough the test from 1 GHz to 10 GHz is shown in Figure 24. 
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Figure 24. Gate to drain transmittance of 1 to 10 GHz RF signal sweep into the experimental cradle setup 

 
 
 
 The data shows that the largest transmittance point is in fact at 2.77 GHz.  These tests 

contributed to the selection of 2.77 GHz as the optimum frequency to penetrate the cradle 

contacts.  In all configurations and frequency ranges 2.77 GHz produced the most 

transmittance.  Therefore, 2.77 GHz was assumed to be the resonant frequency of the 

device.  With the device resonant frequency known further RF experiments, as outlined 

in the chapter 3, were performed. 

 Using the signal generator, the samples were exposed to varying power levels of 

the 2.77 GHz signal in order to determine any effects of RF on the sample separate from 

the radiation.  The threshold voltage results are shown in Figure 25. 
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 Figure 25. 2.77 GHz RF applied to the Samples at varying power levels 
 
 
 
The first point of each sample data set is at a power of 1 dBm.  The second point of each 

set is at a power of 7 dBm.  The third point of each set is at a power of 14 dBm (for the 

M1 series the 14 dBm measurement was omitted as an outlier).  It is clear in the data that 

the power level is not influencing the magnitude of the threshold voltage.  The threshold 

voltage data exhibits an upward shift of 1.57% from the average initial value of -1.83 V.  

The average value of the sample under RF at all power levels is -1.804 V with a standard 

deviation of 0.0047 V.  The threshold voltage shift is very small.  Temperature 

differences or other minor changes in the environment could also be responsible for this 

change.  In theory, the RF could induce currents that could force trapped oxide holes to 

the interface.  Fewer holes within the oxide would increase the value of the threshold 

voltage.  While the change is small, a trend of increasing threshold voltage is observed in 

Figure 25. 
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Under the same conditions as the threshold voltage tests, the I-V data was also collected 

and plotted.  Figure 26  shows the results from these measurements. 

 
 

 

Figure 26. RF effects on the I-V characteristics of sample M4 
 
 
 
The power level of the RF signal provides no discernable effect on the I-V characteristics 

when -2 V is applied to the gate.  The RF signal shows up to a 5.95% shift in the I-V 

curves, when -4 V is applied to the Gate, from those measured in the initial 

characterization measurements.  The percent shift is higher than the shift in the control 

samples at -4 V bias.  The RF is expected to shift the linear region to the right and lower 

for a p-channel device based on the previous work of Kim shown in Figure 11 of chapter 

2.  This measurement also conflicts with the threshold voltage measurements which 
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showed a trend of increased threshold voltage.  The behavior exhibited in Figure 26  

implies a decrease in threshold voltage.  The measurements shown in Figure 25 and 

Figure 26 cannot exist simultaneously.  More measurements are required to resolve this 

discrepancy. 

4.3 Gamma Irradiation Results 

 For the samples that were irradiated without RF, two experiments were 

performed.  These were to compare the effects of bias on the threshold voltage shift 

during irradiation.  Before exploring those results a plot of the I-V characteristics as a 

function of radiation damage at five different irradiation times is shown in Figure 27.   

 
 

 

Figure 27. Effects of radiation on MOSFET output characteristics with -4 V applied to the gate 
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The current in the I-V curves tends to shift to the negative direction for the same 

VDS as irradiation time increases.  This behavior is typical of p-channel MOSFETs owing 

to radiation induced oxide trapped holes.  Hughes and King suggest that distortions in 

post irradiation I-V curves could be due partially to lateral non-uniformities of the 

interface and oxide trapped charges [9].  Oxide trapped charge explains the behavior in 

Figure 27 well owing to more voltage being required to drive the same current through 

the channel.  As the charges build up within oxide a higher field would be required to 

move the same current through the channel region.  As radiation damage increases, the 

device is not turning on until more voltage is applied to the drain.  The channel region is 

behaving as if it is pinched off or not conductive until more voltage is applied to the 

drain.  The irregular channel behavior is responsible for the non-linearity observed in 

Figure 27. 

