
GUMP: Adapting Client/Server Messaging Protocols into
Peer-to-Peer Serverless Environments

Robert N. Lass
Department of Computer

Science
Drexel University

urlass@cs.drexel.edu

Joe Macker
Naval Research Lab
Washington DC, USA

joseph.macker@nrl.navy.mil

David Millar
Department of Computer

Science
Drexel University

david.w.millar@gmail.com

Ian Taylor
∗

School of Computer Science
Cardiff University, Cardiff, UK

Ian.J.Taylor@cs.cardiff.ac.uk

ABSTRACT
In this paper we present a generic environment for creating
message-oriented server-side proxies to support adaptation
from TCP transport-oriented client-server sessions to many-
to-many peer-to-peer networking environments more suit-
able for deployment in dynamic wireless networks, capable
of multicast forwarding. At its input, GUMP provides an in-
terface for exposing network server implementations in order
to allow existing GUI applications to connect to GUMP. At
the back-end, GUMP’s generic service discovery and mul-
ticast interfaces allow access to multiple implementations,
enabling the discovery of necessary services on the network,
maintenance of the network state, and transport of messages
amongst peers, for tuning to a specific network environment.
At the heart of GUMP, there is a mechanism for selecting
a server-side proxy implementation for a given messaging
protocol, allowing multiple proxies to co-exist and run time
adaption of the system. As a primary example and use case,
we show how GUMP has been used to implement an XMPP
proxy allowing existing off-the-shelf XMPP client software
to dynamically create and operate multi-user chat sessions
in a serverless network environment. This resulting proxy
integration demonstrates the power of GUMP in its abil-
ity to adapt between different methods of input using either
HTTP or TCP oriented server systems, the use of its differ-
ent discovery subsystem bindings (SLPv2 and JmDNS), and
its support for multicast architectures. GUMP therefore al-
lows a single messaging protocol server-side implementation
to be dynamically adapted to suit a particular distributed
wireless deployment environment at run time.

∗Corresponding Author

Copyright 2010 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
BADS’10, June 11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0086-5/10/06 ...$10.00.

Categories and Subject Descriptors
ERCIM Session [Adaptive service discovery and com-
position]

General Terms
Management, Reliability, Design

Keywords
XMPP, Serverless chat, WS-Notification, SLP, JmDNS, Peer-
to-Peer, Multicast, NORM

1. INTRODUCTION
A number of applications and XML-based standardized

messaging protocols typically assume dependence on TCP
transport for achieving reasonable reliability across wide area
networks. Historically, UDP and transport enhancements
built above UDP have a more restricted portfolio of Internet
usages, such as real-time applications requiring low latency,
real-time delivery e.g. video or audio streaming. Whereas
strict server centralization and TCP-oriented transport is of-
ten suitable in more fixed network environments, the design
issues can be quite different in highly dynamic and disrup-
tive network environments (e.g., localized mobile wireless
domains). In more dynamic wireless networking and mobile
ad hoc networks (MANETs) [1], this is even more appar-
ent, as congestion control can often overreact to temporal
disruptions (e.g., wireless link errors, collisions, routing dy-
namics) that are not indicative of congestion. Dynamic,
wireless networking environments are also often less suitable
for centralized server deployment due to potential server dis-
ruptions and mobility. Another point is that multicast or
group-oriented network transport and delivery is often more
suitable in wireless environments and therefore collaborative
applications may often employ forms of UDP-based trans-
port protocols or transport Performance Enhancing Proxies
(PEPs), rather than pure end-to-end TCP.

XMPP [2, 3], a set of open XML technologies for pres-
ence and real-time communication developed by the Jabber
open-source community, is an example of a standardized
technology that has mostly been developed for TCP and
client/server operation scenarios. XMPP is a good exam-

39

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
GUMP: Adapting Client/Server Messaging Protocols into Peer-to-Peer
Serverless Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper we present a generic environment for creating message-oriented server-side proxies to
support adaptation from TCP transport-oriented client-server sessions to many- to-many peer-to-peer
networking environments more suit- able for deployment in dynamic wireless networks, capable of
multicast forwarding. At its input, GUMP provides an in- terface for exposing network server
implementations in order to allow existing GUI applications to connect to GUMP. At the back-end,
GUMP’s generic service discovery and mul- ticast interfaces allow access to multiple implementations
enabling the discovery of necessary services on the network maintenance of the network state, and
transport of messages amongst peers, for tuning to a speci c network environment. At the heart of GUMP,
there is a mechanism for selecting a server-side proxy implementation for a given messaging protocol,
allowing multiple proxies to co-exist and run time adaption of the system. As a primary example and use
case we show how GUMP has been used to implement an XMPP proxy allowing existing o -the-shelf XMPP
client software to dynamically create and operate multi-user chat sessions in a serverless network
environment. This resulting proxy integration demonstrates the power of GUMP in its abil- ity to adapt
between di erent methods of input using either HTTP or TCP oriented server systems, the use of its di er-
ent discovery subsystem bindings (SLPv2 and JmDNS), and its support for multicast architectures. GUMP
therefore al- lows a single messaging protocol server-side implementation to be dynamically adapted to suit
a particular distributed wireless deployment environment at run time.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ple in particular because it makes an explicit assumption on
TCP in its protocol design. Whilst XMPP is a very suc-
cessful open technology, this has often restricted its deploy-
ment to conventional network environments that lend well
to the TCP transport and server-oriented deployments. Fur-
ther, other XML-based technologies, such as the WS-* suite
from W3C and Oasis, also are typically deployed on stacks
built on HTTP, which also has a TCP dependency and a
client/server orientation. The translation of such protocols
into a more group-oriented or serverless network deployment
is non trivial because often the protocols leverage the fea-
tures of the underlying network stack and/or the availability
of fixed network servers in their design, and therefore do not
translate well without significant modification.

