

Design, Development, and Demonstration of a Prognostics

and Diagnostics Health Monitoring System for the CROWS
Platform

by Marvin A. Conn, Gregory Mitchell, Derwin Washington, Andrew Bayba,

and Kwok F Tom

ARL-TR-5206 June 2010

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5206 June 2010

Design, Development, and Demonstration of a Prognostics
and Diagnostics Health Monitoring System for the CROWS

Platform

Marvin A. Conn, Gregory Mitchell, Derwin Washington, Andrew Bayba,
and Kwok F Tom

Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2010
2. REPORT TYPE

Interim
3. DATES COVERED (From - To)

FY08–FY09
4. TITLE AND SUBTITLE

Design, Development, and Demonstration of a Prognostics and Diagnostics
Health Monitoring System for the CROWS Platform

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Marvin A. Conn, Gregory Mitchell, Derwin Washington, Andrew Bayba, and
Kwok F Tom

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-SER-M
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-5206

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Automated data acquisition has become a major part of the military’s prognostics and diagnostics program as it moves
towards a condition-based maintenance approach. The desire to apply this to a majority of new and legacy systems has led to
the development of a prototype Prognostics and Diagnostics Health Monitoring System (PDHMS) with both serial and
wireless communications capabilities that can be easily configured to different mechanical and electrical systems. This report
addresses a complete system architecture of a prototype PDHMS. It verifies the data collection capabilities of the PDHMS by
obtaining vibration signatures from bearings running on a machinery fault simulator, and by integrating the PDHMS for an
embedded system-level demonstration in the Common Remotely Operated Weapons Station (CROWS). This report addresses
the challenges in designing the hardware and developing the firmware for the PDHMS, discusses system limitations, and
suggests areas for future improvement as seen by the developers.
15. SUBJECT TERMS

Prognostics diagnostics microcontroller wireless I2C data acquisition RF tag

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

88

19a. NAME OF RESPONSIBLE PERSON
Marvin Conn

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
(301) 394-0823

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

1. Introduction 1

2. System Design Concept 1

3. PDSM Board Design 3

3.1 Communications Mediums..5

3.2 Sensors...5

4. Firmware Documentation 7

5. Software Documentation 13

6. Data Acquisition Design Decision 13

7. Communications Hardware Design Details 15

7.1 I2C Design Details ..15

7.2 USB Design Details...16

7.3 Wireless Front End Design Details ...17

7.4 Performance Limitations of the CC2420 Transceiver ...18

7.5 Wireless Networking Capabilities ...18

7.6 Real-time Clock (RTC) Design Details...20

7.7 PDSM Board Power Distribution Details ...20

8. Sensor Design Details 21

8.1 Thermocouple Design Details ...21

8.2 Current Sensor Design Details ..23

8.3 Voltage Sensor Design Details ..25

iv

8.4 Onboard Accelerometer Design Details ..26

8.5 External Accelerometer Design Details ..28

8.6 Resistor Divider Network Computations for Accelerometer Op-amp30

8.6.1 Computation of Resistors ..30

8.6.2 Sampling Rate Estimate ..31

8.7 SD/MMC Card Design Details..31

8.8 MSP430 Clock Use and Distribution Design Details ...32

9. Firmware System Level Design 33

9.1 Setting PDSM Jumpers ...34

9.2 Communication Network Design Decisions and Limitations35

9.3 Medium Communications ...36

9.4 Message Bus Architecture Design ..37

9.5 Communications Message Format ..38

9.6 Pseudo Code, Node Message Processing ..40

9.7 Sensor Configuration ...42

9.8 Network Commands ..44

9.9 Wireless Communication Firmware Description ..46

9.9.1 Digital Communication via a Serial Peripheral Interface46

9.9.2 cCC2420 Class Structure Descriptions ...46

9.10 SD Card Data Storage ...47

10. User’s Manual 50

10.1 Hardware Manual ..50

10.1.1 PDSM Board Jumpers for I2C Communications ..50

10.1.2 Thermocouple Sensors ..51

10.1.3 Reset Button ..51

10.1.4 LED Status Lights ...52

10.1.5 Red LED ..52

10.1.6 Yellow LED ..52

10.1.7 Blue LED ...52

10.2 GUI Manual ...53

10.2.1 Communication Port Selection and Master Node Configuration53

10.2.2 Slave Node Selection ...54

10.2.3 Sending Messages to the Nodes ..54

10.2.4 Receiving Messages from the Nodes ..55

v

10.2.5 Simple Diagnostics ..55

10.2.6 Configuring the Sensors of Each Board to Acquire Data55

10.2.7 Status Window ..56

10.2.8 Data Retrieval and Playback ...56

10.2.9 Storing Retrieved Data to PDCS ...56

10.2.10 MATLAB Displays ...57

10.2.11 Exiting the GUI..58

11. General Performance Measurements 58

11.1 Vibration Experimental Results ..58

11.1.1 Fault Simulator and Test Setup ...58

11.1.2 PDSM Data Acquisition Test Results ...58

12. CROWS Demonstration 61

13. Recommended Changes to the PDHMS Prototype 63

14. Future Development 65

15. Conclusions 66

16. References 68

Appendix. CD Directory Structure and Bill of Materials 69

Bibliography 73

List of Symbols, Abbreviations, and Acronyms 76

Distribution List 78

vi

List of Figures

Figure 1. System design architecture. ...2

Figure 2. CROWS. ..3

Figure 3. Top and bottom layout of the PDSM highlighting key design elements.4

Figure 4. PDSM card with all sensors connected. ..6

Figure 5. I2C schematic. ...15

Figure 6. I2C interface to MSP430. ..16

Figure 7. USB schematic. ...16

Figure 8. USB interface to MSP430. ..16

Figure 9. Typical application circuit with discrete balun for single-ended operation.18

