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ABSTRACT   
 
This report describes a simulation model of sonar tracking, developed to explore the effect of 
networking sonars on tracking performance. The tracker is an extended Kalman filter with data 
association by nearest-neighbour in Mahalanobis distance. Data fusion algorithms also use 
Mahalanobis distance. Simulation outputs have been verified against analytical results where 
possible. 
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A Simulation Model of Networked Tracking for 
Anti-Submarine Warfare    

 
 

Executive Summary    
 
This report describes a simulation model of active sonar tracking, developed to explore the 
effect of networking. The model builds on earlier analytical work (DSTO-TR-2086), which 
found that detection probabilities as low as 30% could be useful for track initiation if there 
was a network of sonars such that these detections could be shared with other sonars with 
similar probabilities of detection. 
 
Having shown analytically that networking offered benefits in terms of starting tracks, the 
simulation was developed in order to see if this networking advantage carries through to 
other stages of the tracking process. This report documents the simulation model and the 
testing of this model against results from the previous analytical work. We find good 
agreement, thereby providing a level of validation of the simulation model. A study which 
uses the simulation model to compare centralised and distributed tracking is described in 
a companion report (DSTO-TR-2373). 
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Variables 
 

c speed of sound in water 
Ck track estimation errors covariance matrix 
f frequency 
Fk  state transition matrix 
G Mahalanobis distance  
H observation matrix 
Kk Kalman gain matrix 
L array length  
Nfa expected number of false detections per ping 
Pd probability of detection per ensonification  
Pdn networked detection probability  
Pdk detection probability for sonar k  
Pfa probability of a false detection 
Pfti probability of false track initiation per 5 consecutive 

ensonifications 
Pti probability of track initiation per 5 consecutive 

ensonifications  
r range or distance from a sonar  
rmax maximum detection range 
Rk covariance matrix of measurement noise 

Tq~  manoeuvring index 
Qk covariance matrix of target motion model 
T time between measurements 
uk state noise (plant noise) vector represented by random 

Gaussian process 
vk measurement noise vector represented by random 

Gaussian process 
vmax maximum speed at which target could be moving  
xk state vector 

kk |1ˆ x  estimate of the state vector at time k+1 given 
measurements up to time k 

zk measurement vector 
  
 bandwidth  
̂  travel time of the sonar pulse 
̂  bearing  
 threshold value from chi squared distribution 
 wavelength 
 covariance of two (scalar) random variables 
 standard deviation of a (scalar) random variable 
  
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1. Introduction  

This report describes a simulation developed to investigate the effect of networking on 
tracking in the context of active sonar. The model is an extension of earlier analytical studies 
[1] which indicated benefits could be obtained through networking, and was developed to 
allow us to examine the effects of some of the assumptions made in the analytical work. This 
report gives details of the model and describes its testing against the analytical results. A 
study of the capability impact of networking sonar systems using the model is described in a 
companion report [2]. 
 
The previous work focussed on track initiation and compared the performance when tracks 
are formed on detections from a group of sonars (centralised tracking) with the case where 
each individual sonar forms tracks using only its own detections (distributed tracking). The 
simple analytical approach taken did not consider measurement errors or the effect of false 
detections, nor the resulting difficulties in associating detections with each other to form 
tracks. Effectively, we assumed that, if the target is detected three times in five pings, then we 
always start a track. In reality this may not always occur, as measurement errors may mean 
that the detections are not close enough together or a false detection may interfere with the 
track formation process by confusing the picture. In short, the analytical study doesn’t give 
sufficient consideration to the issue of data association.  
 
Also the significant issue of the increased false track rate arising from centralised tracking was 
ignored. Our previous work included an analytical study of false-detection rate, but it did not 
address the issue of the false detections leading to false tracks. 
 
The simulation model allows us to investigate the effects of measurement errors and false 
detections. The false (i.e. non-target) detections in the model are assumed to be ‘noise’ 
detections which are not associated with any nearby real object. Recurrent clutter type 
detections which result from objects, such as bottom features or fish schools, are a separate 
issue that is not considered here. The simulation model includes data association, track 
maintenance and track termination, not just the track initiation step. All sonar operation is 
assumed to be active and multiple monostatic.  
 
The simulation code can be divided into three distinct parts — scene generation, tracking and 
analysis of the tracks. In the first of these three parts, a scenario is set up and detections are 
generated. At the end of this stage, there exists a separate file for each sensor in the scenario, 
containing all of the detections made by that sonar and information about the sonar 
properties. These detection files are passed to the tracking code, which outputs data structures 
containing tracks. The third stage of the simulation involves extracting information of interest 
about the tracks, and providing this in a useful form for further analysis, by writing the data 
to an Excel spreadsheet.  
 
Section 2 of this report describes the scene generation part of the simulation model, including 
how detections (both target and non-target) are generated. The next section, Section 3, gives a 
detailed description of the tracking algorithm, which is based on the Kalman filter. The focus 
of our work was on analysing the effect of networking, not on developing or improving 
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tracking algorithms, and so we have used a standard algorithm. The level of detail in this 
section is provided for those readers who are not familiar with tracking techniques. Section 4 
reports some verification of the simulation model by comparing the results obtained with the 
earlier analytical work [1].  
 
