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I. Introduction 

This research focuses on developing enhanced contrast thermal acoustic imaging (TAI) 
technology for the detection of breast cancer by combining amplitude-modulated (AM) 
electromagnetic (EM) field excitation, re sonant acoustic scattering, and advanced 
signal processing techniques. EM-induced TAI com bines the m erits of both EM  
stimulation and ultrasound im aging, while  overcom ing their respective lim itations. 
EM imaging provides excellent contrast between cancerous and normal breast tissue, 
but the long wavelengths provide poor sp atial resolution. Conventional ultrasound 
imaging possesses very fine m illimeter-range sp atial reso lution but poor soft tissue 
contrast. While EM-induced TAI possesses great promise, the thermal acoustic signals 
tend to  be  weak. However , whe n the tum or is  exc ited into  reson ance via E M 
stimulation, the effective acoustic scattering cross-section may increase by a factor in 
excess of 100 based on predic tions for microsphere-based ultrasound contrast agents. 
Such an in crease wou ld truly  be re volutionary, m aking the EM-induced T AI 
technology a very prom ising candidate for routine breast cancer screening. To induce 
the resonant response from  the tumor, we consider various approaches including, for 
example, AM continuous wave (CW ) EM stim ulation, where the m odulation 
frequency range contains the predicted re sonant frequencies for a distribution of 
tumor sizes  and contras t ratios. The carrier  frequency of the EM  stimulation can be 
fixed and chosen for the best penetrati on and heat absorption. The im age formation 
methods in the existing T AI system s are predom inantly data-independent 
delay-and-sum (with or without w eighting) type of approaches. These approaches 
tend to have poor resolution (relative to the best possible resolution a transducer array 
can of fer) and high sidelobe problem s, especially when the transducer array is not 
composed of unifor mly and linearly spaced  transducers,  which is  th e case for the 
existing TAI systems. We devise adaptive image formation algorithms to achieve high 
resolution and excellent interference and noise suppression capability. 
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II. Body 

II.1 Theory 

Previous work in the area of thermo-acous tic imaging all utilized hig h peak power , 
short pulse excitation [1-4]. In essence th ese approaches are tim e domain based, and 
capture the electro-acoustic impulse response of the phantom system to short, intense  
EM illum ination with a  prescr ibed (high) energy density . T hey genera lly require a  
prohibitively expensive power am plifier along with broadband m icrowave 
components and a high-speed data acquisiti on system. The present study approaches  
the problem  from  the frequency dom ain, an d seeks  the  sam e inf ormation as the 
time-domain approaches but with using lower power, narrow band excitation to obtain 
the steady-state response. It is anticipated that due to the thermo-acoustic resonance of 
phantom, similar imaging information can be obtained but with a significant reduction 
in excitation power.  

The theoretical analysis that forms the foundation for Thermo-Acoustic Imaging (TAI) 
is based on Diebold’ s theory publishe d in 1988 [5].  There he provides the 
theoretical analys is for pressure wave  generation by exciting droplets with a 
modulated laser pulse. Using Diebold’s approach, it can be shown that the steady-state 
pressure response of the phantom to an AM EM wave will be of the form: 
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ˆ sin1 cos sin

jqs
f

p s s s

f f f

q q q
j E c a qp e

C r cq q j q
q c
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⎛ ⎞
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⎜ ⎟= ⎜ ⎟⎛ ⎞⎜ ⎟− − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   (1) 

Where the phantom has the properties: 

β = thermal expansion coefficient  [1/K] 

σ = electrical conductivity  [S/ m]  

pC = specific heat   [J/kg* K]  

E = electric f ield intens ity inside th e phantom (as sumed to be unifor m 
over the volume of the phantom)   [V/m] 

sc = speed of sound in phantom   [m/s] 

fc = speed of sound in surrounding material   [m/s] 

sρ = density of phantom   [ 3/kg m ] 
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fρ = density of surrounding materials   [ 3/kg m ] 

a = radius of phantom   [m] 

Additionally the term s q, τ̂ , and r̂ are the norm alized m odulation frequency , 
normalized retarded time, and normalized position of transducer, respectively, and are 
defined as: 
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From this analysis, we can conclude  that the frequency dom ain response  
characteristics of the phantom pressure signal are determined primarily by the density 
ratio and sound speed ratio betw een phantom and surrounding materials. The  
amplitude of pressure response prim arily relies on the m aterial property of phantom 
(thermal expansion coef ficient, conductivity , sp ecific heat),  electric field intens ity 
imposed on phantom, and relative position of transducer.    

This analys is constitu tes the foundation of our num erical sim ulation. Until very  
recently we have not had a high degree of  confidence in two critical param eters, 
namely the density of p hantom and the elect ric field intensity distribution which can 
be obtained from EM field m easurements in  the tank. For other m aterial constants,  

specifically β , σ , pC , and sc , w e have re lied on in telligent estim ates and are 

currently in the pro cess of designing experiments to accu rately measure and confirm 
the values used. Figure 1 shows the expected phantom pressure response as a function 
of modulation frequency based on the assumed material constants. 
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Figure 1: Phantom pressure response as a function of modulation frequency. 

Note that the lar gest r esonant pea ks o ccur at frequencies which are outside the  
bandwidth of the transducer used (center frequency 1MHz, frequency band 0.6 MHz,  
Panametrics NDT , Model: V303). Hence, in  addition to better determ ining the  
material properties of the phantom , a smaller phantom with hi gher resonant 
frequencies is currently being designed and fabricated. 

Although Diebold’s analysis was carried out  in frequency dom ain, the experim ents 
were completed using very short laser pul ses that are well-approxim ated as a Dirac 
delta function. Consequently the sinusoidal steady-state analysis approach followed in 
the present research ef fort para lleled th e D iebold solu tion. There is,  how ever, a 
significant difference in the two approaches. It was pointed out by Lihong V. Wang in 
2000 [6] that if the thermal confinement condition does not apply, the heat conduction 
effects should be taken into consideration in  calculating the pre ssure wave generated 
by electrom agnetic illum ination. In our case, a Continuous W ave (CW) m odulated 
microwave source was used to heat the pha ntom and was applied over a m uch longer 
time scale as com pared with im pulsive excitation. Conseque ntly heat conduction 
effects must necessarily be included in the analysis.  

A sim ple num erical simulation demonstrat es the ef fects due to heat conduction 
between phantom and the surrounding water. Consider the simple model illustrated in 
Figure 2. 
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Figure 2: Model of the phantom and the surrounding water. 

The phantom volume is heated by heating function G(t, r), which is unifor m over the 
volume of the phantom and results from  the elec tromagnetic illu mination. The 
boundary condition between phantom and water is that th e temperature and heat flux 
in phantom  and the water be continuous at  the phantom -water interface. The water 
volume is assumed to be very large hence the outside boundary of water (the water-air 
interface) is assumed to be perfectly insulated. The governing equations are: 
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    (2) 

In Equation  (2), Pα , Pk are th ermal characteristics of  phantom , Wα , Wk are th ermal 

characteristics of wat er, PT  is temperature distribution in phantom , WT is 

temperature distribution in water , and ( , )Pg r t  is the heating function resulting fro m 

the electromagnetic illumination.  In order to solve thes e equations, the appropriate 
Green’s function has been found and utilized. The solutio n is in the form of series 
expansion and is given by (note that 500 terms are used in the expansion): 



6 
 

2

0 ' 0

500
2 2 2 2

2 4 2
1

3/ 2
1/ 2 3/ 2

( , ) [ ( ') ( , | ', ) (1 cos 2 ) ']

1 1(1 exp( )) ( cos 2 2 sin 2 exp( ))
4

1 1 ( ) ( )

t a
P

P PP m
P r

n n m m m n n
n n n m

Pn n

n nP P

T r t d r G r t r A dr
k

A t t t t

J r a J a
N r

τ

α τ τ ω τ

β β ω ω ω β β
β β ω

αβ β
βα α

= =

=

= +

⎧ ⎡ ⎤⎪= − − + + − − ×⎨ ⎢ ⎥+⎪ ⎣ ⎦⎩
⎫⎪
⎬
⎪⎭

∫ ∫

∑
  (3) 

2

0 ' 0

500
2 2 2 2

2 4 2
1

1/ 2 1/ 2

( , ) [ ( ') ( , | ', ) (1 cos 2 ) ']

1 1(1 exp( )) ( cos 2 2 sin 2 exp( ))
4

1 1 ( ') ( ')

t a
P

W WP m
P r

P
n n m m m n n

nP n n m

Pn nP
n n

n P nW W

T r t d r G r t r A dr
k

A t t t t
k

k A J r B Y r
N r

τ

α τ τ ω τ

α β β ω ω ω β β
β β ω

αβ β
α βα α

= =

=

= +

⎧ ⎡ ⎤⎪= − − + + − − ×⎨ ⎢ ⎥+⎪ ⎣ ⎦⎩

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∑

3/ 2
3/ 2 ( )n

P

a J aβ
α

⎫⎪
⎬
⎪⎭

 (4) 

Since the tem perature distribution in the phantom  and water is known, the 
temperature distribution can be determ ined and is shown in Figure 3. In Figure 3 the 
solid line represents the radial temperature distribution from the center of the phantom 
to its boundary (5 mm ), while the dashed li ne represents the te mperature distribution 
when only the phantom being heated and not the surrounding water . The dif ferent 
colors illustrate how the temperature distribution evolves as a f unction of time. From 
Figure 3 it is seen th at the tem perature in the phantom is being reduced at the 
boundary due to heat conduction to surrounding water. This effect acts as a negative 
factor for steady-state electromagnetic illumination.   

 

Figure 3: Temperature distribution. 

Generally speaking, the temperature in phantom will present a linear increasing trend, 
together with a sm all sinusoidal oscilla tion upon it, caused by th e modulating signal. 
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The governing equation describing the acoustic pressure wave is the wave equation, 
which can be expressed as: 

2
2

2 2

1 s
s

s p

p Hp
c t C t

β∂ − ∂
∇ − =

∂ ∂
       (5) 

In (5), sp is the sound pressure, sc is the sound speed, β is the th ermal expansion  

coefficient, pC is the h eat capacity, and H is the h eating function of the phantom. In 

solving this equation,  the heat conduction issue discu ssed above should be taken into 
consideration, namely that the heating function should be expressed as: 

( , ) (1 cos ) '( , )H r t A t H r tω= + −       (6) 

The first item on the right side of Equation (6) represents the electromagnetic heating, 
while the second item represents the heat conduction into water. Including the thermal 
conduction considerations discussed Equation (7) must satisfy: 

( , )( , ) p
T r tH r t C

t
ρ ∂

=
∂

         (7a) 

and hence 

2

2
( , ) ( , )

p
H r t T r tC

t t
ρ∂ ∂

=
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         (7b) 

At this point, it is assumed that the temperature distribution is a linear function of time 
with a small superimposed sinusoidal oscillation. This may be expressed as: 

( , ) ( ) ( ) cos( )T r t A r t T tω ω= + Δ         (8a) 

giving 

2( , ) ( ) cos( )p
H r t C T t

t
ρ ω ω ω∂

= Δ
∂

        (8b) 

Applying the Diebold solution one obtains: 

0 0
( , ) ( )j t

p
H r t I e I C T

t
ωα ω α ρ ω ω−∂

= ⇒ = Δ
∂

    (9) 

Equation (9) can now be substituted into the Diebold solution resulting in the acoustic 
pressure wave expressed as the result of  the sinusoidally  increas ing tem perature 
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component, namely, 
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    (10) 

The tem perature increase TΔ  can be estim ated from  the heat conduction analysis 
above.  

It is difficult to analytically decouple the pressure wave generation excited by the CW 
excitation and heat conduction ef fects. It is apparent from the above analysis that for 
the case of CW  excitation, the he at c onduction ef fects will grea tly attenua te the 
electromagnetic illum ination. The only w ay to m itigate this a ttenuation is  to u se 
significantly lar ger CW  excita tion. Short of doing this, the signa l is  g enerally too 
weak to be detected.    

 

II.2 Phantom Development 

(a) Phantom Modeling 

A tissue phantom  for therm al acoustic im aging should m atch the living tissue’ s 
electrical as  well as aco ustic prop erties.  The p reliminary phantom development is 
focused on m atching dielectric properties, specifically permittivity and conductivity.  
According to D uck [7], the r elative permittivity of malignant breast tissue at a range 
encompassing 434 MHz ranges between 36-56,  and the conductiv ity ranges between 
0.35-0.8 S/m.  The phantom  was m ade from TX-151 powder (f rom Oil Research 
Center), tap water , cane sugar and pot assium chloride, accordin g to m ethods 
developed at The McK night Brain Institute at th e University of Florida by B eck [8].  
The dielectric properties are controlled by varying the concentration of the cane sugar 
and potassium  chloride.  An HP85070B  coaxial probe and HP8752C network 
analyzer measured the dielectric properties.  A preliminary sample was created using 
the experien ce of the staf f of  the McKnight Brain Institute  in creating brain tissue  
models that have diele ctric prope rties s imilar to that of  m alignant tissue.  A n 
iterative process of m easuring the  diele ctric constan ts and m anipulating the cane 
sugar and potassium  chloride concentration was conducted until a suita ble phantom 
was created.  The tissue phantom created is used in the excitation system. A diagram 
of the experim ent is shown in Figure 4.  The cylinder height is  10.3 inches and the 
inner diameter is 7.25 inches.  The transducer used in the experim ent is a 0.5 inch 
diameter piezoelectric imme rsion transducer from  Olympus NDT (model V303).  It 
has a center frequency of 0. 91 MHz and 60.275%, -6 dB bandwidth.  At 1 MHz, the  
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half angle beam width is approxim ately 3.5°.  R eciprocity calibra tions w ill be  
performed in de-ionized water .  The wa veguide used is from  Penn Engineering 
Components (model WR 187) with a frequency range of 3.95-5.85 GHz.  

 

Figure 4: Phantom experimental setup. 

 

(b) Initial Phantom Resonance Experiments 

Experimentation designed to verify acous tic resonance of the tum or phantom  by 
electromagnetic excitation, w ith the experiment setup show n schematically in Figure 
1, consists of an electrom agnetic wavegui de, two ultrasonic transducers (one for 
transmission ant the other for sensing), a nd a Plexiglas cy linder that contain s the 
de-ionized water and tumor phantom. The cylinder height is  10.3 inches and the inner 
diameter is 7.25 inches.  The transducer used in the experiment is a 0.5 inch diam eter 
piezoelectric immersion transducer from Olympus NDT (model V303). It has a center 
frequency of 0.91 MHz  and 60.275%, -6 dB bandwidth. At 1 MHz, the half angle 
beam width is approxim ately 3.5°. Reci procity calibrations are perform ed in 
de-ionized water. The waveguide used is  from Penn Engineering Components (model 
WR 187) with a frequency range of 3.95- 5.85 GHz. In the experim ents, a 1 cm 
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diameter sample of the phantom is suspended in the center of the cylinder, submerged 
in de-ion ized w ater, and aligned w ith the ultra sonic tr ansducers. The transm itting 
transducer is m ounted to the side of the cylinder with the trans ducer face exposed to 
the de-ionized water. The rece iving transducer is similarly aligned and its axis m akes 
a 180-degree with respect to the first transducer. The electrom agnetic waveguide 
provides excitation from the bottom of the cy linder. Electric field probes are inserted 
through a port in the top of the cylinder and are used to measure total f ield intensity 
along the cylinder axis. Two probes are need ed: one to m easure the radial field 
intensity and another  to  determine the axia l field strength. The ra dial field probe is 
shown in Figure 8. The goal of the prelim inary setup is to achieve a uniform  field 
within a 3 cm  radius around the phantom . The frequency of the 434 MHz radio  
frequency signal can be amplitude modulated over a range on the order of 400 kHz to 
4 MHz, which is th e expected ran ge the resonant frequency of the phantom . The  
acoustic signal from  the phantom  is m easured by the ultrasonic transducer and is 
recorded by the NI data acquisition system. 

 

Figure5: Test setup for determining the resonant frequency of the tumor phantom. 

Initially, the tum or’s resonant frequenc y is established acoustically. Referring to 
Figure 5, a swept sinusoidal signal generated emanating from Port 1 of an RF network 
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analyzer acts as a source which drives one acoustic tran sducer while the secon d 
acoustic transducer, used to receive the acoustic signal, drives port 2. W ith the tumor 
absent from  the wate r-filled tank,  the receiv ed signa l c onsists of the acoustic  
frequency characteristics of the tank itself, and this frequency response is used as a  
reference to calibrate the network analyzer. The sam e sweep is then perform ed with 
the tumor phantom present and the response no w contains the resonant characteristics 
of the phantom . A typical frequency respons e is shown in Figure 6 where it is seen 
that the resonant frequency occurs between around 1 MHz. 

For TAI sys tems the acoustic pres sure wave is generated as the tumor is heated via 
application of EM energy. Having establishe d the resonant frequency of the phantom 
using the a coustic tech nique descr ibed, a sig nal w ith th is f requency am plitude 
modulated at 434 MHz EM carrier  signal is then used to drive the waveguide located 
at the botto m of the tank via an RF  power am plifier. The acoustic transducer is the n 
used to sense the acoustic pressure wave generated by the TAI process. 

 
Figure 6: A typical frequency response of acoustic resonance. 

 

(c) Phantom Aging Characteristics 

While carry ing out these m easurements, it becam e apparent the large num ber of 
variables in volved in c haracterizing the resonance of the phantom , one being the 



12 
 

effect of aging of the phantom  ove r time. Subsequently, some ti me was focused to 
characterize the phantom aging. One of the aspects explored was the v ariation of the 
resonant frequency over time. Figure 7 shows results based on the experim ental setup 
described in the previous section and s hown in Figure 5. W hile the sam ple size 
consists of only 3 phantoms, the general trend seems to be that the resonant frequency 
initially increases before it decreases over time. More specimens need to be studied to 
confirm this trend. In Figure 7, phantom  c exhibited no apparent resonance in week 
one. This was attributed to phantom  pl acement in the cylinder. The setup was 
consequently altered in  a way that would ins ure repeatable phanto m placem ent. 
Phantom aging is im portant to quan tify in order to minimize experimental error over 
time. Other properties are currently being examined including density and speed of 
sound. 

