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Abstract: - Research shows that an analytical solution of information velocity is intractable but met-
rics that support understanding the factors that affect information flow can be useful. This paper 
describes an agent-based model for information flow that explores physical analogs to the metric's 
causal measures. Interactions and exchanges are modeled as physical properties. Information, its 
suppliers, and consumers are treated as agent particles. Visibility of information and need are 
treated as attraction. The barriers to communication as well as the perception of cultural risk are 
treated as repulsive forces that oppose information exchange. The amount of human-to-human 
communication is modeled as the maximum distance beyond which information cannot be ex-
changed (e.g. closeness). The behavior of the particles and system as a whole are discussed vis-à-
vis physical properties such as particles in a fluid, momentum, velocity, force, and temperature. 
Infodynamic and analogs of thermodynamic and other physical quantities associated with these 
processes are explored. These comparisons may enable a method to combine the various informa-
tion measures into one or two equations using conceptual analogs from the physical domain with 
possible applications to improve information flow in command centers.  
  
Keywords: - Assessment tools and metrics, C2 concepts and theory, decision model, decision sup-
port, employee empowerment, entropy, infodynamics, information annealing, information flow, 
information theory, uncertainty. 
 
1. Introduction 
 
Each day in our organizations, each employee 
makes decisions, some small, some large. What 
happens to a given decision? Where does it go? 
Perhaps someone else in the organization is 
awaiting the decision or someone needs to know 
of that decision but isn't aware of it. What are the 
obstacles to that decision reaching the people 
who need it? What makes people want to share 
the decision and how much time do we waste 
trying to communicate and understand the deci-
sion? What affects the speed of the individual 
decision process and the sharing of that decision 
with others?  

These and similar questions are the subject of 
research exploring the development of metrics 
for information flow and decision making. The 
purpose of this paper is to report a way to in-
crease our understanding of information flow in 

the decision process. Information flow can be 
modeled as a series of interactions analogous to 
the interaction of particles, such as atoms or 
molecules in various states of matter, such as 
gas, liquid, or solid. The concepts of tempera-
ture, pressure, intermolecular forces, and anneal-
ing can be applied to information flow and the 
model can be tested using an agent-based model-
ing program. Although the research is still ongo-
ing, this model suggests that a broad, general 
metric for information flow in organizations can 
simulate the way the members of the organiza-
tion handle confidence and its inverse, uncer-
tainty. 

This paper, which is the sixth in the series of 
papers on infodynamcs, treats knowledge and 
decisions in much the same way because of the 
feedback loop between knowledge and decisions. 
Decisions are a form of knowledge that results 
from the aggregation, fusion, and analysis of 



 

facts, assumed facts or other forms of informa-
tion. The decisions themselves become knowl-
edge for others further down the chain of com-
mand. Knowledge is information arranged as a 
higher aggregation of related facts or data that 
has attained a level of complexity beyond that of 
traditional transactional data [3]. Knowledge can 
be expressed as declarative statements or prob-
abilistic networks. Much of the “every-day” in-
put that we encounter is a collection of estimates 
or assessments that other individuals have made. 
Each assessment is a decision and the collection 
of those decisions increases our knowledge. 
Knowledge of our organization is based on the 
past and present decisions of our employees.  

Information flow is related to entropy and 
power [12]. Although a practical and mathemati-
cally closed-form solution for information flow 
in terms of observable data proved intractable 
[12], the comparison of poor information flow to 
low confidence and high entropy suggests that a 
physical model might be worth exploring using 
modeling and simulation. The branch of informa-
tion theory in which physical thermodynamic 
analogy is used to explore the behavior of infor-
mation systems is called Infodynamics [5]. This 
paper contributes new insight in the exploration 
of this analogy to study information exchange 
using modeling and simulation. This paper de-
scribes the model and the status of our research 
to this point. 

The paper is organized as follow. Section 2 
explains the key causal components of informa-
tion flow and the physical equivalents in the de-
cision model. In section 3 we consider the effect 
of factors that promote or inhibit information 
flow. Section 4 describes the behavior of aggre-
gates of particles. Section 5 describes some pre-
liminary results. In Section 6, we discuss ongo-
ing and future research, including model en-
hancements and a suggestion that information 
annealing could be used to model information 
flow. Section 7, concludes the paper with a brief 
summary. 

 

2. Causal Measures and Physical  
Equivalents 

 

Six causal measures are suggested as key con-
tributors for affecting information flow [12]. 
Each of these causal measures is discussed below 
with its physical equivalent in the information-
flow model. 
 

Visibility of Information (Vi) 
The more “visible” the information, the more 
likely it will be seen by those who need it. Visi-
bility can be improved in a variety of ways, such 
as by posting on a website, by increasing the 
clarity of the writing, or by providing the content 
in a machine-understandable format. When in-
formation is visible, those who need it can find it 
more efficiently.  

In this model, one kind of particle represents 
the information, I, and another kind of particle 
representing the decision-maker who needs the 
information, D. Thus, a collection of particles, I 
and D, can be modeled like a gas mixture where 
the various species, I and D interact with each 
other in the form of collisions.  

During a molecular collision in a fluid, such as 
a gas or liquid, both the attractive and repulsive 
forces between the molecules involved in the 
collision determine not only how the collisions 
change the physical properties (e.g. instantane-
ous configuration, orientation, velocity, momen-
tum, various quantum states) and sometimes the 
chemical properties (e.g. electronic state, disso-
ciation, reaction products) of the molecules in-
volved in the collision, but also contribute to ob-
served properties of the bulk mixture, such as 
boiling point, melting point, and pressure. Here, 
we model I and D as components in a fluid of 
particles that interact by collisions. The attractive 
forces in the interaction allow D to move toward 
I to the extent I is more visible. Obstacles to the 
interaction of I and D are like the repulsive 
forces in fluid mixtures. 

Without any visibility, the particles D and I 
will move about randomly and an exchange will 
occur only if they collide with each other. They 
cannot attract each other from a distance. This is 
similar to an ideal gas, which is modeled as a 



 

collection of point particles that do not interact 
with each other, i.e. no intermolecular forces.  

