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Abstract— In window-based transport methods for stabilizing
and/or maximizing the goodput at the destination, it is very
important to understand the statistical properties of the transport
control and performance response parameters. Based on traffic
measurements collected over the Internet during a 6-month pe-
riod, we formulate and test hypotheses on the main effects of two
control parameters on the goodput response and the interaction
effects between them. We infer from the statistical analysis
that the congestion window and sleep time parameters strongly
interact with each other, and they both have significant main
effects on the destination goodput. Consequently the underlying
randomness in network traffic must be explicitly accounted for
in the design of flow control methods.

I. INTRODUCTION

Next generation network applications require transport capa-
bilities that have not been traditionally addressed by the current
implementations or analytical methods. For example, real-
time remote control over wide-area networks and coordinated
remote visualization of distributed datasets require “control
channels” implemented over wide-area networks. In practice,
these channels require a steady flow rate typically at a level
much below the peak link rate. While the Transmission Con-
trol Protocol (TCP) performs very well in supporting several
Internet transport tasks, it lacks the stable dynamics needed in
the above applications. Thus there has been a renewed interest
in developing newer classes of transport protocols. However,
many of the analytical results in transport protocols rely on
deterministic control methods that typically assume smooth
utility functions [1]. One of the open questions is whether
or not the statistics of connections be explicitly accounted
for in the protocol design. This is an important consideration
since the deterministic flow controls that often rely on a
(suitably chosen) fixed step size do not stabilize in presence
of randomness in the network delays. In fact, the step sizes
have to be dynamically adapted as per the Robbins-Monro
(RM) condition to achieve stable goodput over wide-area
connections in recent stabilization protocols (see [2]).

The flow control mechanism in TCP employs a sliding
window technique. Recent protocols such as Tsunami and
SABUL [3], [4] employ an alternative rate control in which
the sender restricts the congestion window to one packet
and adjusts the inter-packet delay to spread the packets out
evenly. We consider generic window-based control methods

of which the above two mechanisms are special cases. There
are two adjustable parameters, namely the congestion window
and sleep time, that control the source transmission rate,
to which the destination goodput (rate of packets received
without counting the duplicates) and loss rate respond. But
the underlying response function is complicated because of
the randomness in network delays and packet losses due to
the competing traffic on the shared network links. To account
for the underlying randomness in the flow control design, it
is necessary to understand the statistics of the two control
parameters as well as the performance responses. In this paper,
we apply rigorous statistical methods to investigate how these
two control parameters affect the transport performance. While
the window-based protocols have been studied for decades, our
analysis provides valuable insights into the statistical aspects
of their parameters, and in particular indicates that simple
deterministic methods are unlikely to meet the requirements.

We investigate the main effects which capture the differ-
ences in the mean goodput response as we change the values
of either congestion window or sleep time individually. We
also consider the interaction effects that capture the differences
in the main effect goodput responses for one factor as we
vary the other across the range. We formulate a generalized
linear statistical model relating the control parameters to the
destination goodput, and test the hypotheses based on the
measurements collected over a long time span. Our statistical
analysis results establish the following in the Internet environ-
ments with regular traffic:

1) Congestion window and sleep time strongly interact with
each other in deciding the network transport perfor-
mance.

2) Within the range of each control variable both conges-
tion window and sleep time have significant main effects
on the destination goodput.

3) Within the variable ranges for the test Internet link,
the errors of the “noise-corrupted” measurements of
the destination goodput response confined within each
cell determined by a unique combination of congestion
window and sleep time are identically and normally
distributed with a zero mean and the same variance.

In summary, these results indicate that in general the statistical
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effects of network delays and packet losses are significant
in the window-based flow control methods, and must be
accounted for in the design. Such approaches have been used
for goodput stabilization and maximization in [2] based on dy-
namic and simultaneous perturbation stochastic approximation
methods, respectively.

II. WINDOW-BASED NETWORK TRANSPORT CONTROL

We consider a window-based network transport control
method that uses both User Datagram Protocol (UDP) and
TCP. The sender or source generates the data and sends
it to the receiver (or destination) as UDP datagrams. The
sender explicitly informs the receiver of the initialization and
termination of the data transmission process via TCP. This
simple window-based flow control scheme has two parameters,
the congestion window and sleep time, both of which control
the source sending rate, typically with different effects on
the throughput. The congestion window Wc(t) represents the
number of UDP datagrams that can be sent continuously as
fast as the computer and communication hardware resources
(CPU, memory, NIC speed, channel bandwidth, etc.) allow
before waiting for a certain time period. The sleep time or
idle time, denoted by Ts(t), represents the amount of time the
sender suspends right after sending a full congestion window
of UDP datagrams in a burst until the next burst.