 A measurement of the samples under the effects of gamma radiation were 

performed.  Sample R1 had no applied bias while sample R2 had a +5 V bias applied to 

the gate.  The results are shown in Figure 28. 
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Figure 28. Effects of gate bias on threshold voltage during irradiation 
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Charge yield, transport, and trapping are all bias dependent processes [15].  As a 

result of the bias dependence, the change in threshold voltage also depends upon the gate 

voltage applied during irradiation.  In the case of p-channel MOSFETs, the magnitude of 

the threshold voltage increases when a positive bias is applied to the gate during 

irradiation.  This behavior is illustrated in Figure 28.  The magnitude and rate of change 

of the threshold voltage are of interest.   By calculating the rate of threshold voltage 

change one can then determine when to stop irradiating the target in order to induce a 

precise threshold voltage change.  This assumes the sample is not reaching saturation and 

is linear.  

In the case of the samples measured in Figure 28 the biased sample exhibited a 

much higher rate than the unbiased sample, as predicted.  The threshold voltage damage 

rate of the unbiased sample was measured and averaged to be -0.0054 V/min with a 

standard deviation of 0.0028 V/min.  The threshold voltage damage rate of the biased 

sample was measured to be -0.014 V/min with a standard deviation of 0.0048 V/min.  

This rate is 2.64 times as large as the unbiased counterpart.  Furthermore, the rates of all 

other samples irradiated were measured and averaged to be -0.016 V/min with a standard 

deviation of 0.00163 V/min.  The +5 V bias damages the sample 2.98 times more quickly 

than the unbiased sample, assuming a linear relationship.  

 NAVSEA Crane evaluated the total ionizing dose performance of the NDS325AP 

p-channel MOSFET [24].  The specifications of the test were drafted by Christian Poivey 

of NASA.  Each Fairchild MOSFET tested was exposed to gamma irradiation at a dose 

rate of 53.15 rad/min until the sample had a total Dose rate of 50,000 rad [24].   In order 

to compare to the data in this work the total dose was converted to a time.  The time of 
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irradiation in the NAVSEA measurements was longer; however, the dose rate was lower.  

In order for a comparable examination of the data, the NAVSEA data was converted 

from total dose to time that was scaled to fit with the times used for this work.  This 

ensures that the effects can be illustrated and analyzed on the same graphs.  Each sample 

was irradiated under a +5 V bias to the gate.  Each NAVSEA sample was annealed for 

168 hours under the same gate bias and measured again [24].  The threshold voltages 

were then plotted and compared.  Control samples were also measured and were not 

exposed to radiation or gate bias.  Note throughout the rest of the document tests 

performed by NAVSEA will be referred to as NASA tests, because they are presented as 

such on NASA’s data site.  The data of the unbiased sample is displayed in Figure 29. 

 
 

  

Figure 29. Comparison of unbiased measurements from this work to NASA measurements 
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The rate of change of threshold voltage in the unbiased NASA tested sample was 

measured and averaged to be -0.0119 V/min with a standard deviation of 0.00900 V/min.  

The first three data points from MOSFET R1 agreed well with the NASA data.  The 

primary data fit, defined as when both data set times overlap; averaged -0.0115 V/min.  

The primary data exhibited a slope that was 4.00% less during irradiation when compared 

with the NASA data.  The secondary fit does not provide a useful comparison because 

there are no NASA data points to compare with.  The secondary fit’s threshold voltage 

shifted at an average rate of -0.00484 V/min with a standard deviation of 0.00622 V/min.  

Differences between primary fit and the NASA data can be attributed to differences in 

method of measurement of the threshold voltage or manufacturing conditions.  The 

secondary fit exhibited a slope that was 59.9% lower than the slope of the NASA 

samples.  The results of this research agree well with the NASA tested samples assuming 

a secondary process when no bias is applied.  The later data has a greatly reduced slope 

suggesting the onset of a secondary process. 

Saturation during irradiation is largely due to the recombination rate increasing as 

the number of trapped oxide charges increases [1].  This produces an increased internal 

space charge which reduces the net internal field.  However, the number of hole traps 

located within the oxide is limited.  Neither the trap filling nor recombination fully 

explains the saturation phenomenon.  The damage tends toward a saturation point which 

would begin to cause threshold voltage shifts to exhibit non-linear behavior during 

irradiation.  Boesch et al. suggest that there could be multiple processes involved in 

modeling radiation induced MOSFET damage [1].  In most cases, the threshold voltage 
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shift during irradiation is assumed to be linear.  This data does not support a linear fit, 

and shows an influence of saturation around 50 minutes into the irradiation.   

For the biased samples a similar comparison was made and the results are shown 

in Figure 30. 