Gathering around the water cooler or at weekly 
meetings is one way to improve the likelihood of 
encountering people and has been a traditional, 
although inefficient and haphazard, way of find-
ing information. Other ways to increase informa-
tion flow are available, rather than requiring 
physical contact and conversations. 

 
Visibility of the Need (Vn) 

Similarly, information flow in terms of informa-
tion exchange will improve if the need for the 
information is visible. If I have information and I 
see that you need it, information exchange be-
comes more likely. Conversely, if your need for 
the information is invisible, I might not know 
that you need it and you might not discover that I 
have the information you need. 

In terms of the decision maker who needs the 
information, D, and the person who has the in-
formation, I, a physical model of this causal 
measure suggests that I will approach D to the 
extent D's need is visible. The more visible the 
need, the more likely I will move toward D, like 
particles of opposite charge attracting each other. 
 
Empowerment of People (Ep) 

When an organization empowers its employees, 
it treats them and their opinions with respect. 
(See, for example, [1], [6], [7], and [9].) Its lead-
ers listen to the employees’ suggestions and 
value their involvement in the decision-making 
process. Empowerment implies a flattening of 
the traditional hierarchical structure so that em-
ployee decisions carry more weight. If employ-
ees in our organization are not empowered, they 
become passive and inhibited as morale declines. 
They may not have the incentive to try to over-
come barriers to information flow. They may not 
feel comfortable challenging the status quo or 
opposing conventional opinion or the opinions of 
their supervisors or colleagues. Such organiza-
tions become stale and static in terms of informa-
tion flow, new ideas are not rewarded, and em-
ployees are not promoted for producing new 
ideas and passing information that differs from 
those of their supervisors [11]. 

The physical analog to empowerment is the 
mass of the particle representing the employee 
decision maker. Particles with larger mass are 
capable of delivering more force and power, as 
expressed in equations (1) through (3) where F is 
force, M is mass, A is acceleration, W is work 
(with units of energy), r is distance, Po is power 
and t is time. 

(1)  F = M A 

(2)  W = F r 

(3)  Po = dW/dt 
  The more empowered the employee, the more 

massive the particle representing that employee 
decision maker is in the simulation. During a 
collision, a massive particle is likely to deliver 
more momentum, thus affecting the state of the 
particle with which it collides. In any interaction, 
the more mass in a given particle, the more likely 
the interaction will involve an exchange (e.g. 
transfer of momentum or transfer of informa-
tion.) A more massive particle is more likely to 
overcome obstacles to exchange. 
 

Barriers to Communication (Bc) 
Barriers to communication inhibit information 
flow. A barrier can be anything that impedes the 
sharing of information. These barriers include 
dates after which no information sharing is al-
lowed, or formal requirements for information 
submission, approval chains or other inhibitors. 
Whatever merits these barriers may have in per-
forming other functions, they impede, or at least 
delay, the flow of information. 

One way to model this is to consider these bar-
riers as the amount of force needed to enable an 
exchange. These barriers to information sharing 
are like the repulsive forces in fluids that keep 
internuclear distances above a certain minimum 
value. (The equilibrium internuclear distance is 
determined by the sum of repulsive and attractive 
forces.) If the barriers to close approach are 
higher, the amount of force required to enable an 
exchange is higher, and more energy is required 
to induce a successful exchange. In this case, the 
information barriers are analogous to physical 
barriers that must be overcome by a greater 
amount of force, and hence greater energy.  



 

One way to determine how empowered em-
ployees are is to estimate how much effort (e.g. 
power and energy) is necessary for them to 
communicate ideas successfully. If the effort re-
quired is too great, or if their time is filled with 
other tasks, these factors also will act as barriers 
to information exchange and the power to over-
come them may not be available. 
 

Perception of Risk (Pr) 
Employees who perceive significant personal 
risk to their reputations, performance ratings, or 
promotion opportunities by sharing information 
are unlikely to share. Moreover, decision makers 
and support personnel alike also perceive a risk 
from accepting information that they think may 
be irrelevant, incorrect, incomplete, or otherwise 
useless. The greater the perception of risk, the 
less likely will be the desire of the person with 
the information to share despite other factors. Pr 
in an information-exchange situation is like the 
pressure, P, in a gas. 

This analogy is appropriate for two reasons. 
First, sufficient pressure on a gas mixture can 
liquefy it and the liquid can separate out into iso-
lated phases, each consisting of nearly pure com-
ponents. This is analogous to the situation where 
decision makers do not get the information they 
need because they are not likely to be near the 
information sources. (For more detail, see be-
low.) Second, pressure increases the number of 
collisions per unit time. In a simulation trial, this 
is a convenient way to model information over-
laid. In general, people perceive risk as a form of 
mental pressure. 

In a system of N gas particles that occupy a 
volume, V, high pressure shrinks the volume of 
the gas whereas high temperature, T, expands it 
in a manner described by the ideal gas law, equa-
tion (4). K is Boltzmann’s constant, the exact 
value of which is not particularly relevant to this 
discussion. 

(4)  V = NKT/P 

The information analog of (4) that is appropri-
ate for the volume of information exchanges, Ve, 
is based on an equation for information-system 
tractability and expressiveness suggested in [5]. 
This new analog of the ideal gas law that applies 

to information exchange is given by equation (5) 
as follows. 

 (5)  Ve = NKTi/Pr 

In [5], instead of Pr, the information-system 
expressiveness, E, appears in the denominator. 
The tractability of an information system, Ti, or 
(in this case) an information-exchange situation, 
is analogous to the temperature in a mixture of 
gas atoms or molecules. That means that all else 
being held constant, as Pr and Ti work on infor-
mation exchange in opposite directions like T 
and P in the gas laws. If Pr is high, a low volume 
of information exchanges (Ve) will take place, 
whereas if Ti is high, a high volume of informa-
tion exchanges will occur. 

One way to conceptualize how to model Pr is 
to relate it to the likelihood of an exchange initi-
ated by the information provider. If Pr is high, 
the likelihood of information exchange is low 
and the information provider will need to over-
come a personal-risk barrier to make the ex-
change. If Pr is low, the information provider is 
more likely to offer the information. Similarly, 
for decision makers, Pr represents the risk that 
information is wrong or otherwise useless. 