In this paper, we present a toolkit that supports such net-
work environment adaptivity mechanisms, called the Generic
Unicast to Multicast Proxy (GUMP). GUMP exposes net-
work adapters to facilitate the ability to translate between
TCP or HTTP connections to corresponding XML-based
standardized protocol server proxies, and at the same time
allows such implementations to leverage multiple underly-
ing multicast technologies and service discovery subsystems.
GUMP allows messages to be transferred between TCP ses-
sions and messaging server proxies to intelligently negotiate
protocol-specific adapting issues and maintain the underly-
ing network state within a serverless environment. In this
paper, we discuss the motivation, architecture and imple-
mentation of GUMP and illustrate its capabilities through
the use of a proof-of-concept server proxy implementation of
an XMPP adapter to manage XMPP peers on a server-less
network environment to enable multiple user chat sessions.

The next section provides a context for GUMP by describ-
ing some motivational messaging protocols that we wish to
adapt into a serverless environment. Section 3 provides an
architecture for the system and Section 3.1 illustrates the
use of the architecture by providing a typical usage scenario.
Section 4 gives an overview of GUMP’s implementation and
provides the context for the underlying technologies. Section
5 describes the steps necessary in order to create an XMPP
server-side proxy using GUMP and Section 6 discusses the
advantages of the approach. In Section 7, we discuss other
related approaches around this specific problem domain. In
Section 8 we discuss our future directions for GUMP and
then in Sections 9 and 10 we conclude the paper and ac-
knowledge our collaborators.

2. GUMP MOTIVATION AND RELEVANCE
This work is motivated by distributed messaging stan-

dards, such as XMPP, WS-Notification [4] and WS-Eventing
[5], which focus on providing functionality broadly based
around chat, presence or asynchronous messaging. These
XML-based messaging protocols are based around a client-
server concept using management servers for maintaining
the state of the network (e.g. for setting up sessions, keep
track of which users are logged on, maintaining multi-user
chat (MUC) rooms etc). Such a model does not translate
well to more transient network deployments as a single point
of contact for initiating or managing sessions generally can-
not be relied upon. It is therefore advantageous to consider
the use of many-to-many transport protocols, such as multi-
cast, in such deployment environments. There are a number
of applications that can make use of such a system, not only
in our focus area for military applications at the tactical

edge, but also in related areas, such as medical emergency
scenarios and in disaster response.

However, currently it is quite difficult to adapt applica-
tions for use in more mobile, distributed environments be-
cause the TCP and client/server dependencies are gener-
ally inherent. For example, XMPP can clearly be very use-
ful as a flexible messaging protocol in a mobile application
setting to enhance chat functionality, pub/sub capabilities,
XML streaming, and presence features. However, at present,
there is not a convenient method for mediating this tech-
nology into a more distributed wireless environment. Ei-
ther a new standard would need to be developed or a map-
ping layer would be needed in oder to adapt the protocol
for deployment to the underlying transport stacks and dis-
covery methodologies. Furthermore, WS-Eventing and WS-
Notification have similar issues because of their deployment
dependency to HTTP and fixed network addresses. The
ability to transcend network infrastructure and to connect
Grid and mobile hybrid applications transparently in order
to run such applications is a goal that spans a number of
applications in healthcare, the military, emergency response
to name a few, where data is either generated, collected, or
exchanged between static nodes and mobile entities.

To realise this potential, we need a capability to sup-
port transparent and dynamic access to “serverless” peer-to-
peer environments for communication with the mobile do-
main. This would typically require adapting from a one-to-
one connection (TCP) to one-to-many (and many-to-many)
relationships, using protocols such as multicast. Such a
self-adaptive mechanism is rather complex, involving more
than a simple transport mapping, because it involves the
distributed management of session information across all
the peers in the network. Thus, an intelligent self-adaptive
mechanism coupled with a supporting underlying adaptive
service discovery infrastructure is needed in order to support
the discovery of the current state of the network allowing
a server proxy to intelligently respond to clients operating
within a more connectionless network domain. Such an in-
frastructure would then enable a XML-based protocol server
proxy to answer questions such as “who is around?”, “what
XMPP MUC groups are available to join?” and “what WS-
Notification topics are available?”, using standardized dis-
covery protocols, such as the multicast Domain Name Ser-
vice with Service Discovery extensions (mDNS-SD or Ap-
ple bonjour)[6, 7], the Service Location Protocol version 2
(SLPv2) [8], the Simple Service Discovery Protocol (SSDP)
in Microsoft’s Universal Plug n’ Play (UPnP) standard [9],
and Bluetooth’s Service Discovery Protocol (SDP) [10].

3. GUMP ARCHITECTURE
GUMP provides a convenient framework for allowing de-

velopers to create network agnostic server-side proxies for
messaging protocols. It provides an environment that al-
lows the developer to focus on the development and detail
of the proxy without being tied down to the specifics of how
its corresponding entities are to be discovered nor how mes-
sages are to be sent between those entities. GUMP also,
provides multiple entry points into the system through mul-
tiple input bindings of the system, such as TCP and HTTP.
Figure 1 shows an overview of the GUMP architecture. At
a high conceptual level, GUMP is divided into four main
areas:

40

Application

GUMP (Generic Unicast to Multicast Adapter)

GUMP Packet (Raw Data with Sender IP, Port, etc)

TCP Server HTTP Server

GUMP Proxy Interface

Other ...XMPP WS-Notification

GUMP Discovery Interface

SLPmDNS

GUMP Multicast Interface

NORMJava Multicast

Session Message Data Message

Figure 1: GUMP Architecture

1. Application connectivity addresses how applica-
tions connect to GUMP through GUMP’s Input Bind-
ing. There are a number of ways of achieving this.
Here, we focus on adapting to GUMP at the network
level, by exposing GUMP as a network server that
accepts arbitrary connections from applications using
HTTP or TCP.

