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Probabilistic Sensitivity Analysis with respect to 

Bounds of Truncated  Distributions 

H. Millwater and Y. Feng 

Department of Mechanical Engineering 

University of Texas at San Antonio 

Abstract 

Bounds on variables are often implemented as part of a quality control program to 

ensure a sufficient pedigree of a product component and these bounds may significantly 

affect the product’s design through constraints such as cost, manufacturability and 

reliability. Thus, it is useful to determine the sensitivity of the product reliability to the 

imposed bounds. In this work, a method to compute the partial derivatives of the 

probability-of-failure and the response moments, such as mean and the standard 

deviation, with respect to the bounds of truncated distributions are derived for rectangular 

truncation. The sensitivities with respect to the bounds are computed using a 

supplemental “flux” integral that can be combined with the probability-of-failure or 

response moment information. The formulation is exact in the sense that the accuracy 

depends only upon the numerical algorithms employed. The flux integral is formulated as 

a special case of the probability integral for which the sensitivities are being computed. 

As a result, the methodology can be implemented with any probabilistic method, such as 

sampling, first order reliability method, conditional expectation, etc. Moreover, the 

maximum and minimum values of the sensitivities can be obtained without any additional 

computational cost. The methodology is quite general and can be applied to both 
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component and system reliability. Several numerical examples are presented to 

demonstrate the advantages of the proposed method. In comparison, the examples using 

Monte Carlo sampling demonstrated that the flux-based methodology achieved the same 

accuracy as a standard finite difference approach using approximately 4 orders of 

magnitude fewer samples. This is largely due to the fact that this method does not rely 

upon subtraction of two near-equal numbers. 

 

Notation 

! 

a lower boundary of truncated distribution 

! 

b upper boundary of truncated distribution 

! 

E  expected value operator 

! 

fX (a)  marginal PDF of truncated distribution evaluated at lower boundary 

! 

a 

! 

fX (b)  marginal PDF of truncated distribution evaluated at upper boundary 

! 

b 

! 

fX (x)  joint probability density function (JPDF) 

! 

g limit state 

! 

I(x) indicator function (

! 

I(x) =1 in failure region, and 0 otherwise) 

JPDF joint probability density function represented by 

! 

fX (x)  

N number of random variables 

! 

Pf  probability-of-failure 

! 

PI
"  flux integral of probability-of-failure at bound ! 

! 

X vector of random variables,   

! 

X = (X1,…,XN ) 

! 

Y vector of random variables 

! 

X excluding 

! 

Xi ,   

! 

Y = (X1,…,Xi"1,Xi+1,…,XN )  
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Z response function of random variables 

! 

"I  flux of JPDF in failure domain across the truncation boundary 

! 

"Z  flux of response times the JPDF across the truncation boundary 

! 

"Z 2  flux of response squared times the JPDF across the truncation boundary 

! 

"a  kernel function with respect to lower bound 

! 

"b  kernel function with respect to upper bound 

! 

µZ  mean of response function Z 

! 

" Z  standard deviation of response function Z 

! 

"  lower or upper bound of PDF  

1. Introduction 

In any design problem it is important to define approved allowables for material 

properties, joint properties, fracture properties, dimensioning tolerances, etc. Oftentimes 

allowables arise from and are implemented within a quality assurance (QA) program 

which may establish bounds on allowables and ensure that values outside of the 

allowables will not be accepted in order to guarantee the quality of a product. For 

example, cases in point include “A” (99% probability, 95% confidence) and “B” (90% 

probability, 95% confidence) basis allowables. That is, for an “A” basis allowable, there 

is a 95 percent probability that 99 percent of the samples will be less than or greater than 

(depending on the application) the numerical allowable. For a “B” basis allowable, there 

is a 95 percent probability that 90 percent of the samples will be less than or greater than 

the numerical allowable. 
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Another common occurrence arises with respect to geometric random variables 

obtained by machining. Tolerance limits (plus and minus) are placed upon dimensions 

that are the result of machining operations, e.g., holes, fillet radii, and seal diameters. 

Correct dimensioning in the part is necessary for subsequent assembly and to minimize 

stress concentrations. The QA operations ensure that dimensions outside of the tolerances 

will not be present in the finished product. 

For these cases, it is easy to see that the implementation of a QA program will 

often result in truncated distributions that affect the overall quantity or cost of a product. 

If material properties are outside of the allowables or dimensions outside of tolerances 

are removed before production, then effectively, the quantity can be modeled as a 

truncated distribution. Typical cases include truncated normal, Weibull and uniform 

distributions.  

Truncated distributions can also arise naturally when modeling nonparametric 

distributions. For example, loading variability is often modeled nonparametrically 

through an exceedance curve that defines the number of occurrences of loads (often 

accelerations or g-forces) that exceed different load levels [1, 2]. The upper limit to the 

exceedance curve is presumed, but often not verified, to be sufficiently large such that 

further data collection will not affect the design of the structure. A similar condition 

arises with respect to defects in gas turbine materials where a nonparametric distribution 

is used to model the probability of defect size [3]. This distribution is then used as part of 

the process to certify that the design is within allowable limits on the probability-of-

failure. A truncated distribution in the context of this research encompasses any 

distribution that has non-zero PDF value at either bound of its domain.  
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Establishment of the allowables for material qualification for a new material or a 

new application of the material is typically based on extensive testing and is often costly 

in terms of schedule and funds. Therefore, it is useful to have some tools to assess, in the 

design stage, the impact the bounds have on the product reliability, cost, 

manufacturability, etc. Therefore, methods to compute the sensitivity of the reliability (or 

probability-of-failure) of a component or system with respect to the bounds of truncated 

random variables would be a useful tool to assist in setting appropriate values for the 

bounds and to assess the performance of the design. 