Thus, overall perceived risk (Pr) is an obstacle 
to effective information exchange. At low de-
grees of information-exchange tractability, Ti, 
which models like temperature, (i.e. if informa-
tion exchange is intractable), Pr will not promote 
information exchange by increasing the number 
of collisions between different species. (Colli-
sions or close interactions could promote infor-
mation exchange and increase information flow.) 
In the case of information exchange, high Pr is 
more likely to cause a change in state to a “liq-
uid”-like phase where the two phases are immis-
cible. Here, Pr separates out the information pro-
vider particles, I, from the decision-maker parti-
cles, D, such that they form two immiscible liq-
uid phases like oil on water. Here, the phase con-
taining particles, I, is like the water and the deci-
sion-maker D particles form the oil phase.  

Because of adversity to risk at low Ti, particles 
of similar species tend to group together and in-
sulate themselves from the other group of parti-
cles, which also exhibits the same behavior. The 
only opportunity for information exchange lies 
along the interface between the phase layers, 



 

where a relatively small percentage of the parti-
cles of either phase resides. No one wants to in-
teract with anyone in the other “phase” due to the 
perception of high risk (Pr). People who perceive 
that they are in a high-risk situation, whether 
they are providers or decision makers, tend not to 
provide or obtain information for fear of personal 
risk or for fear that the information is not useful, 
respectively. 

At higher temperatures, a more information- 
tractable situation develops [5] Ti increases and 
the need for information can overcome the per-
ceived risk of providing it. Thus, what was a 
two-phase system consisting of immiscible liq-
uids at lower Ti (i.e. lower tractability) becomes 
a one-phase system characterized by the disap-
pearance of the I-D phase interface and the mis-
cibility of the two groups of particles, modeled 
here as phases. 

This means that when the overall perceived 
risk (Pr) is lower, the information-exchange en-
vironment becomes more tractable (high Ti). In 
this case, more information providers can trans-
fer information to decision makers and the deci-
sion makers will accept and use the information.  
 
Human-to-Human Communication (Hc) 

One of the most common ways for employees in 
organizations to exchange information is direct 
human-to-human communication (Hc). Hc can 
occur either through individual conversations, 
such as telephone calls, or through meetings, in 
person, through video teleconferences, or 
through electronic mail. In general, employees 
still spend a lot of time in meetings, electronic 
mail and other forms of direct communication 
with each other. 

These forms of communication are too ineffi-
cient for organizations searching for improved 
information flow. An example of a potential im-
provement in information flow is a web log 
(blog), which can share information with every-
one in the organization, as opposed to the same 
information conveyed face-to-face in a meeting 
or written in a paper submitted up the chain. 

The impact of Hc can be modeled like a physi-
cal proximity measure. The greater the amount of 
Hc, the more the information receiver and the 
information provider must be in close contact to 

enable an exchange of information. If Hc is very 
high, the particles must pass within a certain 
close distance of one another to enable an ex-
change. If Hc is lower, the exchange can occur at 
a greater distance and more people can receive 
the information because the radius of the ex-
change capability is greater.  

Information exchange is not limited to thermo-
dynamic analogs. Other physical properties also 
can lead to insights in information systems. 
Thus, Hc behaves like an inverse power law for 
interaction, proportionality, equation (6) being a 
general example. Here, P(e) is the probability of 
information exchange; r is the distance between 
the interacting particles, Hc is the power law that 
determines how close particles must be to inter-
act and C is a constant of proportionality.  The 
proportionality sign, α, is like an equals sign (=) 
but it means that the equation may depend on 
other variables. However, but the ones men-
tioned above are the variables relevant in this 
discussion. 

(6)   P(e)  α  C / r Hc 

 For example, gravitational force acts over a 
very long distance because its force is propor-
tional to an inverse square law given by equation 
(7) where F is the force of gravity, G is the gravi-
tational constant, and the M1 and M2 are the 
masses [15]. Equation (7) is known as Newton’s 
law of universal gravitation. We see how the sun, 
moon and earth interact gravitationally every day 
to produce the tides. However, the distances be-
tween the sun, moon, and earth are much larger 
than the distances between molecules during in-
teractions in fluids. 

(7)  F  =  G  M1 M2 / r 2 

The higher the exponent of r, the closer the 
particles must be to feel the strength of the inter-
action because the force of the effect falls off 
much more rapidly as the exponent increases. 
For example, the repulsive forces between mole-
cules can be modeled as 1/r12 [8], [16]. Forces 
between nucleons (e.g. protons and neutrons) act 
over even shorter distances.  

Hc behaves like this as well. If Hc is very low, 
an exchange can be enabled at a potentially great 
distance to many receivers (all other factors be-
ing constant). This is similar to information ex-



 

change because reading a blog can be done at a 
great physical distance to many and doesn't re-
quire direct human-to-human communication at 
close proximity (where Hc is high.)  

 
3. Effect of Information-Flow Compo-
nents 
  
Effect of Information-Flow Promoters: Vi, Vn 
and Ep 
In the physical equivalent of information ex-
change, the components discussed above come 
together in the traditional formula for the force of 
an interaction. Two particles that are moving 
directly toward one another will interact with 
more force than two particles that interact with a 
sideways or glancing blow. This is due to the 
fact that velocity (Z), acceleration, momentum 
(Y), and force are vector quantities and the cal-
culations of their interactions require the resolu-
tion of the total quantity into orthogonal compo-
nents.  

Acceleration is the change in velocity over 
time, where velocity is a vector consisting of 
speed in a specific direction. Since velocity is a 
vector, the change in velocity can occur either 
through a change in speed or a change in direc-
tion. The change in direction when two particles 
interact is maximized when the two particles are 
headed directly toward each other. 

Since the visibility of information (Vi) and 
visibility of need (Vn) have been modeled as 
directional components, when they are high, the 
particles are moving toward each other and the 
force of the interaction of the particles is greater. 
Similarly, the momentum, Y, and hence the 
force, F, of the interaction is greater if the mass 
of one or both particles is greater, as shown in 
equations (8) and (9).  

