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1. INTRODUCTION 

The field of Artificial Neural Networks has dramatically expanded over the past decades (Bishop, 1996; 

Haykin, 1999; Perlovsky, 2001). Neural networks have been established as powerful tools in the areas of 

pattern recognition, function approximation, and control, to name just a few. This latest expansion is a 

result of the advances in the development of efficient learning algorithms for feed-forward and 

recurrent architectures. Despite the successes, the neural networks, along with the other computing 

paradigms, run into serious limitations as the size of the data increases. Going beyond the neural 

networks paradigm, modeling complex systems with methods of artificial intelligence, pattern 

recognition, or modeling processes in the mind encountered computational complexity in many 

applications. The fundamental principles of artificial intelligence and learning were summarized in 

Perlovsky 2001; Cherkassky and Mulier 2007; Mitchell 1997. 

Consider a simple object perception that involves signals from sensory organs and internal mind's 

representations (memories) of objects. During perception, the mind associates subsets of sensor signals 

corresponding to objects with representations of specific objects. This produces object recognition and 

activates brain signals that lead to mental and behavioral responses, and contributes to understanding. 

Mathematical modeling of the very first recognition step in this seemingly simple association

recognition-understanding process has encountered a number of difficulties over the decades. These 

difficulties were first identified in pattern recognition and classification research in the 1960s and were 

named "the curse of dimensionality" (Bellman 1961). It seemed that learning algorithms and neural 

networks could learn solutions to any problem 'on their own', if they were provided with a sufficient 

number of training examples. Th e following thirty years of developing learning algorithms led to the 

conclusion that the required number of training examples was often combinatorially large. Self-learning 

pattern recognition and neural network approaches encountered a combinatorial complexity (CC) of 
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learning requirements. Various ways of overcoming CC in neural networks include techniques like 

pruning, regularization, and weight sharing. For examples of such approaches see (LeCun et ai, 1990; lIin 

et al 2008). 

Rule systems were proposed in the 1970's to overcome the CC of learning (Minsky, 1975; Winston 

1984). A leading idea was that rules would capture the required knowledge and eliminate the need for 

learning. However in the presence of variability, the number of rules grew, and the rules became 

contingent on other rules. This caused combinations of rules to be considered and these rule systems 

encountered a CC of rules. 

Model systems were proposed in the 1980's to combine the advantages of a priori knowledge and 

learning. Model systems used models that depended on adaptive parameters. The knowledge was 

encapsulated in the models, while unknown aspects of particular situations were to be learned by fitting 

the model parameters. However, fitting the models to data required selecting data subsets 

corresponding to various models. The number of subsets, however, is combinatorially large. A general 

popular algorithm for fitting models to the data, multiple hypotheses testing (Singer at el, 1974) is 

known to face CC of computations. Unfortunately, model-based approaches encountered 

computational CC (Perlovsky at el, 1998b). 

Computational difficulties have been summarized under the notion of CC in (Perlovsky, 1998a). In 

general, CC refers to multiple combinations of various elements in a complex system. For example, 

recognition of a scene often requires concurrent recognition of multiple elements that could be 

encountered in various combinations. CC is prohibitive because the number of combinations can be very 

large. For example, consider 100 elements (not too large a number). The total number of subsets of a 
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set with 100 elements is 2l(lO. This exceeds the number of all elementary events in life of the Universe 

and no computer could ever be able to compute that many combinations. 

The following research relates CC to formal logic, the basis of various algorithms and neural networks 

(Perlovsky 2001). Formal logic is based on the " law of excluded middle," where every statement is 

either true or false. Therefore, algorithms based on formal logic have to evaluate every combination of 

data and internal representations as a separate logical statement and a large number of these 

combinations will cause combinatorial complexity. It turns out that all popular algorithms and neural 

networks rely on logic. Rule systems are based on logic in a straightforward way. Model systems are 

based on logic in the matching process, which consists in testing logical hypotheses of the type: "this 

model corresponds to that subset of data." Learning algorithms, such as pattern recognition and neural 

networks, use logic in the training process, consisting of logical statements "this is a chair" (and 

therefore of combinations of logical statements: "this is a chair and that is a cat"). Fuzzy logic 

encountered a difficulty that related to the degree of fuzziness that is set by using formal logic. Complex 

systems require different degrees of fuzziness in various subsystems and at various steps of the system 

operations, and searching for the appropriate degrees of fuzziness among combinations of steps and 

subsystems again would lead to Cc. Statistical Learning Theory is a powerful learning paradigm 

developed by Vapnik (Cherkassky & Mulier 2007; Perlovsky 2001) . But it also could not avoid CC when 

combining learning with knowledge. In fact, all algorithms and neural networks used logic in some way. 

Combinatorial complexity of algorithms based on logic is related to G6del's theorem: it is a 

manifestation of the incompleteness of logic in finite systems. For a complete discussion please see 

(Perlovsky, 1996). 
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The mathematical foundations of this paper are Neural Modeling Fields (NMF) and Dynamic Logic (DL) . 