 

Figure 30. Comparison of biased measurements from this work to NASA measurements 
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the profile for higher dose rates.  While both samples are exposed to relatively low dose 

rates (1111.67 rad/min and 53.15 rad/min) they may still require higher total doses to 

establish the device behavior.  When dose rates are too low annealing of the sample can 

occur while being irradiated.  Annealing would slow the rate of threshold voltage change, 

reducing the magnitude of the slope.  The annealing effect is assumed to be negligible 

and is not observed in this work. The slope of the threshold voltage change in this work is 

less than the slope reported by NASA despite a much higher dose rate. 

The data taken with bias on the gate was fit linearly.  The NASA experiments do 

not reach saturation and exhibit a linear does relationship.   The data taken in this work 

extends to higher total dose and, therefore, could reveal secondary processes that affect 

the magnitude of threshold voltage change.  The later data could also be statistical 

outliers.  The data in this work does not agree with the NASA data, especially at earlier 

points.  However, the data is more linear throughout when compared with the unbiased 

data in Figure 29. 

Non-linear behavior was not attributed to the data in Figure 30 even at the much 

higher dose rates.  The influence of a secondary saturation process on the MOSFET 

during irradiation seems to correlate with the applied gate bias.  Further studies are 

needed to investigate this relationship.  Measurements with and without bias during 

irradiation would be needed.  Irradiating samples long enough to observe the effects of 

saturation without bias could provide a base comparison for other measurements.  Then 

varying the magnitude of the bias on the MOSFETs during irradiation could show the 

correlation of bias on device saturation during irradiation.  These results could lead to a 
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better understanding of the effects of gate bias on the saturation of p-channel MOSFETs 

during irradiation. 

4.4 RF during Gamma Irradiation Results 

 In order to examine the effects that RF has on the sample during irradiation 

samples were irradiated with and without RF.  The results of these experiments are 

shown in Figure 31. 

 

Figure 31. Comparison of biased samples during irradiation with and without RF 
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calculated to be -0.0153 V/min with a standard deviation of 0.0048 V/min.  The RF 

signal on the gate increases the magnitude of threshold voltage change by 7.2%.   The RF 

signal on the gate seems to be causing more threshold voltage damage than when the 

MOSFET is being irradiated without the RF.  However, the behavior within the 

measurements looks as though it could be statistical deviation so no definite trend is 

established.  Not enough samples were irradiated to see if the shift would fall within the 

error of the measurement.   

4.5  RF during Anneal Results 

As a final comparison the samples annealing under bias were compared with and 

without RF.  The long term anneal results of this comparison are shown in Figure 32. 

 
 

 

Figure 32. Anneal comparison of all samples 
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Note that R1 did not have bias or RF signals applied to the gate during irradiation or 

recovery.  R2 and NASA data were biased during irradiation and recovery. MR1 and 

MR3 were biased and under the effects of RF during irradiation and recovery.  The 

threshold voltage damage rates for each sample as well as the recovery rates are compiled 

in Table 2. 

 
 

Table 2. Compiled threshold voltage changes 

Sample

Avg. Threshold 
Change During 

Irradiation 
(V/min)

St. Deviation of 
Threshold 

Change During 
Irradiation (V/min)

Avg. Threshold 
Decay During 

Annealing 
(V/min)

St. Deviation of Threshold 
Decay During Anneal 

(V/min)

R1 - Unbiased -0.01150 N/A -7.10E-05 1.61E-04
R2 -Biased -0.01654 0.00163 -1.13E-04 2.86E-04
R3- Biased -0.01701 0.00159 2.78E-05 2.28E-04

MR1 - Biased -0.01514 0.00161 -1.12E-04 1.66E-04
MR2 - Biased -0.01835 0.00202 7.54E-05 6.77E-04
MR3- Biased -0.01531 0.00483 -1.13E-04 1.73E-04

NASA- Biased -0.02248 0.00025 -1.65E-06 8.10E-07  

 
 
A comparison of the averaged rates and compiled standard deviations are shown in   

Table 3. 

