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Objective 
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behavior 

Accurately "propagate" the spurious signals (noise) 
through the packaging hierarchy (printed circuit 
boards, cards, connectors, interposer, package...) to 
the die. 
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Major Obstacle: Tackling System Complexity 
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System Complexity translates to EM Complexity 

EM Complexity 
— Geometric complexity and distributed nature of the 

packaging hierarchy ("coupling path") 
— Broad frequency bandwidth of the interfering signal 
— Non-linearity of the terminations 

Tackling Complexity 
— Hierarchical approach to the modeling of electromagnetic 

interactions 
• From lumped models, to transmission-line models, to quasi-3D 

full-wave models, to 3D full-wave models 
Abstracting Complexity 

— Systematic order reduction of numerical models of the 
coupling path 

— Equivalent circuit representation of the coupling path for its    ^^ 
seamless incorporation in network-oriented non-linear circuit U 
simulators 
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SUMMARY OF MODELING OBJECTIVE 
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Specific Subtasks 

Task 2.1 Development of a coupling path modeling 
methodology 
Task 2.2 Development of a (EMI) source modeling 
methodology 

Task 2.3 Non-linear Transient Simulation of the 
hybrid lumped-distributed non-linear network 
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Subtask 1: Modeling of the Coupling Path 

© IBM Corporation 

Printed Circuit Board 
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Subtask 1: Modeling of the Coupling Path (Cont) 

Our modeling approach is hierarchical 
— EM-Physics driven "divide and conquer" approach 

Use suitable EM modeling approach for individual 
blocks 

— RLC models for short interconnect at chip & package level 
— Multi-conductor Transmission Lines (MTL) 

• Balanced interconnects at the board level 
— Quasi-3D EM Modeling for PCB power delivery network 
— Full-wave modeling 

• Unbalanced interconnects at the board level 
• Coupling through cables 
• RF/microwave packages & boards 

Reduction of EM models to non-linear network 
simulator (e.g. SPICE) 

— Direct model order reduction 
- Equivalent circuit synthesis 
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Block Diagram of EM Modeling Flow 

June 2002 

• 111 
Illinois 



Quasi-3D Modeling of Power Delivery Network 

EM field between power/ground plane 
pairs exhibits, approximately, a two- 
dimensional variation 
• Use simple 2D FDTD 
Three-dimensional features (vias, pins, 
slots, voids, etc) require locally 3D 
models to capture the correct physics 

V 
. Z. „»  __..>, 

j(osEz (i, j) = Ax"1 (Hy (i +1, j) - Hy (i, j)) 

-Ay-\Hx(i,j + l)-Hx(i,j)) 

-jto/i&yHx (/, j) = Ez (/, j) - E, (/, j -1) 

janlsxH (i, j) = Ez (i, j) - Ez (i -1, j) 
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The resulting discrete EM model 

£(*)]     [C    0YE(s)l 
+ 5 = FU(s) 

H(» 0    L    H(» 

V(» = Fr(A + .sB)  FU(J)  w/zereA = 

V = FrX 

The multiport transfer function is: Y(^) = F  (A + sB)  F 

C   0 
0   L 

Direct time-domain simulation is possible if desired 
• Could be synchronized with time-domain IE solver 

Alternatively, model order reduction of the transfer function 
using an Arnoldi-based subspace iteration method (PRIMA) 
is used for the generation of a compact multiport • 
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Multi-port representation of the reduced-order 
model is in terms of rational functions 

Form compatible with circuit simulators that support 
rational function models (e.g. H-Spice, ADS) 
Equivalent circuit synthesis is possible also 
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Passive synthesis through Foster forms 

For a passive, reciprocal multi-port, its admittance (or impedance) 

matrix may be cast in the following form: 

H(s) = G0+sC0+£ ^^ + ^L_ 
q=\s-pq    s-pq 

where it is: 

Re{^}<0,   q = 1,2,... JQ 

matrices C0 and Gq,   q = 0,1,2,.. 

