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Autocorrelation-Based Spectrum Sensing
Algorithms for Cognitive Radios

Takeshi Ikuma and Mort Naraghi-Pour

Department of Electrical and Computer Engineering
Louisiana State University
Baton Rouge, LA 70803

Email: {tikuma@lsu.edu, mort@ece.lsu.edu}

Abstract—Cognitive radio is an enabling technology for op-
portunistic spectrum access. Spectrum sensing is a key feature
of a cognitive radio whereby a secondary user can identify
and utilize the spectrum that remains unused by the licensed
(primary) users. Among the recently proposed algorithms the
covariance-based method of [1] is a constant false alarm rate
(CFAR) detector with a fairly low computational complexity.
The low computational complexity reduces the detection time and
improves the radio agility. In this paper, we present a framework
to analyze the performance of this covariance-based method. We
also propose a new spectrum sensing technique based on the
sample autocorrelation of the received signal. The performance of
this algorithm is also evaluated through analysis and simulation.
The results obtained from simulation and analysis are very close
and verify the accuracy of the approximation assumptions in
our analysis. Furthermore, our results show that our proposed
algorithm outperforms the algorithm in [1].

Index Terms—Spectrum sensing, Dynamic Spectrum Access,
Cognitive Radio, Autocorrelation-based

I. INTRODUCTION

In 2002, Federal Communications Commission (FCC) Spec-
tral Policy Task Force reported that typical radio channel
occupancy is less than 15% while the peak occupancy is
close to 85% [2]. To increase the spectrum usage efficiency,
the task force recommended the development of opportunistic
or dynamically spectrum access. Dynamic spectrum access
meshes well with the cognitive radio [3] paradigm which,
as an evolution of software-defined radios, is aware of its
surrounding environment and can accordingly adapt its internal
operating states [4].

Dynamic spectrum access requires frequency agile radios
that can monitor and identify the spectral bands that are unused
by the primary licensed users (the so-called white spaces).
The radio will then dynamically adjust its carrier frequency,
transmit power, modulation, coding, etc, in order to make best
use of the available spectrum and achieve the desired quality
of service. In order to avoid interference to primary users,
spectrum sensing must detect signals with low probability of
detection. Moreover, low computational complexity and ease
of implementation is required in order to facilitate radio agility.

Akyildiz et al. categorized non-cooperative spectrum sens-
ing into three categories [5]: energy detection, matched-filter
detection, and cyclostationary feature detection. Spectrum
sensing using energy detection is easy to implement and

performs well if the noise power at the receiver is known.
However, uncertainty in the noise power can significantly
degrade the performance of energy detectors. Furthermore,
estimation of the noise power which is required in such
cases leads to the so called “SNR wall” phenomena [6].
The detectors based on matched filtering and cyclostationary
features, on the other hand, rely on the a priori knowledge
of the signal parameters. The matched-filter based system is
a coherent system and must have a priori knowledge of the
modulation type and carrier frequency of the primary user. The
cyclostationary feature detectors also require some parameters
of the primary signal such as symbol rate and have high
computational requirements.

An alternative approach is autocorrelation-based method
suggested in [1]. Their approach relies on the fact that when
the receiver bandwidth is greater than the bandwidth of the
signal, the autocorrelation function of signal plus noise is
distinguishable from that of noise alone (which is assumed
to be white). Because autocorrelation function is a one-
dimensional entity as opposed to the two-dimensional cyclic
autocorrelation function, the burden in computing the decision
statistics is drastically reduced. The decision statistic in [1]
is based on the Frobenious norm of the correlation matrix
of the received signal. They, however, have not analyzed the
performance of their detector and only presented an empirical
false alarm rate.

In this paper, we present an accurate analysis of the
autocorrelation-based detector in [1] using the results in [7]
on the first-order autoregressive (AR) spectral estimator. The
presented analysis can be extended for the performance of
other autocorrelation-coefficient based algorithms. We also
propose a new autocorrelation-based detector by considering
additional properties of the autocorrelation function of typical
baseband communication signals. These properties greatly
simplify the complexity of the detection statistics resulting in
a linear detector as opposed to the quadratic form in [1]. We
also evaluate the performance of our detector through analysis
and simulation.