 

2. Scene Generation  

A scenario is set up by editing parameter values in a Matlab script file. The user needs to 
specify:  
 the number of sensors and their location, given as (x,y) coordinate pairs (depth is 

neglected), 
 the target(s) path(s), 
 the probability of detection versus range curve for each sensor (the model does not assume 

all sonars in the network have identical properties, but does ignore bearing dependence and 
the effect of ship baffles),  

 the probability Pfa per range-bearing cell per ping of obtaining a false detection (this is 
assumed to be the same for all sensors, but differences in the size of the range-bearing cells 
may result in different expected numbers of false alarms per ping for the different sensors; 
note that there are no Doppler bins—the Doppler dimension is neglected), 

 the sonar parameters (bandwidth, frequency and array size) which are used to calculate the 
expected number of false alarms per ping and in the generation of measurement errors, and 

 the ping interval and the duration of the simulation.  
With different seeds used for the random number generator, the code produces different 
detection lists in different runs of the scenario, with the times and number of actual detections 
(target and false) and the measurement error of those detections all varying. This allows 
Monte Carlo analysis of a single scenario.  
 
 
2.1 Example of Sensor and Target Disposition 

An example of a scenario is shown in Figure 1. This scenario comprises a network of three 
sonars. There is a single submarine target present. The positions of the sonars and the 
submarine at the beginning of the simulation are shown in the figure, together with their 
relative motion, which is constant throughout the simulation. If the sonars were hull mounted 
sonars attached to ships, then this scenario could be considered as representative of a task 
group in the process of running over an adversary submarine. The companion report [2] 
presents detailed results from running this scenario; the test results presented in Section 4 
below use much simpler scenarios. 
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10√3 km 

Relative velocity 
11 m/s (21 kn) 30 

5 km 

30 km 

Red sub 

40 km 

Blue task group 
(3 frigates) 

Figure 1: The positions of the three sensors and the submarine at the beginning of the simulation. The 
relative velocity is constant throughout the simulation. 

 
2.2 Sonar Performance and Operation 

Sonar performance in the simulation model is defined by probability of detection versus range 
curves, with no bearing or depth dependence.(1) The simulation code can be used to model a 
sonobuoy field or a network of sonar systems attached to vessels, provided appropriate 
probability of detection versus range curves are chosen. For simplicity and ease of comparison 
with the analytical study, and to keep the modelling unclassified, in the work reported here 
we use exponential functions as the probability of detection versus range curves.(2) We also 
assume multiple monostatic operation of the sonars.  
 
2.3 Generation of Target Detections 

Whether or not a sonar ping produces a target detection is determined by a draw from a 
uniform random distribution compared with the detection probability at the relevant range. If 
the target is detected, then the recorded position is generated using additional random 
numbers to introduce measurement error. Measurement errors have a zero-mean bivariate 
normal distribution in range and bearing.  
 
In our example, each sonar pings once every 60 seconds, which is also the time step of the 
simulation. The covariance matrix of the errors is set so that the standard deviations 
correspond to the Cramér–Rao lower bound [3], approximately 1 metre in range and 2.5° in 
bearing. This requires the component of the Cartesian position error caused by the bearing 

                                                      
(1) Since carrying out the testing described in Section 4, the code has been modified to include both 

bearing and depth dependence. 
(2) It is also possible to use more realistic probability of detection versus range curves obtained from 

sonar performance modelling, including aspect-dependent target strength. 

 
3 



 
DSTO-TR-2372 

uncertainty to increase linearly with range, as illustrated in Figure 2. The measurement error 
covariance matrix affects the size of the data association gates used in the tracker. 
 

 

Sonar-system heading

Figure 2: Variation of detection cell size with range 

As the aim of the simulation is to evaluate the possible advantages of networking sensors 
rather than the characteristics of various tracking algorithms, some simplifications are applied 
in the generation of measurement errors. Strictly speaking, Gaussian random measurement 
errors should be added to the range and bearing measurements before transformation to 
Cartesian coordinates, but this means that the measurements will not have a Gaussian 
distribution in the Cartesian domain. Non-Gaussian measurements would require the use of a 
more complicated, non-linear tracking algorithm which is not necessary because the critical 
phenomenon in this case is that measurement errors increase as the range increases. A simple 
model that represents this while leaving the Kalman filter as a valid tracking solution 
simulates the measurement by using the actual target position and then adding correlated 
noise, in the following manner. 
 