2. Server Proxy provides a pluggable interface to multi-
ple messaging protocol server proxies, each addressing
a specific protocol e.g. XMPP, WS-Notification and so
forth. A protocol server proxy translates from a client
request into a multicast backbone through the use of
the underlying discovery subsystem and GUMP’s in-
terface to multicast.

3. Session Messaging provides an interface to various
discovery subsystems e.g. JmDNS or SLP for use by
the proxy to be able to advertise and subsequently
discover entities on the network.

4. Data Messaging provides an interface to various un-
derlying multicast implementations. Primarily we are
focusing on investigating two implementations here:
the default Java multicast implementation and NORM
(NACK-Oriented Reliable Multicast) [11] transport for
reliable multicast delivery.

Together these interfaces provide a strong development
environment for creating server proxies for messaging proto-
cols. They allow the adaption of the deployment of a messag-
ing server proxy by facilitating the switching of application
connectivity, the ability to employ the use of different dis-
covery algorithms and multiple multicast implementations.
This provides the flexibility to be able to experiment with
different run-time deployment conditions when applied to
different wireless networks. For example, for a non-mobile,
relatively benign wireless network, group messaging applica-
tions based upon server/client TCP message transport and
JmDNS discovery might form an effective solution in terms
of overhead and success rates, whereas in MANET environ-
ments, more suitable discovery mechanisms (e.g. SLP) and
improved multi-hop multicast forwarding with reliable UDP
based transport, such as NORM, would result in a more
robust dynamic, distributed deployment. The ability to ex-
periment with different configurations is a necessity when
dealing with distributed, wireless networks because often the

rate of disruption and mobility determines which algorithms
are more applicable and one cannot simply apply a one-size-
fits-all mentality as one might in more static networks.

The protocol server proxy’s role is to translate protocol
specific messages from a client, e.g. connect, user arrived,
user left, create MUC group, etc into a serverless environ-
ment, and subsequently provide an appropriate response
back to the client upon completion of its request. The client
therefore thinks it is talking to a server using a client/server
relationship but in fact for example, it could be talking to
a TCP GUMP server that is delegating the requests to a
GUMP XMPP protocol server proxy, which is in fact using
SLP to discover entities on the network and NORM to pass
messages reliably between them, respectively. An example
of how a proxy operates in such an environment is provided
in the next section.

3.1 GUMP Operation
Focusing at the network level and as shown in Figure 1,

GUMP can adapt applications at their transport level either
through the use of a locally deployed HTTP or TCP server.
For example, rather than an application connecting to an
XMPP server, such as OpenFire [12], the user would type
in a local address (127.0.0.1:5222), which would re-route the
message via this local network GUMP proxy server. The
incoming connection requests and messages are then sent
directly to the proxy chosen for this instance of GUMP e.g.
an XMPP proxy.

XMPP Application

socket write socket readsocket connect

socket read socket writesocket accept

process messageconnection request

TCP Proxy 127.0.0.1:5222

Gump Proxy Interface

Figure 2: GUMP Input Flow

The semantics of how the connection messages and socket
read and write packets are sent and processed by the proxy
are provided in Figure 2. Messages sent to the network
by the application and received by the GUMP server are
wrapped within a GUMP Message and relayed to the GUMP
Protocol Proxy. A GUMP message contains a byte array for
the data packet, along with information about the sender
(host, port) and other related metadata, such as message re-
ceiver ID (for supporting multiple connections) and so forth.
The Proxy consumes the message and uses the underlying
discovery subsystem and multicast to process the message
and translate the request into behaviour suitable for the un-
derlying serverless peer-to-peer network.

For example, the request could be an XMPP“create MUC
group”. The proxy would first search to see if such a group

41

existed (by using the discovery subsystem for example to
query for “Muc Groups”). If a group does not exist, then
it would create a MUC group and allocate an underlying
multicast group to deal with this traffic. It would then ad-
vertise this group to the network, again using the discovery
subsystem. Thereafter, if the proxy received a message to
be sent to this newly created MUC group, it would look up
the multicast address assigned to this group or topic for the
various subscribers, and then it would send the message to
this group using the GUMP multicast interface, which in
turn, would use the underlying multicast transport to send
the data onto the network.

4. BACKGROUND AND INTEGRATION OF
UNDERLYING TECHNOLOGIES

In this section, we provide a background to the various
technologies GUMP integrates and describe their relevance
to the deployment within a mobile ad-hoc wireless network
(MANET). The system performance challenges of a MANET
require far more fault-tolerant distributed service discovery
protocol and transport designs than one would expect within
more stable network infrastructures. In the following sec-
tions, we outline the underlying technologies that GUMP
integrates and briefly discuss why such protocols are chosen
for deployment for this environment.

GUMP is written in Java and provides a collection of in-
terfaces and factory-based implementations for the various
adaptors for GUMP’s input, server proxy, discovery and
multicast subsystems. The key integration aspects for a
MANET’s perspective are the discovery and multicast sub-
systems, which form the basis for locating and communi-
cating with services on the network. In this section, we
first provide a brief overview of how applications connect
to GUMP server proxies and discuss XMPP to give context
for the use-case implementation described in this paper. We
then focus in more detail on the discovery and multicast pro-
tocols and discuss why these solutions might be appropriate
for this type of environment.