 

Figure 7: Resonant frequency of phantom over time. Note no resonance was found for 
phantom c in the first week. 

 

(d) Electric Field Measurements 

Accurate modeling of both the acoustical and electrical behavior of the system  forms 
an essential com ponent of this research e ffort. Of special concer n is the ability to 
model ele ctrical-to-acoustical tran sduction asp ect of this  system . The acous tic 
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pressure wave to be measured is generated when the modulated electrical signal heats 
the phantom causing it to mechanically undulate. This heating occurs as a result of the 
electric field intensity in the location of  the conducting phantom . As a  consequence 
not only must the electrical fields p resent in this  system be accu rately modeled, bu t 
these fields must also be verified so that the proper heating parameters may be used as 
input to the acoustic m odel. Initially an off-the-shelf, low-pr ofile, high-resolution 
probe that measures the electric potential (Carsten Associates Model E-601) was used. 
Once the potential is kn own a differencing procedure can be used to determ ine the 
field. It was found, however, that this method proved inadequate for the present 
system. In particular, the common m ode signal m easured far outweighed the  
difference signal and an accurate estimate of the electric field could not be determined. 
Further, the metal shaft of the probe, though small in diameter, was distorting the field 
in the tank. To rem edy these, two custom probes, one used to m easure the axial field,  
another used to measure the radial field were designed. Since the new probes measure 
the electric field directly no differencing is  required. Furthermore the new probes are 
design with a shaf t that is im pedance-matched to the im pedance of de-ionized water  
thus making the probe transparent except of  course (unavoidably) for the imm ediate 
region being measured. To date the radial field probe has been obtained and is shown 
in Figure 8. Shown also in Figure 8 is a Tr ansverse Electro-Magnetic (TEM) test cell  
used for probe calibration. One end of the TEM cell is excited with a 434 MHz signal 
while the other end is terminated in a 50-ohm  load. Since  the dimensions of the cell 
are precisely known, the electri c field in the cell’s center is also known. This center 
portion of the TEM cell is f illed with de-ionized water in which the probe is inserted, 
and the res ulting vo ltage is m easured using a 50-ohm  oscillos cope. O nce the axia l 
filed probe is com pleted, an accu rate field map of the tank along the ax is where the 
phantom will be p laced will be obtained. Once again this data will be used to  verify 
the electromagnetic model and link the electrical and acoustic models. 

 

Figure 8: Radial field probe and probe calibration cell. 
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(e) Electrical-to-Acoustical Transduction 

To date two problems have been encountered with regard to accurately measuring the 
RTAI effec t and are currently being rem edied. The first regards drift of t he 
acousticacoustic resonance m easurements. Since the acou stic tran sducers poss ess 
narrow beamwidths, accurate placem ent of the phantom  is required f or a stable 
resonance. Secondly the acousti c resonance varies with the temperature of the water.  
Initially the acoustic and electrical porti ons of the experim ental procedure where  
performed consecutively. It has been de termined that m onitoring the acoustic  
resonance while the electrical m easurements are taken is essential. F urthermore, to 
date the electrical (RF) power level has been kept low with a total drive power of less 
than four watts. This requires that the measurement bandwidth be ke pt small so as to  
not allow excessive noise in the measurements. A new RF power amplifier capable of 
producing a drive power of up to 100-watts  has been obtained. This, along with 
accurate p lacement of the phantom ’s location will a llow for a robust, s table 
measurement of the RTAI effect. 

 

II.3 Electromagnetic Stimulation 

(a) Tumor Phantom 

For TAI systems the acoustic p ressure wave is generated as the tum or is heated via 
application of EM ener gy. For a proof-of- concept leve l dem onstration of the T AI 
process, the EM excitation is acco mplished with the experim ental setu p shown in 
Figure 9.  A Plexiglas tank in the shape of  a right circular cylinder (length = 10.29 
in., radius = 4 in ) is f illed with de-ionized water with relative permittivity ε/εo = 81,  
and conductivity σ ≈ 0. The quality of the reconstruc ted image is direc tly related to 
the uniformity of the EM excitation in the cavity. For the cavity dimensions used here, 
the EM f ield will be th e sum of several cavity modes, and a unif orm EM f ield can 
only be app roximated with multiple exciters. Fo r the p resent case, a  single source is 
used to  exc ite the  cavity so a  unif orm f ield is  not exp ected. The RF excitation is 
achieved using a coax-to-waveguide ad apter (WR-187) which has an operating 
frequency range of 3.95 – 9.85 GHz.  Though th e frequency of the exciting signal is 
434 MHz, a value typical for m edical im aging system s, to m inimize m ismatch 
between the waveguide exit aperture and the water-filled tank, the waveguide itself is 
water-filled, thus reducing the wavelength in the  w aveguide to 3.0  in., and th us 
operating the exciting waveguide within its recommended range. 

The tumor is sim ulated by m eans of a m embrane f illed with a gel that p rovides the 
desired permittivity and conductivity. This tum or will be s uspended from the top of 
the cavity along the axis of th e cylinder at a location of a local m aximum of electric 
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field. The location of the maximum electric field is determined by using a low-profile, 
high-resolution E-field probe (C arstens Associates Model E-601). The probe  
impedance is 50 Ω and the relative s ignal intensity is m easured with an RF spectru m 
analyzer. The probe tip is tr anslated along the ax is of the cylinder and the location(s) 
of the maximum field is determined. The tumor is then placed at this location with the 
E-field probe removed. 

 

Figure 9: Schematic representation of the experimental setup used to excite and 
measure the cavity’s axial electric field. Also shown is the electric field obtained 

under assumed operating conditions using a FDTD simulation. 

The constru ction of  th e tes t se t-up as desc ribed is com plete. Th e R F signal is 
generated with a signal s ynthesizer am plified with a power am plifier capable of  
providing an output power on the order of 10 watts. The acoustic signal generated by 
the tumor expansion will be detected with a pressure sensor(s) as described elsewhere 
in this report. 

Anticipated ele ctromagnetic perf ormance has been m odeled by m eans of a Finite 
Difference T ime Do main ( FDTD) si mulation program . Si nce the size of the cavity  
used along with the fac t that it is filled with a h igh permittivity material suggests that 
several cavity m odes will exist, with the total f ield equaling the sum  of these m odal 
fields. Electromagnetic modeling along with due consideration of the cavity’s acoustic 
properties provided the guidelines used to  d etermine th e cavity d imensions. For 
example, the specific cylinder leng th and di ameter was  selected in part by ensu ring 
that, via num erical simulations, the electric  field was not at a spatial null along the 
cylinder axis and that at least one electr ic field peak occurred along this axis. For 
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simulation purposes, the high dielectric permittivity – air in terface was modeled by a 
perfect magnetic conductor (PMC) at all cavity boundaries. The rela tive amplitude of 
the electric field is shown along side the cavity’s schematic representation in Figure 9. 

 

(b) Hemispherical breast model 

Use of the RTAI concept as a real im aging application requires extending the 
approach to a three-dimensional system. As the experimental portion of present phase 
of the research effort co ntinues so d oes the modeling for the next phase of the effort  
which involves three-dimensional modeling, simulation, and measurements. 

 

Figure 10: Motivation for achieving a uniform field within a hemispherical region 
using small, capacitively coupled patches. 

Figure 10 illustra tes co nceptually how  th e required unif orm electric field for a  
realistic breast phantom  can be achieved in  a simple and practical m anner. Consider 
the situation  shown in Figure 10( a) which illustrates a diele ctric sphere of  arbitra ry 
permittivity in free space. It is  well known in electrom agnetic theory tha t a 

sinusoidally distributed  surface charge dis tribution, θρρ cos0=s , w ith 0ρ  as a 

constant, placed on the surface of the sphere  results in a perfectly un iform electric 
field inside the dielectric sphere as shown. By invoking the theory of images a Perfect 
Magnetic Conductor (PMC), which represents a good model for the chest wall, can be 
placed as shown without altering the electric field in the sphere. In this way a uniform 
electric field in a hemispherical region that models the human breast can be obtained. 
Obtaining such a surface charge distributio n is, in general not possible, though it can 
be approximated in a pointw ise fashion as illustrated in Figure 10(b). There it is seen  
that small (subresonant) patche s can be placed o n the breast so as  to  approximate a 
uniform electric field in side the breast. These (metal) patches would be coated  with a 
non-conducting material and hence modeled as capacitively coupled as shown. The 
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concept is akin to the approach used to obtain a uniform , circularly polarized 
transverse m agnetic field from  discrete wire cage stru cture in Magn etic Resonance 
Imaging (MRI) applications. Though the perf ectly uniform field would be obtained 
only for the case of an  electros tatic charg e distribution, it is  not unreasonable to 
expect a quasi-static solution which reasonably approximates the ideal, static situation 
under appro priate cond itions, and this is cu rrently be ing e xplored. To  illu strate th e 
basic idea, Figure 11 shows a pointwise elect rostatic approximation to the continuous 
case using 31 point charges uniformly dist ributed over the b reast phantom surface as 
indicated in Figure 11(b). The magnitudes of the point charges are chosen so that they 
equal the value of the continuous charge dist ribution at that point . This would serve, 
for exam ple, as a good initial guess for a numerical optimizat ion procedure which 
would give the optim um charge distributi on th at prov ide the m ost unifor m electric 
field magnitude in the breast. Figure 11(c)  shows the (unoptimized) electrostatic field 
intensity over several planes in the region to be imaged. It is seen that even for this 
simple case that the field intensity varies by less than 1 dB in the central region to b e 
imaged. This approa ch is cu rrently being  deve loped an alytically as w ell as b eing 
modeled using two commercially available software packages. 

 
Figure 11: Simulated uniform electric field (quasi TEM) for a hemispherical shell 

excited by small patches. 
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II.4 Experiment 

(a) Experimental Setup 

Several attempts were m ade to increase th e electromagnetic field in the phantom  to a  
level sufficient to measure the resulting acoustic signal. The ac oustic transducer was 
placed as close to the p hantom as possible. The specific acoustic transducer used was 
a hydrophone, since these are ch aracterized as having a high  sensitivity over a broad 
acoustic frequency band. The experim ental setup is illus trated in Fig ure 12. The 
exciting RF waveguide aperture is extended to  the center of the tank so a s to increase 
electromagnetic field intensity in the vicinity of the phantom. 

 

Figure 12: Experimental setup. 

Much tim e has been  in vested into  the construction of appropriate phantom s. The  
current generation of phantom s is bei ng constructed in c ooperation with the  
Department of Biomedical Engineering at the University of Florida. Earlier version of 
the phantoms were made from a mixture of a saline solution with a gellin g agent, and 
needed to  b e held in a latex  conta iner so as to  maintain th e desired sh ape. Surf ace 
tension effects will inhibit the phantom from freely oscill ating to som e degree. The  
newer generation of phantom s is made in  a m anner that provides a self-supporting 
structure and can be placed directly in the water bath. 

A typical baseband signal as viewed on a spectrum analyzer is shown in Figure 13.  
The anticipated amplitude of the acoustic pressure wave that would be generated with 
the present experim ental setup is quite sm all, and RF interference ef fects, generated 
by am plifier nonlinearities, coupled dire ctly though waveguide and tank onto the 
metal housing of the transducer . This is evidenced by the fact that these sam e peaks 
exist even in the absence of the phantom inside the tank. Multiple peaks are the result 
of the higher order harmonics of RF input si gnal. It has been experim entally verified 
that the clo ser the tran sducer is placed to the  phantom , and hence to  the exc iting 
waveguide, the stronger interference signal that is picked up. 
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Figure 13: Typical baseband signal. 

Based on these observations, a low pass filter was added after the transducer to reduce 
the high frequency interference.  The tank assembly was also placed inside a Faraday 
shield to f urther reduce inte rference w ith the measurem ent equipment. The original 
ultrasonic transducer (V303, Panametrics NDT) was replaced with a hydrophone (TC 
4035, Reson) which has a broad bandwidth (f rom 10 kHz to 800 kHz) and a flat 
frequency response. The modified experimental setup is shown in Figure 14. 

 
Figure 14: Modified experiment setup. 

These m odifications resulted in a subs tantial reduction in the aforem entioned 
interference signals. Measurem ent of a ther mo-acoustic signal with a dynam ic range 
sufficient f or high -fidelity im aging w as still p roblematic. The low  R F pow er lev el 
used for the RF excitation serves as the primary reason for dif ficulties encountered 
with sig nal m easurement. Pow er le vels us ed in thes e exp eriments are nearly two 
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orders of m agnitude lower than that of  other researchers [2, 9-1 1]. The heat 
conduction into the water bath, as previously  discussed, also served to m ask the 
thermo-acoustic s ignal. A coustic dissipa tion m echanisms add f urther dif ficulties, 
making it harder to isolate th e acoustic pressure wave generated by the phantom from 
other effects.  

 

(b) Experimental Results and Analysis 

The first step in m easuring any thermoacous tic resonance is the determ ination of the 
noise floor of the overall m easuring system, including the equivalent noise pressure 
present at the transdu cer. Experim ental de termination of the tran sducer sens itivity 
[12], in conjunction with the noise floor of  the overall measurement system gives the 
equivalent noise pressure as a function of frequency shown in Figure 15. It is  
observed that the equivalent noise pressure  is greater th an the estim ated acoustic 
pressure signal obtained from  simulations . M itigation of this problem  requires a  
lowering of the overall noise floor and/or increase in RF power level. 
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Figure 15: Equivalent noise pressure of overall measurement system. 

It can be sated with a high degree of  confidence that the single most significant factor 
resulting in  the dif ficulty to d etect a thermo-acoustic s ignal is in sufficient R F 
excitation (power). Other researchers have succeeded in obtaining an acoustic signa l 
used a puls ed microwave source with peak power ranging from  10 kW to 20 kW  [2, 
9-11]. Therefore, in order to obtain the therm o-acoustic signal n ecessary for 
generating im ages, a high power pulsed microwave source has been obtained. 
Presently a pulsed source capable of s upplying 0.75 m icrosecond pulses at a pulse 
repetition rate of 1 100 Hz  and a peak power up to 12 0 kW  is cu rrently b eing 
integrated into the  ex perimental set up. (Radio-Resea rch Instrum ent Co, P/N  
12-1-21MOD). This new experim ental setup is shown in F igure 16. Parts acquisition 
and construction of this system is currently underway. 
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Figure 16: New experiment setup. 

With the use of a one m icrosecond pulse d m icrowave source with a peak power 
ranging from 20 kW  to 120 kW , it is fully ex pected that the th ermo-acoustic signal 
should be found using an oscilloscope. Th ere are m any open research areas where 
improvement of the i maging system performance can be realized, and th e use of the 
high-power pulsed source will  now allow investigation on these areas. Firstly, the RF 
aperture must be engineered to generate an appropriately conditioned excitation signal 
in the ph antom. Secondly , w ith th e high pow er lev els n ow availab le, nonlin ear 
phenomenon can be explored. Since the input  power can be high, the phantom  itself 
may exhibit nonlinear ef fects which m ay be exploited. Thirdly, the data acquisition 
system using high speed ADC’s and a FPGA development platform can be optimized 
for optimal signal integrity for imaging applications. One common solution would be  
to use of f-the-shelf digitizer cards to implement the DAQ sy stem, and t hese can get 
expensive since many channels are needed. However, one high speed ADC and FPGA 
development board c an be used to  im plement a m ultiplexer-based d ata acqu isition 
system, greatly redu cing cost. Finally , the aco ustic transd ucers w ill ultim ately b e 
replaced with an array of MEMS sensors in an optical configuration. 

 

II.5 Adaptive Image Formation Algorithms 

Developing accurate and robust im age reconstruction methods is o ne of the key 
challenges encountered in T AI. Various im age r econstruction algorithms have been 
developed for T AI. By using Radon tran sformation on the T AI data function, 
reflectivity tom ography reconstruction al gorithms can be  used for T AI im age 
reconstruction [13]. Exact in verse solutions have been found for dif ferent scanning 
geometries in both the frequency dom ain [14, 15] and the tim e domain [16, 17]. 
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Approximate reconstruction algorithm s, such as the tim e-domain Delay-and -Sum 
(DAS) beamforming method [18, 19] and the optimal statistical approach [20], have  
also been proposed. However, a common assumption of these existing methods is that 
the surrounding tissue is acoustically homogeneous. This approximation is inadequate 
in many medical imaging applications. According to previous studies, the sound speed 
in hum an fem ale breast varies wide ly from  1430 m /s to 1570 m /s around the 
commonly assum ed speed of 1510 m /s [ 21, 22]. The heterogeneous acoustic 
properties of biological tissues cause am plitude and phase distorti ons in the recorded 
acoustic signals, which can result in significant degradations in imaging quality. 

Four robust and adaptive im age formation algorithms, named as adaptive and robust 
methods of reconstruc tion (ARMOR), m ultifrequency adaptive and robust technique 
(MART), autom atic multifrequ ency adaptiv e and robust techniqu e (AMAR T), and 
iterative ad aptive app roach (IAA),  have been developed and applied to the T AI 
system. 

ARMOR is based on robust Capon beamfor ming (RCB) [2 3]. This technique can be  
used to m itigate the am plitude and phase disto rtion proble ms in T AI by allow ing 
certain unc ertainties. Sp ecifically, in the first step of ARMOR, RCB is used for 
waveform estim ation by treating the am plitude distortion with  a n uncer tainty 
parameter. In the secon d step of ARMOR,  a sim ple yet ef fective peak search ing 
method is used for phase distortion correc tion. Com pared with other ener gy- or 
amplitude-based response intensity estimation methods, peak searching can be used to 
improve image quality with little additional computational costs. Moreover, since the 
acoustic pulse is usually bipolar : a  positive pe ak, corresponding to the  compression 
pulse, and a negative peak, corresponding to the rarefact ion pulse, w e can further  
enhance the im age contras t in T AI by using the peak-to-peak dif ference as the 
response intensity for a focal point. 