 
 

Table 3. Average threshold recovery rates with and without RF 

No HPM HPM No HPM HPM
Avg 0.015224 0.01634 Avg -4.3E-05 -5E-05

St. Dev 0.002522 0.001751 St. Dev 0.0004 0.000339

Radiation Rates (V/min) Anneal Rates (V/min)

 

 
 
 
The data indicates that the recovery rates of these samples is very slow.  These samples 

also exhibit a standard deviation that makes determining precise rates of threshold 
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voltage recovery difficult.  The unbiased samples are expected to recover more slowly 

than with a bias applied to the gate.  This is due to the electric field of the gate bias 

forcing holes out of the oxide more quickly.  Holes exiting the oxide at an increased rate 

will result in threshold voltage recovering more quickly.  Expedited threshold voltage 

recovery when the gate is biased is well documented [15].  However, the increased 

recovery rate was not observed in these measurements.  The MOSFETs could have 

numerous traps within the oxide layer far from the interface (also called deep oxide traps) 

or damage in the gate region.  This would explain the inability of trapped oxide charges 

to move out of the oxide.   

Gamma irradiation of a sample under the effect of a RF signal on the gate is not 

well understood.  The RF signal on the gate did not produce observable effects on the 

post irradiation threshold voltage recovery rates.  The slow recovery rate and high 

standard deviation of the recovery data makes samples exposed to RF and no RF 

indistinguishable.  It was initially expected that the RF would induce an electric field that 

should act to slow the oxide holes drifting to the interface and tunneling out of the oxide, 

lowering the threshold voltage.  The results from previous RF testing suggest that while 

not under irradiation, the RF acts to increase the threshold voltage.  After irradiation, the 

threshold voltage is expected to recover at a faster rate owing to the RF de-trapping holes 

in the oxide.  Neither an accelerated or slowed rate was observed in the recovery rate of 

the threshold voltage or in the rate of damage during irradiation.  A MOSFET with fewer 

deep stable oxide traps could be used to show post irradiation threshold voltage recovery 

in MOSFETs with RF applied to the gate. 
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One would expect for the threshold voltage to recover to near initial values after 

irradiation.  This process in MOSFETs can take on the order of tens to hundreds of hours 

[15].  Based on the results of Kim and the results of this work, the RF will decrease the 

recovery rate of the threshold voltage and even increase the rate of threshold voltage 

change during irradiation. This can be determined by future research by taking more 

measurements under different conditions.  Methods for performing these measurements 

are discussed in Chapter 5. 
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V.  Conclusions 

5.1 Considerations For Future Testing 

 While the measurements reported in the document did not provide conclusive 

results for the hypothesis presented, they should serve as a base for future research.  It is 

clear that, first and foremost, sample selection is important.  Ma and Dressendorfer cite 

examples of MOSFETs that can recover to initial threshold voltage levels or beyond 

(super recovery/rebound) in a matter of 100 to 1000 hours [15].  It is important to find a 

MOSFET that exhibits a quick post irradiation threshold voltage recovery.  This would 

allow the researcher to more easily compare results and observe any of the effects that the 

RF would have on the sample.  Another way to increase this anneal rate is to thermally 

excite the charges within the oxide layer by heating the samples during recovery.  

Thermal annealing is known to increase the recovery rate and could be of use if samples 

chosen exhibit slow recovery rates [15].  Samples with numerous deep, stable oxide traps 

that reside far from the interface are likely to cause these slow recovery rates.  Selecting a 

device with a cleaner oxide (fewer traps) and possibly with a thinner oxide layer or traps 

that reside closer to the interface should provide this quicker recovery rate.  The problem 

with selecting devices with these characteristics is that knowledge of the recovery rate is 

will come from experimentation since manufacturers rarely irradiate devices and include 

those results with factory specification sheets.   

 Secondly, the experiment itself could be organized and executed more effectively.  

Some of the equipment selected and measurement methods used could be modified to 

provide more efficient data measuring procedures.  The largest mistake was that of 
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getting a compliance limit within the 4200 SCS while taking I-V measurements.  This 

could be modified by using a current divider.  Two resistors in parallel with one grounded 

would increase the source to drain resistance, reducing drain to source current at all 

voltages.  This would allow the saturation regions to be plotted after accounting for the 

added source to drain resistance.  Using a current divider is critical for observation of 

more than just the linear region of the I-V curves and provides further insight into device 

response to RF and gamma irradiation. 