The covariance matrix R for a particular measurement at range r and bearing   is [4] 
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where ̂  is the estimated travel time for the sonar pulse that resulted in the measurement, ̂  
is the estimated bearing of the detection, β is the bandwidth, λ is the wavelength 
(c/frequency, c = speed of sound in water) and L is the size (in metres) of the sonar array. The 
measurement errors in Cartesian coordinates are generated by multiplying the square root of 
the matrix R by a vector of pseudorandom values. That is, the measurement coordinates are 
calculated as 




























2

12/1

n

n
R

y

x

y

x

T

T

M

M
 

where (xM, yM) is the recorded measurement, (xT, yT) is the actual target position and n1 and n2 
are values from a pseudorandom Gaussian distribution with mean zero and unit standard 
deviation.  
 
2.4 Generation of False (or Non-target) Detections 

The false detections generated differ for each run of the simulation. The number of false 
detections occurring at each ping is drawn from a Poisson distribution with the expected 
value depending on the probability Pfa of a false detection per range–bearing cell per ping set 
by the user, and on the resolution of the sonar as determined from the frequency, bandwidth 
and size of the array.  
 
The area scanned by the sonar is broken up into cells or segments with the range increment 
and bearing span specified by the resolution that can be achieved by the sonar. Each of the 
cells is modelled as having a fixed false alarm probability Pfa, but the cells do not have equal 
area. There should be fewer false alarms per unit area a long way from the sensor than close to 
the sensor. Figure 2 illustrates the way that two cells which have the same probability of false 
alarm associated with them correspond to very different areas on the scan. 
 
Generating simulated false alarms requires the expected number of false alarms per scan to be 
known. Assuming that the beamwidth (δψ ≈ λ/L, the wavelength divided by the array size) is 
in radians then each scan has 2  beams. Also if the sonar is operated to a maximum 

range rmax then each beam contains crmax2  cells, where δτ = 1/β (β is the bandwidth). The 

number of false alarms expected from a scan is the number of beams times the number of cells 
in a beam times the probability that a cell produces a false detection. That is 

  fafa P
c

r
N


 max4

 .                                (3) 

The first step in the generation of false alarms for each ping is to draw a number from a 
Poisson distribution with this rate to give the number of false alarms for the current scan. 
These false detections are then distributed in range and bearing over the sonar’s field of view 
by drawing ranges from a uniform distribution on (0,rmax) and bearings from the uniform 
distribution on (0,2π).  
 
The assumption, in this section, that the sonar uses a CFAR detector requires some caution in 
preparing the probability of detection versus range relationship. It is often assumed in 
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performance modelling that the threshold the signal must be greater than for detection to be 
declared is constant. A CFAR detector adjusts the detection threshold to maintain a constant 
false alarm rate so that modelling assuming a constant detection threshold will be 
inappropriate unless the background is not varying. This may apply if false alarms are 
resulting from ambient noise (noise limited conditions) but if the false alarms result from 
reverberation (reverberation limited conditions) the detection threshold will not be constant 
because the reverberation level (usually) decreases with range. Correct modelling of a 
reverberation limited scenario will require a probability of detection versus range curve 
adjusted for the varying detection threshold. 
 
2.5 Sonar Parameters 

By changing the sensor geometry and target path(s) an infinite number of scenarios could be 
constructed. To investigate how changes in sonar performance affect the outcome of the 
simulation we can vary the simulation parameters, while keeping the scenario layout the 
same. These parameters are 
 the probability of detection versus range curves for each sonar, 
 the probability Pfa of false detections per cell per ping for each sonar. 
Using different probability of detection curves with the same scenario geometry allows us to 
effectively model the same scenario under different environmental and acoustic propagation 
conditions. By varying the probability of false detections we can investigate the effect of high 
and low clutter environments on the tracking performance.  
 
 

3. Tracking Algorithm  

The tracking algorithm used is relatively simple as our interest is not in improving tracker 
performance but in comparing the tracks produced when tracking is performed centrally with 
those obtained by fusing the tracks from individual sonars. The flowchart in Figure 3 provides 
an overview of the tracking process. The steps within this process will be explained in more 
detail in coming sections. Readers who are familiar with tracking may not need to read this 
section in detail — the tracking algorithm we have used is a standard Kalman filter [5] with 
data association by nearest neighbour in Mahalanobis distance [6]. The 3-in-5 rule, which 
requires that a track have at least three detections from every five scans to be initiated or 
retained, is used not only for track initiation, but also for track maintenance and termination.  
 
3.1 The Kalman Filter 

Before discussing the steps shown in the flowchart in Figure 3 in more detail, we introduce the 
Kalman filter [3,7,8]. The Kalman filter is the optimum estimator for the sequence of states 
produced by the Gauss-Markov model 

                                                 kkkk uxFx 1 , (4) 

  kkkk vxHz  , (5) 

where  
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xk is the state vector of the target at time instant k,  
Fk is the (known) state transition matrix,  
uk representing uncertainty in state transitions (often called plant noise) is a random 
Gaussian vector with zero mean and covariance matrix Qk,  
zk is a measurement vector,  
vk representing uncertainty in observations (measurement noise) is a random Gaussian 
vector with covariance matrix Rk, and  
H is the observation matrix, defined as 

  . (6) 









0100

0001
H

Note that we have dropped the subscript on H as this matrix does not vary with time. For the 
tracking application the state vector 