Instead of  a  single f requency sour ce a m ultiple f requency source  is  em ployed in 
MART. MART can of fer higher signal-to-ra tio (SNR) and higher im aging contrast 
than its single frequency counterpart, which we refer to as the single-frequency 
adaptive and robust technique (SART), since much more information about the human 
breast can b e harvested from the m ultiple frequencies. Furthermore, the inte rference 
due to inhomogeneous breast tissue can be suppressed more ef fectively since m ore 
information about the breast tissue can be  used by the RCB algorithm . MART is a 
three-stage tim e-domain signal pro cessing a lgorithm. In S tage I, R CB is used to 
estimate th e therm al ac oustic resp onses f rom the f ocal po ints w ithin the bre ast f or 
each stimulating frequency. Then in Stage II, a scalar acoustic waveform at each focal 
point is estim ated based on the response estim ates for all frequencies from  Stage I. 
Finally, in Stage III, the positive peak and the negative peak of the estimated acoustic 
waveform at each g rid location are determ ined, and the p eak-to-peak dif ference is 
computed and referred to as the image intensity. 

The above two algorithm s, as well as m ost of the existing robust schem es, are us er 
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parameter dependent and it may not be a simple task to determine the user parameters 
in practice. Therefore, user param eter-free rob ust adaptive approaches , including a 
shrinkage-based general linear combination (GLC) algorithm, are desirable [24, 25]. 

We have proposed an a utomatic (i. e., user param eter free) m ultifrequency adaptiv e 
and robust technique (AMART) based on GLC for TAI to achieve high resolution and 
good interference suppression capability. AMART is a three-stage imaging algorithm. 
Specifically, in the firs t stage of AMAR T, GLC  is used  to estim ate the  the rmal 
acoustic responses from the grid points within the breast for each stim ulating 
frequency. Based on th ese estimates, a scalar  acoustic waveform at each grid point is 
estimated via GLC at the second stage. At th e final stage, the ener gy of the estimated 
acoustic wavefor m at each grid po int is com puted and referred to as  the im age 
intensity.  
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Figure 17: Breast model. 

To validate the ef fectiveness of the propos ed algorithms, we have developed a 2-D 
inhomogeneous breast model, as shown in Figure 17. This breast model includes skin, 
breast fatty tissues, glan dular tissues, and th e chest wall. Sm all tumors are set b elow 
the sk in. The f inite-difference time-domain (FDTD) method is us ed to  simulate the 
electromagnetic field inside the breast ti ssues [26, 27]. The specific absorption  rate 
(SAR) distribution is calculated based on the simulated electromagnetic field [28, 29]. 
Then FDTD is used aga in to sim ulate the p ropagation of the thermal acoustic waves 
[30, 31]. In the followin g example, the th ermal acoustic sig nals are sim ulated based 
on the aforem entioned 2-D m odel. Multip le stim ulating frequencie s from  200-800  
MHz with frequency step 100 MHz are used  for MART. Two small 1.5-mm-diameter 
tumors are set insid e the breast model. Their locations are at (X =70 mm, Y=60 mm) 
and (X=75 mm, Y=62.5 mm ). The distanc e be tween the tw o tum ors is 4 m m. For 
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comparison purposes, the DAS m ethod is a pplied to the sam e data set. The 
reconstructed im ages are shown in Figur e 18. Figure 18(a) is  the im aging result 
obtained by DAS. The DAS i mage contains much clutter and cannot show the tum ors 
clearly. Figures 18(b) and 18(c) show th e imaging results o btained by A RMOR and 
MART. The two tum ors are seen  clearly in the ARMOR and MAR T images, and the 
sizes and th e locations of the two tum ors are accurate. Ho wever, the p erformance of 
ARMOR is a little wors e than  that of MAR T because so me clutter sh ow up in the 
ARMOR images. Both ARMOR and MAR T need a user parameter, which is fixed at 
0.3N, where N is the number of the receiv er elements. Figure 18(d) is  the im aging 
result obtained by the user param eter free algorithm, AMART. The i mage shows the 
sizes and location s of the two tum ors accu rately. The advantage of AMAR T, 
compared with ARMOR and MART, is that it is user parameter free and have easy to  
use. 
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Figure 18: Reconstructed images. (a) DAS, (b) ARMOR, (c) MART, and (d) AMART. 

Recently, a weighted least squ ares-based non-parametric and user param eter-free 
iterative adaptive approach (IAA) [32] wa s proposed in array processing and other 
sensing applications. IAA can work well with few snapshots (even one), uncorrelated,  
partially correlated, and  coherent so urces, and arbitrary array geom etries. However, 
due to the properties of T AI, including wide band signals and near -field environment, 
we cannot apply IAA  directly, since it is de signed for narrowband signals originally. 
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We extend the IAA approach to the wideba nd scenario by applying Fourier transform 
to the tim e-domain array output to transf orm the wideband data into narrowband 
frequency bins. Then IAA can be applied to each frequenc y bin to estimate the signal 
spectral distribution and  hence estim ate th e signal waveform  a nd the backscattered 
energy. Figure 19 is the im aging result obtained by IA A. The breast m odel used for  
the simulation is the sam e as the one shown in Figure 17. The early tim e response 
from the skin is rem oved. To obtain the signals, we perfor m the sim ulation twice at 
each stimulating frequency, with and without the tumor, and record the acoustic data. 
The dif ference of the two received signals  is  ref erred to  as the th ermal acoustic 
response only from  the tum or. The t wo tumors are clearly shown in the IAA  image, 
and the sizes and the locations of the two tumors are accurate. 
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Figure 19: Reconstructed image of IAA. 
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III. Key Research Accomplishments 

• Phantom was developed and properties as a function of aging were explored. 

• Equipment needed for excitation and elect ric field m easurements were identified  
and purchased (please see Table 1 for details). 

 
Vendor Model number Equipment purchased Qt.

V303-SU Ultrasonic Immersion Transducer 2

BCU-74-6W 
Cables. W aterproof &BNC to UHF . 6’.  
RG174/U 

2

BCU-58-10W 
Cable. W aterproof &BNC to UHF . 10 ’. 
RG58/U 

1
Panametrics 

5662 Ultrasonic Preamplifier 1
763000-01 Power Cord 1

778644-01 
NI PXI-1045  Front  Rack Moun t Kit for 19 " 
Rack 

1

778644-02 
NI PXI-1045  Rear Rack Mount Kit f or 19"  
Rack 

1

778645-01 
NI PXI-1045 18-Slot 3U  PXI Chassi s with 
Universal AC Power Supply 

1

779505-03 
NI PXI-PCIe8361, MXI-Express, 1 Port PCIe, 
3 m Cable 

1

960597-18 
PXI 18-Slot Factory I nstallation Servi ce and 
Extended Warranty 

1

778739-01 
NI PXI-2529 High Density Multiconfi guration 
Matrix 

1

NI PXI-5122 
Dual 100 MS/s, 14-Bit  Digitizer w/ anti-alias 
filters & 8 MB/ch 

16

778840-01 
NI TB-2634 Configures the NI PXI-2529 High 
Density Matrix 

1

779079-02 NI PXI-5671 RF Signal Generator 1

National 
Instruments 

 Shippi ng 1
TMR  Plexiglass Cylinder 1

1452-4A W aveguide 1Penn 
Engineering 6352-5 Silicon Gasket (price included in waveguide)  

EG01-12" Probes 2
EFP 200R Calibrated radial probe 1

Bruce Carst en 
Assoc. 

EFP 200A Calibrated axial probe 1
Mini-Circuits ZHL-100W -52-S Broadband Amplifier 1
Acopian W530MT1 3 Power supply 1

Table 1. Equipment purchased. 
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• Experimental setup to detect the thermal acoustic waves from the simulated tumor 
was formulated. 

• A 3-D electromagnetic stimulation system is being simulated and developed. 

• Robust and adaptive im age for mation algorithms, including ARMOR, MAR T, 
AMART, and IAA, were developed. 

• A 2-D inhomogeneous breast m odel, whic h inc ludes sk in, breast f atty tiss ues, 
glandular tissues, and the chest wall, wa s developed to validate the ef fectiveness 
of the signal processing algorithms. 
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VI. Conclusions 

Numerical analysis  about the electro-acoustic transduction of the phantom  has been 
investigated, based on the Di ebold’s research [5], in order to g et a more clear  
understanding about the entire  picture. The m ajor factors determining the frequency 
response of electro-acoustic transduction ha ve been pointed out, and som e m aterial 
parameters are being measured based on specifically designed experiments.  

The entire excitation and de tection system  has been set up, including m odulated 
signal source, high power amplifier (100 W), low noise amplifier and data acquisition 
system. Relative programming has been com pleted and tested concerning the control 
of the entire system . The noi se floor of the m easurement system has been obtained 
and referred to the input of transducer , which provides the clear com parison between 
the signal level simulated and noise floor measured. Phantoms are being redesigned to 
gain m ore conductivity and hi gher resonant frequency . Ot her m odifications of the 
system are being conducted in order to enla rge the signal level a nd hence, get higher 
SNR.  

Four robust and adaptive im age form ation algorithm s, ARMOR, MAR T, AMART, 
and IAA, have been developed for the T AI system. The excellent perform ance with 
high resolution and good inte rference suppression capabilit y of these algorithm s has 
been dem onstrated based on a 2-D breas t m odel. Moreover , the new AMAR T and 
IAA algorithms avoid the need to s pecify any user param eters and hen ce are easy to 
use in practice. 
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Adaptive and Robust Methods of Reconstruction
(ARMOR) for Thermoacoustic Tomography
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Abstract—In this paper, we present new adaptive and robust
methods of reconstruction (ARMOR) for thermoacoustic tomog-
raphy (TAT), and study their performances for breast cancer detec-
tion. TAT is an emerging medical imaging technique that combines
the merits of high contrast due to electromagnetic or laser stim-
ulation and high resolution offered by thermal acoustic imaging.
The current image reconstruction methods used for TAT, such as
the delay-and-sum (DAS) approach, are data-independent and suf-
fer from low-resolution, high sidelobe levels, and poor interference
rejection capabilities. The data-adaptive ARMOR can have much
better resolution and much better interference rejection capabili-
ties than their data-independent counterparts. By allowing certain
uncertainties, ARMOR can be used to mitigate the amplitude and
phase distortion problems encountered in TAT. The excellent per-
formance of ARMOR is demonstrated using both simulated and
experimentally measured data.

Index Terms—Array signal processing, biomedical acoustic
imaging, robustness.

I. INTRODUCTION

THERMOACOUSTIC tomography (TAT), the earliest in-
vestigation of which dates back to the 1980s [1], has re-

cently attracted much interest with its great promise in a wide
span of biomedical applications (see, e.g., [2]–[4]). Its physical
basis lies in the contrast of the radiation absorption rate among
different biological tissues. Due to the thermoacoustic effect,
when a short electromagnetic pulse (e.g., microwave or laser)
is absorbed by the tissue, the heating results in expansion that
generates acoustic signals. In TAT, an image of the tissue ab-
sorption properties is reconstructed from the recorded thermoa-
coustic signals. Such an image may reveal the physiological and
pathological status of the tissue, which can be useful in many
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applications including breast cancer detection [5]. Compared
with microwave imaging and ultrasound imaging, TAT com-
bines their merits and possesses both fine imaging resolution
and good spatial contrast properties [4].

Developing accurate and robust image reconstruction meth-
ods is one of the key challenges encountered in TAT. Various
image reconstruction algorithms have been developed for TAT.
By using Radon transformation on the TAT data function, re-
flectivity tomography reconstruction algorithms can be used for
TAT image reconstruction [6]. Exact inverse solutions have been
found for different scanning geometries in both the frequency
domain [7], [8] and the time domain [9], [10]. Approximate
reconstruction algorithms, such as the time-domain delay-and-
sum (DAS) beamforming method [11], [12] and the optimal
statistical approach [13], have also been proposed. However,
a common assumption of these existing methods is that the
surrounding tissue is acoustically homogeneous. This approx-
imation is inadequate in many medical imaging applications.
According to previous studies, the sound speed in human fe-
male breast varies widely from 1430 to 1570 m/s around the
commonly assumed speed of 1510 m/s [14], [15]. The heteroge-
neous acoustic properties of biological tissues cause amplitude
and phase distortions in the recorded acoustic signals, which
can result in significant degradation in imaging quality [16].

In ultrasound tomography (UT), wavefront distortion due to
heterogeneity of biological tissue has been studied extensively.
Various wavefront correction methods have been proposed [17].
However, they are not highly effective at correcting severe am-
plitude distortions [18], and they usually involve complicated
procedures. The problem in TAT is somewhat different from that
in UT. In the breast UT, the amplitude distortion caused by re-
fraction is more problematic than the phase distortion induced by
acoustic speed variation. In TAT, however, even for the biologi-
cal tissue, such as the breast tissue, with a relatively weak hetero-
geneity, phase distortion dominates amplitude distortion [16].
These unique features suggest that new adaptive and robust
imaging techniques should be designed especially for TAT.

Time-domain approximate reconstruction algorithms, such
as the DAS (weighted or unweighted) type of data-independent
approaches have various applications in medical imaging. They
need little prior information on the tissue for image reconstruc-
tion and can be fast and simple to implement to process the
wideband acoustic signals. Although not based on the exact
solution, they provide similar image qualities to those of the ex-
act reconstruction algorithms. However, these data-independent
methods tend to suffer from poor resolution and high-sidelobe-
level problems. Data-adaptive approaches, such as the recently

0018-9294/$25.00 © 2008 IEEE
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introduced robust Capon beamforming (RCB) method [19], can
have much better resolution and much better interference rejec-
tion capability than their data-independent counterparts.

We propose adaptive and robust methods of reconstruction
(ARMOR) based on RCB for TAT. ARMOR can be used to
mitigate the amplitude and phase distortion problems in TAT
by allowing certain uncertainties. Specifically, in the first step
of ARMOR, RCB is used for waveform estimation by treating
the amplitude distortion with an uncertainty parameter. In the
second step of ARMOR, a simple, yet effective, peak searching
method is used for phase distortion correction. Compared with
other energy- or amplitude-based response intensity estimation
methods, peak searching can be used to improve image quality
with little additional computational costs. Moreover, since the
acoustic pulse is usually bipolar: a positive peak, corresponding
to the compression pulse, and a negative peak, corresponding
to the rarefaction pulse [11], we can further enhance the image
contrast in TAT by using the peak-to-peak difference as the
response intensity for a focal point. We will demonstrate the
excellent performance of ARMOR by using both data simulated
on a 2-D breast model and data experimentally measured from
mastectomy specimens.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem of interest. Sections III–V
describe the first, second, and third steps of ARMOR, respec-
tively. Examples based on simulated and real-world experimen-
tal data are presented in Section VI. Finally, Section VII provides
the conclusions.

II. PROBLEM FORMULATION

Consider a TAT imaging system, as shown in Fig. 1(a). A
stimulating electromagnetic (laser or microwave) pulse is ab-
sorbed by the biological tissue under testing, which causes a
sudden heat change (of the order of 10−4 ◦C [20]). Due to the
thermoacoustic effect, an acoustic pulse is generated that can
be recorded by an ultrasonic transducer array. The transducer
array may be a real aperture array or a synthetic aperture array
formed by rotating a sensor around the tissue and recording the
acoustic waves at different locations. We assume that the num-
ber of transducers in the array (or in the synthetic aperture array
case, the number of transducer data acquisition locations) is M .
Each transducer is assumed to be omnidirectional; mutual cou-
plings among the transducers are not considered in our model
as they can be tolerated by our robust algorithms to a certain
extent. The recorded acoustic signals are sufficiently sampled
and digitized and a typical recorded pulse is shown in Fig. 1(b)
(based on the data measured on the breast specimen II described
in Section VI).

The data model for the sampled and digitized acoustic signal
recorded by the mth transducer is given by:

xm (n) = sm (n) + ẽm (n), m = 1, . . . , M. (1)

where n is the discrete time index, starting from t0 after the ex-
citation pulse. The scalar sm (n) denotes the signal component,
which corresponds to the acoustic pulse generated at a focal
point, and ẽm (n) is the residual term, which includes unmod-

Fig. 1. (a) A schematic of a 2-D synthetic-aperture-based TAT scanning sys-
tem. (b) A typical acoustic pulse recorded by a transducer (for data measured
from breast specimen II).

eled noise and interference (caused by other sources within the
tissue).

The goal of ARMOR is to reconstruct an image of thermoa-
coustic response intensity I(r), which is directly related to the
absorption property of the tissue, from the recorded data set
{xm (n)}. Herein, the (2-D or 3-D) vector r denotes the focal
point location coordinate. To form an image, we scan the focal
point location r to cover the entire cross section of the tissue
(the transducers can acquire signals at different heights; for each
height, a 2-D cross-sectional image can be reconstructed and a
3-D image can be formed from the 2-D images). We allow cer-
tain uncertainties in ARMOR to deal with amplitude and phase
distortions caused by the background heterogeneity.

The discrete arrival time of the pulse (for the mth transducer)
can be determined approximately as

tm (r) =
⌊
− t0

∆t
+

‖r − rm‖
∆tv0

⌋
. (2)

We will omit the dependence of the arrival time tm (r) on r
hereafter for notational simplicity. Here, ∆t is the sampling
interval, and the 3-D vector rm denotes the location of the mth
transducer. The sound speed v0 is chosen to be the average
sound speed of the biological tissue under interrogation. The
notation ‖x‖ denotes the Euclidean norm of x, and �y� stands
for rounding to the greatest integer less than y. The second term
in (2) represents the time-of-flight between the focal point and
the mth transducer.

The signal components {sm (n)}M
m=1 are approximately

scaled and shifted versions of a nominal waveform s(t) at the
source

sm (n) ≈ exp (−α‖r − rm‖)
‖r − rm‖ · s(n − tm ) (3)

where α is the attenuation coefficient in Nepers/m. In TAT,
the major frequency components of the acoustic signals take a
relatively narrow band, and are usually lower than those in UT
[16]. Hence, we can approximate α as a frequency-independent
constant.

We preprocess the data to time delay all the signals from the
focal point r and compensate for the loss in amplitude due to
propagation decay. Let ym (n) denote the signal after prepro-
cessing to backpropagate the detected signal to the source

ym (n) = exp (α‖r − rm‖) · ‖r − rm‖ · xm (n + tm ). (4)
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Then, the received vector data model can be written as

y(n) = a0s(n) + e(n), n = −N, · · · , N (5)

where a0 is the corresponding steering vector, which is approxi-
mately equal to ā = [1, . . . , 1]T , y(n) = [y1(n), . . . , yM (n)]T ,
e(n) represents the noise and interference term after preprocess-
ing, and (·)T denotes the transpose. Here, we define the time
interval of interests for the signal y(t) to be from −N to N ,
which means that we only take N samples before and after the
approximate arrival time given in (2) for the focal point at r. The
value of N should be chosen large enough so that the interval
from −N to N covers the expected signal duration in the region
of interest.