4.1 Application Input and Server Proxies
Currently, we have implemented a TCP binding for the

GUMP input adapter, which addresses the requirement for
the current XMPP server proxy integration, described in
Section 5 of this paper. At its core, the Extensible Messaging
and Presence Protocol (XMPP) defines a protocol stream-
ing of XML messages. It supports near-real-time messaging,
presence, and request-response services and is a derivation
of the work performed within the Jabber open-source com-
munity but later became an IETF standard [2]. XMPP was
designed to be a suitable instant messaging (IM) and pres-
ence technology and thus defines specific types of messages
(stanzas) for binding, exchanging or publishing information.
XMPP employs the use of the simple authentication and
security layer (SASL) to provide generalized authentication
support for connection-oriented protocols. It can also use
transport layer security for on-the-wire message security and
uses TCP for the underlying transport. XMPP requires that
an implementation supports bi-directional TCP sockets so
that a server allows the client to share a single connection
and allows multiple bindings on the XMPP default port,
which is 5222.

We are also in the process of adapting Cardiff’s previ-

ous WS-Notification server implementation in WSPeer [13]
to work in a serverless mode in GUMP. The WS-Notification
implementation, being Web Services based, requires a HTTP
binding of the GUMP Input interface as illustrated in Figure
1, which has some subtle extensions we will need to make
over TCP. This implementation is currently in progress.

Also for input, we have a socket-level Java adapting im-
plementation that is capable of swapping out the Java TCP
socket implementations (java.net.Socket) and replacing this
with a GUMP Input conforming implementation so that
Java applications can directly plug into GUMP without the
need of a network TCP or HTTP server. We already have
a prototype implementation for this using a GUMP Sock-
etImpl implementation and instantiating it through the use
of the Java SocketImplFactory factory in java.net.

4.2 MANETs and Service Discovery
A MANET environment differs from more conventional

stable networks because they have dynamic, sometimes
rapidly-changing, random, multi-hop topologies, typically
composed of relatively bandwidth-constrained wireless links.
The dynamic and multi-hop nature of such networks make
it particularly difficult to support robust and efficient rout-
ing functionality. There has been extensive research in this
area (e.g. [14, 15, 16]) from the military defence, academic,
standards, and industry sectors. Although, unicast routing
capabilities has been the most investigated, Internet drafts
for multicast routing and forwarding have also been sug-
gested [17, 18, 19].

Mobile infrastructure types range from highly autonomous
MANET operations to the use of unidirectional satellite
links and cellular systems. Discovery mechanism therefore
not only have to deal with the core networking issues but
also benefit from a variety of operational modalities (uni-
cast, multicast, reactive, i.e. solicited service advert pub-
lishing, proactive, i.e. unsolicited service advert publish-
ing) and configuration flexibility (e.g. retransmission timers,
data cache settings). In GUMP therefore, we offer flexibil-
ity in the choice of discovery implementations, and to this
end, we have integrated both JmDNS and SLP for use by
the proxies. The implementations are accessed through a
two GUMP interfaces: a Java interface called GUMPSer-
viceRegistration, which allows services to be registered in
a flexible fashion using attributes or a byte array that can
contain structured attributes e.g. XML; and a Java abstract
class called GUMPServiceDiscovery, which allows a client to
query and discover a service.

Java Multicast Domain Name Server (JmDNS) [20] is an
implementation of multicast DNS in Java. Multicast DNS
is a joint effort between the IETF Zero Configuration Net-
working (zeroconf) and DNS Extensions (dnsext) working
groups1 and provides a way of using familiar DNS program-
ming interfaces, packet formats and operating semantics,
in a small network where no conventional DNS server has
been installed, through the use of multicast to perform DNS
queries. The mDNS protocol, together with DNS Service
Discovery, forms the basis for Apple’s Bonjour initiative.
JmDNS is therefore a well know discovery system and al-
though it might rely rather heavily on the underlying mul-
ticast protocol, it forms a good use case for a baseline inves-
tigation in a MANET.

1Multicast DNS, http://www.multicastdns.org/

42

The Service Location Protocol (SLP) [21] is an IETF stan-
dard for service discovery that allows services to be deployed
and discovered with minimal configuration. It was a design
predecessor of widely deployed protocols (such as Multicast
DNS and DNS Service Discovery) and is one of the several
standardized protocols for service discovery. SLP is very
interesting to us within the context of MANET for two rea-
sons. First, it employs the combined use of unicast, multi-
cast and distributed directory agent techniques to achieve
dynamic deployment and discovery capabilities. Second, it
employs the use of a convergence algorithm that provides
fault tolerance by repeating service requests according to
an exponentially decreasing array of timeouts. Our cur-
rent customized implementation for SLP also employs the
use of a MANET multi-hop forwarding protocol, Simplified
Multicast Forwarding (SMF) [19] and dynamic routing al-
gorithms, such as S MPR [22] and ECDS [23], in its design
for more robust MANET routing.

4.3 Multicast Transport
We have implemented a GUMP binding to the default

Java multicast and within the context of MANETs, we have
also integrated NORM for the reliable delivery of data within
collaborating groups. Internet Protocol multicast [24] deliv-
ers UDP packets (data) to multiple receivers that have pre-
viously joined a multicast group, by efficiently routing and
duplicating data at specific routers (chosen algorithmically
depending on the particular scheme) that identify more than
one receiver downstream in their tree. NORM (an IETF
draft [11]) provides fault tolerance to standard multicast by
providing end-to-end reliable transport of bulk data objects
or streams over generic IP multicast routing and forwarding
services. NORM uses a selective, negative acknowledgement
(NACK) mechanism for transport reliability and by using
limited ”a priori” coordination among senders and receivers,
it offers additional protocol mechanisms to conduct reliable
multicast sessions. NORM incorporates a congestion con-
trol algorithm to share available network bandwidth fairly
alongside other transport protocols, such as TCP. It is also
capable of operating in a unicast mode, which is also of in-
terest to GUMP for allowing the proxies to adapt to other
transient connectivity environment that do not support mul-
ticast (e.g. for some satellite or cellular connections).