Figure 10. IEEE 802.15.4 data packet structure used in wireless PDHMS communications.......19

Figure 11. M41T93 schematic. ...20

Figure 12. M41T93 to MSP430 pin connections. ..20

Figure 13. Power regulation circuitry. ..21

Figure 14. Thermocouple design schematic. ..22

Figure 15. MSP430 pin connection to thermocouple circuits..22

Figure 16. CSA-1V to MSP430 interface. ..23

Figure 17. Voltage sensor implementation. ..25

Figure 18. MMA7260Q accelerometer connections to the MSP430. ...27

Figure 19. M3000 Vibra-Metrics external accelerometer..28

Figure 20. M300 x-axis conditioning circuitry and connection to MSP430.29

Figure 21. M3000 external accelerometer conditioning circuit. ...29

Figure 22. Schematic sample timing. ..31

Figure 23. SD/MMC card schematic. ...32

Figure 24. MSP430 to SD/MMC interface. ..32

Figure 25. Inter-node star network communication hierarchy..34

Figure 26. PDSM jumper schematic. ..35

Figure 27. Message bus architecture. ..37

Figure 28. SPI interface between the transceiver and MCU (1). ...46

Figure 29. I2C connections between two boards. ...50

Figure 30. Thermocouple wires connected to screw terminal. ...51

Figure 31. GUI used to configure the prototype PDHMS PDSM network.53

vii

Figure 32. Real-time data displays..57

Figure 33. Machinery fault simulator used to determine bearings vibration signatures.58

Figure 34. (a) Raw data for the y-axis collected by the PDSM application and (b) raw data
for the y-axis collected by the eDAQ Lite. ..59

Figure 35. Overlaid vibration signatures for PDSM and eDAQ Lite data acquisition systems
with the peaks of interest highlighted. ...60

Figure 36. PDSM installed on the elevation control circuit card. ...61

Figure 37. PDSM installed and sealed in the SU motor/actuator cavity.62

List of Tables

Table 1. Major PDSM hardware components. ..7

Table 2. Overview of different sensors used in the PDSM. ..14

Table 3. MMA7260Q static acceleration voltage verses angle. ...27

Table 4. Voltmeter reading across LM334D voltage M3000 orientation.30

Table 5. Overview of the clocks embedded onboard the MSP430 chip and the corresponding
clock sources. ...33

Table 6. Node address versus jumper settings. ...35

Table 7. Overview of the red LEDs status blinks. ..52

Table 8. Vibration signature data comparison for PDSM and EDAQ lite data acquisition
systems. ..60

Table A-1. Bill of materials for the PDSM board as generated by Altium Designer.70

viii

Acknowledgments

We would like to thank digital designer Mr. Russ Harris for performing the board layout and
assembly, and for giving invaluable feedback on design approaches and options.

1

1. Introduction

As the U.S. Army continues towards a condition-based maintenance (CBM) approach for
logistics and mission readiness, the need for automated data acquisition becomes paramount for
success. The analysis of critical system data minimizes the vulnerabilities of combatant forces,
maximizes the availability of combat ready equipment, and concurrently produces a proactive
logistics enterprise. This report discusses the performance of a Prognostics and Diagnostics
(P&D) Health Monitoring System (PDHMS) designed for remote data acquisition in a variety of
Army systems. The PDHMS, developed at the U.S. Army Research Laboratory (ARL), uses an
onboard microprocessor, transceiver, and a variety of sensors to monitor key points of interest
within a platform and transfer data while remaining transparent to the end user.

The hardware is based on a highly configurable design with the capability to monitor electrical
and mechanical systems. We plan to demonstrate the flexibility of the PDHMS architecture on
both an electrical system and mechanical system: electrical fuses within the Combat Remotely
Operated Weapons System (CROWS) and mechanical bearings for use in ground vehicles. This
report compares experimental vibration data for mechanical bearing degradation collected by the
PDHMS to data collected by an off-the-shelf data acquisition system.

In documenting the capabilities of the PDHMS, we cover the hardware and software
architecture, as well as the graphical user interface (GUI) developed to configure the PDHMS to
remotely issue commands to all devices within the PDHMS network and display the results
graphically. This report also covers any observed shortcomings of the present design and makes
recommendations on what future implementations of this design might look like.

2. System Design Concept

The PDHMS design concept focuses on having one or more microcontroller-based Prognostics
and Diagnostics Sensor Modules (PDSM) or PC boards designed to take measurements on key
system test points in the CROWS. PDSMs acquire and store sensor data to their local memory.
Each PDSM can communicate between PDSM nodes as well as communicate back to a central
Prognostics and Diagnostics Control Station (PDCS). The PDCS remotely configures and
queries the PDSMs. The combination of multiple PDSMs and a single PDCS makes up the
PDHMS. Figure 1 shows the overall system design concept. Connected to each PDSM are the
required sensors to monitor test points of interest. To support such flexibility, the PDSMs must
support multiple mediums of communications such as wireless, wired, and universal serial bus
(USB) connections, which provide users reasonable flexibility. The general operating concept of

2

this design is that the operator located at the PDCS establishes a remote connection to each
PDSM through either wireless or serial wire mediums. The user at the PDCS then issues
configuration commands to each PDSM. Once the operator has configured and activated the
PDSMs, the PDSMs operate autonomously.