In reality, both the amplitude and the phase (or pulse arrival
time) of the acoustic pulse will be distorted. A major cause for
these distortions is the acoustically heterogeneous background.
Amplitude distortion is mainly due to the interferences caused
by multipath, which is inevitable in the heterogeneous medium:
refraction occurs due to acoustic speed mismatch across the tis-
sue interface; consequently, acoustic pulses arrived at the trans-
ducer will be via different routes and interfere with each other.
On the other hand, phase distortion is mainly caused by the
nonuniform sound speed. For example, in human female breast,
the sound speed can vary from 1430 to 1570 m/s; therefore,
the actual arrival time will fluctuate around the approximately
calculated time given in (2). Moreover, an inaccurate estimate
of t0 (t0 is aligned with the focal point’s signal arrival time)
and the transducer calibration error may also contribute to the
phase distortion. Amplitude and phase distortion will blur the
image, raise the image background noise level, lower the values
of the object of interest, and, consequently, decrease the image
contrast [16].

We mitigate the effects of these distortions by allowing a0 to
belong to an uncertainty set centered at ā and by considering
the signal arriving within the interval from −N to N .

III. STEP I OF ARMOR: WAVEFORM ESTIMATION

The first step of ARMOR is to estimate the waveform of the
acoustic pulse generated by the focal point at location r, based
on the data model in (5). It will appear that we have neglected the
presence of phase distortion by using this data model in the first
step. However, by allowing a0 to be uncertain, we can tolerate
some phase distortions as well. This approximation causes little
performance degradation to our robust algorithm.

Covariance-fitting-based RCB [21] is used to first estimate
the steering vector a0 , and use the estimated a0 to obtain an op-
timal beamformer weight vector for pulse waveform estimation.
By assuming that the true steering vector lies in the vicinity of
the nominal steering vector ā, we consider the following opti-
mization problem [19]

max
σ 2 ,a0

σ2 subject to R̂ − σ2a0aT
0 � 0,

‖a0 − ā‖2 ≤ ε, (6)

where A � 0 means that the matrix A is positive semidefinite,
σ2 is the power of the signal of interest, and

R̂ =
1

2N + 1

N∑
n=−N

y(n)yT (n) (7)

is the sample covariance matrix. The second constraint in (6) is
a spherical uncertainty set; an elliptical uncertainty set can be
used instead, if a tighter constraint is desirable [21].

The parameter ε in (6) determines the size of the uncertainty
set and is a user parameter. To avoid the trivial solution of
a0 = 0, we require that

ε < ‖ā‖2 . (8)

It can be verified that the smaller the ε, the higher the resolution
and the stronger the ability of RCB to suppress an interference
that is close to the signal of interest, and that the larger the ε,
the more robust RCB will be to tolerate distortions and small-
sample-size problems caused by calculating R̂ in (7) from a
finite number of data vectors or snapshots. When ε is close to
M , RCB will perform like DAS. To attain high resolution and
to effectively suppress interference, ε should be made as small
as possible. On the other hand, the smaller the sample size N
or the larger the distortions, the larger should ε be chosen [19].
Since the performance of RCB does not depend very critically
on the choice of ε (as long as it is set to be a “reasonable
value”) [21], such qualitative guidelines are usually sufficient
for making a choice of ε. We will investigate the effect of ε in
Section VI. In our examples in Section VI, we choose certain
reasonable initial values for ε, and then make some adjustments
empirically based on image quality: making it smaller when the
resulting images have low resolution, or making it larger when
the image is distorted by interferences.

By using the Lagrange multiplier method, the solution to (6)
is given by [19]

â0 = ā − [I + µR̂]−1 ā (9)

where I is the identity matrix, and µ ≥ 0 is the correspond-
ing Lagrange multiplier that can be solved from the following
equation

‖(I + µR̂)−1 ā‖2 = ε. (10)

Consider the eigendecomposition on the sample covariance ma-
trix R̂

R̂ = UΓUT (11)

where the columns of U are the eigenvectors of R̂ and the
diagonal matrix Γ consists of the corresponding eigenvalues
γ1 ≥ γ2 ≥ · · · ≥ γM . Let b = UT ā, where bm denotes its mth
element. Then, (10) can be rewritten as

L(µ) =
M∑

m=1

|bm |2
(1 + µγm )2 = ε. (12)

Note thatL(µ) is a monotonically decreasing function of µ, with
L(0) > ε by (8) and limµ→∞ L(µ) = 0 < ε, which means that
µ can be solved efficiently, say, by using the Newton’s method
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(see [19] for more details). After obtaining the value of µ, the
estimate â0 of the actual steering vector a0 is determined by (9).

Observe that there is a “scaling ambiguity” in (6) by treating
both the signal power σ2 and the steering vector a0 as un-
knowns (see [19] and [21]). The ambiguity exists in the sense
that (σ2 ,a0) and (σ2/c, c1/2a0) (for any constant c > 0) yield
the same term σ2a0aT

0 . To eliminate this ambiguity, we scale
the solution â0 to make its norm satisfy the following condition

‖â0‖2 = M. (13)

(Note that M = ‖ā‖2 .)
To obtain an estimate for the signal waveform s(n), we apply

a weight vector to the preprocessed signals {y(n)}N
n=−N . The

weight vector is determined by using the estimated steering
vector â0 in the weight vector expression of the standard Capon
beamformer (see, e.g., [19] and [21])

ŵRCB =
‖â0‖
M 1/2 ·

[
R̂ + 1

µ I
]−1

ā0

āT
0

[
R̂ + 1

µ I
]−1

R̂
[
R̂ + 1

µ I
]−1

ā0

. (14)

Note that (14) has a diagonal loading form, which allows the
sample covariance matrix to be rank-deficient. The beamformer
output can be written as

ŝRCB(n) = ŵT
RCBy(n), n = −N, . . . , N (15)

which is the waveform estimate for the acoustic pulse generated
at the focal point at location r.

RCB can provide a much better waveform estimate than the
conventional DAS but at a higher computational cost. For a
single focal point, RCB requires O(M 3) flops, which mainly
come from the eigendecomposition of the sample covariance
matrix R̂ [19]; DAS needs only O(M) flops. DAS can be used
as a fast image reconstruction method to provide initial imaging
results.

The weight vector used by DAS for waveform estimation is

ŵDAS = ā (16)

and the estimated waveform is given by

ŝDAS(n) = ŵT
DASy(n) =

M∑
m=1

ym (n), n = −N, . . . , N.

(17)

IV. STEP II OF ARMOR: PEAK SEARCHING

Based on the estimated waveform obtained in Step I for the
focal point at location r, in Step II of ARMOR, we will search
for the two peaks of the bipolar acoustic pulse generated by
the focal point. In a homogeneous background, where phase
distortion is absent, we can accurately calculate the arrival time
of the acoustic pulse generated by the focal point at location r by
using (2). However, this is never true in heterogeneous biological
tissues. It was reported in [16] that when the heterogeneity is
weak, such as in the breast tissue, amplitude distortion caused
by multipath is not severe. We can assume that the original
peak remains a peak in the waveform estimated from Step I of
ARMOR.

The bipolar acoustic pulse has one peak positive and another
negative. We determine the positive and negative peak values as
follows:

P+ = max
{

max
n∈[−∆ ,∆]

ŝ(n)0
}

, (18)

P− = min
{

min
n∈[−∆ ,∆]

ŝ(n)0
}

, (19)

where the searching range [−∆,∆] ∈ [−N,N ] is around the
calculated arrival time given by (2). Here ∆ is a user parameter.
Since the peak searching is independent of the particular wave-
form estimation methods, we use ŝ(n) to denote the waveform
estimated by either DAS or ARMOR.

The search range is determined by the difference between the
true arrival time t̄m and the calculated arrival time tm , based
on (2). This arrival time difference has been analyzed for breast
tissue by taking into account its relatively weak heterogeneity
acoustic property [16]. An expression for this difference is given
in [16] by

δm (r′) = t̄m − tm ∝ [v(r′) − v0 ]
v0

(20)

where r′ is a point within the line connecting the focal point
at location r and the mth transducer at location rm , and v(r′)
is the local sound speed. The higher order terms of [v(r′) −
v0 ]/v0 in (20) have been ignored. It is reasonable to assume
that v(r′) is Gaussian-distributed with mean v0 and variance
σ2

v . Consequently, the arrival time difference is also Gaussian-
distributed with zero-mean and variance σ2

δ ∝ σ2
v /v2

0 . If we
choose ∆ = σδ , and the duration of the acoustic pulse is τ , we
can find the two peaks of the pulse within the interval (−σδ , σδ +
τ) on the recorded signals with a high probability of 0.6826.
This analysis is consistent with the experimental measurements
in [22]. From our examples, we found that a symmetric range
[−∆,∆] around the estimated arrival time performs similarly
to the asymmetric range [−∆,∆ + τ ], and we use the former
since it is easy to handle in practice. Also, we can use similar
techniques as those in [22] to estimate σδ to find a good searching
range for Step II of ARMOR, and to estimate τ for the energy-
type methods, as shown in our examples later.

There is a tradeoff in choosing the searching range. The larger
the searching range, the higher the probability we can find the
peaks of the acoustic pulse within the range. However, if the
range is chosen too large, the interferences may cause false
peaks, and as a consequence, we are more likely to find a false
peak. In our examples in Section VI, we choose the best search-
ing range empirically based on the estimated variance of the
arrival time difference σ̂δ .

V. STEP III OF ARMOR: INTENSITY CALCULATION

After estimating the waveform generated by the focal point at
location r, we need to obtain the response intensity based on the
estimated waveform. For the same estimated waveform, differ-
ent approaches can be used to evaluate the focal point response
intensity. These approaches extract different information from
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the estimated waveform as the response intensity, and may be
useful to physicians in different ways.

There are two major types of response intensity measurement
approaches: amplitude-based and energy-based. The waveform
peak values obtained in Step II of ARMOR can be used for both
approaches.

Conventional DAS uses the amplitude-based measure for TAT
imaging [11], [12], with the corresponding response intensity
given by ŝ(0), or equivalently

IC = ŝ(0) =
M∑

m=1

ym (0) (21)

where the subscript “C” stands for “Conventional.”
The energy-based measure, such as the one used in [23],

calculates the response intensity as follows

IE1 = ŝ2(0) =

[
M∑

m=1

ym (0)

]2

(22)

where the subscript “E1” means “Energy-type 1.”
The entire pulse energy has also been used as an intensity

measure, such as in the monostatic and multistatic microwave
imaging for breast cancer detection [24], [25], and the intensity
is given by

IE2 =
τ∑

n=0

ŝ2(n) =
τ∑

n=0

[
M∑

m=1

ym (n)

]2

, (23)

where the subscript “E2” stands for “Energy-type 2.”
We can consider using the peak value as the response intensity

measure due to the bipolar nature of the response at the focal
point

IP =
{

P+ , if |P+ | ≥ |P−|
P−, otherwise

(24)

where the subscript “P” stands for “Peak,” with P+ and P−

defined in (18) and (19), respectively. Herein, we keep the sign
of the maximum amplitude since the sign of the peak may also
contain some information about the focal point.

Peak searching maximizes the output signal-to-noise ratio.
An intuitive explanation is that, given the fact that the acoustic
pulse is bipolar [11], if we assume that the residual term e(t) is
stationary, or its power is uniform over time, then the signal-to-
noise ratio (SNR) is maximized at the (positive or negative) peak
of the acoustic pulse. As a comparison, the conventional DAS
(21) fixes the samples to be summed up at the calculated arrival
time. Due to phase distortions, the waveform at the calculated
time may be far from the peak value.

We can also employ peak-to-peak difference as the response
intensity for the focal point at location r

IPP = P+ − P− ≥ 0 (25)

where the subscript “PP” denotes the “peak-to-peak difference.”
Peak-to-peak difference has higher imaging contrast than peak
value measure: the peak-to-peak difference of the bipolar pulse
is approximately twice the absolute peak value, which means
that the output signal power of the former is four times of the

Fig. 2. 2-D breast model in an x–y coordinate system, with a 2-mm-diameter
tumor present. (a) Model for electromagnetic simulation. (b) Model for acoustic
simulation.

latter; yet, the noise power of the former may be only twice
that of the latter. Therefore, the output SNR may be doubled
by using the peak-to-peak difference rather than the peak value.
Both peak-value and peak-to-peak difference measures belong
to the amplitude-based measures.

VI. NUMERICAL AND EXPERIMENTAL EXAMPLES

We demonstrate the performance of ARMOR using both nu-
merically simulated and experimentally measured TAT data.
The ARMOR images are compared with the DAS images.

A. Numerical Examples

We consider a 2-D breast model, as shown in Fig. 2. The 2-D
breast model includes 2-mm thick skin, chest wall, as well as
randomly distributed fatty breast tissues and glandular tissues.
The cross section of the breast model is a half-circle with a 10 cm
diameter. In the first numerical example, a 2-mm-diameter tumor
is located at 2.2 cm below the skin (at x = 7.0 cm, y = 6.0 cm).
Fig. 2 shows the shape, dielectric properties, and sound speed
variations of the breast model, as well as the tumor size and
location for the first example. In the second numerical example,
one large tumor (1 cm in diameter) is located at x = 12 cm,
y = 15 cm. Other properties of the breast model for the second
example are the same as those for the first example.

To reduce the reflections from the skin, the breast model
is immersed in a lossless liquid with permittivity similar to
that of the breast fatty tissue. Seventeen transducers (assumed
omnidirectional) are located on a half-circle 10 mm away from
the skin, with uniform spacing, to form a real aperture array.

The dielectric properties of the breast tissues are assumed to
be Gaussian random variables with variations of ±10% around
their nominal values. This variation represents the upper bound
reported in the literature. The nominal values are chosen to be
typical of those reported in the literature [5], [26], which is
given in Table I [24]. The dielectric constants of glandular tis-
sues are between εr = 11 and εr = 15. The dispersive properties
of the fatty breast tissue and those of the tumor are also consid-
ered in the model. The randomly distributed breast fatty tissues
and glandular tissues with variable dielectric properties are rep-
resentative of the nonhomogeneity of the breast of an actual
patient.
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TABLE I
ACRONYMS

Following the report that the breast tissues have a weak
acoustic heterogeneity [16], we model the sound speed within
the breast as a Gaussian random variable with variation ±5%
around the assumed average sound speed of 1500 m/s. Since
the attenuation coefficient α in (3) is small for breast tissue
(0.75 dB/(MHz·cm)) [15] and the acoustic signals are below
2 MHz, we neglect the exponential attenuation in acoustic wave
propagation. Also, since the acoustic pressure field generated
by the thermoacoustic effect is usually small [20], we do not
consider the nonlinear acoustic effects. The probing microwave
pulse used here is a modulated rectangular pulse with a mod-
ulating frequency of 800 MHz. The duration of the pulse is
1 µs. More details about the thermal acoustic simulations are
given in the Appendix. In the following, all the images are dis-
played on a linear scale, and we will name the imaging methods
by their waveform estimation method followed by the intensity
calculation approach, such as “DAS-C.”

Note that the skin also absorbs microwave energy and gen-
erates acoustic signals. The skin response is much stronger
than that of the tumor, since the skin has a much larger area
than the tumor and the skin is closer to the acoustic sensors.
So, before applying the aforementioned preprocessing steps
and ARMOR, we remove the strong skin response using tech-
niques similar to those in [24]. A calibration signal is obtained
as the average of the recorded signals containing similar skin
response. Then, the calibration signal is subtracted out from
all recorded signals to remove the skin response as much as
possible.

The searching range is chosen by the guidelines presented in
Section IV. To obtain a general profile of the arrival time dif-
ference caused by the phase distortion, we use a simple method
similar to the one used in [27]. First, the cross-correlation func-
tions for all the signals recorded by the two adjacent transducers
are obtained. The peak value of the cross-correlation function
is used to estimate the arrival time delay between the signals
recorded by the adjacent transducers. Second, these arrival time
delays are fitted using a fourth-order polynomial curve, which
is dominated by the arrival time delays due to the path length
differences in the absent of phase distortions. The fourth-order
polynomial is used since the delay caused by the path length
difference should vary smoothly [27]. Fig. 3(a) shows the esti-
mated arrival time delay and the delay based on curve fitting.

Fig. 3. (a) Comparison between the estimated and fitted arrival time delays,
for the simulated breast model with one tumor (the curves for the two-tumor
case are similar). Histograms of delay differences. (b) Simulated breast model
with one tumor. (c) Breast specimen I. (d) Breast specimen II.

Third, the delay difference between the estimated arrival time
delay and the fitted delay, or the fitting error, is treated as the
arrival time distortion for the transducers. The standard devia-
tion of the delay difference is used to estimate σδ . Although the
accuracy of the cross-correlation method is limited due to false
peaks and jitter problems, it is sufficient to obtain a qualitative
profile for σδ .

Fig. 3 gives the histogram of the delay difference for all the
cases that we considered herein. For the simulated example,
the standard deviation of the delay difference is 4.5, which
indicates a weak phase distortion in the breast model. We set
an initial value for ∆, based on the estimated σ̂δ , and adjust
the length of the searching range to achieve the best imaging
result.

To estimate the pulse duration τ̂ (used in DAS-E2 and
RCB-E2), we select several typical signals (with clear peaks)
and take the average of their pulse durations. In practice, the
acoustic pulse duration is determined by the probing pulse du-
ration, size and shape of the tumor, as well as the transducer
response.