(8)   Y = M Z 

(9)   F = dY / dt  = M A 

Since we equated empowerment (Ep) to mass, 
the greater the empowerment, the greater the 
force of the interaction. 

The effect of these three causal measures is 
combined in equation (9). The greater the Vi, 
Vn, and Ep, the greater the force of the interac-

tion of the particles. Some particles represent the 
decision maker who needs the information 
whereas other particles represent the person with 
the information. The interaction between the two 
kinds of particles represents the exchange of in-
formation. Therefore, an increase in these causal 
components will cause a corresponding increase 
the force of the information exchange.  

An alternate way to conceptualize Ep is to 
think of it as a collision cross section. This tracks 
with the physical analog. More massive particles 
in fluids tend to collide with more particles sim-
ply because of their larger spatial dimensions.  

 
Effect of Information-Flow Inhibitors: Bc, Pr, 
and Hc 
Consider the other three causal components, Bc, 
Pr, and Hc, as inversely correlating with infor-
mation flow. 

Barriers to communication (Bc), Perception of 
risk (Pr) and amount of Human-to-human com-
munications (Hc) all come together in the physi-
cal model as inhibitors that work together to 
make an information exchange more difficult. 
These are like repulsive forces that keep particles 
distant from each other. When a decision maker 
(D) and an Information particle (I) move toward 
each other, these inhibitors work together to pre-
vent the particles from approaching each other. 
When D and I are far away from each other, the 
likelihood of the exchange being offered is low 
and the amount of force needed to enable the 
exchange is high. This can occur either through 
particles moving directly toward each other or 
through particles being more massive, i.e. if peo-
ple are empowered.  Either way, to enable an 
information exchange in an environment where 
barriers are high, more momentum is required to 
overcome the repulsive forces of Bc, Pr and Hc. 
 
4. Simulating the Behavior of Aggregates 
of Particles  
 
Consider the type of behavior enabled in the 
physical model when many people interact to 
share or acquire information in an organization. 
In the physical model, this equates to particles 
interacting. Assume those particles that have in-



 

formation to share are green and those who need 
the information (e.g. decision makers without 
sufficient information) are red, as shown in Fig-
ure 1. In this simulation, information flow is like 
the diffusion of green gas particles. Information 
exchange is analogous to a “chemical reaction” 
between the particles that can turn a red particle 

green. This “reaction” causes a change in the 
internal structure of the particle that represents a 
change in the decision maker’s state of uncer-
tainty from a high uncertainty to lower one. (See, 
for example, [5]). The change of color in the 
simulation signifies this state change. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An agent-based model implementation of a physical analog for information flow 

 

The screen shot in Figure 1 shows a “sea” of 
red (information needy) particles. First, all the 
red particles are moving at equal speeds in ran-
dom directions. Next, we introduce a single 
green (information rich) particle and enable the 

model to represent an information exchange or 
transfer of information from a provider to a deci-
sion maker by having a red particle turn green 
whenever an information exchange occurs. As-
sume that any red particle can receive the infor-



 

mation from any green particle, either the origi-
nal green particle introduced or any other red 
particle that has turned green as the result of an 
exchange. The values of the six causal factors 
can be controlled as independent variables and 
these values apply equally to all particles. 

Figure 1 was produced using a programmable 
modeling-and-simulation environment called 
NetLogo [17]. This flexible, efficient, and pow-
erful tool was used successfully in our previous 
studies. (See, for example, [11].) Net Logo is 
particularly well suited for modeling complex 
systems that develop over time. Thus, NetLogo 
can help the user understand the “swarm” behav-
ior of groups of particles, called “mobile agents.”  

NetLogo runs on Windows, Mac and Linux. It 
comes with extensive documentation, tutorials, 
and a models library that has a large collection of 
simulations that can be used and modified [17].  
During the programming and set-up phase, Net-
Logo enables the user to create the overall be-
havior of the model by entering rules for indi-
vidual agents to follow during the simulation. 
Each particle is considered an agent. Options 
available to the user at set-up time include vari-
ous monitors, a link-shape editor, and a color 
control that can be used to distinguish the status 
of agents depending on their initial function and 
subsequent history of interactions with other 
agents. For example, an agent that receives a 
packet of information during an exchange with 
another agent can be programmed to change its 
color to show that the information exchange has 
taken place. Information flow can be modeled 
and monitored efficiently using this technique. 

At run time, the user has a wide variety of op-
tions to control the simulation. NetLogo provides 
an easy and intuitive method to explore the be-
havior of a simulation under various conditions. 
In the present simulation, the user can change 
independent variables systematically and observe 
the results in subsequent runs of the simulation 
without having to compile code into an executa-
ble file between simulation runs. The user also 
can control the speed of the simulation. 

For example, Figure 1 displays the control 
panel on the top and left side with eight sliders 
designed to select values for independent vari-
ables. The causal measures described above in 

Section 2, which increase or decrease the flow of 
information, each can be varied with its own 
slider. The relative positions of the sliders pro-
vide constant static feedback to the user to indi-
cate the value of each variable and permit com-
parisons at run time. During this execution 
phase, the screen shows each particle moving in 
real time. This provides maximum dynamic 
feedback to the user regarding the progress of the 
simulation. 

NetLogo has been used to simulate processes 
in many domains of the natural and social sci-
ences, including but not limited to biology, 
medicine, physics, chemistry, mathematics, 
computer science, economics and social psy-
chology [17].  

 
5. Preliminary Results 
 
We observed the model as a whole. If the inhibit-
ing factors are high enough and the promoting 
factors low enough, the particles will move 
about, but no information exchange will occur. 
However, if the promoting factors are high 
enough and the inhibiting factors low enough, 
the sea of red particles will become a sea of 
green particles almost immediately. A more real-
istic scenario occurs when the operator selects 
values for the variables that are in between these 
extremes, which is shown on the left side of Fig-
ure 1 with the exception of the H-to-H variable. 
In this case, the sea of red particles (information 
deficient) eventually will become green (infor-
mation rich) over a longer period of time.  
 