 Lastly, many MOSFETs (and electronics in general) are sensitive to electrostatic 

discharge (ESD).  Some electronics have very high sensitivity to ESD.  The Fairchild 

MOSFET devices used in experiments for this document were particularly sensitive to 

ESD.  Several samples quit operating after random time intervals.  The only logical 

reason to explain this abrupt device failure was ESD.  This failure is attributed to the 

method of storage and transport of these devices.  The plastic containers in which they 

were stored likely built up static and discharged, harming the MOSFETs.  Also being 

transported in a vehicle on a dry day likely increased the probability of an ESD.  In future 

projects special static free containers should be used to store and transport all MOSFET 

devices.  Care should also be taken to work on grounded surfaces to greatly reduce any 

chance of ESD.   

5.2 Concluding Remarks 

 The lessons learned while performing this research have been invaluable to the 

researcher.  The data taken, as stated above, is far from perfect.  However, the results 

have opened the door for future testing.  It is this researcher's hope that this data will 



63 

 

form the basis for continued measurements into the area of radiation effects on 

electronics coupled with RF signals applied to the gate.  This area of research will 

continue to expand the knowledge of susceptibility to electronic warfare and enhance 

understanding of how devices sustain and survive intentional directed energy attacks in 

harsh radiation environments.   
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Appendix A. Definition and References for the dBm Power System  

 
 

Table 4. References to Common dBm Ranges and Power [26]  
dBm Power Notes

80 100 kW Typical Transmission Power of FM Radio Station with 50 km range
60 1000 W Typical Combined Radiated RF Power of Microwave Oven Elements
50 100 W Typical Thermal Radiation Emitted by a Human Body
40 10 W
36 4 W Typical Maximum Output power of a Citizens' Band radio Station (27 MHz)
33 2 W Maximum Output from a UMTS/3G (Power Class 1 Mobile Phone)
30 1000 mW Typical RF Leakage From a Microwave Oven
27 500 mW Typical Cellular Telephone Transmission Power and Power Class 2 Mobile Phones
26 400 mW
25 316 mW
24 250 mW Maximum Output from Power Class 3 Mobile Phones
23 200 mW
22 160 mW
21 125 mW Maximum Output from Power Class 4 Mobile Phones
20 100 mW Bluetooth Class 1 Radio 100m Range, Typical Wireless Router Transmission Power
15 32 mW Typical WiFi Transmission Power in Laptops
10 10 mW
6 4 mW
5 3.2 mW
4 2.5 mW Bluetooth Class 2 Radio 10m Range
3 2 mW
2 1.6 mW
1 1.3 mW
0 1000 µW Bluetooth Standard Class 3 Radio 1m Range
-1 794 µW
-3 501 µW
-5 316 µW

-10 100 µW Typical Maximum Received Signal Power of Wireless Network (-10 to -30 dBm)
-20 10 µW
-30 1000 nW
-40 100 nW
-50 10 nW
-60 1000 pW The Earth Receives 1 Nanowatt per Square Meter From a Magnitude 3.5 Star
-70 100 pW Typical Range of Received Signal Power From a Wireless Network, 802.11x (-60 to -80 dBm)
-80 10 pW

-100 .1 pW
-111 8 fW Thermal Noise Floor For Commercial GPS Single Channel Signal Bandwidth (2 GHz)

-127.5 178 aW Typical Signal Power Received From a GPS Satellite
-174 4 zW Thermal Noise Floor For a 1Hz Bandwidth at Room Temperature (293 K)

-192.5 56 yW Thermal Noise Floor For a 1Hz Bandwidth in Outer Space (4 K)
  -∞ 0 W Zero Power Not Well Expressed With the dBm Scale
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Table 5. Conversions used in Table 3 

1 kW 1000 W
1 W 1000 mW
1 mW 1000 µw
1 µW 1000 nW
1 nW 1000 pW
1 pW 1000 fW
1 fW 1000 aW
1 aW 1000 zW
1 zW 1000 yW

Conversions

 

 
 
dBm is an abbreviation for the power ratio decibels (dB) of the measured power referenced to one milliwatt 

(mW). It is used in microwave systems as a convenient measure of absolute power because of its ability to 

express both very large and very small values in a short form [26].  Equation (14) can be used to describe 

the relationship between dBm and Power. 

     ( )1010log 1000x P=     (14) 

Where x is in dBm and P is in Watts (can be arbitrary). The inverse relationship is shown 

below in Equation (15). 

     

1010
1000

x

P =
     (15) 

Where Power is in Watts and x is the power ratio in dBm. 

 

 



66 

 

Appendix B. Fairchild NDS352AP MOSFET Specifications 
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Appendix C. Emulation Technology SOT23-3 Cradle Specifications 
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