positive semi-definite 

Re{aj>0,   q = \,2,....Q 

.,Q, are real and 

0<ImK}Im{D }< ReK}Re{» } ,    q = \,2,....Q 
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Equivalent circuit for a two-port 
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Two-port sub-circuit for use in H-SPICE 
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The advantages of the direct use of the rational 
function macro-model in the simulator 

Elapsed Simulation Time 
3 ports 10 ports        36 ports 

H-SPICE 

Equivalent 

0.7 sec 5.73 sec 21.2 min 

2.3 sec  676.55 sec >12 hours 

Transient Data File Size 

H-SPICE 

3 ports 

25.9 KB 

10 ports        36 ports 

53.4 KB 

Equivalent       308.2 KB        269 MB 

172 KB 

>2GB 

The secret is in the recursive convolution that is utilized for the 
interfacing of the macro-model with the rest of the circuit • 
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Application to a 4-layer PCB 

8 cm X 4 cm, 4 layer board. A 2mm gap is present all the way across the 
top ground plane. A total of 58 pins are used. 

Top view 

Cross-sectiona view 
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Application to a 4-layer PCB (cont'd) 

H-SPICE calculation of the transient response. 
Switching occurs at port 1 while port 2 is terminated with 50ohm. 
Voltage at port 1 is depicted by the solid line. 
Voltage at port 2 is depicted by the dotted line. • 
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Validation study in progress 

Intel 4-laver test board 

1st layer: Power plane 

2nd layer: Ground plane 

3rd layer: Ground plane 

4th layer: Power plane 

1 
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Samples of the generated mesh 
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Generated multi-port for switching noise 
simulation in SPICE 
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Rational function multi-port & equivalent circuit 
synthesis from raw data 

Data either from measurements or EM field 
solvers 
Step 1: Rational function fitting 
— Process guarantees stability but not passivity 
— Check fitted multi-port for passivity 

• If not passive, constrain fitting using Foster constraints 
• Repeat fitting 

June 2002 
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Validation of rational function fitting 

PCB interconnect test 
structures courtesy of Intel 
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Validation of fitting (cont'd) 
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Task 2.1 Summary 

EM modeling flow for the coupling path established 
Quasi-3D EM Model for power delivery network 
completed 

— Validation in progress 
— Further enhancements include: 

• Incorporation of hooks for balanced MTLs 
• Incorporation of hooks for matrix transfer functions in Foster form 

Capability for SPICE-compatible broadband multi-port 
macro-model generation in place 

• 
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Subtask 2.3: Non-linear Transient Simulation 

Physics-oriented nonlinear transient simulator 

• Full wave modeling of printed circuit boards (PCBs) with fine 
geometric features, finite (and possibly inhomogeneous) 
dielectrics, and nonlinear loads and circuits 

• Interfaces with SPICE solvers and models 

Illinois 
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Introduction (cont.) 

Time Domain Integral Equation (TDIE) based 
Marching-on-in-time (MOT) solvers 

Have been known to the acoustics and 
electromagnetics communities 
since the sixties. 

Compared to frequency domain solvers, 
they can solve nonlinear problems directly 

Liu and Tesche (1976), 
Landtand Miller (1983), 
Djordjevic and Sarkar (1985), 
Deiseroth and Singer (1995), 
Orlandi(1996) • 
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Introduction (cont.) 

However TDIE - MOT solvers have long been conceived as 

• Unstable: ... But recently many proposals have surfaced for 
stabilizing these schemes (Davies, Rao and Sarkar, Walker, 
Smith, Rynne,...); 

• Slow: ... Computational complexity has prohibited 
application to analysis of large scale problems! 
... PWTD technology removes this 
computational bottleneck 0(NTNs log2 Ns) 

Now, we can / should be able to rapidly solve large 
-scale, nonlinear problems using the PWTD 
technology!!! 