6. Discussion of Ongoing and Future Re-
search  
 
An ideal metric of information flow that would 
apply to the entire organization (generic), would 
be easy to collect and understand, and measure 
effects or behavior that correlates well with the 
definition of information flow. A set of metrics 
was identified including causal, direct, and ef-
fects based [12]. In search for a simple, general 
but useful measure, a set of 5 survey questions 
was designed. The work described here suggests 



 

an additional approach or question derived from 
physical modeling. 

The current work suggests that information 
flow can be modeled as a set of interacting parti-
cles representing decision makers in need of in-
formation as well as information providers and 
where the interactions are information exchanges 
which occur (or not) based on a set of individual 
agent rules equivalent to equation (1). The ex-
pected behavior of the system involves a dy-
namic adjustment when information is injected 
and then a return to stability after the information 
is exchanged through the system.   

 
Model Enhancements and Attributes of Particles  

This section describes how the attributes of I and 
D particles can be modeled to provide a deeper 
understanding of information flow and exchange. 
Enhancements to the model need to include fac-
tors like deadlines, information requirements, 
information content, partial information ex-
change and uncertainty. 

Let “n+” represent the amount of useful, cur-
rent, and applicable information that a given in-
formation-provider (I) particle contains. The plus 
sign was selected because “information push” is 
like a positive pressure.  

Let “n-” represent the amount of information a 
decision-maker particle needs to enable a deci-
sion at an acceptably low level of uncertainty. 
The minus sign was selected to signify “informa-
tion pull” - a lack of useful information or an 
“information depression.” The larger the “n-”, 
the greater the need for information and the more 
collisions with I particles will be required to turn 
the D particle green.  

When multiple collisions with I particles are 
required for a decision to be forthcoming from a 
D particle, the simulation will need to keep track 
of how many collisions each D particle has had 
with the I particles to be able to tell when a deci-
sion can be made. This represents an increase in 
both the simulation realism and the simulation 
complexity. 

Each decision-maker particle has an associated 
deadline, td, by which the decision must be made 
regardless of the information available at that 
time. Similarly, each information-provider parti-

cle also has an expiration time, te, after which the 
information becomes stale, irrelevant, wrong, or 
otherwise useless. Thus n+ declines as a function 
of time and n- declines as a result of useful in-
formation exchanges.  

In the simulation, particles interact over a pe-
riod of time and partial information transfers are 
allowed. Thus, n- can decline but will not neces-
sarily reach zero before td or before the end of 
the simulation period. If n- reaches zero before t 
= td, a decision is made and the red particle will 
turn green. 

If, however, when the t = td and n- is still not 
zero, a decision will be made anyway and the 
decision will be based on the amount of informa-
tion that has been received. In this case, the red 
particle will turn yellow to signify that a decision 
was made under uncertain circumstances. The 
confidence measure, Cd, for the decision, d, and 
the uncertainty, U, with which the decision was 
made can be calculated according to equations 
(10) and (11). 

(10)    Cd(t) =  1 – U(t)   
   (11)     U(t) = n- (t= td) / n- (t= 0) 

Equation (10) models the confidence as the 
arithmetic inverse of the uncertainty. Uncer-
tainty, U, simply compares the amount of infor-
mation available for the decision to the amount 
of information that was originally needed, ignor-
ing any interactions between the information re-
ceived in successive reductions of n- that could 
make n- decline faster than linearly. 

In equations (10) and (11), confidence level, 
Cd(t), and uncertainty, U(t), can change during 
the simulation as information is transferred in-
crementally from the information-provider parti-
cles to the decision-maker particles.  

Some data are perishable whereas others per-
sist over a long period of time. As the simulation 
progresses, the decision-maker particles change 
the amount of information they need. Deadlines, 
te and td, can be selected randomly according to a 
distribution within reasonable limits, or they can 
be selected systematically according to the data-
duration type and the decision model, respec-
tively.  

For example, information-provider particles 
can be assigned fixed expiration times, te, for 



 

their data, depending on how often their content 
can change. Examples of each are given below in 
Table 1. After initial assignment during the 
simulation-setup stage, te and td, remain constant 
for each particle and for the duration of the simu-
lation.  

 

Table 1. Levels of data persistence 

 

Data-duration type Example Typical te 
Static Port  

location 
500 years 

Semi Static Ship’s 
OPCON 

5 months 

Dynamic Aircraft 
location 

5 minutes 

 

Not all collisions between unlike particles re-
sult in information transfer. When the time of the 
simulation reaches the te of an information-
provider particle, the effective collision cross 
section of that particle goes to zero and it will 
cease to attract any decision-maker particles and 
no information will transfer. This is how the 
model depicts the fact the data have become use-
less for decision making after t = te. How this 
state of uselessness is reached depends on the 
details of the information model. 

In the dual-state “cookie-cutter” model, n+ is a 
constant until t = te, when n+ = 0. In the linear 
model expressed in equation (12), n+(t) starts at 
ni+ and approaches zero linearly as the simula-
tion time, t, approaches te such that when t = te, 
n+ = 0. 

(12)    n+(t)    =    {- ni+/ te }  t     +    ni+ 

In more sophisticated information models, n+ 
can depend on multiple variables, such as time 
and information reliability, as expressed in fac-
tors from the data pedigree, such as source reli-
ability, and the applicability of data-fusion meth-
ods. (See, for example [4].) 

In reference to the definition of n+ stated 
above, n+ can decline based on its timeliness or 
its usefulness. For example, the attraction be-
tween the information-provider particles and the 
decision-maker particles also can depend on 

whether or not a particular decision-maker parti-
cle already has the information that is contained 
in n+. If the decision-maker already has the in-
formation, obtaining redundant information will 
not constitute an information flow because it will 
not decrease uncertainty.  

Perishable data of the form n+(t) and decision 
makers, n-(t), with expiration deadlines are 
analogous to unstable molecules in a chemical 
mixture. These particles must react before they 
decompose, or the will not be able to participate 
in any reaction (other than decomposition).  