The GUMP binding uses the NORM Java Native inter-
face API and the stream data object model for transmis-
sion. Briefly, there are three transport objects (file, data,
or stream), which are queued for transmission by NORM
senders. The NORM sender controls the transmission rate
either manually (fixed transmission rate) or automatically
when NORM congestion control operation is enabled. The
NORM stream object is more efficient in supporting smaller
messages whereas the data object works better for bulkier,
more persistent content. Further, in the context of XMPP, a
NORM stream can also be flushed when a user hits return in
their chat application. For Java, the NORM output stream
is implemented as a Java java.io.OutputStream and is there-
fore compatible for use with any of the higher level Java
stream classes. NORM input streams, on the other hand,
are created dynamically for each NORM sender. Therefore,
potentially multiple input streams will be created for each
NORM server, which does not map well to the more block-
ing oriented nature of the core Java stream classes. For the
GUMP implementation therefore we created a dispatcher

and listener interface for asynchronous notification of events
and a first in first out blocking queue of DatagramPacket
objects to queue input messages and identify the sender for
each packet. This implementation satisfies the GUMP Mul-
ticast socket API and also forms the basis of a NORM Java
NIO implementation in the future.

5. DEVELOPING AN XMPP PROXY US-
ING GUMP

As an example of a GUMP plugin for converting a client-
server protocol into a peer-to-peer protocol, we present the
XMPP Overlay Proxy (XOP). XOP is written to allow group
communications using standard XMPP clients with a peer-
to-peer protocol on a mobile ad-hoc network (MANET). The
clients are “tricked” into thinking that they are communicat-
ing with a standard XMPP server that supports Multi-User
Chat (MUC) when they connect to the proxy on their lo-
cal machine. The proxy translates the XMPP messages into
XMPP MUC Using Multicast (XMUM), an XMPP-like pro-
tocol designed for MANETs, and multicasts them over the
network. An XMPP Overlay Gateway (XOG), running on
a node which is able to communicate on the MANET and a
more traditional network, can transform these XMUM mes-
sages back into XMPP MUC messages and relay them to
a standard XMPP server somewhere on the traditional net-
work.

The intended use of the XOP is to act as a proxy for an
XMPP client located on the same machine. However, it is
designed such that it could be used as a proxy for several
different clients, so several applications on a node could all
use XMPP for communications and share the same XOP
instance. Furthermore, in some cases it may make sense for
multiple nodes to connect to a remote XOP instance. An
example use of this would be cellular phones which connect
to an XOP instance located at a mobile base station which
is part of a multicast group.

5.1 Connecting the Client to the Proxy
To connect to the proxy, the user configures their client

to use localhost rather than an XMPP server. The client-
server connection usually uses TCP, although the GUMP
input binding could be swapped out with a, for example,
UDP binding if a UDP XMPP client existed (or was created
by embedding GUMP with the client). Once the socket has
been created, a client sets up a stream the same as it would
with a server. After this, the proxy processes any presence,
iq or message messages it receives from the client until the
stream is closed.

5.2 Data Messaging
When the proxy receives a message or presence packet

from the client, it passes it to the packet router. The packet
router is an application level XMPP stanza/packet router,
which routes incoming packets to their representative soft-
ware endpoints. Examples of endpoints include users locally
logged into the XOP instance, a MUC component or other
such component, etc. When entities connect to the XOP,
the packet router stores routes to them. The packet router
determines if the destination is local (a connected entity) or
remote. If it is local, it forwards it to the connected entity,
otherwise it forwards it to the GUMP multicast interface.
Finally, GUMP sends the message out using whatever pro-

43

tocol (UDP multicast, NORM, etc) it is currently configured
to use.

For receiving packets, the XOP creates a GUMP multicast
socket to listen for incoming packets. Incoming packets are
sent to the packet router, which then forwards them to the
appropriate connected entity, if any. The transport mecha-
nism for incoming packets is determined by the GUMP con-
figuration, the XMPP component responsible for listening
for packets on the network has no need to know the specific
protocol being used.

5.3 Session Messaging
When the proxy receives an iq (info/query) packet from

the client, it again passes it to the packet router. If it is local,
it is forwarded to the connected entity, otherwise it passes
it to the IQManager component of the XMPP proxy, which
updates a context object if necessary. The context object
is intended to help manage the state of the proxy. Keep in
mind that with no server, some of the state needs to be man-
aged by the proxy. XMPP context is not used at this point,
but could be used in the future, for example to cache request
/ response pairs. Finally, the IQManager performs the ap-
propriate action (advertise service, reply to the sender with
“server information”, query for available services, etc) using
GUMP’s discovery system. GUMP then performs whatever
action is needed for the currently configured discovery proto-
col (SLP, mDNS, etc), and returns an appropriate response
to the client if necessary.

The XOP registers a listener with the GUMP discovery
interface when it starts up. When a discovery-related event
occurs, the XOP formulates an iq packet and forwards it to
the packet router for delivery to the appropriate entity, or
updates the state e.g: adds a MUC room to the available
rooms.

