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MODELING SOLID STATE DETONATION AND REACTIVE MATERIALS

Sunhee Yoo†, Scott D. Stewart†, David E. Lambert‡, Mark A. Lieber† and Matthew J. Szuck†

†Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801
‡Air Force Research Laboratory, Munitions Directorate, Eglin AFB, 32542

Abstract. Solid state detonation (SSD) refers to non-classical phenomena whereby chem-
ical reaction sustains a self-propagation wave in energetic materials that are not typically
considered explosives. This wave phenomenon can be observed when fast ’shock induced’
reactions occur as the result of deformation during the crush-up of the powders to their
full density 3. We demonstrate that SSD, modeled with a simple phenomenological model,
nominally runs at pressures much lower than what is observed in "ideal" explosives. How-
ever the lead wave head is not a classical shock in the sense of ZND theory, but rather a
subsonic compaction wave. Hence the SSD is not strictly steady but rather quasi-steady.
Analytical results from steady wave analysis are confirmed by direct simulation that in-
cludes the transients of the transition to quasi-steady self sustained reaction applied to a
mixture of aluminum-Teflon reactive material.

Introduction

In this paper we describe a simple model for the
phenomenological study of solid state detonation,
which is a description of non-classical detonation
wave phenomena in porous mixtures of reactive ma-
terials. For the purposes of illustration we consider
a reactive material that is made from a meso-scale
mixture of aluminum with Telfon oxidizer.

We are especially interested in ignition phenom-
ena and the possibility of transition to detonation
in these materials that may have varied mass ratios
of reactant materials, packing densities in relation
to theoretical maximum density, (TMD), which are
design inputs. In this paper, the detailed compo-
sition of a mixture, rates of pore-collapse, and re-
action are modeled specifically without specifying
the detailed properties of resulting reacted products.
But those details can be included by allowing for

more complex macroscopic constitutive theory that
derives from meso-scopic modeling. This model
is intended to be a framework from which one can
evaluate the macroscopic consequences of system-
atic changes to such constitutive theory.

We consider the reverse impact experiment as a
basic ignition to detonation transient. When a piston
is driven into a porous mixture, a compaction wave
develops and runs faster than the piston interface.
The compaction wave increases the pressure, initi-
ates a reaction and as we will show transforms into
a self-sustained detonation wave that runs quasi-
steadily into the unreacted mixture. The possibil-
ity of a sonic state in the following flow is gov-
erned by the Rankine-Hugoniot relations for suit-
able reaction products. The structure of a quasi-
steady, self-sustained reactive wave has a precursor
front that processes reactant materials with termi-
nation in a sonic state in the reaction products, and



is non-classical in the sense that reaction processes
are started by compaction processes as opposed to a
shock wave which is the case for the classical ZND
model of detonation.

For this discussion, we regard the SSD as a det-
onation in reactive materials that nominally runs
at pressures much lower than what is observed in
"ideal" explosives. The energy release process is
due to mixing and reaction between reactant con-
stituents and is not necessarily contained in molecu-
lar explosive grains. We picked the AL/Teflon mix-
ture as a model material because there is a signif-
icant amount of data and experiments (see Dolgo-
borodov et al2 for example) and specifically exper-
iments have been conducted in Prof. N. Glumac’s
laboratory at the University of Illinois. The exam-
ple and attempt to describe Al/Teflon helps us devel-
ope a paradigm that allows us to establish a baseline
methodology to model a class of reactive materials.

Calculations of the ambient sound speed of
AL/Teflon were found to be in the range between
1.14 km/sec and 5.23 km/sec depending on the
reactants mass ratio. However from estimates ob-
tained from Cheetah 5.0 thermo-equilibrium soft-
ware provided by L. Fried and the Lawrence Liv-
ermore National Laboratory, we found that typ-
ical (sonic) CJ wave speeds were as low as
1.42 km/sec, and subsonic relative to the initial
ambient reactants. For example, the ambient mix-
ture sound speed for a 45%/55% Al/Teflon mass ra-
tio was c0 = 2.33 km/sec. If one assumes simply
that the wave head is supersonic relative to the am-
bient, fresh material as is the case for a classical
ZND detonation structure for which the wave head
is a supersonic shock wave, then there is an apparent
dilemma. The resolution is that the lead front ahead
of the reaction zone is subsonic and processed by a
compaction wave first. The structure that follows is
related to energy releasing reaction that terminates
on a sonic state or CJ state. But the entire structure
is at best quasi-steady since weak hyperbolic pre-
cursor must lead the compaction wave structure in
such a scenario.