Figure 1. System design architecture.

Once the general design architecture was complete, we looked at further defining the sensors
required for the PDSM to prepare it for a demonstration of the system installed into the CROWS
platform, as shown in figure 2. The demonstration would encompass monitoring four separate
circuit cards, controlling the azimuth, elevation, sensor unit (SU), and linear actuator, located in
separate cavities of the CROWS. In each cavity, the requirements were to monitor temperature
on a Polymer Positive Temperature Coefficient (PPTC) Resettable Fuse; temperature on a Pulse
Modulator integrated circuit (IC); the main power supply voltage and current; and the three-axis
vibration characteristics of the four system drives. These requirements resulted in the final
PDSM design comprising the following sensor capability: three thermocouples sensors, one
voltage sensor, one current sensor, one external three-axis accelerometer, and one onboard
accelerometer.

3

Figure 2. CROWS.

3. PDSM Board Design

The core of the PDHMS design effort focused on the design of the individual PDSM boards.
This section gives a more detailed description of the design process for the PDSM used in the
final CROWS platform demonstration. A photograph of both sides of the PDSM is shown in
figure 3. The dimensions are 4 in by 2.125 in. These dimensions were driven by the
requirements to install the PDSM into the CROWS; there is a capacity to shrink future designs, if
necessary. Also, because the type of application drives the number and type of sensors in the
PDSM design, the size limitations of the design are application specific in some respects. In
future redesigns, tradeoffs may have to be made between performance, types of sensors allowed,
and overall PDSM size.

4

Figure 3. Top and bottom layout of the PDSM highlighting key design elements.

The Texas Instrument (TI) MSP40F2619 microcontroller was used in the design. This MSP430
has 128 Kb flash and 4 Kb random access memory (RAM). The MSP40F2619 memory was
adequate for this demonstration, but the small RAM size limited the number of continuous
samples that could be acquired during acquisitions. In this application, the RAM space had a
general allocation of ~1024 bytes for sensor sampling and the remaining 3072 bytes for general
firmware logic, which limited the contiguous blocks of samples to 2 bytes per sample, resulting
in 512 samples per acquisition block. The small RAM size is a problem for applications that
require larger data acquisition blocks. A more efficient transfer of the data to a secure digital
(SD) memory card would help mitigate the limited RAM size, but a larger RAM capability is
highly desired.

The PDSM is powered by a 30-V power connector. Although the PDSM board is low power and
the MSP430 microcontroller unit (MCU) can run off of 3.3 V DC, the 30-V power connector
was designed to allow the PDSM to accept 30 V supplied from the CROWS. Also, the external
three-axis accelerometer requires a 24-V power source, which is derived from this 30-V input.
Onboard the PDSM, the 30 V is regulated down to 24 and 3.3 V and distributed to the circuit
components. There are three miniature coax-M connectors to connect the Model 3000 (M3000)
external accelerometer. The connectors are for the x-, y-, and z-axis of the M3000. Each
connector was fed to the required conditioning circuitry for the M3000 and the analog-to-digital
converter (ADC) inputs of the MSP430. We noticed in the lab measurements that when the
M3000 was not physically connected to the PDSM through the miniature coax connectors, the

5

voltage levels feeding the MSP430 ADC12 were driven above the MSP430’s rating of 3.3 V.
This problem must be fixed in the next design.

3.1 Communications Mediums

The three ways in which the PDSM boards communicate are wireless, inter-integrated circuit
(I2C), and USB. A user can issue commands to the board to configure the board or retrieve the
board status or measurements data from any one of these communications mediums. The manner
in which they are used or configured is strictly a matter of how the firmware is written. The TI
CC2420 2.4-GHz RF chip provided the wireless communication capability to the PDSM boards.
An I2C bus connection was available to link multiple boards together for communication of data
between one another. The USB provided an ability to connect the PDSM board directly into a
laptop or desktop computer.

Since the boards were designed to operate in a networked configuration, a method was required
to identify each board uniquely. We accomplished this by using a three-port jumper to set the
PDSM local node address. The jumpers allowed us to set addresses from 0 through 7, providing
a maximum of eight possible PDSM nodes in the demonstration network. Theoretically, 65536
of nodes could be supported by either increasing the number of jumpers to 16 or by using some
other means of control in the firmware.

3.2 Sensors

A screw terminal was used to connect the current, voltage, and three K-type temperature sensors.
This terminal can handle a maximum voltage of 43.75 V, which should not be exceeded. The
current sensor input was designed to use the CSA-V1 Hall Effect current sensor device. The
maximum input on the current sensor input should be no greater than 2.5 V. A key problem with
the present design was that there was no protection circuitry on any of the sensor inputs. During
use, we damaged several PDSM boards as a result of misconnecting the voltage input on the
power supply and voltage sensor input. To make the design more robust to inputs that may
exceed design limits, protection circuitry must be addressed. Additionally, the screw terminal is
not an ideal way to connect and remove the sensors from the P&D board. Investigating a better
way to do this should be addressed in the redesign.

The card contains a MMA7260Q three-axis accelerometer. This accelerometer is used to
measure the vibrations of the platform to which the PDSM is mounted or the orientation of the
card (and the equipment in which it is installed) as other measurements are being taken to
correlate measurement behavior with equipment orientation. An external trigger input was
provided to allow the samples of the sensors to be synchronized with an external rising edge
trigger input. The input on the line should read 0 to 2.5 V. Firmware for this feature was not
implemented.

