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Options for rapid analysis of chemical contaminants in water are
limited, but more thorough analysis for a broad range of organic
and inorganic chemicals requires complex instrumentation not
readily available in field situations. One alternative is to use sen-
sors that rapidly evaluate the toxicity of a whole water sample
instead of measuring concentrations of individual chemical
constituents. Biologically based toxicity sensors can provide
rapid assessments of water quality and can contribute to drink-
ing water security investigations (States et al., 2004). Sensors
that evaluate cellular cytotoxic responses are well-suited for a
broad range of sensing applications, including the detection of
unknown agents, and the use of mammalian cells as biosensors
can provide responses relevant to human physiology (Pancrazio
et al., 1999; Kovacs, 2003). A wide range of cellular responses have
been proposed for use in cell-based biosensors (Ziegler, 2000),
including the measurement of the electrical impedance of cell
monolayers (Giaver and Keese, 1992; Keese et al., 1998).

One device that measures changes in cellular impedance is
the electric cell–substrate impedance sensing (ECIS) system (Giaever
and Keese, 1993), which can provide quantitative information on
cell morphological changes under various chemical and biological
treatments (Giaever and Keese, 1986, 1991; Tiruppathi et al., 1992;
Garcia et al., 1997; Keese et al., 1998; Luong et al., 2001; Xiao et al.,
2002). The ECIS system has been used specifically to assess the
cytotoxicity of a variety of toxicants. Most of the toxicants tested
in the ECIS system used a cytotoxicity protocol that treated cells
in suspension with the toxicant, and then monitored their ability
to adhere to the ECIS electrodes over several hours (Luong et al.,
2001; Xiao et al., 2002; Xiao and Luong, 2005). This method is not
adaptable for field water testing because too many steps are

required and the assay takes too long (up to 24 h) to complete.
An alternative protocol measures the impedance of established
cell monolayers after toxicant addition (Arndt et al., 2004; Giaver
and Keese, 1992; Keese et al., 1998). This simpler method has the
potential for translation into a field-portable assay, but has only
been validated with a few toxicants.

In an evaluation of toxicity sensors for rapid testing of drinking
water, the ECIS system (in a 1 h assay format using confluent bovine
pulmonary artery endothelial cell (BPAEC) monolayers) was com-
pared with nine other toxicity sensors in a blind study using 12
chemical toxicants (van der Schalie et al., 2006). The ECIS-based
sensor was one of three sensors that responded to the most
chemicals in the desired sensitivity range between the Military
Exposure Guidelines (MEG) concentration (a threshold level be-
lieved to pose minimal to no human health threat; USACHPPM,
2004) and the estimated Human Lethal Concentration (HLC; TERA,
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2006). The ECIS-based sensor also showed very low reactivity to
potential interferences such as hard water and common water
additives, making it an attractive system for water monitoring
applications. Because the ECIS sensor using BPAEC monolayers
detected seven of 12 chemicals in the target concentration
range within an hour, this sensor shows great promise for field
water testing.

Thus, the primary goal of this study was to improve the toxicant
responsiveness of the ECIS-based sensor by selecting the most
sensitive of a variety of candidate cell lines, using the same
chemicals tested by van der Schalie et al. (2006). Ten cell lines were
selected for evaluation including human, non-human mamma-
lian and non-mammalian vertebrate cells. Selected liver, kidney,
skin, intestinal and vascular cells offered the possibility of toxicant
sensitivity not found in other cell types. The non-mammalian
vertebrate cells had the advantages of not requiring carbon dioxide
for culturing and potentially greater tolerance of temperature varia-
tions than the mammalian cells, which could improve their suitability
for a field-portable toxicity sensor system. Human cell responses
appear to be more predictive of lethal toxicant concentrations
in human blood than non-human cells (Ekwall et al., 1998).

One major issue with using mammalian cells in toxicity sensors
is the difficulty of maintaining cell viability under field conditions
for extended periods of time and with minimal support until they

are needed for water testing (Rudolph and Reasor, 2001). This
was a problem encountered in previously developed portable
toxicity sensors using cardiomyocytes (DeBusschere and Kovacs,
2001) and neurons (Pancrazio et al., 2003, 2004). In addition to
improving toxicant sensitivity, an additional study goal was to
determine the viability of selected cell lines in the ECIS system
with minimal maintenance, because the length of time that cells
can be held prior to testing is an important issue in the develop-
ment of a field-portable system. The results of this study show
that the bovine lung microvessel endothelial cell (BLMVEC)
monolayers and the iguana heart cell (IgH-2) monolayers can
improve both the sensitivity of response to toxicants and the
longevity of cells in the ECIS system as compared with the
currently used BPAEC monolayers.