NMF combine the structure of logic with the dynamics of a connectionist paradigm to achieve a goal of 

modeling systems without cc. Models encapsulate the prior knowledge that exists before learning 

begins. These models interact with sensor data. While models generate top-down signals, sensor organs 

generate bottom-up signals. NMF avoids CC by using DL (Perlovsky, 2001, 2006). DL is described as 

process-logic. It is a process "from vague to crisp/' from vague representations, models, decisions, to 

crisp ones. Because the senses always interact with more than one object (we usually see many objects 

at the same time), DL must solve the data association problem and the recognition problem. As 

mentioned above, the models are initially vague and are associated with the entire input data set. In 

the DL process associations between the models and data become crisper, allowing to converge to 

correspond more closely to patterns in the data. The vagueness in the data association matches the 

uncertainty of the models. At the end of the process correct associations are formed and the models 

provide a close fit to the data. The process is guided by the goal of maximizing the similarity between 

the data and the models. 

The DL process can be described as an interaction between the bottom-up signals coming from sensors 

and the top-down signals coming from models. The perception and cognition result from matching the 

top-down and bottom-up signals. The meeting point is the convergence ofthe abstract concept into a 

concrete perception. From the neuro-physiological point of view, the bottom-up signals flow from 

sensor neural activations, for example from the retina to the visual cortex. Top-down signals flow from 

activated models/representations "down" to the visual cortex (Grossberg, 1982; Schacter, 1987; 

Kosslyn, 1994). In a recent study (Bar et ai, 2006), it has been demonstrated that the object recognition 

by human subjects occurring in the temporal cortex is facilitated by the top-bottom signals originating in 

the orbitofrontal cortex. The initial top-down signals (coming from the models/representations) are 

vague confirming the Dynamic Logic mechanism of "vague to crisp" process (Periovsky, 2009d) . 
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It is interesting that logic was invented by Aristotle, but he himself did not seem to consider logic to be 

the basic mechanism of the mind (Aristotle IV BCE; Perlovsky 2006c; 200ge). We consider Aristotle to be 

the originator of the idea of matching vague concepts with concrete percepts. The Aristotelian theory 

of mind postulates the existence of a priori Forms that are abstract concepts existing in the mind. We 

perceive concrete ideas by imagining Forms in the mind. According to Aristotle, Forms in the mind do 

not obey logic. They become logical by experiencing real matter. Aristotle emphasized that the initial 

states of Forms, Forms-as-Potentialities, are not logical (i.e. they are vague). But their final forms, forms

as-actualities, are attained from the result of learning, and are logical. This Aristotelian description 

corresponds to the DL process. 

The NMF-DL approach provides a mathematical description of the Aristotelian cognitive process, and 

provides an algorithm for the perception of multiple patterns in the environment. The DL theory goes 

on to postulate that this algorithm is a universal mechanism of the mind (Perlovsky, 2001; Perlovsky, 

2006b; Perlovsky and Kozma, 2007). The mind is considered as a layered system with the models of 

each layer sending signals to the layer above. In a simplified description, bottom layers in the mind 

hierarchy recognize objects in the outside world. Higher layers contain abstract models and can 

recognize more abstract concepts and situations. 

Several journal articles and books have demonstrated how the NMF-DL is utilized in perceptual tasks 

such as object recognition (Deming, 1998; Deming et ai, 2007; Kozma et ai, 2007; Linnehan et ai, 2007; 

Perlovsky et ai, 2007) . In this contribution we demonstrate how the NMF-DL approach can operate 

on a more abstract level for recognizing situations involving multiple objects. 

This introduction is followed by five more sections: 2. Neura l Modeling Fields (NMF); 3. NMF-DL 

(Dynamic Logic) for learning situations; 4. Simulation Results; 5. Computational Complexity; 6. 

Discussion and Conclusions. 
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2. NEURAL MODELING FrELDS (NMF) 

Neural Modeling Fields (NMF) together with Dynamic Logic (DL) provides a generic framework for 

learning from data. It is developed in (Perlovsky, 1987; Perlovsky & McManus, 1991; Perlovsky, 2001) as 

a model framework based on the known mind mechanisms. NMF-DL finds the best match between the 

internal models and the inputs while avoiding the computational complexity of data association. The 

mathematical formulation of NMF is given in this section. We will use bold letters to denote vector 

quantities. 

The main components of the NMF framework are the input data and the parametric models. We 

denote the input data by x, x = (x" ... , XN). The data is a set of stimuli that are coming onto the retina 

and therefore represent bottom-up signals. Although, sensor data are continuously coming into the 

mind, for simplicity we will use a fixed number of input signals, N. We denote the set of models by M, 

M = (M" ... , MH ) . Here H is the total number of concept models. Each model depends on its 

parametersS.: Mh = Mh(Sh). 

Model Mh predicts the value of xn based on the current model parameters S •. We introduce a measure 

of partial similarity, 

between a given input data element xn and a given model M h" For simplicity we will also denote 

partial similarity as l(nlh). It is a function of the data and the model parameters. It provides the 

measure of similarity between the predicted and the true values of x n . The specific form of l(nlk) will 

be considered later. The similarity is maximized when the model's prediction is exact and it vanishes 

when the model's prediction is far from the true value. We use notations similar to standard statistical 
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description, and partial similarity corresponds to conditional probability density functions (PDFs), under 

certain conditions. 