6

The PDSM shown in figure 3 illustrates the locations of the real-time clock (RTC) as well as the
SD memory card. The ST M41T93 serial peripheral interface (SPI) bus RTC chip is used to time
stamp the acquired sensor data for post analysis. A coin cell battery, such as the CR1220 3 V
battery, can power the RTC when the 30-V power is not available. Upon removing power from
the PDSM, the clock loses the time, so this problem must be resolved. To store the sensor data as
it was acquired, a SPI SD/multimedia card (MMC) memory card was used.

Figure 4 shows the PDSM board with all sensors attached: three thermocouples, one external
accelerometer, one current sensor, and one voltage sensor. The thermocouples are adhesive stick-
on type so that they adhere to the surface of interest. The accelerometer is attached using
miniature coaxial cables for each of the three axes. The current sensor is attached through a
twisted pair of red, blue, and green wires. The voltage sensor is simply a thin gauge of wire that
can be attached to the point of interest.

Figure 4. PDSM card with all sensors connected.

When making the connections, several problems become apparent and are viewable in the photo.
First, there are many wires coming off the board to connect the external sensors. This may
become a problem if the area in which the PDSM board is installed is very tight. Secondly, the
screw terminal connector is not easy to work with, especially when frequently connecting and
disconnecting sensors. Some form of a quick release terminal connector should be investigated.
Also, there is a possibility that a sensor may inadvertently disconnect while in use, possibly due
to system vibrations. A method must be put in place to automatically detect and inform the user
when a sensor is no longer connected to the PDSM board. This type of functionality will likely
involve some combination of hardware and firmware implementation.

7

Table 1 shows the major components used on the PDSM board design. All of the components
used are commercial-of-the-shelf (COTS) devices. One key point to note in the parts list is that
since this design, TI has developed MSP430 families that have integrated the wireless and RTC
components on the MSP430 chip. These external components can likely be removed saving real
estate and power in future PDSM designs.

Table 1. Major PDSM hardware components.

Part Description Manufacturer Part Number Design Limits

Ultralow-power mixed signal
microcontroller

Texas Instruments MSP430F2619 16 MHZ
120 KB + 256 B flash
memory, 4 KB RAM

External low noise three-axis
accelerometer

Vibra-Metrics M3000 ±500g’s

Onboard three-axis accelerometer Freescale MMA7260 ±90° per axis

SD/MMC 2 GB flash memory card Sandia 2 GB Sandia SD
Card

2 GB Memory

RF 2.4 GHz IEEE 802.15.4
transceiver

Texas Instruments CC2420 250 kbps
~60 mw

Real -time clock SPI STMicroelectronics M41T93 time stamp data

Hall Effect current sensor GMW Associates CSA-1V High power current
measurement ns
±45 A

External K-Type thermal couples
(32–2282 °F)

General Electric RL0503-5820-97-
MS

32 °F (0 °C) to 300 °F
(150 °C)

MSP430 ADC12 –
8 channel, 250 ksps multiplexed ADC

Texas Instruments Part of MSP4302619 ~100 ksps at 512
sample blocks

24 bit ADC, 15 Hz, 8 channel,
differential

Burr Brown/Texas
Instruments

ADS1241 15 sps, used for thermal
couple measurements

4. Firmware Documentation

The firmware for the PDSM design was developed in embedded C/C++ using the MSP430 IAR
Embedded Workbench software development environment, release 4.2.01. No operating system
was used on the MSP430 microcontroller. However, because of the complexity of the required
communications and the multiple tasks that the processor has to perform, a real-time operating
system (RTOS) should be considered for future implementations of the PDSM design. The
software for the PDHMS GUI was developed using the Microsoft Visual Studio Development
Environment, 2005, version 7.0.9955, and used the MATLAB R2008b display engine. Various
portions of the software and firmware were obtained from various sources of publicly released
software as indicated in the source code. A CD is included with this report, containing all
software and firmware required to implement the functionality as described in this report (see the
appendix for details).

8

The descriptions for all the MSP430 firmware are located in the IAR Embedded
Workbench\pd-develop subdirectory on the accompanying CD. This section provides a
directory listing of the firmware followed by a brief explanation of its content and a statement of
any recommended future development.

Pd-develop

Setting files are contained in this directory, which holds project settings defined by the IAR
workbench compiler. These file names, “pd0develop.*” were all generated by the IAR
workbench compiler and should not be modified without using the IAR development tool.

Main.c

This directory defines the top level firmware execution entry point for the functionality of the
PDSM. Presently, this firmware contains too much functionality, which must be restructured
such that the operations are defined by the programmed library firmware.

Adc12-lib

This directory contains the driver code for controlling the MSP430 ADC12 ADCs. These devices
are used for acquiring data from the following sensors: the M3000 three-axis accelerometer, the
current test point, and the voltage test point.

Adc1240-lib

This directory contains drivers for the eight-channel ADC1240 chip. This chip is used to make
the three thermocouple measurements. Each thermocouple requires the use of two channels. One
channel is used as a ground reference during measurements and the other channel is used for
taking measurements on the thermister, which is used as the cold-junction temperature reference.

Cc2420-lib

This directory contains the device driver for the wireless CC2420 chip used in the design. This
driver is used to support wireless communications. Although CC2420 can support the ZigBee
protocol, this driver does not implement ZigBee. Future development could include the use of
the TI ZigBee stack to make the wireless communications more robust.