The limitations in these models include the fol-
lowing observations. Information from various 
providers is often interdependent but the models 
are based on the assumption of information inde-
pendence. One way to model data fusion is to 
consider three-way, four-way or higher collisions 
that involve more than two particles colliding 
and interacting simultaneously. However, this 
analogy breaks down when you consider that the 
percentage of multi-body collisions in gases is 
typically less than one percent, whereas the need 
for data fusion prior to decision making is much 
more common than that. Few significant deci-
sions are made after the ingestion of only one 
datum or fact. Even decisions concerning simple 
matters usually are based on the fusion and con-
sideration of multiple facts and observations. 

Another important point to note in this simula-
tion is its level of granularity. No attempt thus 
far has been made in this simulation to model the 
fine structure of the decision-making process as 
the D and I particles collide and interact. The 
effect of collisions on molecular quantum states 
in fluids is much better characterized from a 
theoretical [10] and experimental [2] standpoint 
than the effect of information flow on decision 
making. Elements of the decision-making proc-
ess could be included in the model with the aid 
of a Common Decision Exchange Protocol [13], 
among other tools and technologies. 

The process of imparting fine structure to the 
decision-making process in the D particles is ex-
pected to be more complex than the process of 
specifying the manner in which n+ approaches 
zero for the I particles. This complexity arises 
out of the fact that information flow and the de-
cision that this flow enables may depend on an 



 

unspecified number of variables [5], whereas the 
accuracy of a data element depends on how far it 
has departed from its initial value.  

One aspect of fine structure is the shape of the 
particles. Up to this point, we assumed that the 
particles are isotropic. Introduction of particle 
anisotropy could enable us to model the amount 
of information exchanged in a transfer and the 
effect on the decision maker after the transfer. 
Assume that the D and I particles are rods and 
not spherical, with many of the same rotational 
properties as linear molecules (See, for example, 
[2].) For example, to model a collision between 
two rods, one would have to account for the rela-
tive orientation of the particles upon impact. Dif-
ferent relative orientations could signify different 
amounts of information transfer. The exact func-
tion for this information transfer as a function of 
relative angles is an open research question, the 
answer to which would depend on which func-
tion leads to the most useful model. 

Another aspect that could be modeled like mo-
lecular dynamics is to allow three-way or higher 
collisions. Van der Waals dimers are formed dur-
ing three-way collisions in monomer gases. The 
use of multi-body collisions involving multiple I 
particles could lead to new ways to model data 
fusion. 

 
Information Annealing as a Metric for Informa-
tion Flow 

An additional observation is that the dynamic 
portion of the process increases the entropy of 
the system. In information theory, entropy ex-
presses the amount of uncertainty in a system.  
Before new information arrives, the number of 
choices facing decision makers may be high (i.e. 
high entropy) but stable. As new information 
enters the system, and exchanges occur, there is a 
temporary change in the number of options for 
decision-makers. The system will stabilize again, 
and depending on the nature of the information 
and the decisions in process, the level of uncer-
tainty may increase or decrease. 

Either way, during the period of time when the 
system absorbs the new information, entropy 
may increase temporarily if the decision makers 
must spend time reconsidering their options in 
light of the new information. This happens when 

uncertainty arises about how to handle the new 
information. The length of this unstable time pe-
riod can vary depending on how much the new 
information initially increases, but eventually 
reduces the number of options for the decision 
maker. Eventually, the number of options de-
creases and a decision is made from among the 
fewer options that the new information enabled. 

How does a useful system respond to increases 
and decreases in uncertainty? The process of ab-
sorbing information, reconsidering options and 
the changes in entropy that occur during the de-
cision process is like the annealing of a solid. 

Annealing is a process of heating and cooling 
typically in metals and glass to reduce the num-
ber of independent domains and to increase the 
strength of the material by aligning the mole-
cules into fewer and more coherent domains, 
thus decreasing the entropy. This heat treatment 
alters the microstructure of a metal causing 
changes in properties such as strength and 
hardness and ductility, whereas in glass, heat is 
applied to remove stress [14]. Just as metallic 
annealing is important in the manufacture of use-
ful tools, knives, and swords, information an-
nealing is important for making decisions more 
reliable and robust with less total uncertainty. 

Whereas information annealing or knowledge 
annealing, has been described as “network-based 
information system in which all users of the 
system are permitted to change the system at 
will,” [14], we introduce an alternate type of 
information annealing called “infodynamic 
annealing.” Unlike annealing in materials, which 
is characterized by increases and decreases in 
temperature, infodynamic annealing is character-
ized by increases and decreases in entropy. These 
fluctuations in command centers align “particles” 
of information to increase the usefulness (i.e. 
strength and flexibility) of the decisions. 

Multiple iterations of heating and cooling, pro-
ceeding from greater to lesser change with each 
iteration, enable each particle to find its optimal 
place in the structure. Thus, the annealing proc-
ess has been applied algorithmically in informa-
tion theory to achieve the same effect, i.e. where 
closed-form solutions are not practical an anneal-
ing process is applied to overcome local minima 



 

and encourage information particles to settle into 
their optimal location.  

The observation is that organizations appear to 
be engaged in an ongoing annealing process. De-
cision-makers gather information and settle into 
a potential initial decision. As new information is 
injected into the system, the decision-makers 
must absorb that information and resettle into a 
new position with some associated change (even 
if minor) in confidence. Ideally, the confidence 
increases but any change is beneficial since the 
previous level of confidence may have been in 
some sense a “false” confidence (based on in-
complete, incorrect or misleading information).  
Although not as controlled as physical annealing, 
infodynamic annealing, i.e. the process of dy-
namically increasing uncertainty and resettling, 
appears to be applicable in the decision process 
and is consistent with the approach to physical 
models described in this paper. 

The infodynamic-annealing efficiency of or-
ganizations may vary over time, based on struc-
ture or policies that influence empowerment, 
visibility of information, amount of human-to 
human communication and the other causal 
measures that affect information flow. If the 
force of the information exchanges is weak, the 
information exchanges may not occur or if they 
do, the process of absorbing the change through 
the system will be slow. Consequently, the in-
fodynamic-annealing process may be slow or 
ineffective or perhaps not occur at all. Organiza-
tions that are slow to change and adapt may suf-
fer from and exhibit an ineffective information-
annealing capability.  

