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Abstract— Given a high dimensional dataset, one would like 
to be able to represent this data using fewer parameters while 
preserving relevant information, previously this was done with 
principal component analysis, factor analysis, or feature 
selection. However, if we assume the original data actually 
exists on a lower dimensional manifold embedded in a high 
dimensional feature space, then recently popularized 
approaches based in graph-theory and differential geometry 
allow us to learn the underlying manifold that generates the 
data. One such manifold-learning technique, called Diffusion 
Maps, is said to preserve the local proximity between data 
points by first constructing a representation for the underlying 
manifold. This work examines binary target classification 
problems using Diffusion Maps to embed the data with various 
kernel representations for the diffusion parameter. Results 
demonstrate that specific kernels are well suited for Diffusion 
Map applications on some sonar feature sets and in general 
certain kernels outperform the standard Gaussian and 
Polynomial kernels, on several of the higher dimensional data 
sets including the sonar data contrasting with their 
performance on the lower-dimensional publically available 
data sets. 

I. INTRODUCTION 
HE central problem in high-dimensional data analysis is 
the trade-off between computational complexity and the 

resolution gained with either more features or pixels. 
Therefore, a typical first step in analyzing high-dimensional 
data is to find a lower-dimensional representation and the 
concise description of its underlying geometry and density. 
This is usually done however, with global dimension 
reducing techniques such as principal component analysis,  
and Multidimensional Scaling. These techniques in general 
work well with well behaved maximally variant data. What 
if the data is only locally correlated? Then these techniques 
do not provide informative embedded data. Alternatively, 
graph based manifold learning techniques offer to embed the 
data based on local relationship preservation, i.e., they 
generally preserve the neighborhood structure. Such 
techniques are Diffusion Maps [1] and [2], Local linear 
Embedding [3], Laplacian Eigenmaps [4], Hessian 
Eigenmaps [5], and Local Tangent Space Alignment[6]. 

In this paper we consider the manifold learning technique 
Diffusion Maps of Coifman et al. [1], [2] and analyze the 
neighborhood preserving effects of kernel selection on the 
resulting manifold for publicly available data sets. These 
effects are studied by looking at the classification results for 
each binary target data set in various embeddings. 
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II. DIFFUSION MAPS 

A. Overview 
Diffusion Maps are defined as the embedding of complex 

data onto a low dimensional Euclidian space, via the 
eigenvectors of suitably normalized random walks over the 
given dataset. It has been shown, both theoretically in [1] 
and by examples in [2] how this embedding can be used for 
dimensionality reduction, manifold learning, geometric 
analysis of complex data sets and fast simulations of 
stochastic dynamical systems.  

Diffusion Maps are said to preserve the local proximity 
between data points by first constructing a graph 
representation for the underlying manifold. The vertices, or 
nodes of this graph, represent the data points, and the edges 
connecting the vertices, represent the similarities between 
adjacent nodes. If properly normalized, these edge weights 
can be interpreted as transition probabilities for a random 
walk on the graph. After representing the graph with a 
matrix, the spectral properties of this matrix are used to 
embed the data points into a lower dimensional space, and 
gain insight into the geometry of the dataset. It has been 
shown in [1] and [2] that the eigenfunctions of Markov 
matrices can be used to construct coordinates called 
Diffusion Maps that generate these efficient representations 
of  the complex geometric structures and the associated 
family of diffusion distances, obtained by iterating the 
Markov matrix, defines the multiscale geometries that prove 
to be useful in the context of data parameterization and 
dimensionality reduction. The process of constructing these 
Diffusion Maps as described in [1] and [2] is discussed in 
sections II.B through II.E. 

B. Construction of a Random Walk on the Data 
Given a data set Ω with a distribution μ of the points on Ω 

and a kernel k : Ω × Ω →R that satisfies the following 
properties: 

 
• k is symmetric: k(x, y) = k(y, x), 
• k is positivity preserving: k(x, y) ≥ 0. 