Materials and Methods

Tissue Culture and Cell Seeding on Electrodes

Ten cell lines were selected for comparison to the BPAEC mono-
layers used in the initial toxicity evaluation (van der Schalie et al.,
2006). Table 1 lists the cell lines and culture methods used to
determine whether the cell lines could form confluent monolayers
on the ECIS chips (Applied BioPhysics, Troy, NY, USA) and provide

Table 1. Culture conditions for the cell lines tested for suitability in the ECIS system

Cell line Sourcea Mediab Adhesion 
substratesc

Temperature
(°C)

CO2

Bovine pulmonary artery 
endothelial cells (BPAEC)

VEC Technologies 
(Rensselaer, NY)

α-Minimal essential medium 
(α-MEM) and 20% fetal bovine
serum (FBS)

Gelatin 37 5%

Bovine lung microvessel 
endothelial cells (BLMVEC)

VEC Technologies MCDB-131C (VEC Technologies) Fibronectin 
or gelatin

37 5%

Human intestinal epithelial 
cells (Caco2; C2BBe1)

HTB-37; CRL-2102 Dulbecco’s modified Eagle’s 
medium (DMEM)d and 10% FBS

Collagen I or 
collagen IV

37 5%

Fish liver epithelial cells CRL-2406 Eagle’s minimum essential 
medium (EMEM)e and 5% FBS

Collagen I, laminin 
or uncoated 

30 5%f

Human liver epithelial 
cells (Hep-G2)

HB-8065 EMEMe with 10% FBS Fibronectin, laminin 
or gelatin

37 5%

Human umbilical vein 
endothelial cells (HUVEC)

VEC Technologies MCDB-131C (VEC Technologies) Fibronectin 
or gelatin

37 5%

Iguana heart cells (IgH-2) CCL-108 EMEM with Hanks balanced salt 
solution (HBSS)g and 10% FBS

Fibronectin, laminin 
or gelatin

37 No

Human keratinocytes Cambrex Bio Science 
(Walkersville, MD); 
CC-2507

KGM-2 (Cambrex Bio Science) Fibronectin, laminin 
or poly-lysine

37 5%

Turtle heart cells (TH-1) CCL-50 Basal medium (Eagle) with 
HBSS and 10% FBS

Fibronectin, laminin 
or gelatin

25 No

African green monkey 
kidney cells (Vero cells)

CCL-81 EMEMe with 10% FBS Fibronectin, laminin 
or gelatin

37 5%

aAll cells purchased from American Type Culture Collection (ATCC; Manassas, VA, USA) unless otherwise noted.
bAll media purchased from Invitrogen (Carlsbad, CA, USA) unless otherwise noted.
cAll adhesion substrates purchased from Sigma-Aldrich (St Louis, MO, USA) except fibronectin, collagen I and IV, which were pur-
chased from Calbiochem (San Diego, CA, USA).
dPlus 4 mM L-glutamine, 4.5 g l−1 glucose, 1.5 g l−1 sodium bicarbonate, 0.01 mg ml−1 human transferrin.
ePlus 2 mM L-glutamine and Earle’s BSS adjusted to contain 1.5 g l−1 sodium bicarbonate, 0.1 mM non-essential amino acids and
1.0 mM sodium pyruvate.
fCan be adapted for CO2-independent growth.
gPlus 2 mM glutamine and 0.1 mM non-essential amino acids.
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stable impedance readings over a two-week storage time. Except
for the standard BPAECs, each cell line was evaluated with at
least two adhesion substrates (Table 1) to increase the likelihood
that a stable and uniform monolayer could be formed on the
gold electrodes. Adhesion substrates were prepared according
to manufacturers’ instructions, and 200 μl of each diluted sub-
strate [laminin (25 μg ml−1); fibronectin (50 μg ml−1); collagen I
and IV (25 μg ml−1); poly-D-lysine (100 μg ml−1); and gelatin (0.2%
solution)] was added to each well, incubated for 1–2 h, and
washed with growing medium before use. Each cell line was
seeded over a range of cell densities (0.4–1.5 × 105 cells/well),
maintained by periodic feeding, and stored for a two-week
period during which the impedance was recorded as an indica-
tion of the monolayer integrity and general cell health. A cell
monolayer was determined to be stable over the two-week stor-
age period if the impedance values did not decrease more than
20%, and if the morphology of the cells did not change substan-
tially as visualized by phase contrast microscopy. The sensitivity
of the system depends on the presence of a confluent cell mono-
layer that can effectively impede ion flow. The 20% reduction in
impedance was defined as an acceptable reduction based on
previous experiments using confluent cell monolayers for toxi-
city testing (van der Schalie et al., 2006).