We present calculations that support this scenario
in AL/Teflon mixtures. First we develop an analytic
solution with the assumption that a pure compaction
wave is followed by a reaction wave. Then we de-
velop another analytic solution with the assumption

that the reaction and compaction processes occur si-
multaneously. Finally we carry out a direct simu-
lation of the reverse impact and show clearly that
a stable quasi-steady structure is obtained via the
compaction and reaction processes that terminate at
CJ state estimated by Cheetah.

The Composition of materials, EOS and the Hy-
drodynamics

We assume our material is a mixture of three con-
stituents: aluminum, Teflon and inert gas. These
constituents of the mixture are labeled with letters
A, T , and G respectively. The end state products
are labeled with a P . The composition of the mix-
ture at any state of reaction and compaction are rep-
resented by the values of the volume and mass frac-
tions of the constituents. The volume fraction of
the inert gas α represents the degree of compaction
of the material, whereas the mass fraction λ of the
product is used to represent the amount of conver-
sion from the reactant state to product state. The
symbols λT and λA are the mass fractions of the
mixtures to Teflon, aluminum. The symbols φA, φT
and φP represent the volume fractions of aluminum,
Teflon and the product respectively. The symbols ρi
and vi (i = A, T,G) are the densities and specific
volumes of aluminum, Teflon and inert gas. The
density, specific volume and pressure of the mixture
are represented as ρ, v and p respectively.

These quantities for the composition of a mixture
should satisfy the following five conditions consis-
tent with standard mixture theory:

Relation Between Composition Variables

 φA + φT + α = 1, λA + λT + λG = 1
ρAφA + ρTφT + ρPφP = ρ
ρλA = ρAφA, ρλT = ρTφT

(1)

The unknowns to be specified other than α and λ
are λA, λT , φA, φT , and φP . We used the following
models for the closure to specify those degrees of
freedom.

Closure Variables

Φ =
λA
λT

, Ψ =
vA
vT
, Ω(λ) =

vps
vp

(2)



where vps = (vAλA + vTλT +αv)/(1− λ) so that
v = vps(1− λ) + vpλ.

The first two equations (saturation conditions) in
equations (1) and the three closures in equations (2)
determine (λA, λT , φA, φT , φP ) as functions of α
and λ as follows:


λT = (1− λG − λ)/(1 + Φ),
λA = ΦλT
φT = Ω(1−α)−λα)

(1+ΨΦ)(Ω+λ) ,

φA = ΨΦφT ,
φP = λ/(Ω + λ)

(3)

Mixture Equation of State

We assume that the equation of state (EOS) is
represented by the energy e(p, v, α, λ) function of
pressure p, volume v, α and λ and the EOS is again
assumed to be a linear composition of energy func-
tions of each constituent ei(pi, vi, α), i = A, T, P .
The energy function eP for the product state is as-
sumed to be independent of α.

To determine the pressures pA and pT we assume
pressure equilibrium between Teflon and aluminum
reactant and use the theory Caroll and Holt 1 to ob-
tain pA = pT = p/(1−α). We assume the pressure
equilibrium between product and reactant to model
the pressure pG in the EOS as well. The resulting
composite energy function is given as follows:

e(p, v, α, λ) = eA( p
1−α ,

vφA

λA
, α)λA

+eT ( p
1−α ,

vφT

λT
, α)λT + eP (p, vφP

λP
)λ

(4)

We assume that the functions eA(p, v) and eT (p, v)
are linear function of pressure p in such a form
ei(p, v) = esi (v) + v/Γ(p − psi (v) where i = A
or T . Then the mixture energy function e is also a
linear function of the pressure p and can be written
in the following form:

e(p, v, α, λ) = A(v, α, λ) +K(v, α, λ)p (5)

The Hydrodynamic Model

The hydrodynamic model with constitutive equa-
tions, that include momentum and thermal trans-
port, is represented by the system (6)-(10) of con-
servation equations for (p, v, u) with two constitu-
tive equations for the progress variables (α, λ),

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (6)

ρ[
∂u

∂t
+ u

∂u

∂x
] =

∂σ

∂x
, (7)