A data input, X
n

, can be associated with any of the H models. Using a probabilistic formulation, the 

similarity between a given data element xn and all the models is given by a sum over all of the H 

models. 

H 

len) = L l(nlh) (2) 
h = l 

If one of the models predicts the data very well, its similarity will dominate in the equation. If none of 

the models predicts the data element xn with high accuracy then the total similarity will be small. 

The total similarity between all the data and all the models is defined as the product of the individual 

similarities, 

The product of all data elements corresponds to the requirement that all data must be processed. 

Therefore if even a single data element is predicted poorly the whole similarity could easily be severely 

affected. Expression (3) is a shorthand mathematical formulation of NMF. A concrete implementation 

requires the specification of the partial similarities I(n I h) and the models that make these similarities. 

Detailed discussions of mathematical expressions for similarities and models for a number of 

applications can be found in (Perlovsky 2001; 2006; Deming 1998; Deming at e12007, Deming and 

Perlovsky 2007). In section 3 we discuss specific expressions for learning and situation recognition. We 

emphasize once more that maximizing expression (3) using brute force lead to Cc. The efficient use of 

NMF requires combining it with DL; the referenced publication discuss in detail how DL is combined with 

NMF for many applications. 
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Equation (3) is similar to a standard probabilistic formulation. In a standard probabilistic formulation, a 

statistical parameter p(h) is used in front of I(n I h); We should note that in a probabilistic formulation, a 

product assumes independence. However, in our case, the product in (3) does not imply that data x, are 

independent. In our case, expression (2) is a PDF of error between the data x, and the model prediction, 

when using the multiple hypothesis assumption. Using a probabilistic interpretation, these errors can be 

assumed to be independent. 

We reiterate that under certain conditions equation (3) is the total likelihood. Finding the parameters of 

models by maximizing the likelihood provides the maximum likelihood (ML) estimation representing the 

best possible estimate under certain conditions (Kay, 1993). But the beneficial properties of the ML 

estimation, however, are of secondary concern in this paper. The likelihood expression (3) contains 

combinatorially many items. Standard estimation algorithms, such as (Singer at e11974) maximize 

these items one by one, and then select the largest. This leads to CC of all state of the art algorithms, 

and has caused this problem to be unsolvable for decades. Maximization of (3) with respect to model 

parameters Sh, h=l,. .. , H, can be attempted by gradient ascent. Gradient ascent is a non-combinatorial 

solution, and its complexity is linear. The difficulty of this approach is that similarity (3) is a highly 

nonlinear function with a combinatorial number of local maxima. Our main contribution in this paper is 

to solve this "unsolvable" problem without Cc. The reason DL can solve it without CC is that in the 

process "from vague to crisp," the local maxima are ironed out in the initial stages of the problem. The 

solution converges to a crisp one, and local maxima may cause problems only in a later stage of the DL 

process, when a solution is close to the global maximum, and the local maxima has been avoided. This 

property of DL has been demonstrated and discussed in details in dozens of problems and in hundreds 

of publications (see references in the text). 
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It is convenient to introduce a log similarity function, which replaces the product with the summation. 

The introduction of this logarithm does not change the nature of similarity measure since log is a 

monotonically increasing function. 

LL(xIM) = 10gL(xIM) = t log [~[(nlh)] (4) 

The gradient ascent is given by 

aLL(xIM) 
dSh = dt aSh (5) 

Here we use the symbol for partial derivative with respect to a vector of model parameters Sh' This 

notation follows (Perlovsky, 2001, 2006a, 2006b, 2006c) and we comment that the gradient 

symbol could be used instead. 

Consider the expression for the derivative of the total similarity with respect to the parameters of one of 

the models with index h, 

aLL(xIM) IN a ( [IH )]) IN [ (nih) a log [(nih) ---'-~ = - log [( n I h2 = =H---':"":""':=:-:----:----';~":""':' 
aSh aSh Lh =1 [(nlh 2 ) aSh 

n=l h2= 1 n = l 2 

(6) 

We introduced the subscript h, for the internal summation, and reserve h for the subscript of the model 

we are differentiating with respect to. The last expression is obtained using the fact that the function 

[(nih) depends only on Sh and by using the identity d log y = 2.. 
dy y 

We introduce a set of association function s defined by 

[ (n ih) 

These functions define associations between data n and model h and they are convenient because they 

belong to an interval [0,1) . They are defined similar to a posteriori Bayes probabilities, and under certain 
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conditions they converge to a posteriori Bayes probabilities. The gradient ascent is re-written using the 

functions f(h I n) in the following equation 

N 

dS k '\' ( ) _a _Io,=-g {~( n-ci h..:..) 
-d-t = L./ hln aSh 

n=l 
(8) 

At this pOint we define an algorithm to maximize the tota l similarity. The algorithm consists of 

performing the steps of the gradient ascent which involve iterative evaluation of (7) and (8) until some 

convergence criteria are satisfied. 