The finite difference method can be used to estimate the numerical derivative of 

the probability-of-failure with respect to a random variable bound, e.g. perturb a bound, 

rerun the analysis and compute the ratio of the differences 

! 

"Pf

"#i

$
P(# + %#) & P(#)

%#
. This 

approach is error prone, however, as the amount of the perturbation, 

! 

"# , can strongly 

affect the accuracy of the calculation and the numerical estimate usually suffers from 

subtraction error.  Moreover, a small perturbation is needed to obtain an accurate 

derivative. As a result, the derivative estimate requires a subtraction of two probabilities 

that differ only slightly. If sampling is used to obtain the probability, a very large number 

of samples may be required to reduce sampling variance before the subtraction operation. 

These issues make finite differencing error prone and arduous before obtaining 

confidence in the result.  

There are a number of probabilistic sensitivity methods that provide valuable 

information during the design process, often with little additional computational cost.  

Frey and S.R. Patil provide an overview article discussing ten sensitivity methods, both 

probabilistic and deterministic [4]. Helton et al. discusses the use of scatter plots, 
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regression analysis, and Spearman or Pearson correlation and other methods as 

qualitative and quantitative metrics for sampling methods as inexpensive approaches to 

discerning the contribution of the variance of each random variable to the output [5]. 

Variance-based methods based [6, 7] are capable of apportioning the amount of 

variance in the output variance to the variance of the inputs, thus, providing a method to 

rank order the key inputs. The method is applicable to monotonic and nonmonotonic 

models. Calculation of the sensitivity indices requires computation in addition to the 

probability-of-failure calculation by requiring multiple multidimensional integrals. The 

Fourier Amplitude Sensitivity Test (FAST) method can be used to reduce the 

multidimensional integrals into a one-dimensional integral [8]. Lui et al. use the 

Kullback-Leibler relative entropy-based method to evaluate the impact of a random 

variable on a design performance by measuring the divergence between two probability 

density functions of the performance response, obtained before and after the variation 

reduction of the random variable [9]. The application is similar to the variance-based 

methods but is not limited to differences in the second moment. 

A number of sensitivity methods are available for the First Order Reliability 

Method (FORM). Sensitivity factors (derivatives of the safety index with respect to the 

random variables) [10], derivatives of the probability of failure with respect to the 

random variable parameters, e.g., 

! 

"P /"µ,  "P /"#  [10] and omission factors [11] are 

computed as by-products of an analysis. Each of these indexes provides an indication as 

to the importance of the parameters. 

Various authors develop and discuss the “Score Function” method for the 

computation of partial derivatives of a performance function (probability-of-failure or 
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response moment) with respect to parameters of the underlying input probability 

distributions [12-17]. This method provides local partial derivatives of the probability-of-

failure or response moments with respect to the parameters of the input PDFs, e.g., 

! 

"P /"µ,  "P /"# . Implementation of the methodology is convenient using sampling 

methods. A significant advantage is that negligible additional computing time is required 

to determine the sensitivities.  

None of aforementioned methods explicitly treat the sensitivity of the probability-

of-failure or the response moments with respect to the bounds of a distribution. 

Therefore, a new methodology is derived and demonstrated below. The mathematical 

formulation follows the development of the Score Function method [13]. However, as 

shown below, an additional flux integral is required that is not present in the traditional 

Score Function formulation. This flux integral is also a probability integral. On the other 

hand, other aspects of this formulation simplify relative to the traditional Score Function 

approach. The implications are that the resulting equations can be solved with any 

probabilistic method such as sampling, the First Order Reliability Method, conditional 

expectation, importance sampling, and others. 

The rest of this paper is organized as follows. The basic formulation of the 

governing equations for sensitivities of the probability-of-failure is presented in Section 

2. Section 3 describes the extension of the method to compute sensitivities with respect to 

response moments. Section 4 provides numerical examples and Section 5 contains 

discussion and conclusions. 



8 

2. Basic Formulation 

2.1 Governing Equations 

The methodology developed here can be considered as an extension of the Score 

Function method [13]. Given a joint probability density function (JPDF) 

! 

fx (x), the 

probability-of-failure can be defined as 

! 

Pf = fx (x)dx
g(x )"0#          (1) 

where 

! 

X is a vector of random variables of length N,   

! 

X = (X1,…,XN ), g  is the limit state 

function where 

! 

g(x) " 0 defines the failure domain, and the integral is N dimensional.  

In this paper, the focus is on developing sensitivities with respect to bounds of 

truncated distributions, that is, probability distributions whose range is finite in at least 

one direction and whose PDF value at the finite range is nonzero. In addition, only 

rectangular truncation is considered, i.e., 

! 

xi = "i :"i # Rn  where 

! 

"i  corresponds to the 

lower or upper bound of the distribution 

! 

fX i
. Sensitivities with respect to means and 

standard deviations of truncated distributions have been discussed previously [18]. 

Related developments on sensitivities with respect to PDF parameters for nontruncated 

distributions can be found in [13,18] 

Introducing the indicator function 

! 

I(x), which is defined as equal to one if 

! 

g(x) " 0 and zero otherwise, the probability-of-failure integral can be written 

! 

Pf = I(x) fX (x)dx
"#

#

$          (2) 
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The derivative of the probability integral with respect to a parameter of a random 

variable that affects the boundary can be determined by using the idea of the classical 

Reynold’s Transport Theorem: 

! 

D
Dt

"(x,t)dV
V
# =

$"(x,t)
$t

dV
V
# + "(x,t)v jn jdS

S
#      (3) 

where 

! 

" is a property of the continuum, 

! 

"  denotes the velocity of the material, 

! 

n 

represents the unit normal along the boundary 

! 

S, and 

! 

V  is the volume enclosed by 

! 

S . 

The surface integral term in Eq. (3) is the value of 

! 

" on the boundary multiplied by the 

volume swept by the particles on the boundary in the time interval 

! 

dt , integrated over 

! 

dS. This term can be considered as a flux of the property 

! 