  , (7)  T
kkkkk yyxx x 

contains the position and velocity vectors of the target and a commonly used model of the 
target dynamics has the transition matrix 

  , (8) 
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(again dropping the subscript), which represents a target moving at constant velocity with 
random perturbations and T is the time interval between measurements. The covariance 
matrix Q for the random perturbation is defined as 
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where Tq~  is the manoeuvrability index, a parameter which represents the standard deviation 
of “random” accelerations experienced by the target. (The assumed value of this parameter 
controls the responsiveness of the Kalman Filter tracker derived from the Gauss Markov 
model to a manoeuvring target.) The measurement vector zk is assumed to be of the form 

  
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where the covariance Rk of the measurement noise is defined as 
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The iterative procedure for estimating the new state after each measurement starts from a 
prediction based on the old state and corrects it based on the measurement. If we do not 
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obtain a measurement then the predicted state can be used for the estimation of the state 
vector at the next time.  
 
Assuming we have a track defined up to time k, the prediction of the state at the time k+1 and 
the error covariance of this prediction is: 

                                              kkkk ||1 ˆˆ xFx  , (12) 

   . (13) k
T

kkkk QFFCC  ||1

The double subscript notation (j|k) indicates that this is the estimate of the state or covariance 
at the time of the jth measurement made from the measurements available at the time of the 
kth measurement.  
 
If we obtain a measurement that falls within the gate (defined in Section 3.4 below) at the time 
k+1, then the above estimate is corrected using 

   kkkkkkkk |111|11|1 ˆˆˆ   xHzKxx , (14) 

where 

    1

|1|11



  k
T

kk
T

kkk RHHCHCK  (15) 

is a matrix called the Kalman gain. The estimates are Gaussian random vectors so complete 
characterisation requires computation of the error covariance 

  kkkkkkk |11|11|1   HCKCC . (16) 

A track consists of an estimate of the target state  and the covariance matrix  which 

describes the error in that estimate.  
kx̂ kk |C

 
3.2 Maintenance State of Tracks 

Within the model, there are four possibilities for the maintenance state of a track. A track can 
be either old or current, and either tentative or confirmed; the four maintenance states consist 
of all possible combinations of these two pairs. An old track is one which has not been 
updated by at least three measurements within the last five detection opportunities. A 
tentative track contains only one or two measurements; a confirmed track has three or more.  
 
The maintenance state of a track may change from tentative to confirmed, and from current to 
old, but confirmed tracks can not become tentative, nor old tracks current again. Once a track 
is marked as old, it is no longer checked for association with new measurements and its 
maintenance state will not change. That is, an old tentative track can not become a confirmed 
track.  
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Load detection list 
and sensor properties 

Extract ping interval and #Scans 
from sensor properties. Initialise 
scan counter and #Tracks to 0. 

Set (or reset) track counter to 1. 

Get measurements 
from current scan. 

Is track counter 
< #Tracks? 

Initiate tentative tracks on all 
unused measurements from 

current scan. Increase #Tracks. 

No 

Increment scan counter. 

Yes Update maintenance 
state of track. 

Is track 
current? 

Yes 

No 

Increment track 
counter. 

Find the closest
measurement to  

the track. 

Is it within 
the gate? 

Yes 

Update track with 
measurement, mark 
measurement added. 

No 

Update track with 
predicted position.  

Flowchart for the tracker 
  
Note that the definition of the closest 
measurement and the gating criteria 
used in updating the tracks depends 
upon the number of measurements in 
the track. A track containing only an 
initial measurement is a special case.  

Is scan counter 
< #Scans? 

Yes 

No 
End simulation. 

Check maintenance 
status of tracks and 
output all confirmed 

tracks. 

 
Figure 3: Flowchart for tracking algorithm 
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3.3 Initiation of Tentative Tracks — the First and Second Measurements 

Any detection that is not associated with an existing track is considered as a potential source 
of a new track. Given an isolated detection, the algorithm will search for a second detection 
within the next three time steps using an expanding, almost square, gate centred on the initial 
detection. The size of the gate is primarily determined by the length of time elapsed since the 
initial detection and the maximum relative velocity with which it is estimated potential targets 
could be travelling [5, p. 213]. With T representing the time since the initial measurement and 
vmax the maximum feasible target speed, the gate is centred on the initial point and has sides of 
length 2vmaxT, plus a small allowance for the errors in both the initial measurement and the 
measurement we are prospectively adding to the track. These errors usually differ in the x and 
y directions (which is why we describe the gate as almost square) and are calculated by taking 
the square root of the diagonal elements of the respective covariance matrices. As each 
measurement will have a different error covariance matrix the gate is slightly different for 
each measurement.  
 
If R1 is the covariance matrix of the first measurement (x1, y1) taken at time T1, and R2 is the 
covariance matrix of the measurement (x2, y2) taken at T2 which we are considering for 
addition to the track, then the gate, centred at (x1, y1) will have sides of length 

    )2()1(2 12max xxTTv      (17) 

in the x direction, and  

    )2()1(2 12max yyTTv    (18) 

in the y direction.  
 