 
This kernel represents some notion of affinity or similarity 
between points of Ω as it describes the relationship between 
pairs of points in this set and in this sense, one can think of 
the data points as being the nodes of a symmetric graph 
whose weight function is specified by k. The kernel 
constitutes an a priori presumption of the local geometry of 
Ω, and since a given kernel will capture a specific feature of 
the data set, its choice should be guided by the application 
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that one has in mind; this will be discussed later.  
It is known that to any reversible Markov process, one can 

associate a symmetric graph. In addition, the converse is also 
true, i.e., from the graph defined by (Ω, k), one can construct 
a reversible Markov chain on Ω. This technique is known as 
the normalized graph Laplacian construction. The steps are 
as follows: define 

( ) ( , ) ( )d x k x y d yμ
Ω

= ∫  (1) 

to be a local measure of the degree of node x in this graph 
and define Pt to be an n × n matrix whose entries are given 
by 

( , )( , )
( )t

k x yp x y
d x

=
 

(2) 

which is the probability of transition from x to y in one time 
step. For t = 1 this can be interpreted as the first-order 
neighborhood structure of the graph. 

C. Powers of P and Multiscale Geometric Analysis of Ω 
The matrix P contains geometric information about the 

data set Ω. The transitions that it defines directly reflect the 
local geometry defined by the immediate neighbors of each 
node in the graph of the data. In other words, p1(x, y) 
represents the probability of transition in one time step from 
node x to node y and it is proportional to the edge-weight 
k(x, y). For t ≥ 0, the probability of transition from x to y in t 
time steps is given by pt(x, y), the kernel of the tth power Pt 
of P. Larger powers of P, allows the integration of the local 
geometry and therefore will reveal relevant geometric 
structures of Ω at different scales, i.e., larger neighborhoods. 

D. Spectral Analysis of the Markov Chain 
Powers of P constitute an object of interest for the study 

of the geometric structures of Ω at various scales. A classical 
way to describe the powers of an operator is to employ the 
language of spectral theory, namely eigenvectors and 
eigenvalues. Although for general transition matrices of 
Markov chains, the existence of a spectral theory is not 
guaranteed, the random walk constructed here exhibits very 
particular mathematical properties, i.e., if the graph is 
connected, which we now assume, then the stationary 
distribution is unique and we have 

0lim ( , ) ( )tt
p x y yφ

→+∞
=

 (3) 
where the Markov chain has a stationary distribution given 
by 

0
( )( ) .

( )
z

d yy
d z

φ
∈Ω

=
∑  

(4) 

The chain is reversible, i.e., it follows the detailed balance 
condition: 

0 1 0 1( ) ( , ) ( ) ( , ).x p x y y p y xφ φ=  (5) 
The vector 0φ  is the top left eigenvector of P. The spectral 
analysis of the Markov chain is governed by the following 
eigen-decomposition 

 

0
( , ) ( ) ( ),t

t l l l
l

p x y x yλ ψ φ
≥

=∑  (6) 

where {λl} is the sequence of eigenvalues of P (with |λ0| ≥ 
|λ1| ≥ |λ2| ≥  · · ·) and {ψl} and { }lφ are the corresponding 
biorthogonal right and left eigenvectors.  

E. Diffusion Distances and Diffusion Maps 
The spectral properties of the Markov chain can now be 

linked to the geometry of the data set Ω. As previously 
mentioned, the idea of defining a random walk on the data 
set relies on the following principle: the kernel k specifies 
the local geometry of the data and captures some geometric 
feature of interest. The Markov chain defines fast and slow 
directions of propagation, based on the values taken by the 
kernel, and as one runs the walk forward, the local geometry 
information is being propagated and accumulated the same 
way local transitions of a system can be integrated in order 
to obtain a global characterization of this system. 

Running the chain forward is equivalent to computing the 
powers of the operator P . For this computation, we could, in 
theory, use the eigenvectors and eigenvalues of P. Therefore, 
we are going to directly employ these objects in  order to 
characterize the geometry of the data set Ω. The family of 
diffusion distances {Dt }t∈N is given by 

( ) 2
2

0

( , ) ( , )
( , ) .