" over the surface 

! 

S. The total 

derivative, 

! 

D /Dt , is also known as the material derivative [19].  

The concept of the material derivative can be utilized to take the derivative of the 

probability integral, Eq. (2), with respect to a bound of a random variable PDF. Here, the 

independent parameter, 

! 

"i , is a bound of the distribution representing 

! 

Xi , the JPDF is 

equivalent to the property 

! 

", the volume is the N dimensional random variable space, 

and S is the surface of the random variable space remaining when random variable 

! 

Xi  is 

set to the bound 

! 

"i . For rectangular truncation, the surface S is straightforward to 

compute as the independent parameter, 

! 

"i , is a bound of the N dimensional random 

variable space.  

The unit normal and the equivalent velocity term and their relation can be 

discerned from a problem of two random variables, see Figure 1. Since the independent 

parameter 

! 

"  is an element of X, the velocity becomes 

! 

" = #x /#$ =1. At the lower bound 
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! 

v  and n are in opposite directions, hence, the dot product 

! 

" jn j  equals -1. At the upper 

bound 

! 

" jn j  equals +1. 

Applying these concepts to the probability-of-failure integral yields the equation  

! 

"Pf

"# i
= I (x,# i )

"fX (x,# i )
"# i$%

%

& dx ± I (y,# i) fX (y,# i)
$%

%

& dy       (4) 

where 

! 

Y denotes the vector of the random variables X but excluding 

! 

Xi , i.e., 

  

! 

Y = (X1,…,Xi"1,Xi+1,…,XN ) , 

! 

fX (y,"i)  represents the conditional JPDF given 

! 

xi = "i , and 

the “+” sign is used when 

! 

"i  represents the upper bound and “-” for the lower bound.  

Using the concept of kernel functions [18] defined as 

! 

"# i
(x) =

$fX (x)
$#i

1
fX (x)

, Eq. 

(4) can be written 

! 

"Pf

"#i

= I(x)$# (x) fX (x)dx
%&

&

' ± I(y,#i) fX (y,#i)
%&

&

' dy      (5) 

The kernel functions with respect to a bound for a truncation value of random 

variable 

! 

Xi  are (see appendix A)  

! 

"a =
#fX (x)
#a

1
fX (x)

= fX i
(a)         (6) 

! 

"b =
#fX (x)
#b

1
fX (x)

= $ fX i
(b)         (7) 

where a and b represent the lower and upper bound, respectively, of 

! 

Xi . It is quite 

remarkable that the magnitude of the kernel functions are independent of 

! 

X, equal to the 

value of the marginal PDF of 

! 

Xi  evaluated at the respective bound, and independent of 

the form of the JPDF. In a subsequent section, we demonstrate that the kernel functions 
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must have these mathematical forms in order to satisfy the requirement that the derivative 

of the probability-of-failure equals zero for the case where the indicator function is 

everywhere one.  

The flux surface integral 

! 

"I
# = I(y,#) fX (y,#)

$%

%

& dy  can be rewritten since the JPDF 

can be simplified as 

! 

fX (y,") = fX i
(") fY (y)  yielding 

 

! 

"I
# = fX i

(#) I(y,#) fY (y)
$%

%

& dy = fX i
(#)PI

#       (8) 

where 

! 

PI
" = I(y,") fY (y)

#$

$

% dy  and the subscript I denotes the dependence on the indicator 

function. Since 

! 

PI
"  is a probability integral, it is always positive. Using the kernel 

functions from Eqs. (6) and (7), the surface integral, Eq. (8), the fact that 

! 

Pf = E[I(x)], 

and the proper sign for each bound, the equations for the sensitivities become 

! 

"Pf

"ai

= fX i
(a)(Pf # PI

a )         (9) 

! 

"Pf

"bi

= # fX i
(b)(Pf # PI

b )         (10) 

Thus, the effort to obtain the sensitivities becomes one of evaluating the flux integrals 

! 

PI
a 

and 

! 

PI
b in addition to the probability-of-failure. 

2.2 Evaluation of flux integral 

The flux integral can be evaluated by integrating the JPDF times the indicator 

function over the surface S defined by the condition 

! 

xi = " . That is, one integrates the 

JPDF in the failure region over the surface S. Thus, the dimension of the flux integral is 
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N-1. A schematic of the flux in two dimensions (two random variable problem) is shown 

in Figure 2 where the value of the joint PDF along the upper bound of 

! 

X1 is outlined. 

Mathematically, the flux is computed as 

! 

"I
# = fX i

(#)PI
#        (11) 

For problems with one random variable, the flux reduces to 

! 

fX (a)  over the lower bound 

and 

! 

fX (b)  over the upper bound and Eqs. (9) and (10) reduce to the well-known Leibnitz 

rule in one dimension. 

Figure 3 shows the failure domain for several problems of two random variables. 

In each case, the failure domain fully encompasses the upper bound of random variable 

! 

X1 and does not encompass any of the lower bound. Therefore, given the same JPDF, 

each problem has the same flux integral with respect to the bounds, that is, the flux 

integral depends only upon the failure definition along the boundary S and not by the 

definition of failure throughout the failure domain. For the examples given in Figure 3, 

! 

PI
a = 0  and 

! 

PI
b =1. 

 Evaluation of Eq. (11) requires an N-1 dimensional integral. However, the flux 

integral is also a probability integral, which can be considered as a special case of the 

probability-of-failure integral, Eq. (2). Therefore, the flux integral can be computed using 

standard probability methods such as Monte Carlo sampling, First Order Reliability 

Method, importance sampling, and different methods can be used to compute the 

probability-of-failure and the fluxes.  

The flux integral is evaluated by integrating the JPDF within the failure domain 

over the surface defined by 

! 

xi = "i . However, the integration may proceed over the safe 
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domain defined by 

! 