Consider an alternative way of maximizing the similarity. Instead of performing the gradient ascent we 

set the gradient aU(x,M) to zero and solve the resu lting equation for the unknown parameters Sh' 
aSh 

N 

I f(kln) a lo~~~n l h) 0 -> Sh (9) 
n=l 

ConSider the following iterative process 

1. Initialize parameters 

2. Compute associations 

N 

S 1_ S 0 
h - k 

((nih) . I 
f(hln) = ,<,H (I) ,gwen Sk 

"-h2 =1{ n hz 

'\' a log ((nih) 
3. Estimate parameters L.,f(hln) as = 0 -... Shl+l,givenf(hln) 

n= 1 h 

4. Set and repeat 2 and 3 S 1_ S 1+1 
h - h 

(10) 

This procedure has been shown to increase the total similarity after each step and therefore converges 

(Perlovsky, 2001). This approach converges faster than the gradient ascent, therefore we use this 

procedure. 

The NMF-DL is a biologically motivated approach. It uses well known interactions between bottom-up 

and top-down signals, that are also used in several types of neural networks ( Carpenter and Grossberg, 

1998, Kosslyn, 1994, Schacter, 1987, Bar et ai, 2006). As previously mentioned, Bar et ai, 2006 have 
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demonstrated that the DL process " from vague to crisp" is actually the mechanism used in the brain . 

This property of vague states of initial representations, that gradually become crisp, is a unique property 

of NMF-DL, which eliminates Cc. 

The cognitive foundation of the NMF is aided by visualizing the framework as an artificial neural network 

as shown in Fig. 1. The elements of this network are not individual neurons but become populations of 

neurons that represent internal models. The input layer sends the bottom-up signals to the middle layer 

conSisting of numerical weights and similarity measures, and the model layer sends the top-down 

signals to the middle layer. Both top-down and bottom-up signals are necessary to compute the 

similarities and the association weights of the middle layer, to provide feedback to the model layer 

forming a recurrent loop. The iterations between the weights layer and the models layer converge to 

the best match between the input data and the models. 

, 
Input Data : , 

o ! , 
____ _______ ____________ _________ _______ _________ _____ _____ ______________ ___ __ ____ 2 

Figure 1 
Neural interpretation of the NMF system; the three functional parts of the system are Input Data, Models, and 

Weights. The weights f(h I n) are computed by interactions between the inputs and weights layer and the 
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competitive-cooperative interactions within the weights layer. The model parameters Sh depend on the weights 
forming a recurrent loop. 

Figure 1 illustrates how the NMF framework can be interpreted and implemented as a recurrent neural 

network with weight update rules given by equations (7) and (8) or (10). Moreover, the evaluation of 

association weights (7) can be cast in a differential form as well making the equations suitable for neural 

network interpretation (Perlovsky, 2001). 

3. NMF-DL FOR LEARN!NG SITUATIONS 

In this section the general formulation of NMF is extended to the case of learning and recognizing 

scenes from objects. We will refer to the set of objects that are essential for creating a meaning of the 

observed scene as a situation. For example, the presence of paved roads and tall buildings in the scene 

means that the observer is looking at an urban landscape. The presence of tables, chairs, plates, forks 

and spoons is enough to create a restaurant situation. The essential objects are intermixed with other 

objects that do not relate to the essential objects. These objects play the role of noise by making 

situation recognition difficult. 

We denote D, to be the total number of objects that exist in the world. This is a large but finite number. 

An observer can perceive Np objects in the scene. These Np objects are a much smaller number in 

comparison to D,. Each situation is characterized by the presence of N, objects, where N, is smaller than 

Np. The sets of objects that constitute different situations may overlap, with some objects being 

essential to more than one situation. We assume that each object is encountered in the scene only one 

time. This simplification is not essential since we can consider sets of similar objects as a new object 

type. For example, "book" is an object type and "books" is another object type referring to more than 

12 



one book. If necessary, a new object type - "lots of books" - can be introduced to refer to a large 

collection of books and with such an object it may be essential to distinguish between situations like 

Illibrary" and "officell
. 

Perception of objects can be represented as a binary vector x, = (x, ... x; ... xo,). If the value of x; is one the 

object i is present in the situation and if X; is zero, the corresponding object is not present. Since D, is a 

large number, x, is a large binary vector with most of its element equal to zero. 

We introduce a situation model as a vector of probabilities Ph = (Ph, ",Ph, ... PhD)' Here Ph, is the 

probability of object i being part of the situation k. This situation model contains D, unknown 

parameters. Estimating these parameters constitutes learning. 

The similarity between vector x, and model Ph representing a situation h is then given by the following 

formula (Duda et ai, 2000). 