( )
t t

t
y

p x y p z y
D x z

yφ∈Ω

−
= ∑  (7) 

In other words, Dt(x, z) is a functional weighted l2 distance 
between the two posterior distributions pt(x, ·) and pt(z, ·). 
For a fixed value of t , Dt defines a distance on the set Ω. By 
definition, the notion of proximity that it defines reflects the 
connectivity in the graph of the data. Indeed, Dt(x, z) will be 
small if there is a large number of short paths connecting x 
and z, that is, if there is a large probability of transition from 
x to z and vice versa. The main interesting features of 
diffusion distance are: 1) the points are closer if they are 
highly connected, 2) Dt(x, z) involves summing over all 
paths and is therefore robust to noise perturbations, 3) the 
distance takes into account all evidence relating x and z. 
Dt(x, z) does not have to be computed explicitly. It can be 
computed using the eigenvectors and eigenvalues of P: 

2 2 2

1
( , ) ( ( ) ( )) .t

t l l l
l

D x z x zλ ψ ψ
≥

= −∑
 

(8) 

As previously mentioned, the eigenvalues λ1,λ2, . . , λN  
tend to 0 and have a modulus strictly less than 1.  As a 
consequence, the above sum can be computed to a preset 
accuracy δ >0 with a finite number of terms: if we define as 
the number of elements retained to meet this accuracy. Then, 
up to relative precision δ, we have 

1
( , ) 2

2 2

1
( , ) ( ( ) ( )) .

s t
t

t l l l
l

D x z x z
δ

λ ψ ψ
≥

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ (9) 

We can therefore introduce a family of diffusion maps 
{Ψt}t∈N  given by 
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(10) 

Each component of Ψt (x) is termed diffusion coordinate. 
The map Ψt: Ω →Rs(δ,t) embeds the data set into a Euclidean 
space of s(δ, t) dimensions. This method constitutes a 
universal and data driven way to represent a graph, or any 
generic data set, as a cloud of points in a Euclidean space. 
Moreover, s(δ, t) depends on the properties of the random 
walk and not on the number of features of the original 
representation. 

III. KERNEL FUNCTIONS 
The kernel constitutes our prior definition of the local 

geometry of Ω, and since a given kernel will capture a 
specific feature of the data set, its choice should be guided 
by the application that one has in mind. Below is the list of 
kernels used here: 
• Laplacian Kernel: ( )( , ) exp / 2k x y x y b bμ= − − − , 

• Gaussian Kernel: 2 2 ),( , ) exp( / 2k x y x y σ= − −  

• Rayleigh Kernel:  
2 2

2

exp( 2 )
( , )

x y x y
k x y

σ
σ

− − −
= , 

• Polynomial Kernel:  ( , ) (1 , )dk x y x y= +  
where the Gaussian and Polynomial kernels are most 
familiar from support vector machines. The Laplacian and 
Rayleigh were introduced previously in [7]. 

IV. EXPERIMENTS 

A. Experimental Setup 
The problem here is to analyze the effects on resultant 

diffusion maps of certain kernel functions for the 
classification of select databases. Each database is divided 
into ten groups that are as equal as possible, 10-fold cross 
validation. Nine groups are set aside for the training set and 
one group for the dedicated testing set. This procedure is 
continued until all groups have represented as a testing set. 
The average performance overall 10-folds is presented as the 
probability of classification (PC), or sensitivity, and the 
probability of false alarm (PFA), or specificity. This is done 
to demonstrate the trade-off between correctly classifying 
true cases versus incorrectly classifying false cases. Each 
kernel uses the same groups for each data set so that the 
possibility of poor individual performance due to the 
distribution of the draw is eliminated. In addition, each 
experiment is done ten times and the results are averaged 
over these runs. 

A Linear Discriminant Analysis (LDA) classifier is used 
to evaluate the enhancement provided by the individual 
kernels to the diffusion map process. A LDA classifier 
assumes the classes have equal covariance matrices. In this 

case, the decision boundaries between classes is linear, and 
can in general be a hyperplane. The general form for LDA is 

1 11( ) log
2

T T
k k k k kk

x xδ μ μ μ π− −= Σ − Σ +  (11) 

and the decision rule is ( ) argmax ( )k kG x xδ= . Where the 
parameters are estimated from the training data as follows: 

• 
, where  is the number of class-

 observations
k k kN N N kπ =

; 

• k i kg ki
x Nμ

=
=∑ ; 

• ( )1
ˆ ( )( ) .K T

i k i kk g ki
x x N Kμ μ

= =
Σ = − − −∑ ∑  

For example, the LDA rule classifies to class 1 if 
1 1 1

1 0 1 1 0 0

0 1

1 1ˆ ˆ ˆˆ ˆ( ) ...
2 2

log( / ) log( / )

T T Tx

N N N N

μ μ μ μ μ μ− − −Σ − > Σ − Σ +

+ −
 (12) 

and class 0 otherwise. 
The experimental variable values are listed below.  