PI 
" = I (y,") fY (y)

#$

$

% dy , where 

! 

I (y,") equals one in the safe domain, 

zero otherwise (the complement to 

! 

I(y,") ). Then the flux integral can be computed 

indirectly since 

! 

PI
" + PI 

" =1. Then 

! 

PI
" =1# PI 

" . 

Comparison between Eqs. (11) and (2) indicates that the numerical values of the 

probability-of-failure and the flux may be significantly different as the integrals are of 

different dimensions and domains.  For example, consider upper right graphic in Figure 3 

where the failure domain is a small sliver near the upper bound of 

! 

X1. As a result, the 

probability-of-failure, 

! 

Pf , will be very small whereas the flux integral over the surface, 

! 

PI
b, will be equal to one since the integration of the joint PDF with respect to the 

remaining random variables integrates to one. Thus, 

! 

Pf  and 

! 

PI
b  will have significantly 

different values. 

The flux integrals are particularly straightforward to compute when using 

sampling as they are a subset of the probability integral. The sampling code for the 

probability-of-failure can be used with the only change of generating samples at the 

appropriate bound for the affected random variable. The necessary equations are  

! 

Pf "
1
m

I(x k )
k=1

m

#          (12) 

 

! 

PI
" #

1
m

I(y k ,")
k=1

m

$          (13) 

If sampling is used to compute 

! 

Pf , it is possible to reuse the samples to compute 

! 

PI
a by projecting the samples onto the surface 

! 

Xi = a  or 

! 

Xi = b thereby obtaining the 

sensitivities at negligible computational cost. 
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The flux integrals can also be computed using First/Second Order Reliability 

Method (FORM/SORM) by recasting the integrals in the N-1th dimension: the limit state 

is modified to 

! 

g(x | xi = ") = 0 , variable 

! 

Xi  is no longer random, and 

! 

fX i
= fX i

(").  

2.3 Maximum and Minimum Sensitivities 

The probabilistic sensitivities, defined in Eqs. (9) and (10), are dependent upon 

the probability integrals 

! 

Pf  and 

! 

PI
a. Given that probability integrals are bounded by zero 

and one, it is straightforward to estimate the maximum and minimum magnitude the 

sensitivities may obtain. These estimates may be sufficient for preliminary design 

purposes. 

The largest positive values of the sensitivities occur when 

! 

PI
a = 0, and 

! 

PI
b =1, 

yielding 

! 

"Pf

"ai Pos

= fX i
(a)Pf

"Pf

"bi Pos

= fX i
(b)(1# Pf )

        (14) 

Conversely, the minimum values of the sensitivities occur when 

! 

PI
a =1, and 

! 

PI
b = 0 , 

yielding 

! 

"Pf

"ai Neg

= # fX i
(a)(1# Pf )

"Pf

"bi Neg

= # fX i
(b)Pf

        (15) 

In certain instances, it may be possible to have a priori knowledge of the failure 

domain along a bound of the truncated random variable, and, therefore, have an estimate 
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of the flux integral and the sensitivity. For example, if the random variable represents the 

load on a component, it may be known that the component will fail for a load equal to the 

upper bound of the random variable and not fail for a load equal to the lower bound of the 

random variable, regardless of the values of the other random variables. In such a case, 

the failure domain along the surfaces 

! 

xi = a and 

! 

xi = b  is known a priori and in this case 

encompasses the entire surface defined by 

! 

xi = b  and none of the surface defined by 

! 

xi = a. Along the lower bound the flux integral is zero and along the upper bound the 

flux integral is one. In this case, the sensitivities are given in Eqs. (14) and no explicit 

evaluation of the flux integrals is required. 

2.4 Properties of the Sensitivities 

It is known that the sensitivities must satisfy certain properties [13, 18]. In 

particular, if the failure domain encompasses the entire random variable domain 

! 

I(x) =1 

everywhere, then the probability-of-failure is always one regardless of the values of the 

parameters; therefore, 

! 

"Pf /"# = 0 . This condition must be satisfied with respect to any 

parameter of the PDFs including bounds. When the failure domain encompasses the 

entire random variable domain 

! 

Pf = PI
a =1 and the sensitivities are 

! 

"Pf /"# = 0 . From 

these results, we see that the kernel functions must have the forms 

! 

"a = fX (a) , 

! 

"a = # fX (a)  regardless of distribution type in order for 

! 

"Pf /"# = 0  to be satisfied. 
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2.5 Variance estimates 

 Variance estimates for 

! 

"Pf /"#  can be obtained by computing the variance of Eqs. 

(9) and (10). The formulation is straightforward as the variance of a linear function of 

random variables 

! 

X, e.g., 

! 

Y = AiXi" , where 

! 

A  are constants, is known analytically as  

[20] 

! 

Var(Y ) = AiA j"ij# i# j
j=1
$

i=1
$         (16) 

where 

! 

" i represents the standard deviation of 

! 

Xi , and 

! 

"ij  denotes the correlation between 

! 

Xi  and 

! 

X j . Applying Eq. (16) to Eqs. (9) and (10), yields 

! 

V[
"Pf

"#
] = fX i

2 (# ) V[Pf ]+V[PI
# ] $ 2%&[Pf ]&[PI

# ]( )     (17) 

where 

! 

"  is the correlation between 

! 

Pf  and 

! 

PI
" . It is clear from Eq. (17) that the 

correlation between 

! 

Pf  and 

! 

PI
"  affects the variance of the sensitivity estimate. 

Independent sampling can be chosen to ensure 

! 

" # 0. A better approach is to employ 

“common” variables such that the correlation is greater than zero, i.e., 

! 

" > 0, to minimize 

the variance [21, 20]. This is easily accomplished by using the same samples for the 

! 

Pf  

and 

! 

PI
"  integrals. The reuse of samples by projecting the samples onto the bound of 

interest ensures positive correlation and provides an estimate of the flux integral without 

additional computational cost. 
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The variance estimates of 

! 