Fig. 4 shows the images for the simulated breast model with
one 2-mm diameter tumor formed using ARMOR and DAS.
The tumor response is weak for such a small tumor. In these
images, we use ε = 0.1M and the searching range [−14, 14].
Fig. 4(a) corresponds to DAS-C, where the tumor is buried by
interference and noise. In Fig. 4(b), DAS-E1 fails to detect the
tumor. In Fig. 4(c), for DAS-E2, a shadow of the tumor can be
seen. In Fig. 4(d), for RCB-E2, most of the clutters are cleared
up but a strong clutter shows up near the chest wall. Fig. 4(e)–
4(h) shows the results of peak searching; none of them have
false tumors, which may be attributed to proper corrections of
phase aberrations. Images produced by ARMOR-P in Fig. 4(f)
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Fig. 4. Reconstructed images based on the 2-D simulated breast model with
one 2-mm-diameter tumor. (a) DAS-C. (b) DAS-E1. (c) DAS-E2. (d) RCB-
E2, with ε = 0.1M . (e) DAS-P. (f) ARMOR-P, with ε = 0.1M . (g) DAS-PP.
(h) ARMOR-PP, with ε = 0.1M .

and by ARMOR-PP in Fig. 4(h) have lower sidelobe levels and
higher resolutions, and the latter has a higher contrast than the
former, due to the latter using the peak-to-peak difference as the
intensity measure.

Fig. 5 shows the imaging results for the one large tumor
(1 cm diameter) case. Here, we set ε = 0.1M and the search-
ing range [−20, 20]. (Note that different tumor sizes and loca-
tions will result in different sound speed variations in the breast
model.) The white circle in the image corresponds to the ac-
tual contour of the tumor. Although all the methods can detect
the tumor, only ARMOR can be used to form an image of the
tumor with the best agreement with the actual tumor size and
location.

By plotting a map (maps are not shown here due to limited
space) of the values of µ used in ARMOR, for each focal point,
we find that at the tumor locations, µ usually takes smaller values
than that at other locations.

Fig. 5. Reconstructed images based on the 2-D simulated breast model with
one large tumor (1 cm in diameter). The white circle in the image corresponds
to the actual shape of the tumor. (a) DAS-C. (b) DAS-E1. (c) DAS-E2. (d) RCB-
E2, with ε = 0.1M . (e) DAS-P. (f) ARMOR-P, with ε = 0.1M . (g) DAS-PP.
(h) ARMOR-PP, with ε = 0.1M .

B. Experimental Results

We have also tested ARMOR and DAS on two sets of TAT
experimental data from mastectomy specimens [4] obtained by
the Optical Imaging Laboratory at the Texas A&M University.

The two data sets were acquired from mastectomy specimens
using a TAT system. Microwave sources were used to heat the
specimens transiently. In the experiment, the breast specimen
was formed to a cylindrical shape inside a plastic bowl. The
bowl was immersed in ultrasound coupling medium in a con-
tainer. For breast specimen I, the acoustic signals were recorded
at 240 equally spaced scanning stops on a circular track of radius
12.9 cm. The thickness of this specimen was about 4 cm in a
round plastic bowl of 17 cm in diameter. This lesion was diag-
nosed as an invasive metaplastic carcinoma with chondroid and
squamous metaplasia. The size of the tumor was measured to be
35 mm in diameter by TAT, and 36 mm in diameter by radiog-
raphy (see [4] for details). For breast specimen II, the scanning
radius was 9.7 cm, with 160 scanning stops. This specimen was
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Fig. 6. Reconstructed images for breast specimen I. (a) DAS-C. (b) DAS-E1. (c) DAS-E2. (d) RCB-E2, with ε = 0.5M . (e) DAS-P. (f) ARMOR-P, with
ε = 0.5M . (g) DAS-PP. (h) ARMOR-PP, with ε = 0.5M . (i) X-ray image. (j) Inverse solution.

9 cm thick in a round plastic bowl of 11 cm in diameter. The
lesion in the specimen was diagnosed as infiltrating lobular car-
cinoma; the size of the tumor was about 20 mm × 12 mm on
TAT image, and about 26 mm × 15 mm on the radiography
(see [4] for more details).

First, we study the delay difference for both the breast speci-
mens to get a qualitative guide for choosing the searching range
in Step II of ARMOR. The results are shown in Fig. 3(c) and
3(d), respectively. Note that breast specimen II has a larger vari-
ance in delay differences than breast specimen I. In Fig. 3(c),
70% of the delay differences are roughly between −23 to 23
samples, whereas in Fig. 3(d), 70% of the delay differences
are between −40 and 40 samples. Therefore we should set a
larger searching range for breast specimen II than for breast
specimen I.

Fig. 6 shows the reconstructed images for breast specimen I.
In the following images, the searching range was set to [−3, 3]
after adjustment, and ε = 0.5M for all the RCBs used herein.
In Fig. 6(a), for DAS-C, the dark region shows a blurred object
corresponding to the breast tumor. In Fig. 6(b), for DAS-E1, the
light region shows a vague boundary of the tumor. Fig. 6(c),
for DAS-E2, and 6(d), for RCB-E2, have similar performances.
In Fig. 6(e), for DAS-P, and 6(f), for ARMOR-P, a dark region
with a clear cut has a good correspondence with the location
and shape of the tumor in the radiograph [4]. In Fig. 6(g), for
DAS-PP, and 6(h), for ARMOR-PP, not only a clear image of the
tumor is obtained, but also the detailed boundary is revealed. For
comparison, the images from X-ray mammography, considered
the “gold standard” of breast imaging, and the exact inverse
solution of TAT (see [4] for more details) are shown in Fig. 6(i)
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Fig. 7. Reconstructed images for breast specimen II. (a) DAS-C. (b) DAS-E1. (c) DAS-E2. (d) RCB-E2, with ε = 0.5M . (e) DAS-P. (f) ARMOR-P, with
ε = 0.5M . (g) DAS-PP. (h) ARMOR-PP, with ε = 0.5M . (i) X-ray image. (j) Inverse solution.

and 6(j), respectively. We give Fig. 6 and the following Fig. 7 in
gray scale to have a better comparison with the X-ray images.

Fig. 7 shows the reconstructed images for breast specimen
II. The tumor size here is smaller, and a high level of interfer-
ence and noise is present in the recorded data. The searching
interval is eventually adjusted to [−120, 120] and RCB pa-
rameter ε = 0.5M . In Fig. 7(a), for DAS-C, the true tumor is
barely identifiable from the surrounding clutters. The DAS-E1
shown in Fig. 7(b) and the DAS-E2 shown in Fig. 7(c) provide
higher imaging contrast than DAS-C but show strong clutter. In
Fig. 7(d), for RCB-E2, a false tumor shows up, which demon-
strates the need for robustness in the presence of relatively strong
phase distortion. DAS-P is shown in Fig. 7(e) and ARMOR-P is
shown in Fig. 7(f). DAS-PP and ARMOR-PP produce the best
images in Figs. 7(g) and 7(h), respectively, with the location and

shape of the tumor consistent with the radiograph in Fig. 7(i) [4].
If we define the signal-to-background ratio (SBR) (i.e., squaring
the pixel values of the image, the ratio of the maximum to the
total sum of the squared values) as an image quality measure-
ment metric, ARMOR-PP has an SBR twice that of DAS-PP,
which means a 3 dB gain for ARMOR-PP. For comparison, the
image formed by the exact inverse solution of TAT (see [4] for
more details) is shown in Fig. 7(j).

The effects of the uncertainty parameter ε in ARMOR is
studied in our next example. We vary ε of RCB used in ARMOR.
The imaging results for breast specimen I, shown in Fig. 8,
are consistent with our previous analysis: when ε is large, the
performance of RCB, in Fig. 8(a), is close to that of DAS in
Fig. 6(g). When the parameter ε is small, as shown in Fig. 8(c),
the resolution is improved at the cost of robustness.
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Fig. 8. Effects of uncertainty parameter ε on ARMOR-PP, with a searching
range [−3, 3]. (a) ε = 0.7M . (b) ε = 0.5M . (c) ε = 0.3M .

Fig. 9. Effects of the searching range on the DAS-PP images. (a) Searching
range [−20, 20]. (b) Searching range: [−40, 40]. (c) Searching range [−60, 60].
(d) Searching range: [−80, 80].

In our last example, the effect of the searching-range width on
the imaging quality is considered. We use DAS-PP as an exam-
ple since it shows more dependence on the searching range. The
conclusion drawn for DAS applies to ARMOR. A symmetric
searching range centered around the calculated arrival time is

used. From the discussions in Section IV, we know that there
is a tradeoff in choosing the searching range. Clearly, when the
searching range is too small, such as in Fig. 9(a), we miss the
true peaks. With an increase in the searching range, the image
quality becomes gradually better, as shown in Fig. 9(b) and 9(c).
However, when the searching range passes a certain threshold,
with too much interference coming into the searching range, the
image quality degrades because of increased clutters, as shown
in Fig. 9(d).

From our numerical examples, we conclude that ARMOR has
higher resolution and better interference rejection capability and
more robustness against wavefront distortion than DAS. Also,
we find that the amplitude-based measures reveal more details of
the tumor in the reconstructed images than their energy-based
counterparts. The energy-based measures are not sensitive to
phase distortions; however, they tend to blur the reconstructed
images, causing loss of details with a low-pass filtering-like
effect.

VII. CONCLUSION

ARMOR has been proposed for thermoacoustic tomogra-
phy. ARMOR is robust to the amplitude and phase distortions
in the recorded signals caused by the acoustic heterogeneity
of biological tissues. ARMOR consists of three steps: in the
first step, ARMOR uses the data-adaptive robust Capon beam-
forming (RCB) for waveform estimation; in the second step of
ARMOR, a simple, yet effective, peak searching method is used
to mitigate the phase distortion in the estimated waveform; in
the third step, the response intensity is calculated for the focal
point using various approaches, among which the peak-to-peak
difference measure further enhances the image contrast. Exam-
ples based on a numerically simulated 2-D breast model and two
sets of experimentally measured data from human mastectomy
specimens demonstrate the excellent performance of ARMOR:
high-resolution, low sidelobe level, and much improved inter-
ference suppression capability.

APPENDIX

THERMAL ACOUSTIC SIMULATIONS

We consider the microwave-induced thermal acoustic simu-
lation in two steps. In the first step, the electromagnetic field
inside the breast model is simulated and the specific absorp-
tion rate (SAR) distribution is calculated based on the simu-
lated electromagnetic field. The second step is for the acoustic
wave simulation, where the SAR distribution obtained in the
first step is used as the acoustic pressure source through the
thermal expansion coefficient. In both steps, the finite-difference
time-domain (FDTD) method [28] is used for the simulation ex-
amples.

The 2-D electromagnetic breast model used is as shown in
Fig. 2(a). A narrow electromagnetic pulse is used to irradiate
the breast from the top of the model. The electromagnetic field
is simulated using the FDTD method. The grid-cell size used by
FDTD is 0.5 mm × 0.5 mm and the computational region is ter-
minated by perfectly matched layer (PML) absorbing boundary
conditions [29].
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TABLE II
NOMINAL DIELECTRIC PROPERTIES OF BREAST TISSUES [24]

TABLE III
ACOUSTIC PARAMETERS FOR BIOLOGICAL TISSUES

The SAR distribution is given as [30]

SAR(r) =
σ(r)E2(r)

2ρ(r)
(26)

where σ(r) is the conductivity of the biological tissues at loca-
tion r, E(r) is the electric field at location r, and ρ(r) is the
mass density of the biological tissues at location r.

In the microwave-induced TAI system, the microwave energy
is small, and as a result, the acoustic pressure field induced by
the microwave is also small. So, the nonlinear acoustic effect
does not need to be considered in the TAI system. The two basic
linear acoustic wave generation equations are [9]

ρ
∂

∂t
u(r, t) = −∇p(r, t) (27)

and

∇ · u(r, t) = − 1
ρc2

∂

∂t
p(r, t) + αp(r, t) + β

∂

∂t
T (r, t) (28)

where u(r, t) is the acoustic velocity vector, p(r, t) is the acous-
tic pressure field, ρ is the mass density, α is the attenuation
coefficient, β is the thermal expansion coefficient, and T (r, t)
is the temperature. The values for these acoustic properties for
different breast tissues are listed in Table III [25].

Because the duration of the microwave pulse is much shorter
than the thermal diffusion time, thermal diffusion can be ne-
glected [9], and the thermal equation is

Cp
∂

∂t
T (r, t) = SAR(r, t) (29)

where Cp is the specific heat. Substituting (29) into (28) gives

∇ · u(r, t) = − 1
ρc2

∂

∂t
p(r, t) + αp(r, t) +

β

Cp
SAR(r, t).

(30)
FDTD is used again to compute the thermal acoustic wave based
on (27) and (30).

The breast model for the acoustic simulation is shown in
Fig. 2(b), which is constructed similarly to the model for elec-
tromagnetic simulation. An acoustic sensor array deployed uni-

formly around the breast model is used to record the thermal
acoustic signals. The grid-cell size used by the acoustic FDTD
is 0.1 mm × 0.1 mm and the computational region is termi-
nated by PML-absorbing boundary conditions. Note that the
size of the FDTD cell for the acoustic simulation is much finer
than that of the FDTD cell for the electromagnetic simulation
because the wavelength of an acoustic wave is much smaller
than that of a microwave. The SAR distribution data is interpo-
lated to achieve a desired grid resolution for the acoustic breast
model.
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Waveform Diversity Based Ultrasound System for
Hyperthermia Treatment of Breast Cancer

Bin Guo, Member, IEEE, and Jian Li, Fellow, IEEE

Abstract—In this letter, we present a new waveform-diver-
sity-based ultrasound hyperthermia technique for the treatment
of breast cancer. Waveform diversity offers a new paradigm for
beampattern design. By choosing a proper covariance matrix of
the transmitted waveforms under the uniform elemental power
constraint, the ultrasound system can provide a focal spot matched
to the entire tumor region, and meanwhile, minimize the impact
to the surrounding healthy breast tissues. As shown in our 2-D
numerical simulations, this method has better acoustic power de-
position than the existing methods, and can provide the necessary
temperature gradients required for the effective hyperthermia
treatment of breast cancer.

Index Terms—Beampattern design, breast cancer, finite-differ-
ence time domain (FDTD), ultrasound hyperthermia, waveform
diversity.

I. INTRODUCTION

BREAST CANCER is the most common nonskin malig-
nancy in women and the second leading cause of female

cancer mortality [1]. There are over 200 000 new cases of in-
vasive breast cancer diagnosed each year in the United States,
and one out of every seven women in the United States will be
diagnosed with breast cancer in their life time.1

The development of breast cancer imaging techniques, such
as microwave imaging [2], [3], ultrasound imaging [4], [5],
thermal acoustic imaging [6], and magnetic resonance imaging
(MRI), has improved the ability to visualize and accurately
locate the breast tumor without the need for surgery [7]. This
has led to the probability of noninvasive local hyperthermia
treatment of breast cancer. Many studies have been performed
to demonstrate the effectiveness of the local hyperthermia on
the treatment of breast cancer [8], [9]. A challenge in the local
hyperthermia treatment of breast cancer is to heat the malignant
tumors to a temperature above 43 C for about 30–60 min, but
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to maintain a low-temperature level in the surrounding healthy
breast tissue region.

There are two major classes of local hyperthermia tech-
niques: microwave hyperthermia [10] and ultrasound hy-
perthermia [11]. The penetration of microwave is poor in
biological tissues. Moreover, the focal spot generated by mi-
crowave is undesirable at the normal/cancerous tissues interface
because of the long wavelength of the microwave. Ultrasound
can achieve much better penetration depths than microwave.
However, because the acoustic wavelength is very short, the
focal spot generated by ultrasound is very small (millimeter or
submillimeter in diameter) compared to the large tumor region
(centimeter in diameter on average). Thus, many focal spots
are required for complete tumor coverage, and this results in a
long treatment time and missed cancer cells.

In this letter, we present a waveform-diversity-based ul-
trasound hyperthermia technique for the treatment of breast
cancer. Waveform diversity is a new beampattern design tech-
nique recently proposed for multiple-input–multiple-output
(MIMO) radar (see [12] and the references therein). Unlike
the standard phased-array technique, transmitting multiple
different waveforms via its transducers offers more flexibility
for transmit beampattern design. By designing the transmitted
signal cross-correlation matrix under the uniform elemental
power constraint, the waveform diversity can be exploited to
maximize the power deposition at the entire tumor region while
minimizing the impact on the surrounding healthy tissue region.

To validate our algorithm, we develop a 2-D breast model
with an embedded tumor. The model includes the breast tissue,
skin, and chest wall. The finite-difference time-domain (FDTD)
method is used to simulate the acoustic field and the temperature
distribution within the breast. We show with numerical simula-
tions that the proposed method can provide the necessary tem-
perature gradients required for the effective hyperthermia treat-
ment of the tumor and maintain a low-temperature level at the
surrounding healthy tissue region.

II. WAVEFORM-DIVERSITY-BASED ULTRASOUND

HYPERTHERMIA

We consider an ultrasound hyperthermia system as shown in
Fig. 1. Let denote the center location of the tumor, which is
assumed to be estimated accurately a priori using breast cancer
imaging techniques. There are acoustic transducers deployed
around the breast at locations ( ). Let

( ) denote the discrete-time baseband
signal transmitted by the th acoustic transducer, where de-
notes the number of samples of each transmitted signal pulse.

0018-9294/$25.00 © 2008 IEEE
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Fig. 1. Breast model.

We assume that the transmitted acoustic signals are narrow-
band and each acoustic transducer is omnidirectional. The base-
band signal at a location inside the breast can be described as

(1)
where is the carrier frequency

(2)

is the time needed by the signal emitted via the th transducer
to arrive at the location , with being the sound speed inside
the breast tissues, and is the propagation atten-
uation of the acoustic wave. Let

(3)

be the steering vector with denoting the transpose, and let

(4)

Equation (1) can be rewritten as

(5)

where denotes the conjugate transpose.
The power of the transmitted signals at location , which is

also called the transmit beampattern [12], is given by

(6)

where is the covariance matrix of , i.e.,

(7)

The transmit beampattern is a function of the location .
The purpose of our waveform-diversity technique is to focus

the acoustic power onto the entire tumor region while mini-
mizing the peak power level at the surrounding healthy breast

tissue region. The corresponding beampattern design problem is
to choose the covariance matrix under the uniform elemental
power constraint

(8)

where denotes the th element of , and is the
total transmitted power, to achieve the following goals:

1) achieve a predetermind main-beam width matching the
entire tumor region (be within 10% of the power de-
posited at the tumor center);

2) minimize the peak sidelobe level in a prescribed region
(the surrounding healthy breast tissue region).

This problem can be formulated as

s.t.

(9)

where and denote the tumor region and the surrounding
healthy breast tissue regions (sidelobe region), respectively.