1 
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Formulation - Problem Definition 

Given 

• an of 3-D inhomogeneous dielectric 
bodies (V), and 3-D arbitrarily 
shaped PEC surfaces, wires, and 
surface-wire junctions (S), 

• Multiple linear / nonlinear lumped 
circuits connected to S[jV 

• a temporally bandlimited excitation 

Solve for 
1 all transient currents and voltages 

induced on the interconnect geometry 
S[jV and the the circuits (ckt 1, ..., ckt m) 

1 radiated electric and/or magnetic 
fields if required 

yexc EeAC(r,0 

interconnect 
geometry 

SUV 

E'(r,0 
w 

ckt 1 

M  

distributed        |umped • 
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Formulation - Time Domain Electric Field 

•Assume spatially-variable, 
frequency independent 
permittivity and free-space 
permeability in V, and thin 
wires in S. 

• Radiated electric field: 

d 

E'(r,0 

Er(r,/) = A(r^) + c2J*'VV-A(r,^) (1) 
dt o 

A(r,0 = -^ 
An 

J^*^,Jw(r,0 + J^*^,Jm(r,0 ,     (2) 

R = r-r 
d * toto/ Jo;£i(r,0 = (4r)-^0)-E

toto'(r,0 
dt 
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Formulation - MOT Algorithm 

Ns   NT 

© Expand current as     J(r, 0 ~ X X lnK (r^Tj (0>    9 = ^ w> ^ rf 
«=1 7=0 

Surface and Volume Spatial Basis Functions 
iyS       iyPEC ^iyDIEL 

n+\ 

The temporal basis functions are local cubic polynomials 
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Formulation - MOT Algorithm (cont.) 

Construct a system of equations by applying spatial Galerkin testing 
at each time step. 

for the j'th time step: 

7-1 

immediate 
interactions 

T ~\    1=1 
unknowns 

tested 
incident 

field 

previously 
computed 

delayed 
interactions 
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Formulation - Transient Circuit Simulator 

SPICE-like transient circuit simulator 

Performs linear and nonlinear large-signal analysis using 
Modified nodal analysis 

Nonlinear equations solved using multi-dimensional 
Newton 

Incorporates the following circuit elements: 
• Independent/dependent voltage and current sources 
• Resistors, inductors, capacitors 
• Diodes, BJTs, MOSFETs, MESFETs 

vw 

• 
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Formulation - Transient Circuit Simulator (cont.) 

Circuit behavior described by time-domain nodal equations 
(using trapezoidal rule for the/th time step) 

G0(v,) = ir+Gj(v   ) 

immediate 
interactions 

i \ 

previously 
computed 

unknowns sources interactions from 
previous time step 

For m circuits, the nonlinear system of equations is 

G„(V,) = 

Gi(v;)" 

Go (v7 ) 

I exc,\ 

^exc,m 

j 

+ 
G!(vj_,)" 

G•(V;_,) 

 xexc   , 
G,(V,-,) 
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Formulation - Coupled EM / Circuit Equations 

Combine the EM and circuit nodal equations into a single consistent 
system to be solved for Ns EM andNc circuit unknowns at each time 
step 

'JL V 

0 V 
J 

+ 
0 

G0(V,) 
 i=i  

jexc    , G,(V,., 

Coupling between the circuits and the interconnect structure is 
accounted for by matrices C and C 
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Formulation - the MLPWTD Algorithm 

z0i. = v;xc 
-1z< lJ-> 

1=1 

0(NTNs log2 Ns) 
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\^0^^ 

1             1 
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>-f 1)-«       TV A 
V              T 
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==-^ 

for typical PCB 
structures 

Level 
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Analysis of Active Nonlinear Microwave Amplifier 

Objective 

Characterize structure 
from 2-10 GHz 

Geometry 

Device 
region 

Input port 

Ground plane 

Output port 

• Simulation Parameters 

#,=1468, Nv=7096 

Ns+Nv =8564, AT =512 

A^ = 5.0ps 

• Excitation pulse 

Vinc(r,t) = V0cos(co0t')e-t'2/2a2 

a*« =2;rx6xl09 rad/s 

Dielectric constant = 2.33 

t' = t-6a,   a = 6.82xl0"ns 
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Amplifier: Nonlinear circuitry 