The remainder of this paper is organized as follows. In
Section II we present the spectrum sensing problem, the sys-
tem configuration and the assumptions on the received signal.
Section III introduces the detector in [1] as well as our new



Fig. 1. Simplified block diagram of ideal RF front-end.

detector. Section IV presents the analysis of the performance
of detectors in terms of detection and false alarm probabilities.
Section V presents numerical results from simulation and
analysis. Finally, concluding remarks are provided in Section
VII.

II. SPECTRUM SENSING SYSTEM

For the purpose of spectrum sensing the cognitive radio
front-end can be simplified as shown as in Fig. 1. The radio
receives an RF signal r(t) and after down conversion, low-pass
filtering, and sampling, obtains the complex baseband signal
{xn}. The target center frequency is fc Hz, the bandwidth of
the low-pass filter is (−fbw, fbw) Hz, and the sampling rate
Ts is given by Ts , (2fbw)−1.

The complex baseband signal x(t) is modeled as x(t) ,
ηs(t)ej(2πf̃ct+θ0) + n(t) where s(t) is the primary baseband
communication signal, n(t) is the complex noise process,
and where f̃c and θ0 denote the frequency and phase offsets
of the local oscillator from that of the primary transmitter,
respectively. The value of η ∈ {0, 1} determines the presence
or absence of the primary signal s(t). Therefore the detection
of the primary signal is described by the following binary
hypotheses testing problem.

H0 : η = 0, primary signal absent
H1 : η = 1, primary signal present (1)

The primary signal s(t) is unknown and is modeled as a
complex-valued zero-mean wide-sense stationary (WSS) pro-
cess, characterized by its autocorrelation function rs(τ) ,
E[s(t)s(t − τ)∗]. Furthermore, s(t) is band-limited in the
frequency range (−fb, fb) Hz where fb < fbw.

The spectrum sensing algorithm processes the complex
baseband signal xn , x(nTs). Like x(t), xn can be separated
into two components:

xn = ηsne
jω0n+θ0 + nn (2)

where sn , s(nTs), nn , n(nTs), and ω0 , 2πf̃cTs. The
autocorrelation function of sn is denoted by rs,l , rs(lTs).
We note that the condition (fb < fbw) guarantees that sn is
non-white, i.e., rs,l 6= rs,0δl where δl is the Kronecker delta
function.

The complex-valued noise component, {nn}, is modeled
as a circular white Gaussian noise process with mean zero
and variance σ2

n. Therefore, the autocorrelation function of
the noise process is given by rn,l = σ2

nδl. Accordingly, the

signal-to-noise ratio (SNR) of xn is denoted by

γ ,
rs,0
σ2
n

. (3)

Assuming that {sn} and {nn} are uncorrelated, we express
the conditional autocorrelation function of xn as

rl|Hη = ηrs,le
jω0l + σ2

nδl (4)

It is further assume that the real and imaginary parts of {sn},
namely {<(sn)} and {=(sn)} are independent. The following
lemma results.

Lemma 1: If the real and imaginary components of a
complex-valued zero-mean WSS random process are indepen-
dent, then the autocorrelation function of the process is an
even function.

Proof: Let a complex-valued zero-mean WSS process
xn , yn + jzn where yn and zn are mutually independent
real WSS processes. Then,

rxx,l = E[xnx∗n−l]
= E[(yn + jzn)(yn−l − jzn−l)]

(5)

where ∗ denotes complex conjugation. Since xn is zero-mean
and yn and zn are independent, we have

rxx,l = E[yny∗n−l]E[znz∗n−l]

, ryy,l + rxx,l
(6)

Since yn and zn are real processes, their autocorrelation
functions ryy,l and rzz,l are both real and even. Thus, rxx,l is
also real and even.

Lemma 2: Let xn be a lowpass WSS process with real and
even autocorrelation function rxx,l and cutoff frequency ωc ∈
(0, π/2). Then, there exists a non-negative integer Nc such
that

rxx,l > 0 for all|l| < Nc (7)

If the process is an ideal lowpass process, then Nc = dπ/ωce.
Proof: By the property of the discrete-time Fourier

transform, the PSD of xn is real and even. Let the PSD of
xn be defined as

Pxx(ω) =

 f(ω), 0 6 ω < ωc
f(−ω), −ωc 6 ω < 0
0, o.w.