5.4 Gatewaying
If the proxy is running on a node with two network in-

terfaces, it can be setup as an XOG. If setup, the XOG can
act as a bridge between the peer-to-peer XMUM protocol
and the client-to-server XMPP-MUC protocol. The XOG
establishes a connection with an XMPP server where the
MUC lives using server dialback (see section 8 of [2]), and
translates packets between XMUM and XMPP. If a packet
arrives on the GUMP discovery interface, the XOG trans-
lates it into an iq packet and sends it to the receiving server.
Likewise, if it receives a presence or message packet from the
GUMP multicast interface it forwards it. Vice versa, when
an XMPP packet arrives from the receiving server, either
the appropriate functions are called in the GUMP discov-
ery interface, or the packets are converted to XMUM and
handed to the GUMP multicast interface.

5.5 Theory of Operation
There are several ways the XOP could potentially be used.

The first is chat on a MANET, with no external servers.
There are only MANET nodes, and they wish to chat as
though they were connected to an XMPP MUC server. The
XOP provides a way for them to do this with standard
XMPP clients.

Another way to use the XOP is for chat on a MANET
with a link to a server using the XOG. This allows for a
number of MANET nodes to chat with nodes that are not
on a MANET, but are traditionally connected to an XMPP

MUC chat room. It also allows for groups on entirely dif-
ferent MANETs but with XOGs linking them to the same
XMPP server to chat with each other as though they were
all in the same MUC room.

As an extension of the previous case, the XOP could also
handle cases with a transient connection to the server, pro-
viding graceful degradation of capabilities as network ca-
pabilities decrease. If the link between the XOG and the
server fails, rather than the entire chat infrastructure failing,
as would happen with a standard XMPP MUC, the nodes
on the MANET will still be able to communicate with each
other. The only capability lost is the ability to communicate
with the nodes external to the MANET and vice versa.

5.6 Implementation Status
The gatewaying portion of the XOP is still a work in

progress. The other features have undergone preliminary
testing with both Pidgin2 and Spark3. Both are able to ini-
tiate their connections, and send messages as though they
were connected to an XMPP server, and the users’ expe-
riences should feel no different than when connected to an
XMPP server.

6. ADVANTAGES OF GUMP
At its core, GUMP provides a framework for allowing de-

velopers to create server-side protocol adapters or proxies
for messaging protocols. We specifically target XML-based
protocols because that is the main aim of our research but
GUMP can be used to integrate other protocols as well.
Since such server proxies need to address adapting functions
in order to translate from a client/server based connection
to a serverless environment, a proxy has to be implemented
for each new protocols wishing to be adapted through the
use of GUMP. GUMP therefore does not aid in supporting
fully automated adaption of any protocol. However, GUMP
does provide a convenient environment for focusing on the
messaging protocol specific issues without being tied to a
fixed architecture or stack of technologies. At the high level
and already illustrated through the paper, GUMP provides
three key benefits:

1. Flexible Input Interfaces for Applications: by
defining a generic infrastructure, GUMP allowing mul-
tiple input servers or adapters to be plugged in to al-
low multiple ways of getting data in and out of your
proxy implementation. For example, two example im-
plementations shown in figure 1 are to expose a TCP
or HTTP server as input, which would allow a broad
range of existing applications to connect to the proxy.

2. Non-Static Discovery Subsystems: by provid-
ing a uniform interface to multiple discovery systems,
GUMP allows multiple existing discovery implementa-
tions to be plugged in and compared e.g. SLP, Bon-
jour, JmDNS and so forth.

3. Choice of Multicast Algorithm: by providing an
interface to multiple multicast algorithm implementa-
tions.

These three areas allow any single GUMP server proxy
to be deployed in a number of ways using any combination
2http://www.pidgin.im/
3http://www.igniterealtime.org/projects/spark/index.jsp

44

of technologies, simply through configuration. Also, since
server proxies are focused at the protocol level, the adaption
is not tied to specific GUI applications and can therefore be
reused in multiple different ways. Generally (protocol imple-
mentation issues aside) only one server-side proxy is needed
per protocol (e.g. XMPP, WS-Notification and so forth) and
consequently multiple client-side applications can be used
without modification with each GUMP server-side proxy.
In the context of XMPP, essentially GUMP would allow a
developer to create an XMPP serverless server-side imple-
mentation, which could effectively replace a server, such as
OpenFire, in a wireless network context.

7. RELATED XMPP WORK
XEP-0174 [25] is a Draft Standard of the XMPP Stan-

dards Foundation that specifies a link-local messaging proto-
col defining how XMPP-like communications can be accom-
plished using zero-configuration networking. This method
uses mDNS for service discovery of network entities that
support the protocol, including their IP addresses and pre-
ferred ports. Any two entities can then negotiate a serverless
connection and using XML streams, exchange XMPP mes-
sages and IQ stanzas. XEP-0174 is similar to GUMP in that
it provides access to underlying discovery protocols but this
is achieved through extensions and it is only used to estab-
lish one-to-one TCP connections thereafter for the actual
communication i.e. a chat.

Jingle (XEP-0166) [26] is a related specification that de-
fines an extension to the XMPP protocol for initiating and
managing peer-to-peer media sessions between two XMPP
entities. The protocol provides core session management se-
mantics (SIP) to be used for a wide variety of application
types (e.g., voice chat, video chat, file transfer) and with a
wide variety of transport methods (e.g., TCP, UDP, ICE,
application-specific transports). The actual data transfer is
delegated to the underlying protocols and therefore message
exchange does not form part of the XML XMPP stream.

Neither XEP-0166 or XEP-0174 addresses how one might
map from a TCP-oriented connection paradigm to a mul-
ticast setting and therefore does not offer serverless group
chatting, it rather only offers serverless discovery of the en-
tities and either delegates this to a standard TCP XMPP
session (XEP-0174) or to an XMPP out-of-band protocol
(XEP-). GUMP is capable of not only initiating an XMPP
session, as in XEP-0174, but it can also utilize underly-
ing out-of-band protocols for the communication of actual
XMPP stanzas, such as chat messages and so forth, unlike
XEP-0166.