Clock-lib

This directory contains a library to control the MSP430 clock frequencies. We attempted to
implement a common library for setting all clock frequencies of the MSP430. This library
controls SCLK, MCLK, etc. All device drivers in this development should use this library when
required to alter clock settings.

9

Debug

This directory contains the IAR compiled code and debug information. Depending on the
compiler settings, it will contain informative text files on memory usage of the complied
firmware.

Docs

This directory is a repository for all documentation related to the design project, including this
document.

Dosfs-1.03

This directory contains the FAT32 driver - fat32 library for performing input/output (I/O) on the
SD memory card. This library is not used in the project, but needs to be replaced by a more
robust and complete commercial driver, which is very likely to be part of a selected RTOS.

Efl-dosfs

This directory contains the FAT32 driver, which is just another possible free alternative for
FAT32 file I/O and is here for documentation purposes only. It was not integrated into the design
nor has it been tested.

Errorlib

This directory contains the library for generating error messages when system errors occur. Our
aim was to develop a common library for all possible errors that can occur in the system for the
purpose of communicating error status information back to the user either by light emitting diode
(LED) flash patterns and or by sending messages back to the GUI interface. Note: Error
messages are also contained in the cmdmsg.h file.

Fat32

This directory contains the FAT32 driver, which has not been tested or used. This driver is just
another possible free alternative for FAT32 file I/O and is here for documentation purposes only.

Fileiolib

This directory is a higher level application programmer interface (API) that uses the dosfs-1-03
library to control read and write accesses to the SD memory card. Our aim was to make it easier
to use the dosfs-1-03 by hiding low-level call details.

10

Globals

This directory contains the global.h include file, which contains global flag variables used
primarily for passing status information regarding the communication interfaces (wireless, I2C,
universal asynchronous receiver-transmitter [UART]). This approach needs to be redesigned. A
better approach would be to eliminate the use of global flags and communicate this information
in another manner, such as a COTS RTOS, which would be a lot easier to use.

I2clib

This directory contains the I3C driver library for I2C communications. This library implements
the standard I2C communications protocol, allowing all nodes in the system to operate as either
master or slave, and switch back and forth between the two modes as appropriate. This library
needs to be enhanced to make it more robust for dealing with the I2C bus collisions that can
occur when two or more nodes attempt to access the bus at the same time.

Intlib

This directory contains the interrupt library. This library places all system interrupt routines in
one location so that the developer knows where to look for interrupt routines for development
and debugging. There may be cases where some interrupt routines are not located here, but an
effort has been made to place them into this library. This library is likely to change dramatically
with the use of an RTOS.

Ledlib

This directory contains drivers to control access to the system LEDs. The LEDs provide minimal
communication to relay status of the PDSM by blinking and lighting specific LEDs on the board.
This library defines led color definitions, and blink count definitions

Lpm-sleep-lib

This directory contains some basic functions for placing the MSP430 into low power sleep for
specified time periods to conserve power. This function is not yet used extensively throughout
the design because in some cases during the development when the MSP430 was placed into
sleep mode, it caused the MSP430 to hang. Placing the design into sleep mode for purpose of
conserving power needs to be investigated extensively for future development on the design.
Using an RTOS should make this process easier.

M41t93-lib

This library is used for setting and reading the M41T03 RTC chip. In the present release, the
clock functions operate well; however, for an unknown reason, the clock value becomes
corrupted if the main power to the PDSM is removed because the clock loses its time. This
problem needs to be fixed in the next revision, or an MSP430 with an internal clock could be

11

used to replace this one, which is likely a better alternative. The problem is very likely due to a
hardware design problem, and in particular, how the battery is powering the chip.

Math-lib

This directory contains the math-related routines. Note: There is a non-ported Fast Fourier
Transform (FFT) library in this directory that may not be appropriate for the MSP430. All math
functions on the project should be moved to this directory. For example, there are many math
functions in main.c file that should eventually be placed here.

Matlab-tools

This directory contains the MATLAB simulation tools for the temperature and current sensors,
including the routines that generated the C/C++ tables used in the therm-cup-lib routines. These
tools are critical for interpreting the current and temperature sensor measurements. This directory
also contains some miscellaneous example MATLAB routines that were, at one point, used to
read raw data files generated from the ADC1240 library.

Mma7260q-lib

This directory contains driver code for the onboard MMA7260Q three-axis accelerometer,
including the code to configure and read the MMA7260Q. In working with the MMA7260Q, it
appears that occasionally the readings were totally erroneous, for reasons yet to be determined. A
possible reason could be that the other activities on the MSP430 messed up the MMA7260Q
settings. This problem requires further investigation to fix.

Msglib

This library implements the top level communications API for the design and is probably the
most critical for long-term development. This library makes use of the lower level hardware
access layer communications device drivers for I2C, wireless CC2420, and UART. This API
defines the highest layer for implementing the message architecture for inter-PDSM message
communications. This library performs fairly well when communication is taking place between
only two nodes. Communications errors tend to occur when three or more nodes communicate at
the same time. Some limited error corrections have been implemented, but generally the
underlying drivers need to be made more robust for multimode node communications. The low
level communications device drivers and a commercial RTOS should be used to make this
overall communications system more robust. Communications collision detection and avoidance
algorithms should be considered as well. ZigBee would address this concern for the wireless
portion.