ρ[
∂e

∂t
+ u

∂e

∂x
] = σ

∂u

∂x
− ∂q

∂x
, (8)

dα

dt
= rα, (9)

dλ

dt
= rλ, (10)

where

σ = −p+ µ(φ)
∂u

dx
, (11)

q = −k(φ)
∂T

∂x
, (12)

rα = −kα(A(p− p0) + (α− α0)), (13)

rλ =

{
kλ( p

pcj
)µ(λ̂− λ)ν , if p > p̃

0, otherwise,
(14)

and T is temperature.
The system of equations (6)-(10) can be written

in conservative form as follow:
∂U
∂t

+
∂F
∂x

= S (15)

U =


ρ
ρu
ρE
ρφ
ρλ

 ,F =


ρu
ρu2 + p
ρu(E + p/ρ)
ρuφ
ρuλ

 ,

S =


0
∂
∂x (σ̃)
∂
∂x (uσ̃ − q)
ρrφ
ρrλ


where σ̃ = µ(φ)∂u∂x and E = e+ u2/2.

Steady State Structure

For a steady wave speed D > 0 for a wave mov-
ing into the fresh region with u = 0, p = p0, ρ =
ρ0, define the spatial coordinate n = x − Dt. Let
the particle velocity in the steady wave frame be
U = u−D. Then with ∂

∂t = 0 the equations (6)-(8)
become,



m(U +D) + (p− p0) = µ
dU

dn
(16)

H = H0 + Uµ(φ)
∂U

dn
+ k(φ)

∂T

∂n
(17)

whereH = m[e+ 1
2U

2 +pv],H0 = m[e0 + 1
2 (u0−

U)2 + p0v0] and m = ρU = ρ0(u0 −D).
The ODE system for the steady state can be writ-

ten as a system of two equations,

dU

dn
− 1
mµK

(
k(φ)

dT

dx

)
= Φ, (18)

dα

dn
=
rα
U

(19)

where

Φ = −
(p0 −mup)(K + v) + (A+ 1

2U
2 −H0)

µ(φ)K

and v = 1/ρ. In the expression for Φ, we used the
form of EOS e(p, v, α, λ) given in equation (5).

There are two equilibrium points for the system
of ODE at (up, α∗) and (0.0, α0). The first point is
the admissible inert steady state (∗-state) obtained
from the Hugoniot analysis with equation (19) and
the second point is the ambient state. It is observed
from the numerical simulation that the ambient state
is a saddle point of the system and the ∗-state is sink
point of the system as reported by Stewart 5 et.al.
Therefore the ODE is solved from a state of small
perturbation to the ambient state until the trajectory
reaches the ∗-state. We note the value of the piston
velocity up and the viscosity coefficient µ can po-
tentially have a strong effect on the stability of the
solution of the ODE.

Simple, phenomenological forms have been se-
lected for the compaction rate law and the reaction
rate law in the absence of detailed rate informa-
tion. We anticipate that in future works these forms
will be provided by mesoscopically motivated mod-
els. The pressure p̃ in equation (14) is the threshold
of pressure for the initiation of reaction from com-
paction process and it is set to zero for the illustra-
tion in the next section. The value λ̂ in the same
equation indicates that there can be a limit in the
reaction process but we also set that to 1.0 in this
paper.
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Fig. 1. EQB compaction wave structures of velocity
D, pressure p, specific volume v and porosity vari-
able α versus up, according to Rankine-Hugoniot
analysis.
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Self-Sustained, Low-Speed, Subsonic Detonation
Waves

In this section, we demonstrate the existence of
a low-speed, self-sustained detonation that is an ad-
missible solution of the hydro-dynamic model pre-
sented by (6) - (10). The closure variables for this
purpose are chosen as follows,

Φ =
λA
λT

=
λ0
A

λ0
T

, Ψ =
vA
vT

=
v0
A

v0
T

, Ω(λ) = 1−λ .(20)

The admissible inert steady wave solutions of the
system can be obtained using the relation for both
compaction and reaction equilibrium rα = 0 and
rλ = 0 instead of using equations (9) and (10) in
the system. (See Stewart et al 5 for the details). In
the following displayed figures we assume the con-
stants for the rate of compaction (equation (13) )
are kα = 10µsec−1, p0 = 1 atm, α0 = 0.2. The
admissible inert steady state solution versus piston
velocity up is shown in Figure 1.