XEP-0100 [27] specifies XMPP gateway interaction. The
specification defines this to mean gateways that proxy
XMPP clients onto non-XMPP servers, such as IRC. This is
similar to what is occurring with the XOP, in that it receives
XMPP packets and translates them into another protocol.
However, there are two main differences. First, the XEP re-
quires a client that implements the XEP registering with a
gateway, most likely on an XMPP server such as OpenFire,
that has also implemented the XEP. XOP does not require
a client or server with these features. Second, the XEP does
not support MUC, only one-to-one messaging.

There are a number of middleware solutions for support-
ing TCP-oriented protocols on dynamic wireless networks,
of which Spines [?] is one of the more well known exam-
ples. It works by creating an overlay routing network and

providing a mechanism for hop-by-hop reliability that has
been shown to increase reliability and decrease jitter over
more traditional overlay routing approaches. This approach
differs from GUMP in that it does not modify the protocol
itself, it instead makes the existing protocol work better in
a dynamic environment.

8. FUTURE WORK
GUMP was designed after a substantial requirements

gathering analysis of analysing architectural and deploy-
ment considerations of deploying XMPP and WS messaging
protocols (WS-Eventing and WS-Notification) onto wireless
networks. The resulting framework offers us the ability to
not only implement server side proxies for these protocols
but it also allows us to compare different multicast algo-
rithms (Java multicast and NORM) and discovery subsys-
tems (SLP and JmDNS) when applied to different mobile
environments. The impact of serverless discovery subsys-
tems when applied to frequent mobility of wireless nodes
has strong interdependencies with the underlying multicast
algorithms they employ. For example, in previous prelimi-
nary studies we have seen that S MPR [22] and ECDS [23]
outperform classical multicast flooding approaches for highly
mobile scenarios. We would like to investigate the impact of
such underlying algorithms when used with high level mes-
sage protocols, such as WS-Notification and XMPP. Fur-
ther, we would like to investigate how much protocols such
as NORM impact the reliability of the message delivery com-
pared to the standard multicast approach.

We are also investigating the possibility of integrating dif-
ferent unicast algorithms for satellite networks connections
for more reliable one-to-one connections, such as R-UDP
(Reliable UDP), which forms part of a number of Java In-
ternet applications, including Limewire [28]. GUMP can
also be used to adapt from a TCP connection to other uni-
cast protocols as well as the multicast mode, being discussed
in this paper.

We are also looking into the possibility of making GUMP
completely self-adaptive by using heuristic measurements to
analyse/predict the mobility of the nodes in the network at
that time and to automatically choose the appropriate de-
ployment stack to address the needs of the network at that
time. Through a process of experimentation we hope to ex-
tract which protocols are suitable for the various modes and
levels of mobility, which can lead directly into a self-adapting
system for deployment into multiple network environments.

For the XMPP proxy, we also noted that for scenarios
where the link between the XOG and the server was antic-
ipated to phase in and out, some caching feature would be
required at the XOG and on the server to store messages
meant to go over the link when it is down. This additional
persistence of messages is slightly more complicated than the
other cases, and from a human-computer interaction per-
spective it may be useful to provide cues to the user about
what the connection status is since there may be a great deal
of delay after which a large number of messages would flood
the user’s screen. This is different from the other intended
use cases, which aim to provide an interface for the user that
is identical to a standard XMPP MUC experience.

9. CONCLUSIONS
The GUMP framework discussed in this paper is es-

45

sentially a means to an end to enable flexible mappings
from TCP and client-server based applications into multiple
sender and receiver sessions based on discovery and multi-
cast. GUMP was developed out of a need for being able to
transparently translate multiple existing client GUI appli-
cations into a wireless network setting. The architecture of
GUMP came into being after the realisation that it would be
impossible to provide an automatic conversion from TCP to
multicast due to protocol-specific behaviour of each proto-
col. Therefore, rather than attempting to solve a somewhat
impractical issue in a generic sense, GUMP takes the ap-
proach of providing a framework to make the translation of
existing standardised protocols simpler by providing neces-
sary functionality into multiple discovery subsystems, mul-
ticast protocols and input adaptors. We have demonstrated
in this paper that GUMP has been used to provide a server-
side proxy for XMPP, which can adapt between a TCP client
connection from an existing XMPP client GUI-based appli-
cation (Pidgin and Spark have been successfully tested) into
a serverless backbone across a wireless network. The power
of such a mapping by addressing the mapping at the pro-
tocol layer, reduces a potential n-squared application-based
approach into a one time protocol mapping, which can sup-
port many more client-side protocol compliant applications.
The alternative would inevitably lead to the development of
further GUIs for specific applications or deployments, which
would not only lead to duplication of effort but would result
in a far longer development time in the long term.

10. ACKNOWLEDGMENTS
GUMP has been development by the Networks and Com-

munication Systems Branch of the IT Division at NRL. On-
going modifications to the core system is being funded by
the Sonoma project. We thank Andrew Harrison at Cardiff
for input in order to support the WS-Eventing/Notification
aspect of this work, which is currently under development.
We also thank Brian Adamson for his guidance and input
into the NORM protocol and its integration.

11. REFERENCES
[1] “Mobile Ad-hoc Networks (MANET).” [Online].

Available: http:
//www.ietf.org/html.charters/\manet-charter.html

[2] “Extensible Messaging and Presence Protocol
(XMPP): Core.” [Online]. Available:
http://tools.ietf.org/html/rfc3920

[3] “Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence.” [Online].
Available: http://tools.ietf.org/html/rfc3921

[4] OASIS, “WS-BaseNotification,” June 2004,
http://docs.oasis-open.org/wsn/2004/06/
wsn-WS-BaseNotification-1.2-draft-03.pdf.