 
Experimental Variables 

δ= 1e-7, α = 1, b = 2, µ = 1, σ2 =3 , d = 3. 
 
Where δ is the diffusion threshold, α is the diffusion 
probability distribution scaling, b is the Laplacian kernel 
scaling parameter, µ is the mean for the Laplacian kernel, σ2 
is the variance for the Gaussian kernel and the square of the 
mode for the Rayleigh kernel, and d is the polynomial kernel 
degree. 

B. Data Sets 
The experiment discussed above tests the kernels and their 

embeddings for classification enhancement on the resulting 
Diffusion Maps over eight publically available data sets [8]: 

 
• Pima Indian: Pima Indian Diabetes 
• Sonar1: Connectionist Bench Sonar 
• WDBC: Wisconsin Diagnostic Breast Cancer 
• WPBC: Wisconsin Prognostic Breast Cancer 
• Clev. Heart: Heart Disease Data Set, Cleveland 
• Wisc. BC: Wisconsin Breast Cancer Original 
• Sonar2: Shallow Water Acoustic Toolset [9] 
• Sonar3: Shallow Water Acoustic Toolset [9] 
 

For each data set listed above, Table 1 below includes the 
number of samples, the class distribution, and the number of 
features, or attributes. 

C. Results 
The experimental results for the kernel effects on the 

resultant diffusion maps are shown below in Table 2 through 
Table 9. The tables are listed per database with each kernel 
given a column. The rows correspond to the original and 
reduced dimension pairs.  

Table 1 shows that for the Pima Indian database the 
Polynomial and Gaussian kernels have a better PC than the 



 

Approved for Public Release; distribution is unlimited 
 

 

Laplacian and Rayleigh kernels with a trade-off of a slightly 
worse PFA. For the Sonar1 database, all of the kernels are 
fairly consistent with the Rayleigh kernel slightly 
outperforming, on average, the Laplacian kernel with an 
average PC 72.6%.  The Laplacian kernel outperforms the 
other three kernels on the WDBC database with an average 
PC 98%, however as for an more acceptable PFA the Rayleigh 
kernel offers a sound alternative with a decrease average P 
of 95.5%. This result differs from the WPBC database with 
the Rayleigh kernel resulting in an average PC of 66% and 
all four kernels failing overall to capture the embedding 
appropriately. 

Results for the Clev. Heart database show that the 
Rayleigh kernel captures the embedding with an average PC 
of 77.3% and a slightly higher PFA than the Gaussian kernel. 
For the Wisc. BC database the Gaussian kernel outperforms 
the other three with a PC of 98.5% with a 0.4%  increase in 
PFA as compared to the next best Laplacian result. For the 
Sonar2 database the Rayleigh kernel outperforms the other 
three by a minimum of 13% for an average PC of 95%. This 
demonstrates the superiority of this kernel to capture the 
embedding of this particular feature set. The performance on 
the Sonar3 database leaves much to be desired, however. 
With an average PC of 79.4% the Rayleigh kernel 
demonstrates a marked improvement over the Gaussian with 
an average PC of 51.7%, nevertheless the gain comes with an 
increased PFA of 13.3%. 

V. CONCLUSIONS AND FUTURE WORK 
As the experiments demonstrate, the choice of kernel 

effects the resultant diffusion map.  Overall, the Laplacian 
and Rayleigh kernels outperformed the standard Polynomial 
and Gaussian kernels on all of these databases, with a few 

exceptions such as the Pima Indian and Wisc. BC datasets. It 
appears that the Laplacian and Rayleigh kernels perform 
best on the higher dimensional non-Gaussian datasets and 
the standard kernels work well with lower-dimensional data. 
Therefore, for enhanced target recognition capability and an 
acceptable PFA the Rayleigh kernel appears the appropriate 
choice to best capture the embedding distribution to enhance 
the diffusion map process. 
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TABLE 1. EXPERIMENTAL DATA SETS 

Data Set # Samples # Class 0 # Class 1 # Attributes 
Pima Indian 768 268 500 8 
Sonar1 208 97 111 60 
WDBC 569 212 357 30 
WPBC 198 151 47 33 
Clev. Heart 303 164 139 13 
Wisc. BC 699 458 241 9 
Sonar2 22263 21154 1109 60 
Sonar3 3562 3512 50 60 