Pf  and 

! 

PI
"  are well known if Monte Carlo sampling is 

used to compute the probabilities, e.g., 

! 

V[Pf ] "
P f (1# P f )

N
 and 

! 

V[Pf ] "
P I

a (1# P I
a )

N
 where 

! 

P f  and 

! 

P I
a  are the sampling estimates of 

! 

Pf  and 

! 

PI
a.  

3. Extension to Response Moments 

 In many mathematical and engineering problems, the sensitivity of the response 

moments (mean, 

! 

µz, and standard deviation, 

! 

" z) are of interest, where 

! 

Z(X) is an 

arbitrary output function of the random variables. The methodology derived in the 

previous sections can be extended to provide the probabilistic sensitivities of the response 

moments with respect to the bounds, e.g., 

! 

"µZ /"a  or 

! 

"# Z /"a, see Appendix B. 

3.1 Probabilistic sensitivity of the mean response with respect to 

bounds 

 The sensitivities of the response mean, 

! 

µZ , to the bounds of a truncated PDF are, 

(see Appendix B) 

! 

"µZ

"ai

= fX i
(a)(µZ # PZ

a )

"µZ

"bi

= # fX i
(a)(µZ # PZ

b )
        (18) 

The flux calculation here is modified from Eq. (11) in that the indicator function 

is now replaced by the response function; therefore, the flux can be written as 

! 

"Z
# = Z(y,#) fX (y,#)

$%

%

& dy = fX i
(#)PZ

#        (19) 
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where 

! 

PZ
" = Z(y,") fY (y,")

#$

$

% dy         (20) 

The integration domain is again defined by the surface S defined by 

! 

xi = "i . 

Although the probability integral

! 

PI
"  must be positive, the flux integral 

! 

PZ
"  can be either 

positive or negative depending upon the response function 

! 

Z . 

3.2 Probabilistic sensitivity of the standard deviation of the response 

with respect to bounds 

The sensitivities of the response standard deviation, 

! 

" Z  to the bounds of a 

truncated PDF are, (see Appendix B) 

! 

"#Z

"a
= fX i

(a){#Z
2 $ µZ

2 + 2µZ PZ
a $ PZ 2

a }/(2#Z )     (21) 

! 

"#Z

"b
= $ fX i

(b){#Z
2 $ µZ

2 + 2µZ PZ
a $ PZ 2

% }/(2#Z )      (22) 

where  

! 

PZ 2
" = Z 2(y,") fY (y)

#$

$

% dy . 

! 

PZ 2
"  must be always positive. 

4. Numerical Examples  

A two random variable problem amenable to exact integration both component 

and system, is solved in detail to demonstrate the methodology. This problem also 

provides a means to generate plots that clearly show the flux integrals. 
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4.1 Two random variable problem 

A two dimensional example is solved to illustrate the concepts. Consider a limit 

state of 

! 

g(r,s) = r " s  with R and S modeled as independent random variables. The 

indicator function defines the failure region as 

! 

I[r,s] =1       if g(r,s) " 0
0                   otherwise

        (23) 

R is a standard normal distribution and S is a uniform distribution with bounds 

! 

a = 0 and 

! 

b =1. 

! 

fR (r) =
1
2"

Exp[#r2 /2]     #$ % r % $       (24) 

! 

fS (s) =1     0 " s "1
0                 otherwise

         (25) 

4.2 Probability-of-failure sensitivities  

The JPDF over a portion of the failure domain (

! 

"4 < r < 4;  0 < s <1) is shown in 

Figure 4 with a direct view of the face 

! 

S =1. The exact solution from integration is 

! 

Pf = 0.68437. The JPDF with a direct view of the face 

! 

S = 0 is shown in Figure 5. The 

fluxes can be evaluated using one-dimensional integrals  

! 

PI
a = fS (a) I(r,a) fR (r)

"#

#

$ dr         (26) 

! 

PI
b = fS (b) I(r,b) fR (r)

"#

#

$ dr         (27) 
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Using symbolic integration, 

! 

PI
a = 0.5  and 

! 

PI
b = 0.8413. From Figures 4 and 5, it is clear 

that the integral of 

! 

fR  over the failure surface where 

! 

S = 0 equals 

! 

FR (0) ="(0)  and the 

integral of 

! 

fR  over the failure surface where 

! 

S =1 equals

! 

FR (1) ="(1) . 

Table 1 summarizes results obtained using both the flux-based methodology and 

the standard finite difference (forward differencing) method. The derivatives of the 

probability-of-failure with respect to the bounds were computed using Eqs. (9) and (10). 

Finite difference estimates were computing using symbolic integration with a forward 

step size of 0.00001. The minimum and maximum sensitivities are 

! 

"Pf /"a = [#0.3157,0.6843], and 

! 

"Pf /"b = [#0.6843,0.3157]. 

Sampling estimates were computed using the equations 

! 

Pf "
1
N

I(rk,sk )
k=1

N

# , 

! 

PI
a "

1
N

I(rk,a)
k=1

N

# , and 

! 

PI
b "

1
N

I(rk,b)
k=1

N

#  with common random variables [21]. FORM 

analysis can also be used to compute the flux integrals. In this example, FORM 

reproduces the exact results. 

The sensitivities for the flux-based and finite difference methods using exact 

integration are very close, as expected. The results using sampling are also in good 

agreement; however, note that 104 samples were used for the flux-based approach to 

obtain a solution with good accuracy versus 106 samples for the finite difference 

sampling-based approach. The superiority of the flux-based approach compared to the 

standard finite difference (forward differencing) approach using sampling can be shown 

clearly by comparing the 95% confidence bounds and the coefficient of variation (COV = 

standard deviation/mean) obtained using both methods obtained from 100 trials. Figures 

6a and 6b show plots of the 95% confidence bounds for finite difference (dashed) versus 
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flux-based (solid) for 

! 