Upon termination, the receiver at the destination node turns
off timer and calculates average goodput gD(t) as well as
loss rate lD(t). Based on the above flow control model, the
instantaneous source rate rS(t) is:

rS(t) =
Wc(t)

Ts(t) + Tc(t)
=

1.0
Ts(t)
Wc(t)

+ 1.0
BW

(1)

where Tc(t) = Wc(t)
BW is the time spent on continuously

sending a full congestion window of UDP datagrams, which is
determined by the congestion window size and communication
hardware resources, and the system bandwidth BW, i.e. the
maximum speed at which the sender can generate the signal
and put it on wire. According to Eq (1), we may control the
source rate rS(t) by adjusting either congestion window Wc(t)
or sleep time Ts(t) individually, or both simultaneously. Solu-
tions to the transport control problems for different throughput
requirements may involve a dynamic adaptation of Wc(t) and
Ts(t) to achieve the optimal source rates.

III. STATISTICS OF CONTROL PARAMETERS

Since the network traffic measurements are inherently sta-
tistical in nature, we now formulate an appropriate statistical
model for studying the two control parameters. In the window-
based control model, the two factors, congestion window
and sleep time, are simultaneously applied in controlling the
datagram transmission at the source node, which constitutes
a two-factor experiment, as is known in statistics literature.
The main effects correspond to the differences in the mean
goodput response across the various levels of either parameter
viewed individually. The interaction effects correspond to the

differences of main effect goodput responses for one factor as
the values of the other are varied.

We apply a general linear model (GLM) to the random-
effects model of two factors, namely congestion window and
sleep time. GLM assumes that any particular observation value
can be accounted for by summing up a number of predictor
components and a residual term. The linearity of GLM does
not manifest a linear relationship between the response and
condition variables, but establishes the additivity of these
components, as defined by:

gijk = µ + ci + sj + (cs)ij + εk(ij) (2)

where
gijk, k = 1, 2, ..., n: k-th observed value of the destination

goodput gD(t) under the combinatorial treatment defined by
the i-th level of congestion window and j-th level of sleep
time.

µ: reference value, calculated as the sum of all observation
values divided by the total number of observations.

ci, i = 1, 2, ..., a: main effects of congestion window on
goodput response, calculated as the difference between the
mean response of the subpopulation comprising the i-th level
of congestion window and the grand mean µ.

sj , j = 1, 2, ..., b: main effects of sleep time on goodput
response, calculated as the difference between the mean re-
sponse of the subpopulation comprising the j-th level of sleep
time and the grand mean µ.

(cs)ij : interaction effects between congestion window and
sleep time, calculated as the difference between the mean
goodput response in the subpopulation defined by the combi-
nation of the factor levels of ci and sj , and the mean goodput
response when there only exist main effects of either ci or sj .

εk(ij): random error. The parentheses around subscript vari-
able i and j can be considered as a cell defined by i-th
level of congestion window and j-th level of sleep time. The
random error εk(ij) represents the variation among n goodput
observations nested in the cell (i, j), and is calculated as the
difference between k-th observation gijk nested in cell (i, j)
and the cell mean g(ij).

We have the following assumptions for variables in Eq (2).
1) The grand mean µ is a constant.
2) All random variable ci, sj , (cs)ij , and εk(ij) are statis-

tically independent.
3) Main effects ci, i = 1, 2, ..., a are identical and inde-

pendent variables, with a zero-mean normal distribution,
i. e. iid ∼ N(0, σ2

c ).
4) Main effects sj , j = 1, 2, ..., b are identical and inde-

pendent variables, with a zero-mean normal distribution,
i. e. iid ∼ N(0, σ2

s).
5) Interaction effects (cs)ij are identical and independent

variables, with a zero-mean normal distribution, or
equivalently, (cs)ij iid ∼ N(0, σ2

cs).
6) Random errors εk(ij) have a mean of zero and a common

variance equal to σε, or equivalently, εk(ij) ∼ N(0, σ2
ε).