As shown in [12], this beampattern design problem is a
semidefinite program (SDP) and can be efficiently solved in
polynomial time using public domain software. Once is de-
termined, a signal sequence that has as its covariance
matrix can be synthesized as

(10)

where is a sequence of independent identically dis-
tributed (i.i.d.) random vectors with mean zero and covariance
matrix , and denotes a square root of .

By transmitting given in (10) using the acoustic trans-
ducer array, we can approximately get a desired high acoustic
power deposition matching the entire tumor region while min-
imizing the power deposition at the surrounding healthy breast
tissue region.

III. MODEL AND NUMERICAL RESULTS

A. Breast Model and Simulation

For simulation purposes, a 2-D breast model is established,
as shown in Fig. 1. The breast model is a 10-cm-diameter semi-
circle, which includes breast tissues, skin, and chest wall. The
acoustic properties of the breast tissues within the breast are
assumed random with a variation of 5% around the nominal
values. A 16-mm-diameter tumor is embedded below the skin
with the tumor center location being ( 0 mm and
50 mm). There are 51 acoustic transducers deployed uniformly
around the breast model. The distance between the neighboring
acoustic transducers is 1.5 mm (half wavelength of the carrier
frequency). Acoustic wave with frequency 500 kHz is used as
the carrier frequency.
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Fig. 2. Beampattern. (a) Waveform diversity. (b) Phased array.

TABLE I
TYPICAL ACOUSTIC PROPERTIES OF BREAST TISSUES

The two basic linear acoustic wave generation equations are
[13], [14]

(11)

and

(12)

where is the acoustic velocity vector, is the
acoustic pressure field, is the mass density, and is the
attenuation coefficient. The nominal values for these acoustic
properties for different breast tissues are listed in Table I [4],
[15], [16]. The values for the tumor are approximated using
those for muscle because we cannot find the values specific
to the tumor. FDTD is used to compute the acoustic field
distribution based on (11) and (12). More details about FDTD
for acoustic simulations can be found in [17] and [18].

Once the acoustic pressure is calculated, the acoustic power
deposition at location , denoted as , is given as [14]

(13)

After obtaining the acoustic power deposition, the 2-D
thermal model, corresponding to the 2-D acoustic models,
is used to calculate the temperature distribution in the breast

TABLE II
TYPICAL THERMAL PROPERTIES OF BREAST TISSUES

tissues. The thermal model is based on the bioheat equation
[19]

(14)

where is the thermal conductivity, is metabolic heat
production, represents the heat exchange mechanism due
to capillary blood perfusion, is the specific heat, and
is the blood temperature, which can be assumed as the body
temperature. The thermal properties for our breast model are
listed in Table II. More detailed discussions can be found in [19].

The thermal models are also simulated using the FDTD
method [20]. The body temperature and the environmental
temperature are set at 36.8 C and 20 C, respectively. The
convective boundary condition is used at the skin surface.

B. Numerical Results

We demonstrate the performance of our waveform-diver-
sity-based method via several numerical examples. For compar-
ison purposes, the conventional delay-and-sum (DAS)-based
phased-array beamforming method is also applied to the same
model, and its results are compared with those of our wave-
form-diversity-based method.

DAS-based phased-array beamformer transmits the same
waveform using a weight vector

(15)
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Fig. 3. Power deposition. (a) Waveform diversity. (b) Phased array.

Fig. 4. Temperature distribution. (a) Waveform diversity. (b) Phased array.

The corresponding beampattern is

(16)

Fig. 2 shows the calculated beampattern within the breast
model. The blue lines in these figures mark the boundary of the
breast and the tumor. Fig. 2(a) is the beampattern due to our
waveform diversity technique which is calculated by using (6)
with the optimal covariance matrix determined by using (9).
The figure shows that the 3-dB main beam is matched to the
tumor region well, and the sidelobe level is low. Fig. 2(b) is the
DAS beampattern which is calculated using (16). It is shown
that the DAS beampattern is very narrow, and only focuses at
the center region of the tumor.

Fig. 3(a) and (b) shows the acoustic power densities within
the breast model for the waveform diversity technique and DAS,
respectively. The dots mark the locations of the acoustic trans-
ducers. It is shown that the acoustic power densities in Fig. 3

agree with the beampatterns in Fig. 2 very well, and our wave-
form diversity technique gives a focal spot matching the entire
tumor region.

Fig. 4 shows the temperature distributions within the breast
model. Fig. 4(a) is the result of waveform diversity, which shows
that the entire tumor region is heated to a temperature greater
than 43 C while maintaining the surrounding healthy tissues at
a low-temperature level (below 40 C). As a comparison, DAS
only heats a very small region to a temperature greater than
43 C at the center of the tumor.

IV. CONCLUSION

In this letter, we have presented a new waveform-diversity-
based ultrasound hyperthermia technique for the treatment of
breast cancer. By choosing the covariance matrix of the trans-
mitted waveforms properly, this method can provide a focal spot
matching the entire tumor region while minimizing the impact
on the surrounding healthy breast region. As shown with 2-D
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simulation examples, this method has better acoustic power de-
position than its conventional counterpart, and can provide the
necessary temperature gradients required for the effective hy-
perthermia of breast cancer.
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Multifrequency Microwave-Induced Thermal
Acoustic Imaging for Breast Cancer Detection
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Abstract—Microwave-induced thermal acoustic imaging (TAI)
is a promising early breast cancer detection technique, which com-
bines the advantages of microwave stimulation and ultrasound
imaging and offers a high imaging contrast, as well as high spatial
resolution at the same time. A new multifrequency microwave-in-
duced thermal acoustic imaging scheme for early breast cancer
detection is proposed in this paper. Significantly more information
about the human breast can be gathered using multiple frequency
microwave stimulation. A multifrequency adaptive and robust
technique (MART) is presented for image formation. Due to its
data-adaptive nature, MART can achieve better resolution and
better interference rejection capability than its data-independent
counterparts, such as the delay-and-sum method. The effective-
ness of this procedure is shown by several numerical examples
based on 2-D breast models. The finite-difference time-domain
method is used to simulate the electromagnetic field distribution,
the absorbed microwave energy density, and the thermal acoustic
field in the breast model.

Index Terms—Breast cancer detection, finite-difference time-do-
main (FDTD) methods, multifrequency adaptive and robust
technology (MART), robust capon beamforming (RCB), thermal
acoustic imaging (TAI).

I. INTRODUCTION

BREAST cancer is the most common nonskin malignancy
in women and the second leading cause of female cancer

mortality [1]. There are over 200 000 new cases of invasive
breast cancer diagnosed each year in the U. S., and one out of
every seven women in the U.S. will be diagnosed with breast
cancer in their life time (the American Cancer Society, 2006)
and early diagnosis is key to surviving breast cancer [2]. Mi-
crowave imaging is a method for early breast cancer detection
[3]–[9], which exploits the significant contrast in dielectric
properties between normal and cancerous tissues [10]–[12].
However, it is difficult for microwave imaging techniques to
achieve good (submillimeter) spatial resolution because of
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Fig. 1. Model of microwave-induced TAI for breast cancer detection.

its long wavelength [13]. Ultrasound is another option which
offers a high spatial resolution because of its short acoustic
wavelength [14]–[16]. However, the contrast in acoustic prop-
erties between normal and tumor tissues is very small due to
both being soft tissues.

Microwave-induced thermal acoustic imaging (TAI) com-
bines the advantages of microwave stimulation and ultrasound
imaging [13], which offers a high imaging contrast (due to the
significantly different dielectric properties of tumor and normal
breast tissues), as well as high spatial resolution (due to the low
propagation velocity or the short wavelength of acoustic waves
in biological tissues) at the same time. To use microwave-in-
duced TAI techniques for breast cancer imaging, a microwave
source with a short duration time is used to irradiate the breast,
as shown in Fig. 1. The normal breast tissues, as well as tumors,
absorb microwave energy and emanate thermal acoustic waves
by thermoelastic expansion. It is well-known that malignant
breast tissue has a higher water content [1], [10], [12], [17],
with a much higher conductivity than normal breast tissues
(with low water content). As a result, the microwave energy ab-
sorbed by tumor and normal breast tissues will be significantly
different and a stronger acoustic wave will be produced by the
tumor. The acoustic waves generated in this manner carry the
information about the microwave energy absorption properties
of the tissues under irradiation. The thermal acoustic waves
propagate out of the breast and are recorded by an acoustic
sensor array placed around the breast. The tumor locations can
be accurately determined since the received acoustic signals
from the malignant tumors are at higher levels, hence aiding
image construction.

During the last decade, several research groups have been
working on the microwave-induced TAI of biological tissues
[18]–[23]. The microwave frequency used ranges from 400 MHz
[22] to 3 GHz [13]. Image reconstruction algorithms include the

0018-9294/$25.00 © 2007 IEEE
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widely used delay-and-sum (DAS) method [20], [23], the fre-
quency-domain inverse method [24], [25], and the time-domain
inverse method [13], [19].

Microwave-induced TAI does, however, present several
challenges. First, the human breast is large in size, usually
has an irregular shape if not compressed, and is covered with
a 2–mm-thick skin with dielectric properties significantly
different from the normal breast tissues. Moreover the breast
tissue is far from homogeneous because the dielectric proper-
ties of glandular tissue are different from that of breast fatty
tissue. All these factors make it difficult to approximate the
back propagation properties of thermal acoustic signals inside
the breast. Due to the slow acoustic wave propagation speed or
short wavelength in biological tissues, the errors on the order
of millimeters in determining the acoustic signal propagation
path lengths will severely degrade the image quality.

In this paper, a multifrequency microwave-induced TAI
system is proposed which remedy the problems mentioned
above. Instead of using a single frequency microwave source,
as generally done by other research groups in this field, here
a multiple frequency source is used, since the desired thermal
acoustic signals can be induced by microwave sources operating
at a wide range of frequencies. We show in this paper that the
rich information collected from the multifrequency stimulation
can help mitigate the challenges mentioned. The multifre-
quency microwave-induced thermal acoustic signals will offer
higher signal-to-noise ratio (SNR) and higher imaging contrast
than single-frequency microwave-induced thermal acoustic sig-
nals since much more information about the human breast can
be harvested from the multiple stimulating frequencies within
the microwave frequency band. Furthermore, the interference
due to inhomogeneous breast tissue can be suppressed more
effectively when multifrequency microwave-induced thermal
acoustic signals are used for image reconstruction since more
information about breast tissue can be used by the adaptive
image reconstruction algorithms.

Another challenge encountered by microwave-induced TAI
is the need to develop accurate and robust image reconstruction
methods. DAS is a widely used reconstruction algorithm in
medical imaging. This method is data-independent and tends to
suffer from poor resolution and high sidelobe level problems.
Data-adaptive approaches, such as the recently introduced
robust Capon beamforming (RCB) [26], [27] method, can have
much better resolution and much better interference rejection
capabilities than their data-independent counterpart. Several
medical imaging algorithms [4], [5], [28], [29] based on RCB
have been developed and used for microwave imaging and
thermal acoustic imaging. Good performances of these algo-
rithms have been reported.

We present a multifrequency adaptive and robust technique
(MART) based on RCB for multifrequency microwave-induced
TAI. There are three stages in our MART. In Stage I, RCB is
used to estimate the thermal acoustic responses from the grid
locations within the breast for each stimulating microwave
frequency. Then, in Stage II, a scalar acoustic waveform at
each grid location is estimated based on the response estimates
for all stimulating frequencies from Stage I. Finally, in Stage
III, the positive peak and the negative peak of the estimated

acoustic waveform at each grid location are determined, and
the peak-to-peak difference is computed and referred to as the
image intensity.

To validate the effectiveness of the proposed algorithm, we
develop a 2-D inhomogeneous breast model, which includes
skin, breast fatty tissues, glandular tissues, and the chest wall.
Small tumors are set below the skin. The finite-difference time-
domain (FDTD) method is used to simulate the electromagnetic
field inside the breast tissues [30], [31]. The specific absorp-
tion rate (SAR) distribution is calculated based on the simu-
lated electromagnetic field [32], [33]. Then FDTD is used again
to simulate the propagation of the microwave-induced thermal
acoustic waves [34], [35].

The remainder of this paper is organized as follows. In
Section II, the microwave frequency properties of human
breast are described. A proper microwave frequency band for
multifrequency microwave-induced TAI is also given in this
section. MART is proposed for image formation in Section III.
In Section IV, 2-D electromagnetic and acoustic breast models
are developed. The electromagnetic and acoustic simulation
methods are also presented in this section. Imaging results
based on numerical examples are provided in Section V.
Section VI concludes the paper.

II. MICROWAVE PROPERTIES OF HUMAN BREAST

A. Cutoff Frequency of Human Breast

In a microwave-induced TAI system, the biological tissues
should be heated by microwave sources in a uniform manner,
otherwise thermal acoustic signals will be induced by a nonuni-
form microwave energy distribution, resulting in images diffi-
cult to interrupt. It is well-known that high-order electromag-
netic field modes will be excited in a media if the microwave
works at a frequency higher than a cutoff frequency of the media
[36], and the microwave energy distribution is nonuniform at
high-order modes [37]. To minimize the nonuniform microwave
energy distribution inside the breast caused by the high-order
electromagnetic modes, the microwave source should work at a
frequency below a certain cutoff frequency.

To estimate the cutoff frequency for the human breast, we
consider the simplified breast model shown in Fig. 2(a) con-
sisting of a semicircular dielectric waveguide with a perfect
magnetic conductor (PMC) at the bottom of the semicircle. Re-
call that the tangential components of the magnetic field are zero
on the surface at the PMC. The PMC assumption is reasonable
because the permittivity of the chest wall is much
greater than that of the normal breast tissues . In cir-
cular dielectric waveguide, if an electromagnetic mode has a
field distribution whose tangential magnetic field components
are zero at the center line of the circular waveguide, as shown
in Fig. 2(b), the introduction of a PMC at the center line of the
circular waveguide will not significantly change the boundary
conditions and, hence, will not significantly alter the mode dis-
tribution. The modes in the semicircular dielectric waveguide
can, thus, be estimated by determining the modes in a corre-
sponding circular dielectric waveguide.
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Fig. 2. Simplified breast model. (a) Semicircular dielectric waveguide with
PEC, and (b) corresponding circular dielectric waveguide.

The dominant mode of a circular dielectric waveguide is
the HE11 mode, the cutoff frequency of which is zero. The
electromagnetic field distribution is near uniform at this mode.
The dominant mode is followed by the TE01, TM01, and
HE21 modes. These modes are degenerate, and have a cutoff
frequency given by [36]

(1)

where is the speed of light in free space, is the
first root of the Bessel function of the first kind of order zero

, and are the radius and average permit-
tivity of the circular dielectric waveguide, respectively. TM01
and HE21, as well as the interference between them, satisfy the
zero tangential magnetic field component condition at the center
line of the circular waveguide. These modes can also exist in the
semicircular dielectric waveguide. By substituting the parame-
ters of the breast model into (1), we obtain the cutoff frequency
of the semicircular breast model to be

MHz (2)

where we have used and as typical values
for human breast. Consequently, the stimulating microwave fre-
quency for the TAI system should be below 812 MHz.

B. Microwave Energy Absorption Properties of Breast Tissues
and Tumor

It is well-known that the complex relative dielectric properties
of a medium can be expressed as

(3)

TABLE I
COLE–COLE PARAMETERS FOR BIOLOGICAL TISSUES

where is the relative permittivity and is the out-of-phase
loss factor which can be written as

(4)

with being the total conductivity, the free space permit-
tivity, and the electromagnetic frequency. The tissue absorp-
tion property of the electromagnetic wave energy is

(5)

which is a function of the total conductivity and the electric field
inside the tissue. If we assume that the microwave energy distri-
bution is uniform inside the breast in a TAI system, the absorp-
tion of the microwave energy by the breast is characterized by
the total conductivity of the breast tissues

(6)

Hence, instead of using the attenuation coefficient , as used in
[23], in this paper, we study the absorption properties of breast
tissues using the total conductivity .

The dielectric properties of biological tissues can be accu-
rately modeled by the Cole–Cole equation [38]

(7)

where is the order of the Cole–Cole model, is the
high-frequency permittivity, is the relaxation time, is
the pole amplitude, is a measure of the broad-
ening of dispersion, and is the static ionic conductivity. The
Cole–Cole parameters for skin, breast fatty tissue, chest wall
(mainly consisting of muscle), as well as tumor are listed in
Table I [39], [40]. Because we cannot find the values specific to
the tumor, the dielectric properties of the tumor is approximated
using a Debye model [3], [41], which is a special case of the
Cole–Cole model.

Substituting (7) into (6), we obtain the total conductivity of
the breast tissue as follows:

(8)
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Fig. 3. Total conductivity of normal breast tissues and tumor as a function of
frequency.

Fig. 4. Ratio of conductivity between tumor and normal breast tissue as a func-
tion of frequency.

which is a function of the stimulating microwave frequency,
where denotes the imaginary part of the complex
relative permittivity. Fig. 3 gives the total conductivity of
breast fatty tissue and tumor over a frequency band from
100–1000 MHz. Note that the total conductivity increases with
the microwave frequency, which means that more microwave
energy is absorbed and converted to heat by tissues at higher
microwave frequency region, or in other words, the SNR is
higher in the received thermal acoustic signals at higher stim-
ulating microwave frequency region. On the other hand, the
penetration at higher microwave frequencies is smaller because
the tissues are lossy. We define the conductivity ratio between
the tumor and the normal breast tissue as

(9)

and plot it as a function of frequency in Fig. 4. A high con-
ductivity ratio means that more microwave energy is absorbed
and converted to heat by tumor than by normal breast tissues.
In other words, the higher the conductivity ratio, the higher
the imaging contrast. Fig. 4 shows that the imaging contrast
is higher at the lower microwave frequency region because the
conductivity ratio decreases with the frequency.