"Pf /"a  and 

! 

"Pf /"b , respectively. The bounds for the flux-based 

approach are so much narrower than the finite difference approach that they show almost 

as a straight line. The bounds are so wide for the finite difference method that any 

solution obtained is completely unreliable until the number of samples approaches one 

million.  

A closer examination of the benefits of using common random variables during 

the sampling process is provided in Table 2. Variance results for negative, approximately 

zero, and positive sampling correlation are provided. The results clearly show that 

positive correlation provides approximately a three times reduction in the variance of the 

sensitivities with respect to independent sampling; at zero cost. Positive correlation was 

accomplished simply by using the same samples to compute the probability-of-failure 

and the fluxes. All subsequent results using sampling shown in the paper were computed 

using common variables, thereby inducing positive correlation. 

Table 3 shows the coefficient of variation of the two methods as a function of the 

number of samples. The COV for the finite difference method is approximately two 

orders of magnitude larger than that obtained using the flux-based method for the same 

number of samples. These results imply that there are approximately 4 orders of 

magnitude difference in the number of samples required to achieve similar accuracy 

using both methods. The explanation is that the finite difference method requires an 

approximation of a limiting process estimated by subtracting two near-equal numbers. 

The flux-based approach, on the other hand, requires no limiting process nor subtraction 

of near-equal numbers. The results from Table 3 indicate that using the flux-based 

approach with 103 samples is superior to the finite difference method with 106 samples. 
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4.3 Response moments 

 Consider the previous PDFs with a response function 

! 

Z(r,s) = 5 + 5r " 2r " 5s" 4s2. Plots of 

! 

Z  times the JPDF are shown in Figures 7a and 7b 

and 

! 

Z 2 times the JPDF are shown in Figures 8a and 8b. The profiles of the flux of 

! 

Z fR  

and 

! 

Z 2 fR  along the boundaries 

! 

s = a and 

! 

s = b  are clearly evident. Using numerical 

integration, the moments of 

! 

Z  are 

! 

µZ = "0.8333 and 

! 

" Z = 6.311. The fluxes are 

! 

"Z (y,a) = 3, 

! 

"Z (y,b) = #6 , 

! 

"Z 2 (y,a) = 42, and 

! 

"Z 2 (y,b) = 69. The sensitivities are given 

in Table 4. The flux-based and finite difference results using integration were very close, 

as expected.  

 The expected values of the sensitivities using sampling showed close agreement 

with the numerical integration results. However, similar to the sensitivities with respect to 

probability-of-failure shown in Tables 1 through 3, the COV of the sensitivities of the 

response moments using the finite difference approach was much larger than the flux-

based method; 10% for 

! 

"µZ /"a  using finite difference with 106 samples versus 0.6% for 

the flux-based approach using 104 samples. The COV results for 

! 

"# Z /"a were 50% with 

for finite difference with 106 samples and 5% for the flux-based approach with 104 

samples. Similar results were seen for 

! 

"µZ /"b  and 

! 

"# Z /"b. 

4.4. System reliability 

The previous example was modified to demonstrate the applicability of the 

sensitivity methodology to system reliability problems. Two limit states were considered 

! 

g1(r,s) = r " s  and 

! 

g2(r,s) = 5 " 5r + 2r2 + 5s + 4s2. The system was analyzed as both a 

series and a parallel system. 
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4.4.1 Series system 

For the series system, failure was defined as   

! 

Pf = P[g1 " 0 g2 " 0!  ]. The JPDF 

in the failure region is shown in Figure 9. The JPDF along the bounds a and b needed for 

the flux calculations are shown in Figure 10a and Figure 10b, respectively. The results 

were 

! 

Pf = 0.70375 (exact integration), 

! 

PI
a ="(0) +"(#3.26557) = 0.5000546 , 

! 

PI
b =1, 

! 

"Pf /"a = 0.203204  and 

! 

"Pf /"b = 0.29625. The sensitivities are shown in Table 5. The 

minimum and maximum sensitivities are 

! 

"Pf /"a = [#0.2962,0.7038], and 

! 

"Pf /"b = [#0.7038,0.2963]. As shown in previous examples, the COV estimates using 

sampling for the finite difference method with 106 samples was approximately an order 

of magnitude larger than the COV for the flux-based method using 104 samples. 

4.4.2 Parallel system 

For the parallel system, failure was defined as   

! 

Pf = P[g1 " 0 g2 " 0!  ]. The JPDF 

in the failure region is shown in Figure 11. The JPDF along the bound 

! 

S = 0 is shown in 

Figure 12 and it is clear from the Figure 11 that the flux across the bound 

! 

S =1 is zero. 

The results from numerical integration were 

! 

Pf = 0.233742, 

! 

PI
a ="(0) #"(#0.76556) = 0.278031, 

! 

PI
b = 0, 

! 

"Pf /"a = #0.0442901 and 

! 

"Pf /"b = #0.233742 . The minimum and maximum sensitivities are 

! 

"Pf /"a = [#0.7663,0.2337], and 

! 

"Pf /"b = [#0.2337,0.7663]. The sensitivities are shown 

in Table 6. Again, the COV for the flux-based method was significantly smaller than 

finite difference even with fewer samples. 
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5. Discussion and Conclusions 

Efficient evaluation of the sensitivity of the probability-of-failure or the response 

moments to the bounds of truncated distributions can provide useful information in the 

design stage in order to optimize product reliability, minimize cost, determine quality 

assurance procedures, etc. The method outlined here can be used to compute these 

sensitivities with a significant improvement in computational efficiency over standard 

finite difference methods. 