If more than one measurement falls within the box gate the closest measurement, in terms of 
Cartesian distance, is used. If there is no measurement within the gate obtained at a detection 
opportunity the track is not updated with a prediction, as with only a single measurement we 
cannot predict in which direction, or at what speed, the target is moving. The gate will expand 
for the next detection opportunity.  
 
Once we have two detections in a track, we can estimate the position and velocity of the 
possible target. When a second measurement is added to a track, the state vector for the track 
can be calculated. The state vector for the above example would be   
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with the covariance matrix for the estimate of the error in the track calculated as: 
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C , (20) 

where T = T2 – T1.  
 
3.4 Addition of Third and Subsequent Measurements 

Once a track contains two measurements, the state vector and covariance matrix which form 
that track will be updated at every detection opportunity, either with a measurement (using 
equations (12) through to (16)), or using the predicted values, (equations (12) and (13) only), 
until the track fails the 3-in-5 rule and is marked as old.  
 
When there are more than two measurements in a track, we update the track with the 
measurement that has minimum Mahalanobis distance [6, p. 36], 

         1|

1

1|1| ˆˆG 



  kkkk
T

kk
T

kkkk xHzRHHCxHzz , (21) 

provided that this measurement falls within an elliptical gate centred on the predicted 
position of the track. We test whether a measurement falls within the gate by checking 
whether the Mahalanobis distance of the measurement from the track satisfies the condition 

    kzG  (22) 

where   is a threshold determined from the chi squared distribution with two degrees of 
freedom. We used 95% as the probability value— with the resulting threshold value of 5.991. 
The size of the gate is dependent upon the assumed manoeuvrability of the target as defined 
by the parameter Tq~  of the Kalman filter, the current uncertainty of the track as measured by 
the covariance matrix Ck|k, and the error covariance matrix Rk of the detection being checked 
for association with the track. The gate may therefore differ in size for each measurement 
considered. 
 
Our algorithm allows a detection to associate with any track to which it is the closest; that is, a 
detection may be associated with more than one track, but any track will gain no more than 
one detection per ping. 
 
3.5 Tracking Parameters 

As for the simulation of target states and measurements, there are a number of parameters 
which affect the performance of the tracker. These parameters are 
 Tq~ , which controls the responsiveness of the tracker to a manoeuvring target,  
 vmax, the assumed maximum relative velocity of the target, and 
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 the track initiation and track maintenance rules. 
For optimal performance of the tracker, the assumed maximum velocity and target 
manoeuvrability should be varied according to the behaviour of the target(s) present in the 
scenario. These values, along with the measurement error covariance matrices, affect the size 
of the gates in which points must fall to initiate and maintain a track. If the values of these 
parameters are too low, the target will not be tracked. If the values are too high, the target 
tracking should not be adversely affected, but a higher number of false tracks may result.  
 
3.6 Data Fusion 

The earlier analytical study [1] examined two tracking options: centralised and distributed. To 
produce comparable results with the simulation, the same detections — both target and false 
—from each simulation run are used by the two tracking options. The only difference is in 
how these detections are processed to form tracks, as described below.  
 
3.6.1 Detection Fusion for Centralised Tracking 

For centralised tracking, the detection lists from each sensor are combined and passed to the 
tracker as a single set. The combination rule is the equivalent of a simple logical ‘or’, except for 
the case where two detections occur at the same time very close to one another. Detections 
from two sonars are fused into a single detection if the Mahalanobis distance between them is 
consistent with zero at the 95% confidence level, as determined by a 2 test with 2 degrees of 
freedom. That is, two measurements z1(x1,y1) and z2(x2,y2) with error covariance matrices R1 
and R2 respectively will be fused if 

         
12

1
2112 zzRRzz T , (23) 

where   is the same threshold value determined from the chi squared distribution with two 
degrees of freedom used when deciding whether a measurement falls within the elliptical gate 
described in Section 3.4. If the measurements are fused, the combined measurement is 
calculated as 

      2
1

2111
1

212 zRRRzRRRz   , (24) 

with the combined covariance matrix  

    2
1

211 RRRRR  . (25) 

 
This approach to measurement fusion was chosen to avoid an extensive rewriting of the single 
sensor tracker to incorporate multi-sensor operation. In the future, the conceptually more 
elegant approach of passing all measurements to the tracker will be applied. 
 
3.6.2 Track Fusion for Distributed Tracking 

For distributed tracking, the tracking algorithm is applied separately to the detections 
recorded by each sensor. The tracks are then fused into a single list. If two sensors are tracking 
the target at the same time, and the track position estimates are close enough together, the 
tracks will be fused into a single track. For example if sonar 1 has a track on the target from 
ping 10 to ping 14 and sonar 2 has a track on the target from ping 12 to ping 17, for analysis 
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Figure 4: Illustration of track fusion for distributed tracking 

Ping number 

10 11 12 13 14 15 16 17 

Fused track 

Sensor 2 track 
Sensor 1 track 
 

purposes this is regarded as a single track on the target from ping 10 to ping 17, as Figure 4 
illustrates. As with detection fusion in the centralised tracking case, a 2 test is used to 
determine whether two tracks should be fused. We follow the method of Bar-Shalom & Li [5, 
pp. 440–3] assuming tracks are independent. 
 