Dx 

l(nlh) = prob(xnlh) = n P:~' (1 - Ph,)(l- Xn,l (11) 
1= 1 

This equation is a distribution of independent objects. Should objects appearing in a context of a 

situation be considered independent, so that there is a dependence between objects and consequently 

a "context" emerges in the result of the learning situations? Or should we assume that the objects in 

context are correlated, in other words, are these infants born with genetically specified contexts? It is 

obvious to us that an assumption of independence seems more reasonable. However, we do not have to 

solve this problem here. It is sufficient to consider the independence assumption in (17) as a model, and 

to demonstrate that even with this model, dependence-contexts appear in the result of learning 

situations. (Of course, any correlation between objects would make a problem easier to solve, even with 

the model (11)) . We use the formula for the probability of binary vector x, as the measure of similarity 

between this binary vector and its model Ph. This expression vanishes when Ph; =0 or Ph;= 1. In order to 
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avoid numerical instabilities in this implementation we impose limits on Ph; that will always keep it 

above zero and below one. 

We would like to add the following for future research. In this paper Xo is a binary vector and we 

separated object recognition and situation recognition for simplicity. However, in actual brain 

operations, objects and situations are processed in parallel. Situation learning and recognition are 

ongoing processes and not the one-time job as we model it in this paper. In addition, before the 

situation learning begins, object recognition is not finished, and describing object identities with binary 

variables may not be adequate. Continuous variables xo.; E [O,lJ could be more appropriate, with a PDF 

of a similar functional form, when properly normalized. Emotional interactions can also be modeled 

[Barrett and Bar, 2009). Conceptual-emotion model of top-down and bottom-up interactions among 

layers in a hierarchical system, adequate for the brain modeling, is an additional topic for future 

research. 

We substitute the similarity measure given by equation (11) into equation (4) to obtain the total 

similarity for our case. By taking the partial derivative of I(n I h) and substituting it into (9) it can be 

shown to yield the following formula. 

N 

aLL L x -Ph - = [(hln) n, , 
aph, n = l Ph,(l - Ph,) 

(12) 

Setting this expression to zero we obtain the following expression for Ph;. 

This expression is used in the parameter estimation step in equation (10). The association step remains 
the same. 

14 



4 . SIMULATION RESULTS 

As we previously discussed, the mind has multiple levels that range from simple features and objects at 

the "bottom" to situations and abstract concepts at "higher' levels. Here we consider a single level of 

situation recognition. A situation is characterized by a set of objects. The objects are recognized at lower 

levels. In a real mind, multiple levels operate in parallel, but here we consider the level of situations 

separately. Our approach is applicable to higher levels as well, but we limit this paper to a single level by 

conSidering only the types of objects that are normally present in a given situation. In such a 

formulation the problem remains difficult due to the large number of possible situations and due to the 

presence of random objects that introduce strong " noise" into the data. 

The problem of learning situations is complicated, because the learning system is exposed to various 

situations in a random order and without explicit teaching (most situations are unlabeled) . In every 

situation most observed objects are irrelevant to this situation (clutter), and only a small number of 

objects are uniquely specific for this situation . In addition, most of observations are "clutter", and they 

do not relate to anything worth learning in important "situations," but contain only irrelevant objects. 

These difficulties are specific manifestations of CC for situational learning and recognition . For these 

reasons, learning situations for decades have remained a long-standing unsolved problem. 

To summarize, simulation examples in this section all pertain to the following problem: an intelligent 

agent (a child) can recognize D, objects in the world. He/She observes Np objects at a time, called a 

sample, or an observation, or a realization of a situation. Observations are repeated many times. There 

are H, different situations, that we call important, and each is characterized by N, objects essential for 

this situation (always repeated in this situation) and another Np-N, "clutter" objects that are se lected 

randomly for each observation (sample) . In addition there are many "non-important" clutter situations, 
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that are only characterized by Np clutter objects (that are selected randomly for every observation of 

this situation). No supervision is provided. The problem is (1) to learn these important situations, (2) to 

learn the essential objects that characterize each of them, and (3) to separate clutter situations from 

important situations. In this work we use synthetic data, so that the results can be evaluated with 

respect to the truth . 

Each observation results in the recognition of Np objects. This is represented as a vector X, of binary 

variables with each component indicating the presence or absence of the object with corresponding 

index. Note that the identities of the objects, emerging in the hierarchical brain system, are not 

discussed in this paper, so we simply use object indices varying from 1 to D,. 

We initialize the DL process with H-1 situational models and one clutter model corresponding to random 

collections of objects, to give a total of H models. The clutter model is initialized with each object 

probability, Phi, equal to 0.5. Similarly to meanings of objects, the meanings of situations emerge in the 

brain hierarchy. We do not consider this process here and use situation indices to identify them. We 

refer to objects and situations by using corresponding indices: i for an object, h for a situation, and n for 

a sample or a situation observation. 

Table 1 
Situation Index Indices of Essential Objects 

1 2 16 17 53 59 
2 17 19 22 68 88 
3 5 24 42 65 96 
4 19 22 35 68 94 
5 43 51 53 65 71 

6 6 25 49 63 87 
7 13 19 50 60 87 
8 23 47 52 53 97 
9 19 61 71 84 87 
10 9 17 43 49 57 
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In the first example we set the total number of objects equal to 100. The number of objects in each data 

sample N, is 12. The number of situation-essential objects that repeat in each instance of the same 

situation N, is set to 5. There are 5 essential objects that distinguish a particular situation. However the 

observer sees them along with N, - N, other objects that are irrelevant to this situation, that are 

randomly selected clutter objects. The total number of different situations that the learning system is 

exposed to is H,=lO. 