Cell lines found suitable for use in the ECIS system were further
tested for their ability for long-term survival on the ECIS test
chips. Cell lines were seeded onto ECIS electrode arrays (three to
four replicates) and stored for 37 days. During this maintenance
time, the cell monolayers were fed three times a week by medium
renewal. Different adhesion substrates and fetal bovine serum
concentrations were tested to optimize the maintenance of the
cell layers over time. Impedance levels were measured periodically
over the 37 day period. The percentage reduction in impedance
over time was calculated. Stable monolayer maintenance over
the 37 day period is defined as less than a 20% reduction in
impedance values over time.

Impedance Measurement with ECIS

Impedance of cell monolayers grown on ECIS chips was monitored
using the ECIS 1600 analyzer (Applied BioPhysics, Troy, NY, USA)
as described in Luong (2003). Briefly, the cells were seeded on
ECIS chips (8W10E; Applied BioPhysics, Troy, NY, USA) and grown
to confluence. On the bottom of each well were 10 small working
gold electrodes (each electrode is 250 μm in diameter) and one
large counter gold electrode. A 15 000 Hz signal with 1 V amplitude
was applied to the cells through a 1 MΩ resistor, creating a current
source. Current flowed between the small working electrodes
and the counter electrode through the cell culture medium that
bathed the electrodes and served as the electrolyte. The voltage
between the small and large electrode was monitored by the
lock-in amplifier, stored and processed by a personal computer.
Because the surface area ratio between the working electrodes
and the counter electrodes was small, the impedance of the
working electrode interface dominated the value.

When cells attach and spread, they form a confluent monolayer
on the working gold electrode, which acts as an insulating layer
because the plasma membrane interferes with current flow
above the electrode. Consequently, there is a drastic increase in
impedance when the cells form a confluent cell barrier. When
cell monolayers grown on the electrode undergo any change
in cell–cell interaction or cell–substrate interaction, there are readily
measurable changes in impedance (Giaever and Keese, 1993).

Chemicals Used in Toxicity Testing

Chemicals used for toxicity testing (Table 5) were obtained from
Fisher (Fairlawn, NJ, USA) or ChemService (West Chester, PA, USA)
and were selected to represent different chemical classes and
modes of toxic action. All stock solutions were prepared in
deionized water at the US Army Center for Environmental
Health Research (Ft Detrick, MD, USA). The ECIS-based sensor
using BPAECs previously showed very low reactivity to potential
interferences such as hard water and common water additives,
so the chemicals in the current study were prepared in deion-
ized water (van der Schalie et al., 2006). The only exception
was pentachlorophenol, which was prepared from the sodium
salt of pentachlorophenol in 2 mM phosphate buffer and pH
adjusted to 7.5. Stock solutions were used in testing within two
weeks, except for toluene and nicotine, which were used imme-
diately after preparation due to volatility and stability issues,
respectively.

To prepare the chemical toxicants for cell testing, twice-
concentrated serum-free culture medium (with 0.5% bovine
serum albumin, BSA) was diluted 50:50 with the test chemical
solutions to ensure correct osmolarity of the samples prior to
addition to the cell monolayers. Each test solution was brought
to the appropriate test temperature (Table 1) by holding
samples in an incubator for 30 min prior to testing.