 

4. Comparison of Simulation with Analytical Results 

A number of tests were performed to check that the results from the simulation are consistent 
with the previous analytical results [1] when the assumptions matched.  
 
4.1 Probability of Track Initiation—Uniform Detection Probability 

To check that the simulation gives the same values for the probability of track initiation as the 
theoretical work we ran a simplified version of the simulation for just five pings. The 
probability of detection for all sensors was defined as uniform over the sensor’s field of view, 
so that the position of the target does not affect the results. We also set the measurement 
errors to zero and switched off the generation of false alarms. By performing multiple runs 
(each of only five pings in length) and recording whether or not a target track was formed in 
each run, we were able to calculate the probability of starting a track as the percentage of runs 
in which a track was initiated. This allows us to compare the results from the simulation with 
the theoretical curve calculated from the equation [1]: 

   ti d d1




   
 


q

q jj

j p

q
P P P

j
 (26) 

where j enumerates the number of detections in the q consecutive ensonifications. The above 
equation assumes statistical independence of successive ensonifications, but so does the 
simulation model. Evaluating this formula for the 3-in-5 rule we used in the simulation gives 

   3
ti d d d 10 15 6P P P P   2 . (27) 

Note that both the theory and the simulation model implement the 3-in-5 rule as requiring 3 
detections in 3 distinct ping cycles. So in a network of 3 sensors a track will not be initiated if 
all sensors detect the target in one ping cycle but there are no other detections.  
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4.1.1 One Sonar 

The simplest case considers just one sonar. Figure 5 shows that the results from the simulation 
without measurement errors and false detections are in good agreement with the theoretical 
results for the idealised case where data association is not a problem — there are neither 
measurement errors nor non-target detections to confuse the picture. Repeating the analysis 
with measurement error included (blue triangles in Fig. 5) we can see that this results in a 
slight decrease in the probability of track initiation, as we would expect. However adding 
false detections with Pfa = 10-5 (which corresponds to an expected value of 7.8 false detections 
per ping), seems to have little effect on the probability of target track initiation — the green 
crosses in Figure 5 essentially coincide with the red squares.  
 
4.1.2 Network of Sonars 

In our earlier analytical work we also calculated theoretical curves showing the probability of 
track initiation for a network as opposed to a single sensor, to illustrate the possible benefits of 
networking. If m independent sonars emit one ensonification each, then the probability that at 
least one of them makes a detection—the ‘networked detection probability’ Pdn—is 

  , (28) dn d
1

1 1


  
m

k
k

P P

                                                     

where k enumerates the sonars and Pdk is the detection probability for sonar k.(3) This 
provides another type of detection probability for use in Equation (27), and allows us to 

Pd
0.0 0.2 0.4 0.6 0.8 1.0

P
ti
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Pti theory
Pti from simulation
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with false detections

 
Figure 5: Probability of target track initiation versus probability of detection: theoretical curve 

and results for simulation without measurement errors and false detections, with 
measurement error (but no false detections) and with false detections (but no 
measurement errors).  

 
(3) Equation (28) assumes multiple monostatic operation, where each sonar processes returns only from 

its own ensonifications, and that the sonars do not interfere with each other. Multistatic processing 
might give even greater increase in Pdn and hence Pti. 

 
14 



 
DSTO-TR-2372 

produce curves of the probability of track initiation by a network of m sensors. Running the 
simplified simulation model with multiple sensors also produces results in good agreement 
with the theoretical curves, as shown in Figure 6, where the curves for the simulation results 
are virtually indistinguishable from the theoretical ones.  
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Figure 6: Probability of networked (centralised) track initiation versus probability of detection, 

theoretical curves (solid lines) and results for simulation without measurement error 
(points), for networks of 2 and 3 sensors. The single sensor curve, identical to that shown in 
Figure 5, is also shown for comparison.  

 
4.2 Probability of Track Initiation — Range-Varying Detection 
Probability 

To go beyond this simple analysis where the networked probability of track initiation was 
calculated as a function of the probability of detection, it is necessary to allow the detection 
probability to vary with range. 
 