These microwave energy absorption properties of breast
tissues and tumor motivate us to consider inducing thermal
acoustic signals with different microwave frequencies. By

taking into account the aforementioned cutoff frequency given
in (2), we choose a frequency range from 200–800 MHz. The
frequency step is 100 MHz, with a total of seven frequencies.
Note that wideband antenna techniques should be used for
the practical implementation because the frequency range is
wide. However, since the exciting microwave frequency is
stepped, an antenna with a broad instantaneous bandwidth
is not required. Another advantage of using multiple fre-
quencies for stimulation is that more information about the
inhomogeneous breast tissues will be harvested from the mul-
tifrequency microwave-induced thermal acoustic signals. The
microwave energy distribution inside the breast model is not
uniform because the human breast is inhomogeneous media,
and thermal acoustic signals will be induced by the inhomo-
geneous energy distribution. These thermal acoustic signals
will appear as clutter in the resulting images. However, the
inhomogeneous microwave energy distributions are different at
different stimulating frequencies because of the different mi-
crowave wavelengths in breast tissues. When a multifrequency
microwave source is used for TAI, the thermal acoustic clutter
induced by the inhomogeneous breast tissues can be suppressed
by our adaptive and robust imaging algorithm.

III. MULTIFREQUENCY ADAPTIVE AND ROBUST TECHNOLOGY

(MART) FOR BREAST CANCER IMAGING

We consider a multifrequency microwave-induced TAI
system as shown in Fig. 1, where an acoustic sensor array is
arranged on a semicircle relatively close to the breast skin. The
location of each acoustic sensor is , where

is the number of acoustic sensors. Assume that mi-
crowave sources with different frequencies are used to irradiate
the breast model. Let ( ; ;

) denote the thermal acoustic signal induced
by the frequency and received by the acoustic sensor,
where is the recording time which is sufficiently long to
allow acoustic sensors to record all responses from the breast.
Our goal is to detect the tumor by reconstructing an image of
the thermal acoustic response intensity as a function of
scan location within the breast.

A. Data Preprocessing

Because the breast skin, breast tissues, chest wall, and tumor
absorb the microwave energy and convert the energy to heat, all
of them produce thermal acoustic signals. The received thermal
acoustic waveforms include the responses from the tumor, as
well as from other healthy breast tissues. The thermal acoustic
signals generated by the skin are much stronger than those by a
small tumor because of the high conductivity of the skin and the
acoustic sensors being very close to the skin. We must remove
the skin responses to enhance the tumor responses. Because the
distances between the acoustic sensors and the nearest breast
skin are similar to one another, the signals recorded by var-
ious sensors have similar skin responses. Hence, we can remove
the skin response by subtracting out a fixed calibration signal
from all received signals. This calibration signal can be obtained
simply by averaging the recorded signals from all channels.

Let denote the signals after subtracting out the calibra-
tion signal. To process the signals coherently for a focal point
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at , we align the signals by time shifting each signal a
number of samples . The discrete time delay between
and the acoustic sensor can be calculated as

(10)

where stands for rounding to the greatest integer less than
, is the distance between and , is the velocity

of the acoustic wave propagating in breast tissues, and is the
sampling interval, which is assumed to be sufficiently small. The
time-shifted signals are denoted as

(11)
After time shifting, the acoustic signals from the imaging lo-

cation are aligned so that they all start approximately from
time for all channels. Now the aligned signals are win-
dowed by

otherwise
(12)

to isolate the signals from the focal point at . The windowed
signals are denoted as , , where is
the approximate duration of the thermal acoustic pulse, which
can be determined from the pulse duration of the pulsed mi-
crowave source.

Attenuation exists when acoustic waves propagate within the
breast. This attenuation has two parts: the attenuation due to the
lossy media and the propagation attenuation. Thus, the attenu-
ation of the tumor responses at various channels are different
because of the different distances between the imaging position

and the acoustic sensors. For the 2-D case considered here, the
compensation factor for the channel is given by

(13)

where the first term of the right side of (13) compensates for the
attenuation due to the lossy media, and the second term com-
pensates for the geometric attenuation. The compensated signal
can be calculated as

(14)

B. Multifrequency Adaptive and Robust Technology (MART)

Without loss of generality, we consider imaging at a generic
location only. For notational convenience, we drop the depen-
dence of on , and simply denote it as . Now we
consider the data model

(15)

where represents the tumor response and rep-
resents the residual term, which includes the noise and inter-
ference from breast skin, chest wall, and other responses. The
structure of the data model is a data cube as shown in Fig. 5.

Fig. 5. Data cube model. In Stage I, MART slices the data cube for each fre-
quency index. RCB is applied to each data slice to estimate the corresponding
waveform.

MART is a three-stage time-domain signal processing algo-
rithm. In Stage I, MART slices the data cube corresponding to
each frequency index, and processes each data slice by the RCB
to obtain the thermal acoustic waveform estimate for each stim-
ulating frequency. Then, in Stage II, a scalar waveform is es-
timated from all frequencies based on the waveform estimates
from Stage I. Finally, the positive peak and the negative peak
of the estimated thermal acoustic waveform from Stage II are
found in Stage III. The peak-to-peak difference is calculated as
the image intensity at the focal point at . The details of all three
stages are given below.

1) Stage I: In Stage I, MART approximates the data model
as

(16)

where and
. The scalar waveform denotes

the thermal acoustic signal generated at the focal location
corresponding to the stimulating frequency. The vector is
referred to as the array steering vector, which is approximately
equal to since all the signals have been
aligned temporally and their attenuation compensated for in the
preprocessing step. The residual is the noise and interfer-
ence term, which is assumed uncorrelated with the signal.

There are two assumptions made to write the model given in
(16). First, the steering vector is assumed to vary with the mi-
crowave frequency but nearly constant with the time sample

. Second, we assume that the thermal acoustic signal wave-
form depends only on the microwave frequency but not on
the acoustic sensor . The truth, however, is that the steering
vector is not exactly known as it changes slightly with both the
stimulating frequency and time due to array calibration errors
and other factors. The signal waveform can also vary slightly
with both the stimulating frequency and acoustic sensor, due to
the inhomogeneous and frequency-dependent medium within
the breast. The two aforementioned assumptions simplify the
problem slightly. They cause little performance degradations
when used with our adaptive and robust algorithm.
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In practice, the true steering vector in (16) is not . We
assume that the true steering vector lies in the vicinity of the
assumed steering vector , and the only knowledge we
have about is that

(17)

where is a user parameter, which may be determined de-
pending on the various errors discussed previously.

The true steering vector can be estimated via the following
covariance fitting approach of RCB [26], [27]

(18)

where is the power of the signal and

(19)

is the sample covariance matrix. The above optimization
problem can be solved as described in [26], and the estimated
true steering vector is denoted here as .

To obtain the signal waveform estimate, we pass the received
signals through a Capon beamformer [27], [42]. The weight
vector of the beamformer is determined by using the estimated
steering vector in the following expression:

(20)

Then the estimated signal waveform corresponding to the
stimulating frequency is

(21)

By repeating the aforementioned process for through
, we obtain the complete set of waveform estimates

(22)

2) Stage II: Since the stimulating microwave sources with
various frequencies are assumed to have the same power, we as-
sume that the thermal acoustic responses from the tumor at dif-
ferent stimulating frequencies have nearly identical waveforms.
Note that the thermal acoustic responses induced by the inho-
mogeneous microwave energy distribution (due to the inhomo-
geneous breast tissues) are different at different stimulating fre-
quencies. This means that the elements of the vector are all
approximately equal to an unknown scalar signal , and the
noise and interference term can be assumed uncorrelated with
this signal. In Stage II of MART, we adopt the data model

(23)

where is approximately equal to . However, the
“steering vector” may again be imprecise, and, hence, RCB is
needed again.

As we did in Stage I, we assume that the only knowledge
about is that

(24)

where is the assumed steering vector, and is a
user parameter. Again, the true steering vector can be esti-
mated via the covariance fitting approach

(25)

where is the power of the signal , and

(26)

is the sample covariance matrix.
After obtaining the estimated steering vector , we obtain

the adaptive weight vector and the estimated signal waveform,
respectively, as

(27)

and

(28)

3) Stage III: Because the thermal acoustic pulse is usually
bipolar: a positive peak, corresponding to the compression
pulse, and a negative peak, corresponding to the rarefaction
pulse [43], we use the peak-to-peak difference as the response
intensity for the imaging location in the third stage of MART.
Compared with other energy or amplitude based response
intensity estimation methods, peak-to-peak difference can be
used to improve imaging quality with little additional compu-
tation costs.

The positive and negative peak values of the estimated wave-
form for the focal location will be searched based on the
estimated waveform (28) obtained in Stage II. Because of the
nonuniform sound speed in biological tissues, the arrival time
of the acoustic pulse generated at location cannot be calcu-
lated accurately. However, it was reported in [18] that, when
the heterogeneity is weak, such as in breast tissues, amplitude
distortion caused by multipath is not severe. We assume that the
original peak remains a peak in the estimated waveform, and the
positive and negative peak values of the thermal acoustic pulse
can be searched as

(29)

and

(30)
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Fig. 6. Breast model for thermal acoustic simulation. (a) Model for electro-
magnetic simulation and (b) model for acoustic simulation.

where is the searching range. Here and
are user parameters, and the details on how to choose them

can be found in [29].
After the positive and negative peak values are found, the

response intensity for the focal point at location is given as

(31)

IV. MODELING AND SIMULATIONS

We consider 2-D breast models simulated in two steps. In
the first step, the electromagnetic field inside the breast model
is simulated and the SAR distribution is calculated based on
the simulated electromagnetic field. The second step is for the
acoustic wave simulation, where the SAR distribution obtained
in the first step is used as the acoustic pressure source through
the thermal expansion coefficient. In both steps, the FDTD
method is used for the simulation examples.

A. Electromagnetic Model and Simulation

For simulation purposes, the 2-D electromagnetic breast
model used is as shown in Fig. 6(a). The breast model is a
10 cm in diameter semicircle, which includes the skin, breast
fatty tissue, glandular tissues, and chest wall (muscle). A
1-mm-diameter tumor is embedded below the skin. The di-
electric properties of the breast tissues as well as tumor at the

Fig. 7. Gaussian modulated microwave source.

microwave frequency were calculated based
on the Cole–Cole model in (7). The dielectric properties of the
normal breast fatty tissue are assumed random with a variation
of 10% around the nominal values. The dielectric constants
of glandular tissues are between and .

Fig. 7 shows a Gaussian modulated electromagnetic wave
used to irradiate the breast from the top of the model, as shown in
Fig. 6(a). The time duration for the Gaussian pulse is 1 . The
electromagnetic field is simulated using the FDTD method [30],
[31]. The grid cell size used by FDTD is 0.5 0.5 mm and the
computational region is terminated by perfectly matched layer
(PML) absorbing boundary conditions [44], [45].

The SAR distribution is given as [32], [33]

(32)

where is the conductivity of the biological tissues at loca-
tion , is the electric field at location , and is the
mass density of the biological tissues at location .

B. Acoustic Model and Simulation

In the microwave-induced TAI system, the microwave energy
is small, and as a result, the acoustic pressure field induced by
microwave is also small. So, the nonlinear acoustic effect does
not need to be considered in the TAI system. For example, it is
shown in [46] that the temperature rise is about 0.1 mK and the
acoustic pressure change is only about 100 Pa in the microwave-
induced TAI system. The shock distance in breast tissues is [47]

(33)
where is the nonlinear factor of the breast tis-
sues, is the mass density of the breast tis-
sues, and is the sound speed inside the breast
tissues [14]. is the acoustic pressure rise, and and
are the minimal acoustic wavelength and the maximal acoustic
frequency of the thermal acoustic signal, respectively. For our
breast model, the acoustic pressure rise is Pa, and the
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TABLE II
ACOUSTIC PARAMETERS FOR BIOLOGICAL TISSUES.

( f IS THE ACOUSTIC FREQUENCY AND THE UNIT IS MEGAHERTZ)

maximal acoustic frequency is KHz. By substi-
tuting the parameters into (33), we obtain the shock distance in
breast tissues to be

(34)

Because the size of our breast model is only 10 cm, which is
much smaller than the shock distance, it is reasonable to ig-
nore the nonlinear acoustic effect in the microwave-induced TAI
system.

The two basic linear acoustic wave generation equations are
[13]

(35)

and

(36)

where is the acoustic velocity vector, is the
acoustic pressure field, is the mass density, is the at-
tenuation coefficient, is the thermal expansion coefficient,
and is the temperature. The values for these acoustic
properties for different breast tissues are listed in Table II [14],
[46], [48]–[50]. The attenuation coefficient is calculated with

MHz. The values for the tumor are approximated
using the values for muscle because we cannot find the values
specific to the tumor.

Because the duration of the microwave pulse is much shorter
than the thermal diffusion time, thermal diffusion can be ne-
glected [13], and the thermal equation is

(37)

where is the specific heat. Substituting (37) into (36) gives

(38)

FDTD is used again to compute the thermal acoustic wave
based on (35) and (38). More details about FDTD for acoustic
simulations can be found in [34], [35], and [51]–[57].

The breast model for the acoustic simulation is constructed
similarly to the model for electromagnetic simulation. The

Fig. 8. Thermal acoustic signals at different stimulating frequencies f = 200,
400, 600, and 800 MHz. (a) Thermal acoustic responses from tumor only and
(b) the normalized spectrums of the signals in (a).

velocities of the normal fatty breast tissue are also assumed
random with a variation of 5% around average values, as
shown in Fig. 6(b). An acoustic sensor array with 35 elements
deployed uniformly around the breast model is used to record
the thermal acoustic signals. The distance between neighboring
acoustic sensors is 4 mm. The grid cell size used by the acoustic
FDTD is 0.1 0.1 mm and the computational region is ter-
minated by PML absorbing boundary conditions [55]–[57].
Note that the size of the FDTD cell for acoustic simulation
is much finer than that of the FDTD cell for electromagnetic
simulation because the wavelength of an acoustic wave is much
smaller than that of a microwave. The SAR distribution data
is interpolated to achieve the designed grid resolution for the
acoustic breast model.

V. NUMERICAL EXAMPLES

At the beginning of this section, the typical microwave-in-
duced thermal acoustic responses from the tumor are plotted
in Fig. 8(a) for stimulating frequencies of 200, 400, 600,
and 800 MHz. The signals are simulated based on the afore-
mentioned 2-D breast model. To obtain the signals, we perform
the simulation twice at each stimulating frequency, with and
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Fig. 9. Imaging results for the case of a single 1 mm-diameter tumor.
(a) MART, (b) DAS, (c) SART at stimulating frequency f = 200 MHz,
(d) SART at stimulating frequency f = 400 MHz, (e) SART at stimulating fre-
quency f = 600 MHz, and (f) SART at stimulating frequency f = 800 MHz.

without the tumor, and record the acoustic signals in an acoustic
sensor. The difference of the two received signals is referred to
as the thermal acoustic response only from the tumor at the stim-
ulating frequency. It can be seen that the thermal acoustic re-
sponses from the tumor at different stimulating frequencies are
similar to one another. The figure also shows that the thermal
acoustic signals are wideband bipolar pulses, with a large pos-
itive peak and a large negative peak. Fig. 8(b) shows the nor-
malized spectra of the acoustic signals corresponding to the ex-
citations in Fig. 8(a). It is seen that the frequency range of the
acoustic signals is about from 1 to 400 KHz. The dominant band
(3-dB band) of the signals ranges from 10 to 180 KHz, and the
corresponding acoustic wavelength ranges from 150 to 8 mm in
the breast tissues.

Several numerical examples are used in this section to demon-
strate the effectiveness of MART. The thermal acoustic sig-
nals are simulated based on the 2-D breast model with tumor
only. For comparison purposes, the DAS method is applied to
the same data set also. We also present the imaging results for
the single-frequency microwave-induced TAI at different stim-
ulating frequencies. The corresponding image reconstruction
method is referred to as the single-frequency adaptive and robust
technique (SART), which is similar with MART but without
Stage II of MART. In SART, the RCB is used to estimate the
thermal acoustic waveform at a certain stimulating frequency
just like in Stage I of MART. Then the peak search method used
in MART Stage III is applied to the estimated waveform to de-
termine the image intensity.

Fig. 10. Imaging results for the two 1.5-mm-diameter tumors case. (a) Breast
model, (b) MART, (c) DAS, (d) zoom in of (b), (e) SART at stimulating fre-
quency f = 300 MHz, and (f) SART at stimulating frequency f = 700 MHz.

In the first example, a 1-mm-diameter tumor is embedded in
the breast model at the location ( mm, mm).
This is the challenging case of early breast cancer detection
because of the small tumor size. Fig. 9(a) and (b) shows the
imaging results for MART and DAS, respectively. The tumor
is shown clearly in the MART image [Fig. 9(a)], and the size
and location of the tumor is accurate. Because of the high side-
lobe, poor resolution, and poor interference rejection capability
of the DAS method, the tumor is essentially missed by DAS as
shown in Fig. 9(b). Fig. 9(c)–(f) shows the imaging results for
SART at the stimulating frequencies 200, 400, 600, and
800 MHz, respectively. The figures show that SART can de-
termine the tumor correctly, but some clutter shows up in the
SART images. Note that the clutter shows up at different loca-
tions with different stimulating frequencies. By comparing the
images for MART and SART, it can be seen that the clutter are
effectively suppressed by MART when multiple stimulating fre-
quencies are used.

In the second numerical example, two small 1.5-mm-di-
ameter tumors are set inside the breast model as shown in
Fig. 10(a). Their locations are at ( mm, mm) and
( mm, mm). The distance between the two
tumors is 4 mm. The imaging results using MART and DAS
are shown in Fig. 10(b) and (c), respectively. The two tumors
are seen clearly in the MART image. To show them clearly
we zoom in onto the tumor locations in Fig. 10(d), where the
two black circles mark the actual sizes and locations of the
two tumors. It is shown that MART can be used to determine
the locations and sizes of the two tumors accurately. The DAS
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image contains much clutter. The two tumors cannot be sepa-
rated clearly in the DAS image because of the poor resolution
of DAS. Fig. 10(e) and (f) shows the imaging results of SART
at stimulation frequencies 300 and 700 MHz, respectively.
The tumors can be seen in both of the SART images, but clutter
shows up between the two tumors in Fig. 10(e) and (f), and the
sizes of the two tumors in Fig. 10(f) are larger than their true
sizes.