[5] D. Box, L. F. Cabrera, C. Critchley, F. Curbera,
D. Ferguson, A. Geller, S. Graham, D. Hull,
G. Kakivaya, A. Lewis, B. Lovering, M. Mihic,
P. Niblett, D. Orchard, J. Saiyed, S. Samdarshi,
J. Schlimmer, I. Sedukhin, J. Shewchuk, B. Smith,
S. Weerawarana, and D. Wortendyke, “Web Services
Eventing (WS-Eventing),” W3C, Tech. Rep., August
2004. [Online]. Available:
http://www.w3.org/Submission/WS-Eventing/

[6] M. Giordano, “DNS-Based discovery system in service
oriented programming,” Lecture notes in computer
science, vol. 3470, p. 840, 2005.

[7] D. Steinberg and S. Cheshire, Zero Configuration
Networking: The Definitive Guide. O’Reilly Media,
Inc., 2005. [Online]. Available:
http://portal.acm.org/ft gateway.cfm?id=
1201080&type=safari&coll=GUIDE&dl=
GUIDE&CFID=67573037&CFTOKEN=43706727

[8] E. Guttman, “Service location protocol: Automatic
discovery of IP network services,” IEEE Internet
Computing, 1999.

[9] S. Helal, “Standards for service discovery and
delivery,” IEEE pervasive computing, pp. 95–100, 2002.

[10] E. Gryazin, “Service discovery in bluetooth,” Group
for Robotics and Virtual Reality. Department of
Computer Science. Helsinki University of Technology,
Helsinki, Finland. Published at NEC CiteSeer,
Scientific Literature Digital Library, 2006.

[11] “Negative-acknowledgment (NACK)-Oriented Reliable
Multicast (NORM) Protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc3940.txt

[12] “The Java OpenFire XMPP server.” [Online].
Available: http://www.openfire.org

[13] A. Harrison and I. Taylor, “WSPeer – An Interface to
Web Service Hosting and Invocation,” in IPDPS ’05:
Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) -
Workshop 4. IEEE Computer Society, New York,
2005, p. 175a.

[14] S. Basagni, M. Conti, S. Giordano, and
I. Stojmenović, Mobile Ad Hoc Networking: Edited by
Stefano Basagni...[et Al.]. IEEE, 2004.

[15] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva, “A performance comparison of multi-hop
wireless ad hoc network routing protocols,” in
MobiCom ’98: Proceedings of the 4th annual
ACM/IEEE international conference on Mobile
computing and networking. New York, NY, USA:
ACM, 1998, pp. 85–97.

[16] C. Perkins, Ad Hoc Networking. Addison-Wesley
Professional, 2000.

[17] S. Lee, M. Gerla, and C. Chiang, “On-demand
multicast routing protocol,” in proceedings of IEEE
WCNC, vol. 99. Citeseer, 1999, pp. 1298–1302.

[18] T. Camp, J. Boleng, and V. Davies, “Wireless
communications and mobile computing (wcmc):
Special issue on mobile ad hoc networking: Research,
trends and applications; a survey of mobility models
for ad hoc network research,” vol. 2, no. 5, pp.
483–502, 2002.

[19] J. Macker, W. Chao, and J. Dean, “Simplified
multicast forwarding in mobile ad hoc networks,”
Naval Research Lab Washington DC Information
Technology Div, Tech. Rep., 2004.

[20] Arthur van Hoff, “Java implementation of Multicast
DNS.” [Online]. Available:
http://jmdns.sourceforge.net/

[21] “The Service Location Protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc2608.txt

[22] “The nrl olsr routing protocol implementation,”
http://cs.itd.nrl.navy.mil/work/olsr/index.php.

[23] “Optimized link state routing protocol (olsr),” United
States, 2003.

[24] “The Multicast RFC.” [Online]. Available:
http://www.ietf.org/rfc/rfc1112.txt

[25] “Link-Local Messaging - XEP-0174.” [Online].
Available: http://xmpp.org/protocols/linklocal/

[26] “Jingle - XEP-0166.” [Online]. Available:
http://xmpp.org/extensions/xep-0166.html

[27] “Gateway Interaction - XEP-0100.” [Online].
Available: http://xmpp.org/extensions/xep-0100.html

[28] “LimeWire.” [Online]. Available:
http://www.limewire.com

46

http://www.ietf.org/html.charters/\manet-charter.html
http://www.ietf.org/html.charters/\manet-charter.html
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3921
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf
http://www.w3.org/Submission/WS-Eventing/
http://portal.acm.org/ft_gateway.cfm?id=1201080&type=safari&coll=GUIDE&dl=GUIDE&CFID=67573037&CFTOKEN=43706727
http://portal.acm.org/ft_gateway.cfm?id=1201080&type=safari&coll=GUIDE&dl=GUIDE&CFID=67573037&CFTOKEN=43706727
http://portal.acm.org/ft_gateway.cfm?id=1201080&type=safari&coll=GUIDE&dl=GUIDE&CFID=67573037&CFTOKEN=43706727
http://www.ietf.org/rfc/rfc3940.txt
http://www.openfire.org
http://jmdns.sourceforge.net/
http://www.ietf.org/rfc/rfc2608.txt
http://cs.itd.nrl.navy.mil/work/olsr/index.php
http://www.ietf.org/rfc/rfc1112.txt
http://xmpp.org/protocols/linklocal/
http://xmpp.org/extensions/xep-0166.html
http://xmpp.org/extensions/xep-0100.html
http://www.limewire.com