To generate data we randomly selected 10 groups (H,=lO) of 5 (N, =5) objects and fixed them as 

essential for this situation. Table 1 shows the indices of essential objects in each of the 10 situations. 

For each situation we add N, - N, =7 randomly selected objects . We also generated 10 more groups of 

12 (N, =12) randomly selected objects (clutter) to model random-clutter perceptions that do not 

correspond to important situations in the sense that they are not characterized by permanent essential 

objects. We generated 25 data samples for each situation resulting in the total of 500 data samples. 

The input data is visualized in Figure 2. Here the horizontal axis corresponds to the index of the sample 

(the observation of one situation) and the vertical axis corresponds to the index of the object. The bright 

white pixels indicate the presence of objects in situations. The samples in Figure 2 are sorted by the 

situation index (horizontally) by grouping the samples of the same situation together. This makes 

samples from the same situation located next to each other on the plot, the bright spots form horizontal 

lines correspond to repeated essential objects and appear as bright lines. Note that the object indices of 

the lines that correspond to the object indices in Table 1. The horizontal length of each bright line is 25 

pixels corresponding to 25 samples of each situation. The first 10 situations are important situations, 

characterized by repeated essential objects. Clutter situations, without bright lines (all objects are 

random clutter) follow on the right. 
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Figure 2 contains the solution of the problem, all situations and essential objects are clea rly visible. In 

real life, however, situations do not come "sorted" together. Situations are observed as they appear, 

without any order, and it is not clear what is clutter and what is an important situation, and how do we 

know what objects are essential and should be identified. Figure 3 shows this real -life case, with the 

same data in Figure 2 where the sample index (horizontal axes) has been randomly permuted. This 

corresponds to the random order of the situations that are observed. The horizontal lines have 

disappeared. And the problem becomes difficult to solve. If we use a simple-minded sorting by looking 

at all possible rearrangements, until horizontal lines for essential objects become obviously visible, we 

would have to evaluate all permutations of the horizontal index, N! =500!. 
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Sample Index 

Figure 2 
Visualization of the binary data input for the experiments with Np=12. The object index is shown along the vertical 

axes and the sample index along the horizontal axes. For each co lumn in this image, bright squares represent 

presence of an object in a sample and dark squares represent the absence of the object. Each co lumn contains 12 

bright squares. The data is sorted by situation making repeated objects visible as 25 pixe l horizontal lines. 
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Figure 3 
Visualization of the randomized binary data input for the experiments with Np;;12. The object index is shown along 

the vertical axes and the sample index along the horizontal axes. For each column in this image, bright squares 

represent presence of an object in a sample and dark squares represent the absence of the object. Each column 

contains 12 bright squares. The samples are presented in random order making visual identification of repeated 

objects impossible. 

The algorithm given by equation (10) when the parameter estimation step is given by equation (19) is 

applied to the data. The parameters of each model are S h = (Ph" i = 1, ... , Dx} · To apply the algorithm 

we need to initialize 20 important situational models (an arbitrary assumption given that the true 

number of important models is 10 with values of Ph, drawn from a uniform distribution with limits 0.3 

and 0.7). These initial values correspond to the initial vague state of DL causing all objects to have a 

significant chance to belong to each situation. All initializations should be different, because models 

initiated with the same parameters will change in exactly same way. The 21" model, random clutter, has 
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all of its components equal to 0.5. Note that we start with a number of models that is greater than the 

number of true situations. In reality the number of situations that we need to learn is not known in 

advance and the algorithm can be modified to add or delete models as necessary to maximize the 

similarity. 

Figure 4 illustrates the operation of the algorithm. Each image corresponds to one of the iterations of 

equation (10). We ran a total of 10 iterations. The figure displays the first 3 iterations and the last 

iteration. The horizontal axis corresponds to the model index varying from 1 to 20. The random noise 

model is not displayed since it does not change between the iterations. The vertical axis corresponds to 

the object index as in Figures 2 and 3. The brightness of the pixels corresponds to the values Ph, with 

bright white corresponding to 1 and black corresponding to O. 
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Figure 4 
Iterations of the learning algorithm with random initialization mode and Np=12. Each image displays the va lues of 

probabilities for each of the 20 models. As the iterations progress the probabilities of the essential object increase 

and the probabilities of the other objects decrease. *The last image repeats the 10lh iteration with the models 

rearranged so that the first 10 models match real situations. The right hand side of the image contains no bright 

spots, and correspond to random noise models. 