The connection between the physical model 
and the information decision process has led us 
to a potential metric for information flow which 
is simple, understandable, and, according to the 
model, directly correlated with information flow. 
The metric is the number of times and speed with 
which members of the organization exhibits a 
stage of the annealing process. In other words, 
how often and how quickly do members of the 
organization adjust their confidence in their deci-
sions based on new information? 

The question to a member of an organization, 
if we use a survey technique, might be as simple 
as, “How confident are you in your decisions? (0 

= total uncertainty; 1.00 = absolute confidence).” 
If we could find an efficient, unobtrusive way to 
collect an answer from each member of the or-
ganization on perhaps at least a daily basis, sta-
tistical analysis could assess the number and 
speed of confidence changes, perhaps informed 
by the rate of information flow expected for that 
domain (e.g. accounting, engineering, program-
ming, etc.). The challenge is that the metric 
would need to be collected often enough to keep 
pace with the expected rate of change represent-
ing a stage of the annealing process. This relates 
back to the intractability of a closed-form ana-
lytical solution of information flow. 

Consider the relative amount and speed of 
changes in confidence and what such a metric 
might imply based on the physical models de-
scribed here. If a decision maker never exhibits a 
change in confidence, even temporary, this sug-
gests poor information flow since no annealing 
process is indicated. Explanations for this condi-
tion could include one or more of the following 
situations: 

• The decision maker is surrounded by sup-
port personnel who produce information 
that corresponds only to what the decision 
maker wants to hear. 

• The decision maker is unwilling to accept 
information contrary to the status quo.  

• The decision maker spends too much time 
in meetings and direct human-to-human 
communication. In this case, the bandwidth 
for receiving new information is too con-
strained.  

Any of the causal measures in the physical 
model may apply. If a decision maker never ex-
hibits stability in confidence, whether low confi-
dence, high confidence or in-between, even tem-
porarily, this also suggests poor information flow 
since no annealing process is indicated.   

The metric may hold some interest in relation 
to common perception of confidence. Some may 
think that effective decision makers strive to 
maintain high confidence in their decisions. The 
metric suggests that effective decision makers 
strive to apply stages of annealing as often and as 
rapidly as possible and necessary. In other 
words, effective decision makers focus on the 



 

process of incorporating and modifying their 
confidence in their decisions. Through the appli-
cation of this process, higher and higher confi-
dence is achieved through constant integration of 
new information in a process that enables and 
utilizes changes in confidence (entropy) to opti-
mize the quality of the decision.  

 
7. Conclusion 
 
In this paper, the authors build upon previous 
work to suggest a physical model for information 
flow. The implied process of annealing may be 
measurable by the number and speed of changes 
in confidence. The goal is to develop a generic, 
simple, tractable, and understandable metric that 
correlates with information flow. A physical 
model equates causal impacts on information 
flow to physical equivalents of mass, accelera-
tion and force. The resulting interactions of par-
ticles suggest a process of dynamic change as 
information is integrated followed by a phase of 
stability where the information is absorbed into 
the decision process. This information process is 
analogous to the physical process of annealing in 
metals and glass. In infodynamic annealing, the 
process is a controlled change in confidence (en-
tropy) in the system. This paper suggests that 
these changes in confidence may be a key to 
enabling a simple, understandable metric for in-
formation flow. Further research will expand the 
physical model in this direction to explore this 
capability. Further research will use the model 
and simulation method described here to under-
stand better how various causal factors affect the 
information-flow process. 
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Topic 6: Modeling and Simulation



Presentation Topic Outline

▼ Causal Measures and Physical Equivalents 
 Visibility of information (Vi) – attractive force (push)
 Visibility of the need for information (Vn) – info pull
 Empowerment of people (Ep) – “mass” of particle
 Barriers to communication (Bc) – a repulsive force
 Perception of risk (Pr) – repulsive force
 Human-to-human communication (Hc) - repulsive force

▼ Effect of Information-Flow Components
 Effect of information-flow promoters: Vi, Vn and Ep
 Effect of information-flow inhibitors: Bc, Pr, and Hc

▼ Simulating the Behavior of Aggregates of Particles 
 NetLogo M&S environment where “particles” are agents

▼ Preliminary Results 
▼ Ongoing and Future Research



Agent-Based Model Patterned after 
Chemical Molecular Dynamics Simulations

▼ Past research demonstrates that an analytical 
solution for information velocity is intractable.

▼ Purpose of current research: Understand factors 
that affect the rate of information flow.

▼ Agent-Based Model: Information providers and 
consumers are modeled as particles, as in well-
known molecular-dynamics studies.

▼ Information interactions and exchanges are 
modeled as physical properties and processes, 
such as collisions with energy transfer.

▼ Factors that enable information transfer are 
modeled as attractive intermolecular forces.

▼ Factors that inhibit information flow are modeled as 
repulsive intermolecular forces.



Causal Measures & Physical Equivalents:
Information-Flow Promoters: (Vi)

Vi  = Visibility of information
▼ One kind of particle, I, represents information.
▼ Another kind of particle, D, represents the decision 

maker who needs the information.
▼ D and I collide and interact in the model like two 

different kinds molecules in a fluid (e.g. gas or 
liquid).

▼ High Vi increases information exchange.
 Information exchange is equivalent to energy, 

momentum, or electron transfer in matter.
▼ I Particles with Vi = 0 interact like molecules in an 

ideal gas, i.e. no intermolecular forces.
 Information flow is restricted but the model is simpler.



Causal Measures & Physical Equivalents:
Information-Flow Promoters: (Vn)

Vn = Visibility of the need for information

▼ A D particle with a high value for Vn is like an I 
particle with a high value for Vi. 

▼ Particles with high Vi or Vn are like atoms or 
molecules with large collision cross sections.
 High Vi and high Vn both increase collision frequency 

and increases information exchange.
▼ D Particles with Vn = 0 interact like molecules in 

an ideal gas, i.e. no intermolecular forces.
 Information flow is restricted, same as Vi = 0

▼ Information flow improves if the need for 
information is visible. 