Node-address-lib

This is a simple library used to determine the PDSM’s node address based on the PDSM’s
jumper settings. The node address is used by the msglib for communications.

12

Release

This directory is the location of the IAR compiled release code; no debug information is
provided.

Sd-mmc-lib

This directory contains the low level SPI-based SD memory card device driver. Future
implementations need to separate the SPI code out from this driver, and create a spi-lib directory
to exclusively contain code for talking to the SPI interface for all SPI devices. Future
implementation of the driver also needs to support direct memory access (DMA) storage for
processor parallel operations.

Therm-cup-lib

This library contains device driver functions for taking readings on the attached thermocouples
and provides routines for converting the readings to scaled temperature readings. Much of the
code in this library was derived from the simulation code contained in the matlab-tools
directory.

Usartlib

This directory defines low level hardware access layer code for universal
synchronous/asynchronous receiver/transmitter (USART), which is presently used for the
USB/USART connection so the GUI can pass messages into the system. A limitation with this
library is that the present hardware design does not implement some sort of hardware
handshaking control lines in USART communications. Although it may not be needed,
implementation of hardware handshaking control lines may need to be considered to guarantee
more robust communications on the USB/USART interface. For example, because there is no
hardware handshaking, the GUI can potentially push more data across the USB than the PDSM
can process. To address this, the GUI code has been designed to “pace” how much data it pushes
to the board by delaying its writes to the USB. For robustness, this area should be addressed.

Utils

This directory contains the general utility functions, which are functions that may be required by
other libraries or to do some sort of general processing tasks.

MSP430 241x,261x examples

This directory contains useful TI code examples for programming MSP430 peripherals. These
examples are not integrated into the PDSM design. They are left here as a reference for future
development.

13

5. Software Documentation

The software of the all of the GUI development is located in the Visual Studio\progdiag
subdirectory. The following is a listing of the software directories with a very brief explanation
of their content and a statement of required future development.

Cmdctlgui

This directory contains the PDHMS GUI source code. The GUI was developed using Visual
Studio 2005 C/C++. Further development will use a later version of Visual Studio and likely be
converted over to C# to take advantage of its GUI development features. When recompiling this
code, it is important to make certain that the directory path location of the MATLAB plot
libraries discussed below is properly coded into the source. This is a portability issue in the
present software version that needs to be resolved. A key problem with this GUI interface is that
it is not scalable if many (hundreds of) nodes are added into the system. The GUI should be
redesigned with this in mind.

Matlab

This directory contains the MATLAB display routines used by the GUI code. Do not alter any of
these routines without first understanding the impact on the PDHMS GUI code contained in the
cmdctlgui directory. MATLAB was used primarily for rapid prototyping of the displays. For
future development, it is desirable to eliminate the use of MATLAB for the data displays and to
focus more on how data and processing results should be presented to the end user in an actual
system.

Raw-device-reader

This directory contains a GUI for reading and displaying the contents of data on memory storage
devices such as an SD memory card. This GUI has been used primarily for debugging during
development on the memory the SD card and is used as a tool for development.

6. Data Acquisition Design Decision

A round robin technique was used in the data acquisition system for simplicity of
implementation. For example, if during an acquisition, we wanted to sample from the external
accelerometer the x-, y-, and z-axes and also from the voltage sensor, a block of samples from
each input would be sampled and then stored to memory. This cycle would continue until a stop
command was issued. In the present release of the firmware, a maximum of 512 samples could

14

be acquired. The reason for the simplicity of this implementation becomes apparent when
considering the following discussion.

This discussion is meant to illustrate the complexities that would need to be addressed in the
future implementation of a more sophisticated data acquisition scheme. A more ambitious
requirement could be to simultaneously sample all sensors while simultaneously storing the data
to the SD memory card without a time break in the data block sizes. The storage rate to the
memory card would have to support the sum of the maximum sampling rates of all sensors. This
would require use of the MSP430 DMA and likely require a typical scheme of ping ponging
between two memory buffers while acquiring and storing. Key design considerations would be
the MSP430’s clock rate, the collective maximum sampling rates, I/O contention, RAM, SD
card, and I/O speeds. Since the MSP430 controls all of these functions, one would need a clear
understanding of what the system’s acquisition requirements so that they can fit within the
capabilities of the MSP430.

In extending this complexity to the present hardware, the following assumptions can be made
with respect to possible sensor sampling requirements. For the three thermocouples, 2-byte
words per sample at very low data rates of 1 Hz or less would be needed. The external three-axis
accelerometer requires 2-byte sample words on each axis with a maximum sample rate of about
8 KHz per axis. The onboard three-axis accelerometer with max output data rate of 400 Hz each
axis requires 2 bytes per sample. The current and voltage sensors will be assumed to sample at
8 KHz rate at 2 bytes per sample. Table 2 summarizes this discussion.

Table 2. Overview of different sensors used in the PDSM.