(8)

where f(ω) is a positive real function. Then,

rxx,l =
1
π

∫ ωc

0

f(ω) cos(ωl)dω (9)

We observe that f(ω) cos(ωl) > 0 for all ω ∈ (0, π/(2l)).
Thus, Nc = dπ/(2ωc)e satisfies (7). Furthermore, if the
process is an ideal “brick” lowpass process, i.e., f(ω) = 1,
then

rxx,l =
1
π

∫ ωc

0

cos(ωl)dω

=
sin(ωcl)
πl

(10)

Therefore, Nc = dπ/ωce satisfies (7).



III. SPECTRUM SENSING ALGORITHMS

Taking N samples of xn, i.e., x = (x0, x1, · · · , xN−1), a
spectrum sensing algorithm forms a decision statistic T (x)
and compares it to threshold λ, i.e.,

T (x)
< λ decide H0

> λ decide H1.
(11)

The decision statistics in [1] as well as our proposed detector
are based on the estimates of autocorrelation of x.

r̂l ,

 1
N−l

N−l−1∑
n=0

xn+lx
∗
n, l > 0

−r̂∗l , l < 0
(12)

We note that r̂l is an unbiased and consistent estimator of
rxx,l. For ease of notation, in the following we will drop the
dependence of the decision statistic on the sample data x.

A. Zeng-Liang signal detector

Zeng and Liang, [1], proposed a spectrum-sensing technique
base on the following decision statistic,

L∑
l=−L

(
1− |l|

L+ 1

)
|r̂l|2 ≶ λZLr̂

2
0 (13)

where the parameter L is chosen so that the magnitude of the
signal autocorrelation function |rs,l| is significant for all |l| <
L. The weighting scheme of |r̂l|2 on the left-hand side of (13)
is formed as the left-hand side is derived from the Frobenius
norm of estimate of the covariance matrix. Equivalently, (13)
can be reformulated to fit (11) as follows.

T̃ZL ,
L∑

l=−L

wl
|r̂l|2

r̂20
(14)

with weighting function

wl ,
L+ 1− |l|
L+ 1

(15)

Because the autocorrelation function is conjugate symmetric
and the (l = 0) term is always 1, (without affecting the
performance), the decision statistic in (14) can be simplified
to

TZL ,
L∑
l=1

wl
|r̂l|2

r̂20
(16)

B. A new correlation-based detector

The Zeng-Liang detector is designed to account for the
nonwhite nature of the (oversampled) primary communication
signal. By further incorporating the assumption that the pri-
mary signal sn is (A1) lowpass and (A2) complex-valued with
independent real and imaginary components, we can improve
the performance of the autocorrelation-based detector.

By (A2) and Lemma 1, rl|Hηe
−jω0l is a real-valued

function. Moreover, introducing (A2) and Lemma 2 reveal
that there exists an integer Nc > 1 such that rs,l is real
and strictly positive for all l ∈ (−Nc, Nc). Hence, under
H1, <{rl|H1e

−jω0l} > 0 for all l ∈ (−Nc, Nc) while

={rl|H1e
−jω0l} = 0 for all l. On the other hand, under H0,

rl|H0e
−jω0l = 0 for all l 6= 0.

In general, a decision statistic is designed so that its con-
ditional means under the two hypotheses are different. The
distinguishable feature in rl,|Hη is in the real part while the
imaginary part is zero under both hypotheses. Hence, we form
the decision statistic for our proposed detector to be

TIN (ω) ,
L∑
l=1

wl
<{r̂le−jωl}

r̂0
(17)

Scaling by r̂0 results in a constant false-alarm rate (CFAR)
detector. The limit L should be chosen so that rl|H1 > 0 for
all L 6 Nc. The frequency scanning parameter ω enables the
algorithm to scan across the frequency band in order to locate
the center frequency of the captured primary signal. While
weighting coefficients wl can be optimized, in this paper we
have opted to use (15) for their value.