 
TABLE 2. EXPERIMENTAL RESULTS FOR PIMA INDIAN 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(8,2) PC: 0.558 
FA: 0.5187 

PC: 0.694 
FA: 0.3881 

PC: 0.672 
FA: 0.347 

PC: 0.748 
FA: 0.4366 

(8,3) PC: 0.704 
FA: 0.6567 

PC: 0.704 
FA: 0.3918 

PC: 0.672 
FA: 0.347 

PC: 0.714 
FA: 0.4067 

(8,4) PC: 0.702 
FA: 0.4813 

PC: 0.678 
FA: 0.3806 

PC: 0.666 
FA: 0.3507 

PC: 0.716 
FA: 0.4067 

(8,5) PC: 0.724 
FA: 0.4739 

PC: 0.684 
FA: 0.3246 

PC: 0.676 
FA: 0.3545 

PC: 0.716 
FA: 0.403 
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(8,6) PC: 0.74 
FA: 0.4515 

PC: 0.692 
FA: 0.291 

PC: 0.674 
FA: 0.3619 

PC: 0.706 
FA: 0.4216 

(8,7) PC: 0.744 
FA: 0.4627 

PC: 0.692 
FA: 0.2873 

PC: 0.7 
FA: 0.306 

PC: 0.704 
FA: 0.3582 

(8,8) PC: 0.738 
FA: 0.4813 

PC: 0.684 
FA: 0.2836 

PC: 0.692 
FA: 0.2873

PC: 0.692 
FA: 0.3358 

 
TABLE 3. EXPERIMENTAL RESULTS FOR SONAR1 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(60,2) PC: 0.5676 
FA: 0.2887 

PC: 0.5856  
FA: 0.3711 

PC: 0.6396  
FA: 0.4227 

PC: 0.5225  
FA: 0.3505 

(60,3) PC: 0.6126 
FA: 0.2577 

PC: 0.7658  
FA: 0.2268 

PC: 0.7387  
FA: 0.2577 

PC: 0.6577  
FA: 0.2165 

(60,4) PC: 0.7117 
FA: 0.268 

PC: 0.7568  
FA: 0.2474 

PC: 0.7387  
FA: 0.2887 

PC: 0.7568  
FA: 0.2577 

(60,5) PC: 0.7748 
FA: 0.2784 

PC: 0.7477  
FA: 0.268 

PC: 0.7027  
FA: 0.299 

PC: 0.7297  
FA: 0.2577 

(60,6) PC: 0.7477 
FA: 0.299 

PC: 0.7297  
FA: 0.2268 

PC: 0.7748  
FA: 0.2784 

PC: 0.7297  
FA: 0.2371 

(60,7) PC: 0.7477 
FA: 0.3196 

PC: 0.7477  
FA: 0.2165 

PC: 0.7568  
FA: 0.268 

PC: 0.7297  
FA: 0.2268 

(60,8) PC: 0.7477 
FA: 0.3299 

PC: 0.7297  
FA: 0.2371 

PC: 0.7297  
FA: 0.268 

PC: 0.7477  
FA: 0.2371 

 
TABLE 4. EXPERIMENTAL RESULTS FOR WDBC 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(30,2) PC: 0.9468 FA: 
0.1462 