The first five assumptions made above on the grand mean and
random variables are the standard procedure required by the
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GLM. However, the assumption on the error distribution is an
esoteric point and must be tested to verify the analysis. This
test is performed later together with other hypotheses on main
and interaction effects. Taking variance of Equation (2) results
in the following:

V ar(gijk) = V ar[µ + ci + sj + (cs)ij + εk(ij)]
= σ2

c + σ2
s + σ2

cs + σ2
ε (3)

From Equation (3) we know that there are four variance com-
ponents in the model we constructed, which can be estimated
using the mean square of error, mean square of main effects
as well as mean square of the interaction effects.

IV. EXPERIMENTAL SETUP

The window-based flow control mechanism is implemented
at Louisiana State University (LSU) and at Oak Ridge National
Laboratory (ORNL). At the time of experiment, ORNL is
connected to ESnet, which peers with Abilene network in New
York. Abilene runs from New York via Washington DC and
Atlanta to Houston, where it connects to LSU via a regional
network. In terms of network distance, these two sites are
separated by more than two thousand miles, and both ESnet
and Abilene backbones as well as the hosts have significant
network traffic.

The client at ORNL generates a message of a certain size
and sends it to the server at LSU as a set of UDP datagrams
at a fixed rate at a time for multiple times with different
sending rates. We maintain a constant sending rate of UDP
datagrams during each run of the message transmission by
fixing both congestion window and sleep time in the flow
control mechanism.

At the source node, we compute the average source rate
rS(t) as the number of sent UDP datagrams divided by the
transmission duration. At the destination node, the average
goodput gD(t) and loss rate lD(t) are measured as the number
of successfully arriving UDP datagrams and the number of lost
UDP datagrams respectively, both of which are divided by the
time elapsed since the first datagram is delivered.

The various source transmission rates are achieved through
the independent adjustments made on either congestion win-
dow or sleep time. Particularly, we conduct the transport
control experiment by varying the congestion window from 1
to 100 at a step of 5 UDP datagrams and by varying the sleep
time from 1 to 100 at a step of 5 milliseconds independently.
Consequently, the congestion window and sleep time have
the same number of levels a = b = 100/5 = 20. For
each particular combination of congestion window and sleep
time, n = 5 observations are made. All the network traffic
measurements are collected between the client at ORNL and
the server at LSU. We repeat the whole set of experiment,
i.e. multiple runs of the message transmission at various
fixed sending rates, over hours, days, weeks, and months to
extensively investigate the influence of control parameters on
the network performances.

From the measurements collected over 6 months, we ob-
served that the network traffic exhibits a very similar two-
phase pattern. In the first phase, there is a trend of monotonic
increase in goodput gD(t) as sending rate rS(t) is increased
while the loss rate lD(t) remains at an extreme low level. After
the sending rate reaches a certain transition point, the system
enters the second phase where the goodput gD(t) starts suf-
fering irregular decrease due to congestion collapse indicated
by the high datagram loss rate lD(t). This overall behavior
is quite stable although the transition position dividing these
two phases and the goodput shape may slightly vary over
time in the presence of diverse background traffic. We also
observed that the plots of goodput and loss rate are quite non-
smooth because of the dynamic network conditions that induce
randomness into packet delays and losses.

This type of overall goodput response is well known but
often only smoother versions are considered which correspond
to a deterministic formulation [1]. However, in practical ap-
plications, when source rate rS(t) is fixed at r, the goodput
gD(t) is a random variable, which is jointly distributed with
distribution G(gD(t), r). By running the experiment with the
same control parameters for a sufficient large number of times
and computing the mean values of the destination goodput
gD(t), we obtain the expected value of the destination goodput
corresponding to the fixed sending rate r:

MD(r) = E[gD(t)|rS(t) = r] =
∫

gDG(dgD, r)

where G(., r) is an unknown distribution function of real-
valued random variable gD at a given constant sending rate
r. We refer to MD(r) as the destination goodput response
regression. The long-time-span Internet measurements show
that MD(r) experiences very slight variation in presence of
on-host or off-host background traffic during most days.

V. STATISTICAL ANALYSIS AND APPLICATIONS

A. Hypothesis Test

In order to explore the network performance pattern and the
statistical nature of the network traffic, a series of Internet ex-
periments have been conducted over a time span of 6 months.
The collected measurements are used as the data sets for the
experimental statistics methods described above. We use SAS,
the most common large-scale data analysis software package,
to perform the ANOVA (Analysis of Variance) analysis of
the random-effects two-way factorial experiment. We have
the following hypotheses of interests and the test of each
hypothesis is given accordingly.