IV. PERFORMANCE ANALYSIS

In this section, the performance of the two spectrum sensing
algorithms presented in the previous section is evaluated
analytically. To this end, we first determine the statistical
distributions of the autocorrelation estimates r̂l. Then, the
performance of the Zeng-Liang detector can be assessed
following the procedures used by Kay [7] to analyze the
performance of an autoregressive detector. The performance
of our proposed detector is also analyzed using the same
approach. The analysis does not make use of either (A1) or
(A2) and only assumes that {sn} is a generic complex-valued
zero-mean WSS process with autocorrelation function rs,l.

A. Asymptotic conditional distributions of r̂l
In this section, we present the probability density function

(pdf) of the autocorrelation estimates r̂l in (12). Kay [7] has
investigated this problem for the case of an autoregressive
AR(1) process with a fixed noise power. Here, following his
approach, we present a generalization to his results, accounting
for an arbitrary SNR value.

To compactly formulate the statistics, we analyze the scaled
version of r̂l, namely

ŷl =
r̂l
σ2
n

(18)

We note that ŷl can replace r̂l in (16) and (17) without
affecting the detection statistics. Let ŷl = α̂l + jβ̂l. Under
each hypothesis (H0 or H1) and for large N , α̂l and β̂l can
be shown to be jointly Gaussian distributed by the central
limit theorem. Consequently, finding the conditional mean and
conditional (co)variances of α̂l and β̂l completely determines
their statistics. The conditional mean under each hypothesis is
found as follows.

E[α̂l|Hη] = δl + ηγρr,l (19)

and
E[β̂l|Hη] = ηγρi,l (20)



where ρr,l , <{rs,leω0l}/rs,0 and ρi,l , ={rs,leω0l}/rs,0.
Asymptotically as N →∞ the conditional covariances of α̂l
and β̂l are evaluated as

cov[α̂l, α̂m|Hη]

=
1

2N
(δl−m + δlδm) + η

γ

N
(ρr,l−m + ρr,l+m), (21)

cov[β̂l, β̂m|Hη]

=
1

2N
(δl−m − δlδm) + η

γ

N
(ρr,l−m − ρr,l+m) , (22)

and
cov[α̂l, β̂m|Hη] = η

γ

N
(ρi,l−m + ρi,l+m) . (23)

B. Zeng-Liang detector, TZL
Zeng and Liang [1] only provided an empirical formulation

for the probability of false alarm from simulations of their
detector and did not provide the probability of detection. Using
an approach similar to that in [7] we evaluate the cumulative
distribution function (cdf) of the decision statistic from the
characteristic function of a related random variable [8].

First, we note that (16) can be written as

TZL =
L∑
l=1

wl
|α̂l|2 + |β̂l|2

|α̂0|2
(24)

Furthermore, we observe that the cdf of TZL can be written
as

FTZL(t)

= Pr

{
L∑
l=1

wl|α̂l|2 +
L∑
l=1

wl|β̂l|2 − t|α̂0|2 < 0

}
(25)

Let
SZL(t) , yTW(t)y (26)

where ()T denotes matrix transpose,

y ,
[
α̂0 α̂1 · · · α̂L β̂1 · · · β̂L

]T
(27)

and

W(t) = diag(
[
−t w1 . . . wL w1 . . . wL

]
). (28)

Then, the cdf of TZL can be expressed in terms of the cdf of
SZL(t).

FTZL(t) = Pr{SZL(t) < 0}
= FSZL(t)(0)

(29)

where FSZL(t)(s) is the cdf of SZL(t). Hence, the cdf of TZL
can be evaluated utilizing the characteristic function φSZL(ω)
of SZL(t). For a random variable X with characteristic
function φX(ω), its cdf can be computed from [8]

FX(x) =
1
2
− 1
π

×
∫ ∞

0

Im[φX(ω)] cosωx− Re[φX(ω)] sinωx
ω

dω. (30)

Applying this characteristic function property to (29), we have

FTZL(t)(t) = FSZL(t)(0)

=
1
2
− 1
π

∫ ∞
0

Im[φSZL(t)(ω)]
ω

dω
(31)

Assuming that N is large, α̂l and β̂l are jointly Gaussian
distributed under both hypothesis. Hence, the random vector
y is a Gaussian random vector. Denoting ȳη and Kη to be
the conditional mean and covariance matrix, respectively, of
y, the (conditional) characteristic function of a quadratic form,
yTWy, of Gaussian vector is [9]

φz|Hη (ω) =
1

|I− 2jωKηW|1/2

× exp
[
jωȳTη W (I− 2jωKηW)−1 ȳη

]
(32)

We note that there is no known closed-form solution to the
resulting integral, so (31) needs to be numerically evaluated.