The initial state of all models assigns all objects to all situationa l models with significant probabilities and 

there are many bright spots. These are the initial vague models. After several iterations the 

probabi lities of the essential objects become bright and the probabilities of the random objects become 

gray or black. There are 10 out of 20 models that exhibit bright pixels, and the other 10 models exhibit a 

more or less uniform gray color. The last panel in Figure 4 rearranges the models to place the 10 

brightest models on the left hand side. These models correspond to the 10 most important situations. A 

direct check confirms that the indices of the brightest pixels correspond to the indices in Table 1. We 
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emphasize once more that the DL iterative process that progresses from vague to crisp (starting from its 

initial vague state) avoids local maxima that plagued the previous state of the art algorithms. 
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Figure 5 
Iterations of the learning algorithm with partially supervised initialization and Np=12. Each image displays the 

values of probabilities for each of the 20 models. As the iterations progress the essential object probabilities 

increase and the other object probabilities decrease. *The last image repeats the 10th iteration with the models 

rearranged so that the first 10 models give the best match to real situations. The right hand side of the image 

contains no bright spots, and correspond to random noise models. Note that unlike Figure 4, rearranging the 

models did not change the image in this case, since model identities are "predefined" by initialization. 

The initialization of setting the models to vague states with random initial probabilities corresponds to 

unsupervised learning. In reality humans are told about the situation in at least some instances. A child 

coming to a supermarket for the first time may be told that this is a supermarket. However the next 

time she is in a different supermarket she may not be told about it. One way of modeling this type of 
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learning is by using one of the situation samples for model initialization. We call this the partially 

supervised initialization mode. In this mode the initial probabilities of the objects that are present in the 

selected sample are set to high values, usually between 0.7 and 0.8. The other object probabilities are 

set to low values close to 0.1. 

We have conducted four experiments with the parameters given in Table 2. In all of them, the algorithm 

was stopped after 10 iterations. Experiment 3 was described above and illustrated in Figures 2, 3 and 4. 

Table 2 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

N 500 500 500 500 
D, 100 100 100 100 
N, 10 10 12 12 
N, 5 5 5 5 
H, 10 10 10 10 
H 21 21 21 21 
D, 100 100 100 100 
Initialization Random Partially Random Partially 

supervised Supervised 

Figure 5 illustrates the iterations in experiment 4 when using partial supervision. The first subplot (it;O) 

illustrates the initialization. The initial models already contain high probability values for the objects 

essential to corresponding situations and some random objects. As the iterations progress the 

probabilities of non-essential objects vanish but the essential objects maintain high probability values. 

After 10 iterations the first 10 models converge to the true situations. The rest of the models no longer 

contain any bright spots corresponding to high probabilities. Rearrangement of the models does not 

change the picture since in this case the initialization has predetermined which model will converge to 

which situation. The results obtained for experiments 1 and 2 are similar to those of experiments 3 and 

4. In our case the partially supervised mode resulted in extremely fast learning and the brightness of the 

pixels changes very little after the second iteration. 
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We compute the pairwise Euclidean distance between the final 20 models and the true situations. Then 

we select the best match for each of the true situations. This procedure identifies which of the models 

correspond to a true situation and we also use it to evaluate the error for each iteration . Figure 6 shows 

the changes in the sum squared errors and the total similarity during the operation of NMF algorithm in 

experiments 1 and 3. The sum squared error is computed based on the top 10 matches between the 

models and the true situations described above. The total similarity is estimated using equation (4) . As 

expected, the supervised case results in better performance since the initial conditions are closer to the 

solution. 

Figure 7 shows the sum squared errors and the total similarity for experiments 3 and 4. The plots here 

are very similar to Figure 6. The only difference between the two input sets is the number of extra non-

essential objects in each situation, which is interpreted as the amount of noise in the data. The 

difference in the final error between the supervised and unsupervised cases is larger with increased 

noise levels. The algorithm achieved the solution in both cases . 
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Figure 6 
The sum squared error of the top 10 models (top) and the total similarity (bottom) for the case of 10 objects. 
Circles show the supervised case and stars show the unsupervised case. 
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Figure 7 
The sum squared error of the top 10 models (top) and the total similarity (bottom) for the case of 12 objects. 

Circles show the supervised case and stars show the unsupervised case. 

The high similarities and low errors that occur after only a few iterations in Figures 6 and 7 correspond 

to the last images in Figures 4 and 5. The first 10 models in Figures 4 and 5 have the bright spots in 

exactly the same locations as the horizontal lines in the original data given in Figure 2. 
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5. COMPUTATJONALCOMPLEXITY 

The computational complexity of the algorithm given by equation (10) can be estimated in terms of the 

number of data inputs N , the number of models H, the dimensionality of the data D, and the number of 

model parameters which we will denote by D,. D, is the length of vector Sh. The complexity is given in 

as 

Equation (14) is obtained by considering the algorithm in equation (10). The computation of f(h I n) 

requires H evaluations of the similarity for each of the data inputs yielding an order of NH evaluations. 