4.2.1 Synopsis of Analytical Results 

In the earlier analytical work [1] two types of functions were used to model the range 
dependence of detection probability. These were an exponential form,  

   d 0( ) expP r P r a  , (29) 

 
to represent the case of a long, low probability tail, and a Fermi-function, 

  
 

d 0
1 exp

( )
1 exp

b a
P r P

r b
a

 
 


, (30) 

to model the effects of a sharp cut-off, while avoiding the extremes of a definite-range law 
(‘cookie-cutter’).  
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The analytical study found little benefit in networking when the second option was used for 
the probability of detection curves. For a Pd with a definite-range law (i.e. a ‘cookie-cutter’ 
shape with Pd = 1.0 inside the detection range), there can be no networking gain from sharing 
detections. This is because a sonar with this shape of Pd has 
 100% detection probability within its detection range, and so needs no assistance with 

detecting things in this region, and 
 zero detection probability outside its detection range, and so cannot provide assistance with 

detections there. 
It is the low-probability tail of the exponential shape that creates the opportunity for 
networking advantage, through the combination of low-probability regions from several 
sensors. This argument relies on the value of Pd inside the detection range being 100%. When 
a lesser value applies, then the opportunity for networking advantage from sharing detections 
again arises [1]. We believe this conclusion to be robust against choice of metric. 
 
Due to the result from the analytic study, we do not use Fermi-functions in the simulation. 
Where simple representative probability of detection curves are used, we have chosen the 
exponential form.  
 
Figure 7 shows a typical plot produced in the analytic study. There are three sonars, 
positioned on an equilateral triangle, and each was assumed to have an exponential 
probability of detection curve with P0 = 1.0 and a = 1.5 km. The contours show the areas in 
which we would expect to start a track using the 3-in-5 rule, with 80 and 95% probability. The 
dashed lines show the distributed tracking case, in which each sonar individually performs 
tracking using just its own detections. This corresponds to data fusion at the track level. That 
is, sonars do not report until a track is formed, and tracks are then fused. If, in contrast, we 
assume data fusion at the detection level, with centralised track initiation (i.e. using Eq. 28 in 
Eq. 27), then the outer, labelled, contours are obtained. 
 

0.8 0.8

0.8

0.9
5 0.95

0.95

  
Figure 7: The dashed lines show the contours of 80% (blue) and 95% (red) track-initiation 

probability Pti per group of 5 ensonifications for 3 sonars spaced 10 km apart, each 
performing track initiation separately using only its own detections. The exponential 
detection probability curve with P0 = 1 and a = 1.5 km is assumed. The solid, labelled 
lines are the contours of networked track-initiation probability where detections from all 
the ensonifications are shared and tracking is performed centrally. 

10 km
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4.2.2 Probability of Track Initiation over a Simulation Run 

As a further check on the simulation code, an attempt was made to reproduce this contour 
plot from simulation results. Unlike the analytic work where we calculate the theoretical 
probability that we would detect a target if one was present, the simulation requires a target to 
actually be present. The simulation was run for a number of target paths, starting on a circle 
with radius R centred at the midpoint of the sonars and coming in at different angles towards 
that centre point (i.e. along the radii of the circle). Figure 8 shows some possible target paths.  
 
For this scenario, the three sonars are each assumed to have the same exponential probability 
of detection curve with P0 = 1.0 and a = 1.5 km. We run the simulation without false detections 
or measurement errors, in order to keep the simulation as close as possible to the assumptions 
under which the analytical results were obtained.  
 
Using the rotational symmetry of the sonar layout to reduce the number of cases, we ran the 
scenario 100 times with each of the different target paths, which were spaced at angle 
increments of π/12. The time at which the first target track was initiated was recorded for each 
of these runs and this figure converted to a distance. The 80 and 95% ‘contours’ for centralised 
tracking for the simulation results were calculated by taking the distance by which 80 or 95% 
of the runs had started a track. The results are shown in Figure 9 for R values of 27 km and 
20.5 km. They clearly depend on the starting position of the target (i.e. the value of R).  
 
 

  

R

10 km 

Figure 8: Position of the three sensors (blue diamonds) and the enemy submarine (one of the red 
triangles) at the beginning of a simulation run. As the simulation progresses, the submarine 
tracks radially inward at v = 11.25 m/s. This is equivalent to approximately 21 knots. A 
conventional submarine is unlikely to maintain such a high speed for an extended time, 
however we regard this value as a relative velocity, representing the fact that the three 
sensors (assumed to be attached to ships) are also moving.  
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Figure 9: As in Figure 7 but with the simulation centralised tracking ‘contour’ plots overlaid, as 
brighter blue (80%) and red (95%) lines with crosses at the data points. The left plot is for 
R = 27 km and the right plot for R = 20.5 km. The target was moving at the same speed, and 
the sonars pinging at the same rate, for both plots.  

 
The simulation contours are outside of the analytic ones due to the cumulative effect of the 
‘lead-in’ time that the simulation has. The analytic contours show the area within which a 
target (if present) would be detected with 80 or 95% probability in exactly five pings. The 
simulation contours show the area within which the entire simulation (not just five pings) will 
start a track on a target, which is following a radial path towards the centre, with 80 or 95% 
probability. This cumulative effect is something that must be kept in mind when viewing the 
results of simulation runs.  
 
4.2.3 Probability of Track Initiation in Five Ensonifications in a Simulation 

In the previous section we attempted to compare whole simulation runs with analytic results. 
However, the outputs from the simulation are very dependent on the chosen target path and 
on the length of time for which the simulation runs. Running a simulation over a longer time 
frame means that cumulative effects are seen in the results. To avoid these difficulties we ran 
another series of test simulation runs for just five pings, with a single stationary target 
positioned at a variety of points.  
 