For the demonstration purpose, we assume that
we are given an 80% TMD aluminum and Teflon
mixture that is mixed at 45:55 mass ratio. The prod-
uct equation of state for the mixture is computed in
the form of JWL EOS e(p, v) = es(v) + v

ω (p −
ps(v)) , where

ps(v) = Ae−R1V +Be−R2V + CV −(ω+1)

ea(v) = −ρ0

∫
ps(V )dV

(21)

and A = 496.79 GPa, B = −3.61 GPa, C =
0.09 GPa, R1 = 7.0, R2 = 2.0, ω = 0.079, V =
v/v0 and v0 = 0.51389 [g/cc]−1.

The p−v Hugoniot curves of all partially reacted
(λ < 1) and fully reacted product (λ = 1) EOS and
the Rayleigh line are shown in Figure 2. We also
added the admissible, inert steady state solutions on
the p-v plane in Figure 2. Note that the portion of
inert solutions α∗ = 0 overlaps the Hugoniot of re-
actant.

The intersection (marked as B) of the Rayleigh
line with the admissible solution curve represents a
steady inert (unreacted) state solution of the system
(6) - (10). Therefore if we assume that there is no
reaction until the material is fully compacted, then
the structure of a possible solution of our system
can be obtained by joining the solution of the inert
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Fig. 3. Steady state flow structure with assumption
that the reaction initiates after full compaction.

compact wave and the reaction wave solution start-
ing from the compacted wave solution to the burnt
product. These two wave solutions can be computed
separately using Hugoniot relation and the ordinary
differential equations for equations (9) and (10) re-
spectively. (For more details regarding the steady
wave analysis types, see Stewart et al5). For an il-
lustration of the features of the model in this paper,
we removed the momentum and thermal transport
terms in the governing equations (µ = kT = 0).
Figure 3 presents the solution of this type. In the
figure, state 0 is the ambient state (same as A in
Figure 4), state 1 is the compacted inert state and 2
(state B in Figure 4) is the burnt product state which
is the state C in Figure 4.

Figure 4 shows the steady state solution with the
assumption that the reaction and compaction start
at the same time. In this case the two ODEs (9)
and (10) together with the Hugoniot relations are
solved simultaneously. The peek pressure in this
case occurs at the partially reacted state (λ ≈ 0.6).

Finally, we carried out the reverse impact sim-
ulation numerically on a bed of initially unreacted
mixture with its reactant composition described by
solving the full system of equations (15). We start
the numerical simulations at the time (t = 0) when
a 3mm bed (−2 mm ≤ x ≤ 1.0 mm) is im-
pacted against a stationary wall (the piston surface
located at x = 1.0mm) at a constant velocity up =
60m/sec. Therefore the particle velocity in the bed
at the impact time is same as the impact velocity
with a reflective boundary condition at the impact
location. For this simulation we used the heat trans-
fer coefficient kT = 0.0002 and the viscosity coef-
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Fig. 5. The x-t plot of pressure field from the reverse
impact simulation. up = 60m/sec, µ = 104 P and
kT = 0.0002.

ficient µ = 0.0001.
Figure 5 shows the space-time plot of pressure

field generated from this simulation. We see that
the steady state detonation shock develops at around
t = 2.0µsec. We see from the result, very similar
wave transitions reported by Saenz et. al.4, specif-
ically a compaction wave forms followed by, det-
onation wave (D1 in Saenz and Stewart4) in the
compacted material. Figure 8 shows the x-t plot
of the volume fraction α from the same simulation
and that when the detonation starts, the area behind
the front of detonation shock and inside the plug5

are fully compacted. The final detonation wave that
propagates in the unperturbed material shown in the

figure is quasi-steady, self-sustained and subsonic
(D = 1.39km/sec) relative to the sound speed of
ambient state (c0 = 2.33 km/sec).

It also clearly shows the scenario of the transition
from deflagration to detonation (DDT) as follows:

(1) A compaction wave starts to develop due to
the impact on the material at the right end.

(2) The reflected wave compresses the material
starting a very weak reaction. Figure 6 shows wave
profiles at time t = 0.5, 1, 1.5 and 2.0µsec. This
figure shows that before significant reaction occurs
with λ < 0.2). If the material does not react, the
bed will be remained partially compacted with (α =
α∗ ≈ 0.11).