Sensor Type Bytes Per
Sample

Required Sample Rate
(Hz)

Data Rate
KB/s

Measurement
Device

M3000 axis-x 2 8000 16 ADCMSP430
M3000 axis-y 2 8000 16 ADCMSP430
M3000 axis-z 2 8000 16 ADCMSP430
CSA-V1 2 8000 16 ADCMSP430
Voltage TP 2 8000 16 ADCMSP430
LIS302DL axis-x 2 400 (8000) 0.8 (16) ADCMSP430
LIS302DL axis-y 2 400 (8000) 0.8 (16) ADCMSP430
LIS302DL axis-z 2 400 (8000) 0.8 (16) ADCMSP430
K-Thermocouple 1 2 1 (0.1) 0.02 ADS1240
K-Thermocouple 2 2 1 (0.1) 0.02 ADS1240
K-Thermocouple 3 2 1 (0.1) 0.02 ADS1240
 Required Storage Data Rate 82.5 (128)

Several points can be made regarding the different sensors used in the PDSM. First, the MSP430
would have to time share its ADC12 ADC converter across the external accelerometer, the
current sensor, the voltage sensor, and the onboard accelerometer. The MSP430 would have to
manage switching across these sensors while maintaining the desired sampling rates across each
sensor. As noted in table 2, all sensors do not have the same sampling rate, and conceivably the

15

user might have an interest in using sampling rates different from those in table 2. The MSP430
would have to initiate samples taken on the thermocouple sensors, and these sensors are sampled
using the ADS1240 ADCs, which are SPI controlled. The MSP430 would have to direct the
acquired data into the memory card on the SPI bus. The complexity of such an implementation
soon becomes apparent, and one has to consider that such a configuration may not be possible
with the MSP430.

7. Communications Hardware Design Details

7.1 I2C Design Details

The I2C protocol is a wired serial communications interface standard. Data are transferred on the
serial data line (SDA) and synchronization is maintained by the serial clock (SCL). Each PDSM
board can act as either an I2C slave or an I2C master on the I2C bus as implemented with the
PDSM boards.

In figure 5, the I2C bus header P8 is used to interconnect two or more boards on the I2C bus. To
make the connection, the SDA, SCL, and ground pins of each board must be interconnected
using the P8 connector. On each board, all SDAs must be connected together, all SCLs must be
connected together, and all grounds must be connected together.

Further, as shown in figure 5, the master node, the node with ID jumpers set to 0, has the two
pull-up resistors, R13 and R12 jumpers, installed to pull the SDA and SCL lines high. On the
master node with ID set to 0, a jumper is installed connecting pins 1 and 2 on P12, and a jumper
is installed connecting pins 3 and 4 on P12. All other boards, PDSM nodes with jumper ID set to
1 through 8, do not have the P12 jumpers installed. Figure 6 shows that MSP430 pins P3.1 and
P3.2 are used to control the SDA and SCL signals, respectively.

Figure 5. I2C schematic.

16

Figure 6. I2C interface to MSP430.

7.2 USB Design Details

Figure 7 shows the schematic of the USB interface design, which uses the CP2102 USB to
UART bridge chip. The present implementation does not implement any hardware handshaking,
which may be of interest in future designs. Figure 8 shows the interface connections of the
URXD0 and UTXD0 control lines to the MS430. MSP430 pins 3.4 and 3.5 connect to the
CP2102 pins 25 and 26. The USB interface provides the communications interface between the
PDSM board and a laptop or computer workstation. On a Windows 2000 or XP platform, the
device driver CP210x_VCP_Win2K_XP_S2K3 from Silicon Labs must be installed on the
laptop or workstation that runs the GUI. A USB connector connects at J2 for direct PC to PDSM
communications.

Figure 7. USB schematic.

Figure 8. USB interface to MSP430.

17

7.3 Wireless Front End Design Details

The CC2420 is a 2.4-GHz IEEE 802.15.4 compliant RF transceiver designed for low power and
low voltage wireless applications. The IEEE 802.15.4 protocol is designed for low data rate
personal area networks (PANs). Sixteen communication channels are available, each of which
supports a maximum data rate of 250 kbps.

The CC2420 has 33 two-byte configuration registers, 15 command strobe registers, a 128-byte
transmit (TX) RAM, a 128-byte receive (RX) RAM, and an 112-byte security RAM. The TX
and RX RAM can be accessed by address or accessed through two 1-byte registers, in which
case the memory acts as first-in-first-out (FIFO) buffers. This report does not address writing or
reading any data from the security RAM and the system does not access the TX and RX RAM as
memory, only as FIFOs.

Interfacings to the registers occur over SPI, also referred to as a four-wire interface. In addition
to using the SPI pins, it is also necessary to observe the signal on the FIFO, FIFOP, SFD, and
CCA pins, and to drive the VREG_EN and RF_RESET pins for operation of the CC2420.

The CC2420 includes a digital direct sequence spread spectrum baseband modem providing a
spreading gain of 9 dB and an effective data rate of 250 kbps. The CC2420 also provides
extensive hardware support for packet handling, data buffering, burst transmissions, data
encryption, data authentication, clear channel assessment, link quality indication, and packet
timing information. These features reduce the load on and allow the CC2420 to easily interface
to the microcontroller hardware.

Because the CROWS demonstration is meant to be a wireless sensor network, the IEEE 802.15.4
wireless communication standard was ideal since it is specifically designed for wireless sensor
PANs. The CC2420 includes several features that simplified the development of the RF
capability for this project. There are few required external components needed to operate the
CC2420 and the chip performs modulation, data encryption, and address recognition, and
includes an onboard direct sequence spread spectrum (DSSS) modem. All these attributes can be
reconfigured through software if necessary and even the RF output power is programmable with
a max output of 0 dB of built in output power.

Few external components are required for the operation of the CC2420. The application circuit
used in the PDHMS is shown in figure 9 and the external components shown. For more technical
details on the components used, see the Chipcon CC2420 datasheet (1).

18

Figure 9. Typical application circuit with discrete balun for single-ended operation.