Finally, we can formulate the probabilities of false alarm
and detection in terms of φz|Hη (ω). Under the null hypothesis
H0, the probability of false alarm given the threshold λZL is
computed by

Pfa,ZL = 1− FTZL|H0(λZL)

=
1
2

+
1
π

∫ ∞
0

Im{φSZL|H0(ω)}
ω

dω
(33)

Similarly, under alternate hypothesis H1, the probability of
detection given the threshold λZL is computed by

Pd,ZL = 1− FTZL|H1(λZL)

=
1
2

+
1
π

∫ ∞
0

Im{φSZL|H1(ω)}
ω

dω
(34)

Based on (19)-(23), the statistics of y to evaluate (32) can
be expressed as follows. The conditional mean of y is found
to be

ȳη =
[
1 0 · · · 0

]T
+ η

[
1 ρr,1 · · · ρr,L ρi,1 · · · ρi,L

]T
, (35)

and the conditional covariance matrix of y is found to be

Kη =
1

2N
diag(

[
2 1 · · · 1

]
) + η

γ

N

[
Q1 Q2

QT
2 Q3

]
. (36)

The submatrices Q1, Q2, and Q3 in (36) are composed of a
Toeplitz matrix and a Hankel matrix.

Q1 = T (qr,0,L,qr,0,L) +H(qr,0,L,qr,L,2L), (37)

Q2 = T (qi,−1,L−1,qi,−1,−L)
+H(qi,1,L+1,qi,L+1,2L), (38)

and

Q3 = T (qr,0,L−1,qr,0,L−1)
−H(qr,2,L+1,qr,L+1,2L), (39)



where T (c, r) represents a Toeplitz matrix with the first
column c and the first row r, H(c, r) represents a Hankel
matrix with the first column c and the last row r. Furthermore,

qr,a,b ,
[
ρr,a ρr,a+1 · ρr,b

]T
(40)

and
qi,a,b ,

[
ρi,a ρi,a+1 · ρi,b

]T
(41)

C. The proposed detector, TIN
To follow similar steps as the Zeng-Liang algorithm, we

first rewrite the proposed decision statistic in (17) in terms of
α̂l and β̂l by

TIN (ω) =

L∑
l=1

wl[α̂l cos(ωl) + β̂l sin(ωl)]

α̂0
(42)

Let
SIN (t, ω) , wT (t)z(ω) (43)

where

z(ω) , [α̂0 α̂1 cos(ω) + β̂1 sin(ω) · · ·
α̂L cos(ωL) + β̂L sin(ωL)]T (44)

and
w(t) =

[
−t w1 · · · wL

]T
. (45)

Then, the cdf of TIN (ω) can be written as

FTIN (t, ω) = Pr{SIN (t, ω) < 0}
= FSIN (t,ω)(0)

(46)

Similar to the random vector y in (27), the random vector
z is Gaussian under both hypothesis. Hence, SIN (t) in (43)
is also Gaussian and the conditional cdf of TIN is given by

FTIN |Hη (t, ω) , Q

(
wT (t)z̄η(ω)√

wT (t)Cη(ω)w(t)

)
(47)

where z̄η is the conditional mean of z, Cη is the conditional
covariance matrix of z, and Q(x) is the Q-function. Accord-
ingly, given the threshold λIN , the probability of false alarm
is determined to be

Pfa,IN (ω) = 1− FTIN |H0(λIN , ω)

= Q

(
−wT (λIN )z̄0(ω)√

wT (λIN )C0(ω)w(λIN )

)
(48)

Similarly, the probability of detection can be evaluated by

Pd,IN (ω) = 1− FTIN |H1(λIN , ω)

= Q

(
−wT (λIN )z̄1(ω)√

wT (λIN )C1(ω)w(λIN )

)
(49)

The conditional statistics of z(ω) are defined as follows.
Under Hη , the conditional mean z̄η(ω) is found to be

z̄η(ω) =
[
1 0 · · · 0

]T
+ η

[
1 ρ1(ω) · · · ρL(ω)