The methodology is based upon an application of the material derivative concept 

to the probability-of-failure or the response moment integrals thus yielding a flux integral 

that must be computed in addition to the standard probability-of-failure or response 

integrals. The methodology is applicable to any limit state formulation, either component 

or system, and any random variables described by a truncated joint probability density 

function containing either correlated, e.g., truncated multivariate normal, or independent 

random variables. 

 The sensitivities require a supplemental flux integral for each bound that, when 

combined with the probability-of-failure and kernel functions, provides the sensitivity 

with respect to the bound of a truncated distribution. However, the flux integral itself is a 

probability integral and, therefore, amenable to solution using existing probabilistic 

methods. Simple approximations to the flux integral are easily discerned which may 

avoid explicit calculation of the integral and provide an upper bound on the sensitivities. 

The magnitudes of the probability-of-failure and the flux integrals maybe significantly 

different and different methods may be used to compute each.  
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 If sampling is used to compute the probability-of-failure, the samples can be 

reused to compute flux integrals by projecting the samples to the bound of interest. Thus, 

the flux integrals are computed with negligible additional computation. 

 The superiority of the flux-based approach over the standard finite difference 

method was clearly evident from numerical studies using Monte Carlo sampling that 

indicated that the estimate of the sensitivities using the flux-integral approach required 

approximately 4 orders of magnitude fewer samples for the same accuracy as a standard 

finite difference approach. 
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Appendices 

Appendix A - Kernel functions with respect to PDF bounds 

The JPDF subjected to rectangular truncation, i.e., 

! 

xi = "i :"i # Rn  where 

! 

"i  

corresponds to the lower (a) or upper (b) bound, can be written 

! 

fX (x) =
ˆ f X (x)

ˆ F X i
(b) " ˆ F X i

(a)
     a # xi # b

                      0                 otherwise

      (A-1) 

where 

! 

ˆ f X (x)  is the non-truncated JPDF, a and b are the lower and upper bounds of 

random variable 

! 

Xi , and 

! 

ˆ F X i
 denotes the CDF of 

! 

Xi . 
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Consider the derivative with respect to the upper bound b 

! 

"ˆ f X (x)
"b

=
"
"b

ˆ f X (x)
ˆ F X i

(b) # ˆ F X i
(a)

$ 

% 
& & 

' 

( 
) ) =

# ˆ f X (x)
ˆ F X i

(b) # ˆ F X i
(a)( )

2

$ 

% 

& 
& 

' 

( 

) 
) 
" ˆ F X i

(b)
"b

=

# ˆ f X (x)
ˆ F X i

(b) # ˆ F X i
(a)( )

2

$ 

% 

& 
& 

' 

( 

) 
) 

ˆ f X i
(b) =

# ˆ f X (x)
ˆ F X i

(b) # ˆ F X i
(a)

ˆ f X i

ˆ F X i
(b) # ˆ F X i

(a)
=

# fX (x) fX i
(b)

      (A-2) 

Therefore, the kernel function with respect to a rectangular bound 

! 

xi = b , where b is an 

upper bound, becomes 

! 

"b =
#fX (x)
#b

1
fX (x)

= $ fX i
(b)        (A-3) 

Similarly 

! 

"a =
#fX (x)
#a

1
fX (x)

= fX i
(a)        (A-4) 

That is, the magnitude of the kernel function with respect to a bound of a random variable 

! 

Xi  is equal to the marginal distribution of 

! 

Xi  evaluated at the bound. The sign of the 

kernel function is dependent on the bound in consideration. These results are independent 

of distribution type. 
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Appendix B – Derivation of moment sensitivities 

The sensitivity of the response mean 

! 

µZ  with respect to the distribution bounds is 

derived as an extension of the approach by Wu and Mohanty 2005 by adding the flux 

integral, 

! 

"µZ

"#i

=
"
"#i

Z(x) fx (x)dx
$%

%

& ± 'Z (y,#) = Z(x)(# (x) fx (x)dx
$%

%

& ± 'Z (y,#) =

E[Z(x)(# (x)]± 'Z (y,#)
  (B-1) 

where 

! 

Z(x) represents the deterministic model response, 

! 

"# (x) represents the kernel 

functions. Using the kernel functions defined in Eqs. (6) and (7), 

! 

"µZ

"a
= fX i

(a)µZ #$Z (y,a)

"µZ

"b
= # fX i

(b)µZ + $Z (y,b)
        (B-2) 

Since 

! 

"Z (y,#) = fX (#)PZ
# , the sensitivities become 

! 

"µZ

"a
= fX i

(a)(µZ # PZ
a )

"µZ

"b
= # fX i

(a)(µZ # PZ
b )

        (B-3) 

 

 The sensitivities of the standard deviation of the response with respect to the 

bounds of a random variable PDF can be determined by extending the derivation of Sues 

and Cesare [17] through the addition of the flux integrals to yield 
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! 

"#Z

"a
= (E[Z 2$a ] %&Z 2 (y,a) % 2µZ (E[Z$a ] %&Z (y,a))) /(2#Z ) =

( fX i
(a)E[Z 2] %&Z 2 (y,a) % 2µZ ( fX i(a)E[Z] %&Z (y,a))) /(2#Z ) =

( fX i
(a)(#Z

2 + µZ
2 ) % fX i

(a)PZ 2
a % 2µZ ( fX i(a)µZ % fX i

(a)PZ
a )) /(2#Z ) =

fX i
(a) #Z

2 % µZ
2 + 2µZ PZ

a % PZ 2
a{ } /(2#Z )

   (B-4) 

Where we have used the fact that 

! 

E[Z 2] ="Z
2 + µZ

2 , 

! 

"Z (y,# ) = fX (# )PZ
# , and 

! 

"Z 2 (y,#) = fX (#)PZ 2
# . 

A similar derivation for 

! 

"# Z /"b yields 

! 