Toxicity Testing Procedures

Screening toxicity tests were performed for each cell line found
suitable for use in the ECIS system. Aldicarb and sodium pen-
tachlorophenate were selected for screening because the standard
BPAEC monolayers have been found to be relatively insensitive
to these chemicals in previous toxicity testing (van der Schalie
et al., 2006). For the screening toxicity tests, there were two con-
trol wells and three sets of replicate toxicant concentrations
on each ECIS chip. Two chips were used per chemical, providing
four control wells plus four toxicant-exposed wells at each of
three toxicant concentrations.

Cell lines showing the greatest improvement over the standard
BPAEC monolayers in sensitivity in the screening tests were
tested with the full set of 12 chemicals. In these tests, each ECIS
chip had two controls and three sets of replicate toxicant con-
centrations. Two to six chips were used per chemical, providing
four to 12 replicates of control wells and each of the three toxicant
concentrations.

To acclimate cells to the test conditions, growth medium
containing serum was removed from the cell monolayers and
was replaced with serum-free medium (with 0.5% BSA) 1 h prior
to testing. After 1 h, impedance values were measured and
recorded for each well prior to chemical addition, to serve as a
baseline measurement. The medium was then removed and
either 400 μL of the prepared test chemical solution or 400 μL of
serum-free medium (control wells) was added to the wells.
Impedance values were monitored in each well every minute for
approximately 60 min. Tests were conducted in a cell culture
incubator at temperature and CO2 levels appropriate for each
cell line.

The impedance readings were normalized by dividing the
impedance measured at each time point by the initial impedance
value (prior to chemical exposure) in each well. This was neces-
sary because the starting impedance value in each well was
slightly different due to the variability of the cells covering the
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electrodes. Normalizing the data allowed for a more consistent
comparison of observed impedance differences.

To determine when the response curves generated by toxicant-
exposed cells differed significantly from the curves generated
by the control, a curve discrimination program was written using
MATLAB (The MathWorks Inc., Natick, MA, USA). This program
analyzed impedance data from control and toxicant-exposed
cells during a 15 min window that was chosen from the 60 min
of data based on observation. The overall difference between
the two groups of curves was measured at each time point, and
the difference between their averages was assessed relative
to the within-group variability. A confidence level of 95% (P < 0.05)
was used to establish statistical significance. The lowest toxicant
concentration that caused a significant change in impedance
was reported as the lowest effect concentration in Tables 3 and
5. Functional data analysis techniques (Ramsay and Silverman,
2005) were used to extend the standard analysis of variance
approach for a single time point (Ott and Longnecker, 2000)
to analysis of a curve consisting of approximately 60 points. An
example of an impedance response curve of control vs toxicant-
treated cells is provided in Fig. 1. Figure 1 also depicts the 15 min
window for curve discrimination analysis. The time period from
5 to 20 min was found to provide the most rapid response time
while avoiding false positive detects of non-toxicant water samples.

Results and Discussion

Suitability of Alternative Cell Lines for Use in the ECIS 
System

To screen chemical cytotoxicity within 1 h in a field environment,
the cell monolayers chosen must have sensitivity to a variety of

toxicants, stability over long periods of time, and simple cultur-
ing requirements that allow reproducible results to be obtained.
Based on these criteria, various endothelial and epithelial cell
lines were screened for use in the ECIS system because of their
ability to form a tight diffusion barrier that is stable over extended
periods of time. Table 2 summarizes the performance of cell
lines in preliminary testing in the ECIS system. Some of the cell
lines, such as the fish and human liver cells, were unable to form
a cell layer on the ECIS electrodes that would remain stable for
two weeks. Human keratinocytes formed a cell monolayer, but
the requirements for daily care made these cells impractical
for use in a toxicity sensor system ultimately intended for field
use. The human intestinal epithelial cells initially displayed
impedances over 1000 Ω, but over a two-week storage time, the
impedances decreased to 800–900 Ω, which correlated with an
increase in the formation of fluid-filled domes. These domes
form when Caco-2 cells are grown on non-porous surfaces; they
are thought to result from the transport of fluid across the cell
layer (Lopez-Vancell et al., 1984) and may be responsible for the
decrease in impedance over time. The turtle heart cells formed a
monolayer, but impedance values were too low, indicating that
they would not be sensitive to chemical toxicity because of the
limited range of impedance between the healthy and dead cells.
The remaining four cell lines (HUVECs, Vero cells, IgH-2 cells and
BLMVECs) formed stable monolayers on the ECIS electrodes, and
were screened for toxicant sensitivity.