PC: 0.9748 
FA: 0.1651 

PC: 0.9496 
FA: 0.09906 

PC: 0.9356 
FA: 0.184 

(30,3) PC: 0.958 FA: 
0.1604 

PC: 0.9692 
FA: 0.1132 

PC: 0.958 
FA: 0.08491 

PC: 0.9888 
FA: 0.2028 

(30,4) PC: 0.9468 FA: 
0.1698 

PC: 0.9804 
FA: 0.1038 

PC: 0.9608 
FA: 0.08962 

PC: 0.972  
FA: 0.1321 

(30,5) PC: 0.958 FA: 
0.1368 

PC: 0.9832 
FA: 0.1179 

PC: 0.958 
FA: 0.08962 

PC: 0.9776 
FA: 0.1179 

(30,6) PC: 0.9524 FA: 
0.09906 

PC: 0.9832 
FA: 0.1226 

PC: 0.9496 
FA: 0.09434 

PC: 0.9748 
FA: 0.1274 

(30,7) PC: 0.9496 FA: 
0.1085 

PC: 0.9888 
FA: 0.09434 

PC: 0.944 
FA: 0.08019 

PC: 0.9748 
FA: 0.1226 

(30,8) PC: 0.9552 FA: 
0.09434 

PC: 0.9804 
FA: 0.09434 

PC: 0.9636 
FA: 0.08019 

PC: 0.9776 
FA: 0.1368 

 
TABLE 5. EXPERIMENTAL RESULTS FOR WPBC 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(33,2) PC: 0.5532 
FA: 0.3311 

PC: 0.5532  
FA: 0.3311 

PC: 0.6596  
FA: 0.3974 

PC: 0.5745  
FA: 0.351 

(33,3) PC: 0.5745 
FA: 0.3046 

PC: 0.5745  
FA: 0.3377 

PC: 0.7021  
FA: 0.3576 

PC: 0.5957  
FA: 0.3775 

(33,4) PC: 0.5957 
FA: 0.3444 

PC: 0.5319  
FA: 0.3709 

PC: 0.6596  
FA: 0.3709 

PC: 0.617  
FA: 0.3377 



 

Approved for Public Release; distribution is unlimited 
 

 

(33,5) PC: 0.5957 
FA: 0.3245 

PC: 0.6383  
FA: 0.351 

PC: 0.6596  
FA: 0.351 

PC: 0.617  
FA: 0.3444 

(33,6) PC: 0.6383 
FA: 0.3311 

PC: 0.617  
FA: 0.3576 

PC: 0.6596  
FA: 0.3377 

PC: 0.6383  
FA: 0.3444 

(33,7) PC: 0.617 
FA: 0.3311 

PC: 0.6383  
FA: 0.3576 

PC: 0.6596  
FA: 0.3377 

PC: 0.617  
FA: 0.351 

(33,8) PC: 0.6383 
FA: 0.3113 

PC: 0.617  
FA: 0.3576 

PC: 0.617  
FA: 0.3311 

PC: 0.617  
FA: 0.3245 

 
TABLE 6. EXPERIMENTAL RESULTS FOR CLEV. HEART 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(13,2) PC: 0.7266 
FA: 0.122 

PC: 0.7482  
FA: 0.1951 

PC: 0.7626  
FA: 0.2622 

PC: 0.741  
FA: 0.189 

(13,3) PC: 0.7266 
FA: 0.128 

PC: 0.7482  
FA: 0.189 

PC: 0.7626  
FA: 0.2256 

PC: 0.7338 
FA: 0.1768 

(13,4) PC: 0.7122 
FA: 0.1402 

PC: 0.7266  
FA: 0.1768 

PC: 0.7626  
FA: 0.2134 

PC: 0.7194 
FA: 0.1707 

(13,5) PC: 0.7194 
FA: 0.1463 

PC: 0.7338  
FA: 0.1646 

PC: 0.7626  
FA: 0.1768 

PC: 0.7122 
FA: 0.1646 

(13,6) PC: 0.7266 
FA: 0.1341 

PC: 0.7554  
FA: 0.1585 

PC: 0.7914  
FA: 0.1768 

PC: 0.7626 
FA: 0.1524 

(13,7) PC: 0.7554 
FA: 0.1341 

PC: 0.7986  
FA: 0.1646 

PC: 0.7842  
FA: 0.1768 

PC: 0.7554 
FA: 0.1463 

(13,8) PC: 0.741 
FA: 0.1463 

PC: 0.7986  
FA: 0.1707 

PC: 0.7842  
FA: 0.128 

PC: 0.7554 
FA: 0.1463 

 
TABLE 7. EXPERIMENTAL RESULTS FOR WISC. BC 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(9,2) PC: 0.9793 
FA: 0.04367 