VI. CONCLUSION

An investigation of using a multifrequency microwave-in-
duced TAI system for early breast cancer detection has been
reported in this paper. The frequency band for this system has
been given based on the cutoff frequency of the human breast.
A simplified semicircular dielectric waveguide mode was used
to calculate the cutoff frequency in this paper. By studying the
microwave energy absorption properties of breast tissue and
tumor, we have shown that the multifrequency microwave-in-
duced TAI can offer higher SNR, higher imaging contrast, and
more effective clutter suppression capability than the traditional
single-frequency microwave-induced TAI. A MART has been
presented for image formation. This data-adaptive algorithm
can achieve better resolution and better interference rejection
capability than its data-independent counterparts, such as DAS.
The feasibility of this multifrequency microwave-induced TAI
system as well as the performance of the proposed image re-
construction algorithm for early breast cancer detection have
been demonstrated by using 2-D numerical electromagnetic and
acoustic breast models. The absorbed microwave energy and the
thermal acoustic field in the breast models have been simulated
using the FDTD method. Numerical examples have been used
to demonstrate the excellent performance of this multifrequency
technique. More advanced models are being developed to fur-
ther investigate and validate the preferential imaging capability
of the technique for early breast cancer detection.
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ABSTRACT
Delay-and-sum (DAS) beamforming is the standard tech-

nique for ultrasound imaging applications. Due to its data
independent property, DAS may suffer from poorer resolu-
tion and worse interference suppression capability than the
adaptive standard Capon beamformer (SCB). However, the
performance of SCB is sensitive to the errors in the sample
covariance matrix and the signal steering vector. Therefore,
robust adaptive beamforming techniques are desirable. In this
paper, we consider ultrasound imaging via applying a user
parameter free robust adaptive beamformer, which uses a
shrinkage-based general linear combination (GLC) algorithm
to obtain an enhanced estimate of the array covariance matrix.
We present several multistatic adaptive ultrasound imaging
(MAUI) approaches based on GLC to achieve high resolution
and good interference suppression capability. The performance
of the proposed MAUI approaches is demonstrated via an
experimental example.

Index Terms— Adaptive beamforming, Ultrasound imaging

I. INTRODUCTION
Delay-and-sum (DAS) beamforming is the standard tech-

nique for ultrasound imaging applications. Theoretically this
data independent approach has lower resolution and worse in-
terference suppression capability than an adaptive beamformer,
e.g., the standard Capon beamformer (SCB) [1]. However, in
practice, there is a clear performance degradation for SCB
when the covariance matrix is inaccurately estimated due to
limited data samples and when the knowledge of the steering
vector is imprecise due to look direction errors or imperfect
array calibration. Therefore, adaptive beamforming approaches
that are robust to the aforementioned problems are desired.

Most of the early approaches to robust adaptive beamform-
ing are ad-hoc techniques, e.g., the traditional diagonal loading
algorithm [2], for which there is no clear way to choose
the diagonal loading level. The diagonal loading algorithm
has been previously applied to ultrasound imaging [3], where
the diagonal loading level was set to be proportional to
the received power. The robust Capon beamformer (RCB)
presented in [4], on the other hand, can precisely calculate
the diagonal loading level based on the uncertainty set of the
steering vector. RCB was applied to ultrasound imaging in
[5] and the results showed that RCB can provide much better
imaging quality than DAS. However, we still need to specify
the uncertainty set parameter for RCB, which may be hard to
do in practice. To achieve user parameter free robust adaptive

The work was supported in part by the U.S. Army Medical Command under
Grant No. W81XWH-06-1-0389, by the National Science Foundation under
Grant No. CCF-0634786 and ECCS-0729727 and by the Swedish Research
Council (VR).

beamforming, we have recently devised several beamformers
in [6] based on the shrinkage method, which can compute the
diagonal loading level automatically without specifying any
user parameters. Among these beamformers, the general linear
combination (GLC) algorithm performs well, especially when
the number of snapshots is small.

In this paper, we present several user parameter free ap-
proaches based on GLC for multistatic adaptive ultrasound
imaging (MAUI), which form images of the backscattered
energy for each focal point within the region of interest. All
the MAUI approaches are two-stage imaging algorithms and
GLC is employed in each stage. A similar idea can be applied
to microwave imaging to replace the user parameter dependent
RCB in each stage [7]. The complete multistatic data set
for a given focal point can be represented by the data cube
shown in Fig. 1. In one of the MAUI methods, which we
refer to as MAUI-1, GLC is used in Stage I to obtain a set
of backscattered signal estimates at each time instant. Based
on these estimates, a scalar waveform is recovered via GLC
in Stage II, which is then used to compute the backscattered
energy. An alternative way of signal processing in Stage I is to
compute a set of backscattered waveforms for each transmitter,
which is referred to as MAUI-2. In addition, we also consider
a combined method MAUI-C, which uses the signal estimates
from both MAUI-1 and MAUI-2 in Stage I for the computation
of backscattered energy. An experimental example will be
presented to illustrate the performance of the MAUI methods.

Notation: The superscript (·)∗ denotes the conjugate trans-
pose, (·)T denotes the transpose, �x� denotes rounding to the
greatest integer less than x, E(·) is the expectation operator,
tr(·) is the trace operator, and ‖·‖ denotes the Frobenius norm
for a matrix or the Euclidean norm for a vector. Finally R ≥ 0
means that R is positive semi-definite.

Receiver Index 

Transmitter Index 

Time Index 

i 

t0 

   MAUI-2 

MAUI-1 

Fig. 1. The multistatic data cube. MAUI-1 processes the data set for a given
time instant t0, while MAUI-2 processes the data set for a given transmitter
index i.

II. PROBLEM FORMULATION
Consider an active array of M transducers using the multi-

static (also called MIMO (multi-input multi-output) [8]) data
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acquisition scheme. Each transducer takes turns to trans-
mit the same pulse while all of the transducers record the
backscattered signals. As a result, the received data set
{Pi,j(t), i, j = 1, · · ·M ; t = 0, · · · , T−1} comprises the
A-scan data for all possible transmitter and receiver pairs of the
array, where Pi,j(t) is the data sequence of the backscattered
echo at the jth transducer due to transmitting a pulse from the
ith transducer, and T is the number of data samples for the
A-scan sequence.

To extend GLC to the wide-band ultrasound imaging ap-
plication, we align the received signals from the data set
{Pi,j(t)} to each focal point by inserting appropriate time
delays. Let ri and rj denote the locations of the ith transmitter
and jth receiver, respectively, and let rf denote the location
of a focal point in the imaging region of interest. The time
delay due to the ultrasonic wave propagation from the ith

transmitter to the focal point rf and then back to the jth

receiver is approximated as

τi,j(rf ) =
1

Δt

⌊
‖ri − rf‖

c
+

‖rj − rf‖
c

⌋
, (1)

where c is the sound propagation speed in the medium under
interrogation, and Δt denotes the sampling interval. Then, the
time shifted signal for a given focal point of interest rf can
be represented as

yi,j(rf , t) = Pi,j(t + τi,j(rf )),
i, j = 1, · · ·M ; t = 0, · · · , N − 1, (2)

where N is determined by the duration of the transmitted pulse
and the sampling interval Δt.

The problem of interest here is to form an ultrasound image
on a grid of points in the imaging region. The image is
formed from the received data set {Pi,j(t)}, or more precisely,
{yi,j(rf , t)}, for each focal point of interest.

III. MAUI

The two-stage MAUI algorithms use a GLC-based robust
adaptive beamforming algorithm in each stage. We first review
the GLC approach and then we show how to apply GLC to
the data set {yi,j(rf , t)} in Stages I and II of the proposed
MAUI approaches.

A. GLC

In the GLC approach, we replace the sample covariance ma-
trix in SCB by an enhanced estimate obtained via a shrinkage-
based method. The enhanced covariance matrix estimate R̃ is
obtained by linearly combining the sample covariance matrix
R̂ and a shrinkage target (we use the identity matrix I here
for lack of a better choice) in an optimal mean-squared error
(MSE) sense:

R̃ = αI + βR̂, (3)

where R̂ = 1
K

∑K
k=1 y(k)y∗(k), with the L × 1 vector y(k)

denoting the kth snapshot and K representing the total number
of snapshots. The shrinkage parameters α and β in (3) are
estimated by minimizing the MSE of R̃ with respect to α and

β, where

MSE(R̃) = E{‖R̃ − R‖2}
= ‖αI − (1 − β)R‖2 + β2E{‖R̂ − R‖2}
= α2L − 2α(1 − β) tr(R)
+(1 − β)2‖R‖2 + β2E{‖R̂ − R‖2},
R = E [y(k)y∗(k)] . (4)

The optimal values for β and α can be readily obtained:

β0 =
γ

ρ + γ
, (5)

α0 = ν(1 − β0) = ν
ρ

γ + ρ
, (6)

where ρ = E{‖R̂ − R‖2}, ν = tr(R)
L , and γ = ‖νI − R‖2.

Note that β0 ∈ [0, 1] and α0 ≥ 0.
To estimate α0 and β0 from the given data, we need an

estimate of ρ, which can be calculated as (see [9] for details):

ρ̂ =
1

K2

K∑
k=1

‖y(k)‖4 − 1
K

‖R̂‖2. (7)

Using (7) we can get estimates for β0 and α0 as

β̂0 =
γ̂

γ̂ + ρ̂
, (8)

and
α̂0 = ν̂(1 − β̂0), (9)

where ν̂ = tr(R̂)
L , and γ̂ = ‖ν̂I − R̂‖2. Note that α̂0 ≥ 0 and

β̂0 ≥ 0, which guarantees that the enhanced covariance matrix
estimate R̃ ≥ 0.

Substituting (8)-(9) in (3) yields the enhanced covariance
matrix estimate R̃. Using R̃ instead of R̂ in the SCB formu-
lation, we obtain the beamformer weight vector for GLC as
follows:

ŵ =
R̃−1ā

ā∗R̃−1ā
, (10)

where ā denotes the assumed steering vector [10]. Note that
GLC is a diagonal loading approach with the diagonal loading
level α̂0/β̂0 determined automatically from the observed data
snapshots {y(k)}K

k=1.

B. Stage I
To apply the GLC-based robust adaptive beamformer to the

data set {yi,j(rf , t)} in (2), we use two approximate signal
models for yi,j(rf , t) by making different assumptions. Since
we will concentrate on the focal point rf in what follows, the
dependence on rf will be dropped for notational simplicity.

The MAUI-1 algorithm uses the following signal model:

yi(t) = a(t)si(t) + ei(t), (11)

where yi(t) = [yi,1(t), · · · , yi,M (t)]T represents the aligned
array data vector of the ith transmitter, si(t) denotes the
signal of interest (SOI) that is proportional to the ultrasound
reflectivity or scattering strength, which is assumed to depend
on the transmitter i but not on the receiver j, ei(t) denotes the
residual term due to noise and interferences, and a(t) denotes
the array steering vector that is assumed to be approximately
equal to 1M×1. Here, we assume that a(t) may vary with t,
but is constant with respect to the transmitter index i.
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In Stage I, for a given time t0, we form a pseudo-covariance
matrix by considering the number of transmitters as the
number of snapshots:

R̂(t0) =
1
M

Y(t0)Y∗(t0),

Y(t0) = [y1(t0) · · ·yM (t0)] . (12)

By using R̂(t0) as the sample covariance matrix we obtain
an enhanced covariance matrix estimate R̃(t0) as described in
Section III.A, and then calculate the weight vector ŵ(t0) for
Stage I of MAUI-1 using (10) with ā = 1M×1 as:

ŵ(t0) =
R̃(t0)−1ā

ā∗R̃(t0)−1ā
. (13)

Once we got the weight vector, we can estimate si(t0) in (11)
as:

ŝi(t0) = ŵ∗(t0)yi(t0). (14)

Define a vector ŝ(t0) = [ŝ1(t0), · · · , ŝM (t0)]
T of the esti-

mated signals for all transmitters. Repeating the above process
from t0 = 0 to t0 = N − 1, we build the matrix Ŝ1 =
[ŝ(0), · · · , ŝ(N − 1)].

The MAUI-2 algorithm considers another signal model:

yi(t) = aisi(t) + ei(t), (15)

where ai denotes the array steering vector, which is also as-
sumed to be approximately equal to 1M×1. However, different
from MAUI-1, here ai is assumed to change with i, but be
constant with respect to t.

For a given transmitter i, the covariance matrix in Stage I
of MAUI-2 is formulated as:

R̂i =
1
N

YiY∗
i ,

Yi = [yi(0) · · ·yi(N − 1)] . (16)

Using R̂i as the sample covariance matrix we get an
enhanced estimate R̃i, and then compute a weight vector
ŵi using (10). The time sample vector of the corresponding
beamformer output can be written as

ŝi = [ŵ∗
i Yi]

T
. (17)

Repeating the above process for i = 1, · · · ,M yields a set of
waveforms Ŝ2 = [ŝ1, · · · , ŝM ]T .

As we mentioned before, the errors in the sample covariance
matrix and the steering vector cause performance degradations
for any adaptive beamforming algorithms. GLC is designed to
improve the covariance matrix estimate. MAUI-1 and MAUI-2
use different sample covariance matrices. Hence the improve-
ments obtained by using GLC may be different. This fact
motivates us to combine MAUI-1 and MAUI-2 to achieve a
better performance. We refer to this combined method, where
Ŝ1 of MAUI-1 and Ŝ2 of MAUI-2 are used simultaneously,
as MAUI-C. We denote the combined signal matrix as ŜC =[
ŜT

1 ŜT
2

]T

.
Let the M × 1 vectors {ŝm(t)}t=0,··· ,N−1 denote the

columns of Ŝm for m = 1, 2, and let the 2M × 1 vectors
{ŝC(t)}t=0,··· ,N−1 denote the columns of ŜC . Note that both
MAUI-1 and MAUI-2 obtain M signal waveform estimates
at the end of Stage I, while MAUI-C obtains 2M signal
waveform estimates. We will apply GLC to these estimates
in Stage II to recover a scalar waveform and compute the
signal energy at the focal point.

C. Stage II
In Stage II, the signal model for both MAUI-1 and MAUI-2

can be represented as:

ŝm(t) = ams(t) + em(t), t = 0, · · · , N − 1, m = 1, 2,
(18)

where the steering vector am is assumed to be 1M×1, and
em(t) represents the residual term. Similar to Stage I, the
knowledge of am may be imprecise and the sample size
N may be small. Hence the GLC-based robust adaptive
beamformer is used again to estimate s(t). Taking R̂m as the
sample covariance matrix:

R̂m =
1
N

N−1∑
t=0

ŝm(t)ŝ∗m(t), m = 1, 2, (19)

and paralleling the development in Stage I, we obtain the
weight vector ŵm using (10). Then, the output signal estimate
is computed as:

ŝ(t) = ŵ∗
mŝm(t), m = 1, 2. (20)

Finally, the signal energy for a particular focal point rf is
computed as:

E(rf ) =
N−1∑
t=0

ŝ2(t). (21)

For Stage II of MAUI-C, the signal model can be written
as:

ŝC(t) = aCs(t) + eC(t), t = 0, · · · , N − 1, (22)

where the vector ŝC(t) is considered now to be a snapshot
from a 2M -element “array”, and the steering vector aC is
assumed to be 12M×1. eC(t) denotes the residual term. We
obtain the weight vector ŵC for MAUI-C via (10) by using
the following sample covariance matrix:

R̂C =
1
N

N−1∑
t=0

ŝC(t)ŝ∗C(t). (23)

The beamformer ŵC yields an estimate of the signal:

ŝ(t) = ŵ∗
C ŝC(t). (24)

Then, the backscattered energy at the focal point rf is com-
puted via (21).

IV. EXPERIMENTAL EXAMPLE
In this section, we present some experimental results to

demonstrate the performance of the three MAUI algorithms.
The complete multistatic data set was obtained by Bioacoustics
Research Laboratory of the University of Illinois at Urbana-
Champaign. The scene of interest contains several wire targets
arranged in a complicated pattern. The data was collected us-
ing a 64-element linear array. The transducer center frequency
was 2.6 MHz, the sampling rate was 25 MHz, and the sound
velocity was assumed to be 1450 m/s. For comparison, the
multistatic DAS scheme is also applied to the same data set.
The DAS scheme estimates the signal waveform s(t) as

ŝ(t) = ŵ∗
DASY(t)ŵDAS, t = 0, · · · , N − 1, (25)

where ŵDAS = ā/M is the weight vector for DAS. The
backscattered energy at rf is then estimated via (21).
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Fig. 2 shows the ultrasound images for the wire data set
under consideration. The images are displayed on a logarith-
mic scale with a 30 dB dynamic range. In Figs. 2 (a)-(d), we
compare the images obtained via DAS and MAUI algorithms
using only the central 32 elements of the array (M = 32).
Since DAS simply sums all signals, the DAS image shown
in Fig. 2 (a) has higher sidelobe level and poorer resolution
than the MAUI images shown in Figs. 2 (b)-(d). Comparing
Fig. 2 (b) and Fig. 2 (c), which correspond to MAUI-1 and
MAUI-2 respectively, we note that MAUI-2 image has a
lower background clutter level. However, MAUI-2 has poorer
resolution: some wire targets are not discernable in the MAUI-
2 image. On the other hand, the image obtained via MAUI-C
has low sidelobe level similarly to MAUI-2 and high resolution
similarly to MAUI-1. Moreover, all targets are clearly shown in
the MAUI-C image. For comparison, we also include the DAS
image obtained using the entire array (M = 64). Note that
MAUI algorithms, especially MAUI-C, with 32 transducers
can achieve similar imaging quality to DAS with a double
sized array.

V. CONCLUSIONS
We have presented three user parameter free approaches to

multistatic adaptive ultrasound imaging (MAUI). These two-
stage MAUI approaches employ a GLC-based robust adaptive
beamformer in each stage to achieve high resolution and good
interference suppression capability, and also they are robust to
small sample size problems and array steering vector errors.
More importantly, GLC is a user parameter free approach
as opposed to other existing robust adaptive beamforming
algorithms, which makes it easy to use it in practice. The
experimental results have demonstrated the effectiveness of the
MAUI algorithms for ultrasound imaging. We have shown that
the MAUI-C method, which combines MAUI-1 and MAUI-2,
provides the best imaging quality.
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Fig. 2. Ultrasound images obtained via (a) DAS with M = 32, (b) MAUI-1
with M = 32, (c) MAUI-2 with M = 32, (d) MAUI-C with M = 32, and
(e) DAS with M = 64.
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