Chemical Sensitivity Using Alternative Cell Types

The four cell lines found suitable for use with the ECIS system
were evaluated for their sensitivity to aldicarb and pentachlo-
rophenate (Table 3) relative to the standard BPAECs. The HUVECs

Figure 1. Time course of normalized average impedance response curve of various concentrations of toluene in relationship to centrals. The 15-
minute window for curve discrimination evaluation is highlighted. (n = 6 per treatment)
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and Vero cells were far less sensitive to pentachlorophenate and
comparably sensitive to aldicarb, while the BLMVECs and IgH-2
cells were comparably sensitive to pentachlorophenate and
much more sensitive than the BPAECs to aldicarb. Based on this
initial evaluation, the IgH-2 cells and the BLMVECs were chosen
for a complete evaluation against the panel of 12 chemicals.

As shown in Table 5, the BLMVEC and IgH-2 cell monolayers
were more sensitive than the BPAEC monolayers to all chemicals
tested. The only exceptions were BLMVECs tested with arsenic

and IgH-2 cells tested with pentachlorophenate and toluene.
The greatest increase in sensitivity, nearly two orders of magni-
tude, was for nicotine. Although ammonia and cyanide were
detected below the 7–14 day MEG concentration, the detection
limit was above the one-year MEG in both cases (USACHPPM, 2004),
indicating that a response at these levels has human health sig-
nificance. Including responses between the one-year and 7–14
day MEGs as appropriate, the BPAEC monolayers responded to
seven chemicals within the desired sensitivity range, while the

Table 2. Suitability of cell lines for use in the ECIS system: ‘X’ = unsuitable; ‘√’ = acceptable 

Cell line Formation of stable
cell monolayera

Ease of 
maintenance

High impedance
(> 1000 Ω)

Preliminary
toxicant 

screening

Fish liver epithelial cells X
Human liver epithelial cells (Hep-G2) X
Human keratinocytes √ X
Human intestinal cells (Caco-2, C2BBe1) √ √ X
Turtle heart cells (TH-1) √ √ X
Human umbilical vein endothelial cells (HUVECs) √ √ √ √
African green monkey kidney cells (Vero cells) √ √ √ √
Iguana heart cells (IgH-2) √ √ √ √
Bovine lung microvessel endothelial cells (BLMVECs) √ √ √ √
aFormation of stable monolayer in this report is defined as less than a 20% reduction in impedance values over the two-week stor-
age time. 

Table 3. Toxicant sensitivity of five cell monolayers to both aldicarb and pentachlorophenate in the ECIS system

Lowest effect concentration (μM)

Toxicant BPAECsa BLMVECs IgH-2 cells HUVECs Vero cells
Aldicarb 1270 105 105 1050 >1050
Pentachlorophenate 20  3.8 38 380  380
aData from van der Schalie et al. (2006).

Table 4. Long-term maintenance of BPAEC, BLMVEC, and IgH-2 cell monolayers using different protein matrices and fetal bovine
serum levels

Cell type Adhesion
substrate

Fetal bovine
serum levels

Impedance values (Ω) 
Mean ± SD (n = 3–4)

Percentage reduction
in impedance over 

storage time
Day 5 Day 17 Day 37

BPAEC Gelatin  1%  771 ± 20  577 ± 132  681 ± 346 12%
20%  780 ± 27  677 ± 76  656 ± 105 16%

Fibronectin  1%  850 ± 24  713 ± 62  673 ± 163 21%
20%  570 ± 157  868 ± 102  679 ± 101 —

BLMVEC Gelatin  1%  866 ± 241 1120 ± 202 1836 ± 284 —
10% 1562 ± 46 1833 ± 58 1967 ± 52 —

Fibronectin  1% 1158 ± 482 2087 ± 134 2218 ± 33 —
10% 2064 ± 87 2042 ± 65 2004 ± 26  3%

IgH-2
Gelatin  1% 1444 ± 77 1660 ± 82 1333 ± 101  8%

10% 1648 ± 107 1660 ± 47 1356 ± 91 18%
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BLMVEC and IgH-2 cell monolayers each responded to nine chem-
icals. Based on toxicant response characteristics, both the
BLMVEC and IgH-2 cell monolayers are an improvement over
the standard BPAEC monolayers previously used in the ECIS
based sensor.