Causal Measures & Physical Equivalents:
Information-Flow Promoters: (Ep)

Ep = Empowerment of people 
– like the mass of a particle

▼ Force = mass x acceleration.
▼ More massive particles represent empowered 

people in the simulation, e.g. admirals & generals. 
▼ Work = force x distance.
▼ Po = dW/dt Power = rate at which work is done.
▼ Massive particles transfer more energy and 

momentum. They produce work faster.
▼ Empowered people overcome obstacles, transfer 

more information and work more efficiently.



Causal Measures & Physical Equivalents:
Information-Flow Inhibitors (Bc)

Barriers to communication (Bc)
▼ We model the magnitude of Bc as the amount of 

force and energy (i.e. effort) necessary to enable 
an information exchange.

▼ Bc is the inverse of Ep. Empowered people do 
not need to exert an inordinate amount of force to 
communicate information.

▼ Barriers to communication inhibit information flow 
and impede information sharing.

▼ Examples:
 Dates after which no information sharing is allowed
 Formal requirements for information submissions
 Approval chains
 Mandatory use of user-hostile & disfunctional web sites.



Causal Measures & Physical Equivalents:
Information-Flow Inhibitors (Pr)

Perception of risk (Pr)
▼ Pr is like a very high pressure in a gas mixture. 
▼ Pressure on simulated “gas” can separate D and I

components into two immiscible liquid phases.
▼ Almost no D particles will be near the I particles.
▼ Interface = only opportunity for information transfer.
▼ Pr separates decision makers from info they need.
▼ People who perceive significant personal risk for 

sharing info will not share for fear it will affect their:
 Reputation, performance ratings, promotions

▼ Decision makers do not want to accept information 
they think is high risk, such as information that is:
 Irrelevant, incomplete, incorrect, stale, misleading, useless



Causal Measures & Physical Equivalents:
Information-Flow Inhibitors (Hc)

Hc = Human-to-human communication
▼ Examples:
 Face-to-face meetings, teleconferences
 Phone calls, email
 In writing, in a paper submitted for approval through a 

sequential chain of command
▼ Most inefficient communication is direct one-on-one 

exchange (E). (Better: blogs => low Hc)
▼ This exchange does not scale. (N**2-N)/2
▼ Hc, a proximity measure, can be modeled as an 

inverse power law for inter-particle interaction:
▼ Potential energy, P(E)   C / r**Hc r = distance
▼ The higher the Hc, the closer the D and I particles 

need to be to exchange information.



Effect of Information-Flow Components

Information-Flow Promoters:
▼ Vi and Vn are like attractive forces or other vector 

quantities that specify a given direction of motion.
 Velocity (w) and its time derivatives are vectors.
 Ep is like mass, M.
 F = M A    becomes    F (info exchange) = Ep (dw/dt) 
Information-Flow Inhibitors :

▼ Bc, Pr, & Hc are quantities that describe 
repulsive forces like those between molecules in 
a fluid that keep D and I particles separated.

▼ More momentum is needed for information flow.
▼ Likelihood of information exchange decreases as 

Bc, Pr, & Hc increase.



▼ Particles with information to share: green agents
▼ Decision makers with insufficient information: red.
▼ Information flow is like the diffusion of a green gas 

consisting of I particles.
▼ Information exchange between particles is like:
 Momentum and energy transfer in a collision
 Electron exchange in a chemical reaction

▼ Red particles turn green after they receive the 
information they need.

▼ Color change = change in state of decision maker 
from high uncertainty to lower uncertainty.

▼ Experimenter controls the rate of information 
transfer by varying the information flow-
components, Vi, Vn, Ep, Bc, Pr, & Hc.

Experiment Simulating Information Flow 
with Aggregates of Particles



Net-Logo
Modeling & Simulation Environment

Visibility of information (Vi)
Visibility of need for information (Vn)
Empowerment of people (Ep)

Barriers to communication (Bc)
Perception of risk (Pr) 
Human-to-human communication (Hc)

• NetLogo has intuitive interface to model 
complex systems that develop over time. 
• Users can change independent variables 
during run time and observe the emergent 
behavior in real time using sliders:



Agent-Based Model to Understand 
Information Flow



▼ Information flow can be modeled as a set of 
interacting particles representing decision 
makers and information providers.

▼ Future enhancements to model include:
 Deadlines and dynamic perishable data
 Dependence on specific information requirements
 Partial information exchanges
 Data fusion modeled as three-way collisions or more
 Confidence measures and uncertainty

▼ Confidence measure Cd (t) = 1 – U (t)
▼ U (t) = n- (t = td) / n- (t = 0) 
▼ U (t) is time-dependent uncertainty.
▼ n- = amount of information needed at time, t
▼ td = decision deadline

Ongoing and Future Research:
Model enhancements & attributes of particles
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Ongoing and Future Research:
Levels of Data Persistence and Perishability

5 minutesAircraft locationDynamic

5 monthsShip’s OPCONSemi Static

500 yearsPort locationStatic

Typical teExampleData-duration type

▼ Confidence and uncertainty can change 
dynamically during the simulation due to 
incremental transfer of information.

▼ Distributions of deadlines, td, can be selected to 
simulate various degrees of data persistence.
 td is a property of D particles.



Ongoing and Future Research:
Information Annealing as a Metric for Information Flow

▼ A period of time is needed for the system to 
absorb new information, during which entropy 
fluctuates.

▼ Physical annealing: Multiple iterations of physical 
“heating” and “cooling” enable each atom to find its 
optimal place in a physical solid structure.

▼ Confidence and uncertainty fluctuate during the 
decision process. Infodynamic annealing is 
characterized by increases and decreases in 
entropy & uncertainty.

▼ Proposed metrics: How often and how quickly do 
members of organization adjust confidence in 
decisions based on new information?



Future Research:
Particle Anisotropy

▼ Force of information flow is greatest when people 
are empowered and information-flow direction and 
information-inquiry direction are in opposite 
directions moving toward each other. See a. below.

▼ Force between the D and I particles could be 
anisotropic (depending on their orientation at the 
time of collision), like a fluid of linear molecules 
instead of isotropic point particles. Compare a. & b.

D I

a.
D I

b.