PC: 0.971 
FA: 0.03493 

PC: 0.9585 
FA: 0.02838 

PC: 0.9378 
FA: 0.02838 

(9,3) PC: 0.9793 
FA: 0.03712 

PC: 0.9668 
FA: 0.03493 

PC: 0.9585 
FA: 0.02838 

PC: 0.9544 
FA: 0.03275 

(9,4) PC: 0.9876 
FA: 0.03712 

PC: 0.971 
FA: 0.03057 

PC: 0.9585 
FA: 0.02838 

PC: 0.9668 
FA: 0.03275 

(9,5) PC: 0.9876 
FA: 0.03712 

PC: 0.9668 
FA: 0.03493 

PC: 0.9585 
FA: 0.0262 

PC: 0.9627 
FA: 0.03275 

(9,6) PC: 0.9876 
FA: 0.03493 

PC: 0.971 
FA: 0.03493 

PC: 0.9585 
FA: 0.02838 

PC: 0.9668 
FA: 0.03275 

(9,7) PC: 0.9876 
FA: 0.03493 

PC: 0.9668 
FA: 0.03493 

PC: 0.9627 
FA: 0.02838 

PC: 0.9668 
FA: 0.03275 

(9,8) PC: 0.9876 
FA: 0.03493 

PC: 0.9668 
FA: 0.03493 

PC: 0.9627 
FA: 0.03275 

PC: 0.9585 
FA: 0.03275 

 
TABLE 8. EXPERIMENTAL RESULTS FOR SONAR2 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(60,2)  PC: 0.4593 
FA: 0.03258 

 PC: 0.7703 
FA: 0.02744 

 PC: 0.9372 
FA: 0.09654 

 PC: 0.5458 
FA: 0.02247 

(60,3)  PC: 0.7013 
FA: 0.0269 

 PC: 0.7868 
FA: 0.02901 

 PC: 0.9434 
FA: 0.09768 

 PC: 0.7384 
FA: 0.03004 

(60,4)  PC: 0.7425 
FA: 0.02761 

 PC: 0.8033 
FA: 0.02685 

 PC: 0.9547 
FA: 0.08947 

 PC: 0.7714 
FA: 0.03198 
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(60,5)  PC: 0.759 
FA: 0.02825 

 PC: 0.7951 
FA: 0.02156 

 PC: 0.9392 
FA: 0.07472 

 PC: 0.8208 
FA: 0.02863 

(60,6)  PC: 0.7765 
FA: 0.03128 

 PC: 0.7981 
FA: 0.0208 

 PC: 0.8877 
FA: 0.05316 

 PC: 0.8043 
FA: 0.02744 

(60,7)  PC: 0.7621 
FA: 0.02955 

 PC: 0.8012 
FA: 0.0208 

 PC: 0.898 
FA: 0.05451 

 PC: 0.7683 
FA: 0.02048 

(60,8)  PC: 0.7673 
FA: 0.02944 

 PC: 0.8023 
FA: 0.02075 

 PC: 0.898 
FA: 0.05446 

 PC: 0.7775 
FA: 0.02064 

 
TABLE 9. EXPERIMENTAL RESULTS FOR SONAR3 

 Kernel 
Dimension 

(Original,Final) Gaussian Laplacian Rayleigh Polynomial 

(60,2) PC: 0.52 
FA: 0.09937 

PC: 0.72  
FA: 0.1193 

PC: 0.82  
FA: 0.1532 

PC: 0.56  
FA: 0.0803 

(60,3) PC: 0.58  
FA: 0.08628 

PC: 0.68  
FA: 0.1233 

PC: 0.82  
FA: 0.1532 

PC: 0.54  
FA: 0.0660 

(60,4) PC: 0.48  
FA: 0.07489 

PC: 0.68  
FA: 0.1136 

PC: 0.82  
FA: 0.1509 

PC: 0.46  
FA: 0.0996 

(60,5) PC: 0.48  
FA: 0.07432 

PC: 0.68  
FA: 0.1079 

PC: 0.84  
FA: 0.1498 

PC: 0.58  
FA: 0.0896 

(60,6) PC: 0.48  
FA: 0.07346 

PC: 0.6  
FA: 0.1065 

PC: 0.78  
FA: 0.1102 

PC: 0.5  
FA: 0.07574 

(60,7) PC: 0.54  
FA: 0.06748 

PC: 0.54  
FA: 0.09539 

PC: 0.74  
FA: 0.1096 

PC: 0.46  
FA: 0.0674 

(60,8) PC: 0.54  
FA: 0.07318 

PC: 0.54  
FA: 0.09653 

PC: 0.74  
FA: 0.1091 

PC: 0.48  
FA: 0.0620 
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