Stability of Monolayers Over Extended Storage Times

To create a cell-based toxicity sensor suitable for field use, the
cell monolayers must be stable on the ECIS electrode arrays
during what may be an extended period of storage before intro-
duction of a water sample to the test system. As shown in Table 4,
BPAEC, BLMVEC and IgH-2 cell monolayers could be stored for
37 days on the ECIS electrode arrays with minimal change in
impedance. However, the low initial impedance values for the
BPAEC cells suggests that the BLMVECs and IgH-2 cells may have
better dynamic responses in the event of toxicant exposure.
Further, it appears that 1% serum was sufficient for long-term
maintenance of the cells, but the use of serum-free medium
caused all three cell lines to die within a week (data not shown).
There was no apparent effect associated with the use of differ-
ent adhesion substrates. The significant increase in impedance
observed in the BLMVEC monolayers over time was not the result
of cells layering on top of the existing monolayer, as observed
by phase contrast microscopy (data not shown). The increase in
impedance was most likely caused by a change and/or maturation
in cell–matrix or cell–cell junctions over time.

Conclusions
A number of toxicity sensors for water using a range of eukaryo-
tic cell types have been proposed; however, it has been difficult

to identify sensors that have both the appropriate sensitivity
to toxicants and the potential for long-term viability that might
provide the basis for a toxicity sensor suitable for real-world
applications. Using ECIS technology to measure the electrical
resistance of endothelial cell monolayers showed promise in a
previous systematic evaluation of toxicity sensor technology.
The current study showed that four of 10 cell lines were suitable
for use in the ECIS system and two of these (BLMVEC and IgH-2
cells) showed improved sensitivity to toxicants over the previously
used BPAEC monolayers. In addition, the BLMVEC and IgH-2 cell
monolayers were able to maintain high impedance readings
on the ECIS electrodes for at least 37 days, a key requirement for
developing a field-portable toxicity sensor for water.

To improve the suitability of ECIS technology for field use, an
enclosed fluidic biochip and automated instrument that can both
support the health of the cell monolayers over time and take
impedance measurements are being tested. Adding an automated
sample injection system will further reduce the need for user inter-
action, and the anticipated decrease in chip response variability
associated with automation should increase the detection sensitivity
of the system.

Acknowledgements 

We thank Bill Dennis and Alan Rosencrance for analytical chemistry
and sample preparation support, Eli S. Rosenberg for developing
the MATLAB curve discrimination program, and Dr Louis Hom
for helpful input during chemical testing and statistical analysis.
The views, opinions and/or findings contained in this paper are
those of the authors and should not be construed as official
Department of the Army position, policy or decision, unless
so designated by other official documentation. Citations of
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Toxicant Chemical Abstract 
Service (CAS) number

Desired 
sensitivity range

Lowest effect concentration  (μM) 
n = 4d

MEGa (μM) HLCb (μM) BPAECc BLMVEC IgH-2

Aldicarb 116-06-03 0.026 0.89 1270 105 105
Ammonia 7664-41-7 1761 54 300 1800 400 400
Arsenic 7758-98-7 0.267 60 10 40 4
Copper 7487-94-7 2.20 1620 110 8 8
Cyanide 10265-92-6 76.9 540 800 230 23
Mercury 54-11-5 0.005 120 30 2.5 2.5
Methamidophos 4685-14-7 0.014 10 630 >1170 117
Nicotine 108-95-2 0.801 100 3900 40 40
Paraquat 7784-46-5 0.194 18 1940 97.2 972
Pentachlorophenate 143-33-9 0.526 270 20  3.8 38
Phenol 131-52-2 31.9 970 780 270 270
Toluene 108-88-3 10.9 9120 800 240 2400
aUSACHPPM (2004). Concentrations (μM converted from mg l−1) are for 7–14 day consumption, 15 l day−1, except for copper (1 year
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bTERA, 2006, assuming a 70 kg person consuming 15 l day−1. These values (μM converted from mg kg−1) have been revised from
those used in van der Schalie et al. (2006).
cData from van der Schalie et al. (2006).
dFour replicates were used per treatment for all tests except n = 8 for copper and mercury exposure to IgH-2, and n = 12 for arsenic
exposure to IgH-2.
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