]T
(50)

with
ρl(ω) , ρr,l cos(ωl) + ρi,l sin(ωl) (51)

The conditional covariance matrix Cη(ω) is determined by

Cη(ω) =
1

2N
diag(

[
2 1 · · · 1

]T ) + η
γ

N
× [T {p0,L(ω),p0,L(ω)}+H{p0,L(ω),pL,2L(ω)}] (52)

where

pa,b(ω) ,
[
ρa(ω) ρa+1(ω) · · · ρb(ω)

]
]T . (53)

The expression for the probability of false alarm in (48) can
be further simplified because C0 is diagonal;

Pfa,IN = Q

λIN [λ2
IN

N
+

1
2N

L∑
i=1

w2
i

]− 1
2
 . (54)

The false-alarm rate Pfa,IN is independent of ω. It is readily
observed from (54) that the probability of false alarm does not
depend on any signal parameters.

V. NUMERICAL RESULTS

In this section, the detector performance that we obtained in
the previous section is verified against Monte-Carlo simulation
results. Following common configurations are used throughout
the section. All detectors use the same number of samples,
namely N = 1000. The detectors are configured with L = 2.
For both detectors the weighting function wl is as defined in
(15).

The received signal contains only one communication sig-
nal under H1 case. The primary signal under detection is
16QAM signal with rectangular pulse shaping, transmitted
over an AWGN channel. The transmitted symbols are drawn
randomly with equal probabilities among all possible symbols.
The detectors oversample the received signal at Ns = 3
samples/symbol (i.e., fbw = 3fb). Hence, the autocorrelation
function of sn is given by

rs,l = rs,0

{
Ns−|l|
Ns

, |l| < Ns
0, o.w.

(55)

In the simulations, the performances are evaluated over 10000
independent trials for each setup. To account for the phase
offset θ0 in (2), θ0 is randomly drawn from [0, 2π) for each
trial.

Fig. 2 illustrates the receiver operating characteristic (ROC)
curve of the two detectors under fixed γ = −12 dB, and
Fig. 3 shows the detection probabilities as functions of the
SNR while the false-alarm rate is fixed to a constant value
of 0.01. For both cases, ω0 = 0 and TIN is evaluated with
ω = ω0 = 0. The figures illustrate the improved performance
of the proposed algorithm over that in [1]. Furthermore, the
theoretical results are in a very good agreement with the results
from simulation.

Next, we observe the sensitivity of the proposed algorithm
to its scanning frequency offset. For this example, we fix
Pfa = 0.01 and γ = −8 dB and introduce primary carrier



Fig. 2. ROC curves of TZL and TIN (0) (N = 1000, L = 2, γ = −12
dB, Ns = 3, ω0 = 0).

Fig. 3. CFAR Pd vs. γ (Pfa = 0.01, N = 1000, L = 2, Ns = 3,
ω0 = 0).

frequency offset ω0 = 0.1π. Fig. 4 shows the probability
of detection of the proposed algorithm as a function of the
scanning frequency offset ω. The Zeng-Liang approach which
does not use ω is also shown as a reference.

As designed, the detection probability Pd,IN peaks at ω =
ω0 and rolls off as ω moves away from ω0. The detection
rate remains high over the signal band (roughly 2π/Ns rad
around ω0), indicating that the proposed method can identify
the spectral location of sn. This is an advantage over the
Zeng-Liang algorithm which, by construction, cannot detect
the location of sn over the system bandwidth.

Fig. 4. CFAR Pd,IN vs. ω (Pfa = 0.01, N = 1000, L = 2, γ = −8 dB,
Ns = 3, ω0 = 0.1π).

VI. CONCLUSION

Autocorrelation-based spectral sensing techniques are in-
vestigated and analyzed. A new technique using the sample
autocorrelation function of the received signal is introduced
and its performance is evaluated theoretically. Furthermore,
the analysis is extended to obtain the performance of the
covariance-based detector in [1]. The performance of the two
detectors are also obtained through Monte Carlo simulations.
The results show a very good match between the theoretical
and simulation results. This verifies the accuracy of our
asymptotic analysis. Furthermore the results show that the
proposed method outperforms the covariance-based method in
[1].
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