1) Hypothesis of main effects of congestion window on
goodput response: H0 : σ2

c = 0;H1 : σ2
c �= 0. In

random effects model, the mean square of the interaction
effects is used as the error term for statistic test of
main effects. Therefore, the F value is computed as:
F ∗ = MS(congestionwindows)

MS(interaction) = 17.91 with numerator
degree of freedom ndf = 19 and denominator degree
of freedom ddf = 361. The corresponding p-value is
less than 0.0001, based on which we reject H0. In
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other words, the observation data strongly indicates that
the congestion window has a significant effect on the
destination goodput.

2) Hypothesis of main effects of sleep time on goodput re-
sponse: H0 : σ2

s = 0;H1 : σ2
s �= 0. Same as above, the

mean square of the interaction effects is used as the error
term for statistic test of main effects, and the F value
is computed as: F ∗ = MS(sleeptime)

MS(interaction) = 5.26 with
numerator degree of freedom ndf = 19 and denominator
degree of freedom ddf = 361. The corresponding p-
value is less than 0.0001, based on which we reject H0.
That is to say, the observation data strongly indicates
that the sleep time also has a significant effect on the
destination goodput.

3) Hypothesis of interaction effects between congestion
window and sleep time on goodput response: H0 :
σ2

cs = 0;H1 : σ2
cs �= 0. The mean square of error

MSE is used as the error term for statistic test of
interaction effects. Therefore, the F value is computed
as: F ∗ = MS(interaction)

MS(error) = 10.35 with numerator
degree of freedom ndf = 361 and denominator degree
of freedom ddf = 1600. The corresponding p-value
is less than 0.0001, based on which we reject H0. In
other words, the observation data strongly indicates that
there is a significant interaction between the congestion
window and sleep time.

4) Hypothesis of residual normality under linear statistical
model: We use Shapiro-Wilk method to test the residual
normality. The SAS program calculates the statistic
W = 0.875659, and the corresponding p− value(Pr <
W ) is less than 0.0001, based on which, we infer that
the residual normality assumption is valid in the light of
measurement data.

B. Design of New Protocols

The above analysis provides insights into the significance
of control parameters on the network transport performance
and reveals the stochastic nature of network traffic over wide-
area networks. We construct stochastic approximation models
based on this statistical analysis to design new transport
protocols for goodput stabilization [5] and maximization [2].

In the goodput stabilization problem, the transport control
objective is to dynamically adjust the source rate such that the
destination goodput is stabilized at a desired level, which is
usually much lower than the maximum achievable goodput.
In [5], we design a class of transport control protocols based
on dynamic Robins-Monro Stochastic Approximation method
for goodput stabilization. Either congestion window or sleep
time are used in the protocol design and the equivalent main
effects of both control parameters on the goodput response are
justified by the experiment results.

In the goodput maximization problem, we aim to dynam-
ically control the source rate to achieve high bandwidth
utilization by maximizing the individual throughputs from
an overall perspective. The goodput maximization problem
identifies two considerations: fair share and high utilization of

bandwidth. Fair share requires that all concurrent data streams
sharing the same link be equally treated, and high utilization
requires that the link bandwidth is exploited to the greatest
possible advantage. In [2], we design a class of transport
control protocols based on dynamic Simultaneous Perturba-
tion Stochastic Approximation method, which controls both
congestion window and sleep time simultaneously, to achieve
maximum individual goodput.

Since the results of previous section indicate significant
randomness in the underlying process, it is insufficient to use
deterministic approaches; the latter can be shown to stabilize
under suitably chosen but fixed step sizes. But such step sizes
cannot be shown to stabilize in presence of randomness in the
control loop, and in fact did not stabilize in our implemen-
tations [2]. In the above two flow controllers, the step sizes
of control parameters are adapted according to the conditions
of the stochastic approximation methods. Intuitively, the step
sizes have to approach zero eventually but only at a rate
controlled by certain upper and lower bound conditions (see
[2] for details). The experiment results show that these new
transport protocols have superior performances than the default
TCP in stabilizing or maximizing goodput over wide-area
networks.

VI. CONCLUSIONS

Our results indicate that the statistical effects must be
explicitly taken into account in the design of the window-
based transport protocols, and the traditional methods based on
smooth deterministic control methods might not be adequate
to achieve goodput stabilization and maximization. There are
a number of future directions to pursue. It would be interesting
to see if the statistical results of this paper will be similar under
a non-linear model. It would also be of interest to investigate
flow control methods that explicitly utilize the results of this
analysis in adapting the control parameters. Also, the statistical
analysis of rate-based flow control methods [6] will be of
interest if they can be designed within the framework of
stochastic approximation.
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