We assume that the cost of each similarity evaluation is proportional to the size of the vector x" which is 

D,. The parameter estimation step requires N evaluations of the derivative of log-similarity with respect 

to D, parameters for each of the H models. We again assume that the cost of evaluation of the 

derivative is proportional to D,. Therefore the total cost of one iteration is proportional to the product 

of the four numbers. The iteration is repeated until it converges. The number of iterations usually is not 

large and it is accounted for in the constant em". On the other hand, the problem of finding the best 

match between N data inputs and H models requires in general an exponential number of steps given as 

Cexp = O(NH)HN (15) 

This is the number of evaluations of the total similarity that has to be performed with all possible 

models and data assignments. Each evaluation requires an order of NH operations and the number of 

assignments is exponential. 

The computational complexity of the problem of matching N = 500 to H=21 models is combinatorial and 

is given by equation (15) evaluating to 0(21"'°), which is a huge number. However the NMF converged 

in 10 iterations with the cost of each iteration given by 0(500*21 *100*100)=0(10') . 
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6 . DISCUSSION AND CONCLUSIONS 

This paper has outlined steps toward the learning and recognition of situations, a problem that has 

remained unsolved for decades due to combinatorial complexity of existing algorithms. This problem is 

closely related to another unsolved problem, situational awareness, which is defined as "the perception 

of elements in the environment within a volume of time and space, the comprehension of their 

meaning, and the projection of their status in the near future" (Endsley, 1995). This ability is essential 

for a variety of military and civilian applications. This solution for situational learning opens a possibility 

for solving situational awareness. In Figure 8 we illustrate an architecture for solving this more complex 

problem. 

Figure 8 is comparable with the classical data fusion process where a simi lar hierarchy is described as 

part of the military threat assessment framework (Hall and Liinas, 2001). In the presence of multiple 

objects and clutter, fusion remained an unsolved problem until an NMF-DL solution was developed 

(Deming & Perlovsky, 2007) . In Figure 8 the bottom layer is concerned with recognizing objects and their 

movement over time. The next layer recognizes the situation formed by the presence of various 

objects. Observing the change of situations over time can allow the system to learn to predict the future 

developments in the environment. Then the decision making layer alters the state of the system in 

response to the perceived and predicted situation. There are feedback loops connecting all the layers 

necessary for the time domain processing. 
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Figure 8 

The layered architecture for an intelligent agent with each layer implementing the NMF network shown in Figure 1. 

The strength of the NMF-OL approach is that every level of this hierarchy can be implemented using the 

same computational framework. The previous work mentioned in the introduction was concerned with 

the object recognition and tracking layer. There the input data correspond to sequences of sensor 

images and the models correspond to shapes and trajectories of objects. This work illustrates how the 

same computational framework is employed in the second layer. 

The agent often receives clues from the environment that help it learn very fast. We show how such 

clues can be seamlessly incorporated into the framework as part of model initialization. This is 

illustrated by comparing the unsupervised and the partially supervised modes of operation . In our 

experiments NMF successfully solves the problem in either mode. However the partially supervised 
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mode resulted in faster learning and a better final result. We expect that in significantly more complex 

cases some form of partial supervision may become necessary. 

In real life multiple situations are often perceived without clear breaks. In parallel, a language stream is 

perceived using words to label situations. Usually it is not obvious which label-word refers to which 

situation. The case of partial supervision is sometimes modeled as cross-situational learning (Fontanari 

et al 2009). In the future we will address situational learning in parallel with proper associations among 

word-labels and situations. 

Our future work will involve the necessary steps to expand and merge the current applications of NMF 

into a single system shown in Figure 8. The issues of integration between layers need to be solved and 

the effect of feedback between the layers needs to be investigated. 

This single layer study needs to be expanded to a larger data set size by increasing the number of 

situations and objects. As our limited experiments have demonstrated, the performance of the 

algorithm depends not only on the data input size but also on the relative sizes of the total set of 

objects, essential objects and noise objects in the data. 

Let us now outline our future research directions leading to modeling the capabilities of the human 

mind. This research will include relations between objects. In the fully developed approach, relations are 

no different mathematically from objects when using the following method. Relations and markers, 

indicating which relations and objects are involved, can be included among other objects in the current 

method. Another direction toward modeling the mind would be to extend the developed approach to a 

multi-layer hierarchical system. At each level in a hierarchical system the output to the next higher level 

is a set of signals produced by models identified, learned, or recognized at the given level. The more 

general and abstract higher-level concept-models at the next level are learned as combinations of the 

lower-level concept-models in the same way as we demonstrated learning of situations from objects. In 
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this way the hierarchical cognition of the mind can be modeled. Our approach could include language. 

language and syntax are learned from surrounding language simi larly to how concepts and relations are 

learned from perceptual signals. Joint evolution of interacting language and cognition would be modeled 

following Perlovsky 1997;2004;2005;2006d; 2009a; Fontanari and Perlovski 2007; 2008a;2008b. 

Next, this system would model emotions, following Tikhanoff at el, 2006; Perlovsky 2002;2006; 

2007a;2007b;2007c;2008;2009b;2009c; levine & Perlovsky 2008. By considering multi-agent interaction 

of systems consisting of such conceptual-emotional intelligent agents communicating using language, 

we would be able to model human cultures (Perlovsky 2009b;c). 
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