MESFET Circuit Model 

0.05 nH 
0-5 _G 

CgsO^ 

1.0 

0.2 pF 

+ 
Vc 

D 0.5 0.05 nH 

IdsQ 0.6 pF 

0.7< 

CM = c gsO 0.1 nH 

gs\   c 

Jl-vJA 

hs (vgs ^s) = (A> + A vgs + Av2
gs + A^ls) tanh(avrfs) 
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Amplifier: Plane Wave Interference 

Transient input/output waveforms MOT results' 

Input port voltage 
Output port voltage 

-0.5 

m      0 

S21 -MOT 
S11 -MOT 
S21 -REF 

O    S11 -REF 

5 6 7 

Frequency (GHz) 

10 

* C. Kuo, B. Houshmand, and T. Itoh, "Full-wave analysis of packaged microwave circuits with active and nonlinear 
devices: an FDTD approach," IEEE Trans. Microwave Theory Tech., vol. 45, pp. 819-826, May 1997. • 
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Amplifier + Shield: geometry 

• Objective 

Determine effect of shielding box 
on S-parameters 

• Geometry 

• Simulation Parameters 

Ns = 3288, Nv = 7096 

Ns+Nv =10384, AT =700 

At = 6.25 ps 

lllllllllllll  

PEC shielding DOX 

(640xl86x690mils) 
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Amplifier + Shield: S-parameters 
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Amplifier + Shield: Plane Wave Interference 

Eexc(r,0 = E0cos(^/)^'2/2 

E0=500x + 500y V/m 

a)0 = In x 6 x 109 rad/s 

t' = t-6a + (z-r)/c 

cr = 8.68xl0-ns 

Transient response at transistor 
output 

DG ONLY 
DG+PLANE-WAVE 
DG+PLANE-WAVE + SHIELD 

1 1.5 
Time (ns) 
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Amplifier + Shield: Plane Wave Interference 

?\ „-*'2/2cr2 

Eexc(rj) = E0cos(a)/)e 

CD0 =2;rx4xl09 rad/s 

t' = t-6cr-(k-r)/c       (T = \/4TT 
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k = 0.5736x-0.8192y 
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Amplifier + Shield: Plane Wave Interference 

Eexc(r,0 = E0 cos(*y>-''2/2(72 

co0 = 2K x 3 x 109 rad/s 

t' = t-6a-(i-r)/c cr = 3/14^ns 

3=115,^=45 

k = 0.6409(x + y)-0.4226z 

E, = -500 V/m, E, = 500 V/m 

Tiexc 

Transient response at transistor 
output 

1.5 
Time (ns) 
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Amplifier + Shield: Plane Wave Interference 

Eexc(r,t) = E0 cosO/K''72"2 

CD0 = 2K x 6 x 109 rad/s 

t' = t-6a-(k-r)/c        cr = 3/\\7rns 

0. =180, $=0 

k = -z 

= -500 V/m, Et = 500 V/m 

{ 
i k   ,--'?x 
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Task 2.3: Summary 

1) A MOT algorithm based on a hybrid surface/volume time domain 
integral equation has been developed for analysis of conducting/ 
inhomogeneous dielectric bodies, 

2) This algorithm has been accelerated with the PWTD technology 
that rigorously reduces the o(NTN

2
s) computational complexity of 

the MOT solver to 0(NTNs log^ Ns) *for typical PCB structures, 
3) Linear/Nonlinear circuits in the system are modeled by coupling 

modified nodal analysis equations of circuits to MOT equations, 
4) A nonlinear Newton-based solver is used at each time step to 

consistently solve for circuit and electromagnetic unknowns. 
5) The proposed method can find extensive use in EMC/EMI and 

signal integrity analysis of PCB, interconnect and packaging 
structures with realistic complexity. 
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