"#Z

"b
= (E[Z 2$b ]+%Z 2 (y,b) & 2µZ (E[Z$b ]+%Z (y,b))) /(2#Z ) =

(& fX i
(b)E[Z 2]+ fX i

(b)PZ 2
b & 2µZ (& fX i

(b)E[Z]+ fX i
(b)PZ

b )) /(2#Z ) =

(& fX i
(b)(#Z

2 + µZ
2 ) + fX i

(b)PZ 2
b & 2µZ (& fX i

(b)µZ + fX i
(b)PZ

b )) /(2#Z ) =

& fX i
(b) #Z

2 & µZ
2 + 2µZ PZ

b & PZ 2
b ){ } /(2#Z )

  (B-5) 
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Tables 

 Flux-based Finite Difference 

 Integration 

(exact) 

Sampling 

(104 samples) 

Integration 

(exact) 

Sampling 

(106 samples) 

! 

"Pf

"a
 0.1844 0.18421 0.1844 .18761 

! 

"Pf

"b
 0.1560 0.15711 0.1570 .16081 

1expected value of 100 trials) 

Table 1 Probabilistic sensitivity results for limit state

! 

g = r " s (R standard normal, S 

uniform) 
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# Samples 

! 

"Pf

"a
  

! 

(" < 0) 
! 

"Pf

"a
 

! 

(" # 0)  
! 

"Pf

"a
  

! 

(" > 0) 
! 

"Pf

"b
  

! 

(" < 0) 
! 

"Pf

"b
 

! 

(" # 0)  
! 

"Pf

"b
  

! 

(" > 0) 

103 8.81E-4 

("=-0.75) 

4.64E-4 

("~0) 

1.37E-4 

("=0.82) 

4.84E-4 

("=-0.46) 

3.48E-4 

("~0) 

1.29E-4 

(!=0.78) 

104 7.37E-4 

("=-0.66) 

4.01E-5 

("=0.09) 

1.44E-5 

("=0.68) 

4.03E-4 

("=-0.27) 

2.70E-5 

("=0.09) 

1.22E-5 

("=0.64) 

Table 2 Variance of sensitivity estimates 

! 

"Pf /"#  as a function of sampling 

correlation (100 trials) – actual correlation in parentheses 
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 Flux-based Finite Difference 

# 

Samples 

! 

"Pf

"a
 

! 

"Pf

"b
 

! 

"Pf

"a
 

! 

"Pf

"b
 

103 .076 .063 4.4 8.9 

104 .019 .022 2.1 1.8 

105 .0076 .0076 .61 0.66 

106 .0021 .0025 .16 0.22 

Table 3 Coefficient of variation (100 trials) of sensitivities with respect to bounds as 

a function of the number of samples 
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 Flux-based Finite Difference 

 Integration 

(numerical) 

Sampling 

(104 samples) 

Integration 

(numerical) 

Sampling 

(106 samples) 

! 

"µZ

"a
 -3.833 -3.8391 

(0.6%) 

-3.833 -3.8481 

(10%) 

! 

"µZ

"b
 -5.167 -5.1611 

(0.5%) 

-5.167 -5.1531 

(8%) 

! 

"# Z

"a
  -0.6223 -0.62801 

(5%) 

-0.6223 -0.66911 

(50%) 

! 

"# Z

"b
 1.573 1.5691 

(2.5%) 

1.573 1.5511 

(22%) 

1expected value of 100 trials 

Table 4 Sensitivity results for response moments; COV results in parentheses based 

on 100 trials 
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 Flux-based Finite Difference 

 Integration 

(exact) 

Sampling 

(104 samples) 

Integration 

(exact) 

Sampling 

(106 samples) 

! 

"Pf

"a
 0.2032 0.20311 

(1.6%) 

0.2032 0.21161 

(18%) 

! 

"Pf

"b
 0.2963 0.29631 

(1.3%) 

0.2965 0.30161 

(13%) 

1expected value of 100 trials 

Table 5 Sensitivity results for series system; COV results in parentheses based on 

100 trials 
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 Flux-based Finite Difference 

 Integration 

(exact) 

Sampling 

(104 samples) 

Integration 

(exact) 

Sampling 

(106 samples) 

! 

"Pf

"a
 -0.04429 -.043961 

(12%) 

-0.04429 -0.048211 

(111%) 

! 

"Pf

"b
 -0.2337 -0.23311 

(2%) 

-0.2337 -0.22071 

(22%) 

1expected value of 100 trials 

Table 6 Sensitivity results for parallel system; COV results in parentheses based on 

100 trials  
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Figure 1 Description of velocity and unit normal along bounds 
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Figure 2 Flux of the JPDF in the failure region over the surface 

! 

S  
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Figure 3 Two dimensional problems with the same flux values with respect to lower 

and upper bounds 
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Figure 4 Joint PDF over failure domain (direct view of the face of 

! 

S =1) 
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Figure 5 Joint PDF over failure domain (direct view of the face of 

! 

S = 0) 
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Figure 6a 95% confidence limits (100 trials) for 

! 

"Pf /"a  as a function of the number 

of samples (dashed - finite difference; solid – flux based) 
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Figure 6b 95% confidence limits (100 trials) for 

! 

"Pf /"b  as a function of the number 

of samples (dashed - finite difference; solid – flux based) 
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Figure 7a Plot of JPDF times Z (direct view of the face 

! 

S =1) 
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Figure 7b Plot of JPDF times Z (direct view of the face 

! 

S = 0) 
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Figure 8a Plot of JPDF times 

! 

Z 2 (direct view of the face 

! 

S = 0)
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Figure 8b Plot of JPDF times 

! 

Z 2 (direct view of the face 

! 

S =1)
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Figure 9 JPDF of series system 
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Figure 10a Flux along bound 

! 

S = 0 for series system 
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Figure 10b Flux along bound 

! 

S =1 for series system 



52 

 

Figure 11 JPDF of parallel system 
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Figure 12 Flux along bound a of JPDF along bound a for parallel system 

 