(3) But the reaction wave staring at the impact lo-
cation through a region of about 90% compaction
pushes from behind and then eventually make a full
compacted spot. The full compaction does not start
at the impact point x = 1.0 but inside the bed at
around x = 0.5 as shown in the figure which is
called a plug5. In Figure 6, the region (0.3 < x <
0.5) is the place of the plug at time t = 1.5µsec.

(4) Once a plug is developed, starting at the front
of the plug, the material reacts rapidly. Figure 7
presents the situation clearly. It shows the wave pro-
file of mass fraction λ which is our variable for the
reaction process at various time t. In this Figure,
we see after time t = 1.5µsec, the change in λ is
dramatically. But note that behind the plug area, the
reaction still does not develop as quickly as its front.
So we see that the plug in fact acts like a virtual pis-
ton as described by Stewart et. al5 in order to make
a detonation to occur shortly after then.

(5) The width of plug grow rapidly and the com-
pletion of reaction occurs in the whole region be-
hind the front of plug: Detonation occurs.

Figure 8 shows the time-space (xt) plot of the
variable α to show the whole time history of com-
paction mechanism of this simulation. It clearly
shows three region: compaction wave, reaction be-
hind the compaction wave and the complete reac-
tion area behind detonation and plug.

Effect of Viscosity and Heat Transfer on the Re-
action on the System

Next we illustrate the effect of viscosity and heat
conduction in the bed. To see the effect clearly, we
carried out reverse impact simulation with higher
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Fig. 6. Wave profile of volume fraction (compaction
rate) at time t = 0.5, 1.0, 1.5 and 2.0 µsec.
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Fig. 8. The x-t plot of α field from the reverse im-
pact simulation. up = 60m/sec, µ = 104 P and
kT = 0.0002.
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Fig. 9. The effect of viscosity and heat transfer (µ =
0.03, kT = 0.005). The black and gray colored
curves in the series of the figures are the λ(thick-
curves) and p (thin-curves) profiles with (black) and
without (gray) these effects. The reaction is signif-
icantly delayed due to the effect of heat release and
viscosity after a plug is formed. But the defect is
healed as a steady state detonation develops.



values of viscosity and heat transfer coefficients
µ = 0.03 and kT = 0.005. But these values can
not be increased arbitrarily large due to the occur-
rence of instability in the system. Figure 9 presents
the wave profiles of pressure p and mass fraction λ
with transfer coefficients µ and kf (marked by p−1
and λ1) and without these transfer effect (marked
by p − 0 and λ0 in the legend of second plots).
From this numerical experiment, we observed that
the presence of heat transfer and viscosity does not
play an important role on the flow structures un-
til a plug is formed as seen in the wave profile at
t = 1.02 in Figure 9. These wave profiles are very
similar to each other.

Once the plug is formed (at around t =
1.59µsec), the reaction is significantly delayed due
to the effect of viscosity and heat transfer mecha-
nism as seen in the figure for time t = 1.59 to t =
1.8µsec. But eventually as a steady state detona-
tion begins to develop, the defect heals as the effect
of transport is restricted to a very thin region as can
be seen in the profiles at time t = 2.52µsec. There-
fore we conjecture that the importance of transport
might be crucial in understanding transition behav-
iors, as it might play a lesser role in the early phase
of the compaction wave (with weak reactions) and
the final detonation wave structure.

Conclusion

We presented a simple hydrodynamic model that
admits a solution of a quasi-steady, self-sustained
reactive wave that is formed from a compaction
wave followed by a reaction zone of products. This
non-classical ’solid’ detonation wave structure is
subsonic relative to the sound speed in the ambi-
ent state. The wave head is actually comprised of
a subsonic compaction wave. These early studies
have been concerned mainly with a purely hydrody-
namic model with simple heat release and viscosity
effects, and phenomenological compaction rate and
reaction rate laws. We have confirmed all the essen-
tial analytically derived conclusions by direct nu-
merical simulation, and we observed that the quasi-
steady wave structure does indeed emerge via a sce-
nario that is very similar to the more well known
DDT mechanism that has been described in porous
material reported by previous researchers5, 4. Near
term plans include continued investigation of the ef-

fect of the viscosity effect and heat release on the
compaction and inclusion of more complex consti-
tutive relations that are derived from meso-scopic
consideration of the underlying kinetics and intra-
material transport.
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