For each target location, the simulation was run one hundred times, each run stopping after 
just five pings. The number of these runs in which a track is initiated on the target gives us an 
approximate value for the probability of track initiation at this location. Following the radial 
fan target path approach taken in the previous section, target locations were specified on a 
polar coordinate grid centred at the midpoint of the sonars, which were again positioned on 
the points of an equilateral triangle.  
 
The results from these simulation runs are presented in a different way to the previous results. 
Instead of drawing a contour plot with lines linking the points at which the probability of 
track initiation is 80 and 95%, a coloured dot is plotted at each target location, as shown in 
Figure 10. (Note that some of the points in the figure are obtained by utilising the rotational 
symmetry of the sensor layout). The colour of the dots signifies the track initiation probability, 
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with all areas in which the track initiation probability is 80% or higher marked by a green dot. 
The darker green indicates that the probability is 95% or higher.  
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Figure 10: Track initiation probability (centralised tracking) for five pings with a stationary target. 

The left plot shows the simulation results, the right plot is the analytical (exact) equivalent. 
The black lines on the left plot are the edges of the analytic contours.  

 
This dot plot approach approximates a filled contour plot for the simulation results. The 
theoretical filled contour, with the same sonar layout and colour scheme, is also shown in 
Figure 10 for comparison.  
 
Considering that the simulation results are based on only one hundred runs for each point, 
the simulation results show reasonable agreement with the analytic work. This is confirmed 
by the difference plot, shown in Figure 11. The maximum absolute value of the difference 
between the simulation and analytic probabilities of track initiation is 0.1014, and the mean 
value is approximately 0.0125. The scale on the colour bar of the contour plot, along with the 
positive value of the mean, indicates that the simulation appears to start tracks with slightly 
higher probabilities than the analytic work suggests should be the case, but we believe this to 
be simply a result of the randomness within the simulation model.  
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Figure 11: Contour plot of the simulation results minus the analytic values calculated at the same 

points 

 
 

5. Summary and Conclusions 

This report documents a simulation model of networked tracking in anti-submarine warfare. 
The model was developed as a tool for exploring the impact of networking on tracking 
performance in sonar systems. This follows previous analytical work [1] indicating that 
passing detections to a centralised tracker significantly increases the area over which a target 
will be tracked compared to the situation in which each sonar in the network performs 
tracking separately and then pools tracks. The earlier study suggested that significantly 
improved performance can be obtained with a small network; in fact networking just two 
sonars gives a substantial improvement. However, this previous work focussed on track 
initiation, without considering the rest of the tracking process. It also did not analyse the effect 
of false detections beyond a consideration of false-detection rate, nor the difficulties in 
associating new detections with existing tracks. The purpose of the present work is to develop 
a simulation model that can address all of these issues. This report describes the model; the 
results of using it to explore the capability impact of networking in ASW are described 
elsewhere [2]. 
 
Because the purpose is to explore networking, rather than tracker development, it was not 
necessary to use a sophisticated tracking algorithm. The sonars generate true detections of any 
submarines present, subject to specified detection probability versus range behaviour, and 
false detections that are randomly distributed over their fields of view. The tracker is a 
standard Kalman filter with data association by nearest neighbour in Mahalanobis distance. 
All detections, true and false, are treated equally by the tracker. The ‘3 detections in 5 
consecutive pings’ rule is used both for track initiation and track termination. Potentially 
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crossing tracks are handled by allowing a detection to be associated with more than one 
existing track. When pooling detections from several sonars, we tested for and eliminated 
duplicate detections using Mahalanobis distance. In the distributed-tracking case, we fused 
tracks from the sonars to give a single track list. 
 
Three scenarios were used to check the operation of the simulation against the analytical 
results. First, we considered a single sonar with constant detection probability (i.e. Pd 
independent of range). When false detections and measurement errors are both switched off, 
the simulation gives the same values of track-initiation probability Pti as the analytical 
formula. Switching on false detections does not have a discernable effect on Pti, but the 
inclusion of measurement error lowers Pti slightly. We attribute this to the occasional failure 
to recognise three detections as associated with each other, owing to the scatter produced by 
the measurement errors. 
 
The second check on the operation of the simulation again used constant Pd, but with two or 
three sonars networked together and tracking centrally. Once again, the simulation values 
match the analytical formulas for networked Pti.  
 
For the third check, we adopted the exponential behaviour of Pd with range and computed 
contours of Pti produced by a distributed network of 3 sonars. This test is less clear-cut 
because of statistical fluctuations, but the comparison with the analytical results is 
nevertheless satisfactory. 
 
We conclude that the simulation model reproduces the analytical results where the scenario is 
constructed to match the assumptions underlying the analytical work. This therefore provides 
a sound basis for extending the analytical results to performance metrics that go beyond track 
initiation, and including effects of false detections and measurement uncertainty. Results of a 
first such study are presented in a companion report [2]. 
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