7.4 Performance Limitations of the CC2420 Transceiver

For the demonstration on the CROWS board, the 250-kbps rate was not a significant problem
because we were not acquiring data at high data rates. In future redesigns, it may be necessary to
go to a higher communication standard and, therefore, a different transceiver chip to increase
wireless data rates.

The CC2420 is not a full duplex transceiver, which means that it cannot transmit and receive
data packets simultaneously. During the development of the wireless firmware for the PDSM,
we decided that when streaming large amounts of data it was ok to occasionally drop a random
packet. For the purposes of the demonstration, simply streaming the data and demonstrating the
overall network functionality of the PDHMS was the main priority. Therefore, although the
CC2420 supports automatic acknowledgements, the firmware did not take advantage of this
feature. We did not want to introduce any additional lag to the wireless communications, nor did
we think the payoff for the additional time it would take to develop the firmware would add great
value to our demonstration on the CROWS platform.

7.5 Wireless Networking Capabilities

For the CROWS demonstration, a star network topology was used. The primary disadvantage of
a star topology is the high dependence of the system on the functioning of the central PDSM.
While the failure of an individual link only results in the isolation of a single node, the failure of

19

the central PDSM renders the network inoperable, immediately isolating all nodes. The
performance and scalability of the network also depend on the capabilities of the PDSM.
Network size is limited by the number of connections that can be made to the PDSM master
node, and performance for the entire network is capped by its throughput. To resolve these
issues, we suggest using the CC2420 and the ZigBee stack, which also supports ad-hoc and mesh
network structures with automatic route rediscovery. This type of network would be much more
robust in the presence of failed nodes.

Figure 10 shows the standard IEEE 802.15.4 data packet structure for wireless communications
used in the PDHMS. The structure of this data packet is what determines the order in which
bytes are written to the TXFIFO for wireless transmission and read from the RXFIFO during
data packet reception.

Figure 10. IEEE 802.15.4 data packet structure used in wireless PDHMS communications.

The Synchronization Header and PHY header are automatically appended onto the data packet
by the CC2420 transceiver. The frame control field (FCF), data sequence number, and frame
check sequence (FCS) are all defined by the firmware controlling the microcontroller. The FCF
contains information such as whether acknowledgements have been turned on, whether
encryption is being used, and which modes are being used. The FCF is generated based on the
contents of various registers. The sequence number simply keeps track of the transmission and
reception sequence of data packets between specific node addresses, which is more important
when monitoring dropped packets or for automatic acknowledgements. A 2-byte FCS follows
the last payload byte, as shown in figure 10. The FCS is calculated by the CC2420 over the MAC
protocol data unit (MPDU), i.e., the length field is not part of the FCS. This field is automatically
generated and verified by the CC2420 hardware when the AUTOCRC control bit is set in the
MODEMCTRL0 control register’s field. If the FCS check indicates that a data packet is
corrupted, then the firmware disregards the entire packet.

The addressing information and data payload are both variable lengths. In the PDHMS
application, the addressing information consists of 6 bytes: two each for the PAN ID, destination
node address, and source node address. The rest of the data packet is made up of the data

20

payload. This payload may consist of inter-node messages, user requests, or simply sensor data
being transmitted to the master node. As defined for the CROWS application, the largest
acceptable data payload for wireless transmission is 111 bytes; however, all 111 bytes do not
have to be used. The format of the data payload is the same as when generated for serial
communications as described in section 9.10.

7.6 Real-time Clock (RTC) Design Details

The PDSM board uses the M41T93 for its RTC. The M41T93 has a SPI interface for
configuration and reading the values of the RTC. Figure 11 shows the schematic of the RTC and
figure 12 shows the pin connection interface between the MSP430 and the M41T93. Newer
MSP430 families have integrated RTC functionality, so it is likely that the M41T93 will not exist
in future designs. For more details, see the M41T93 datasheet (7) on its operation and
capabilities.

Figure 11. M41T93 schematic.

Figure 12. M41T93 to MSP430
pin connections.

7.7 PDSM Board Power Distribution Details

Figure 13 shows the power regulation circuitry for the PDSM board. It is powered by 28 V
supplied at the P3 connector, with positive voltage on pin 2 and GND on pin 1. An L78L24
regulates the voltage to 24 V, which is used to power the external accelerometer circuitry. An
LM9076BMA-5.0 uses the 28 V to generate 5 V, which is generally not used in the design and
powers a green LED to indicate the power is on. The LM9076MBA-3.3 is used to generate 3.3 V
from main power, and powers the MSP430 and most of the low power IC chips in the design.

21

Figure 13. Power regulation circuitry.

The MSP430 and most peripherals in the PDSM design are 3.3 V or lower devices. The need for
the 28-V power supply is driven by the fact that 28 V was what was available in the system in
which the PDSM was to be installed, and also the external accelerometer conditioning circuitry
required a 24-V power source.

8. Sensor Design Details

8.1 Thermocouple Design Details

The PDSM board’s design supports connecting up to three k-type thermocouples. The hardware
and firmware design of the thermocouples were primarily taken from the TI application report
(7). The thermocouple system designed used was the ADS1241 eight-channel ADC, which
supports single or differential input modes. Figure 14 shows the circuit schematic of the
thermocouple design. Figure 15 shows the pin connections of the MSP430 to the thermocouple
circuitry. The ADS1241 received a 1-MHZ clock from the MSP430 SMCLK signal. The
ADS1241 is a SPI device controlled by the MSP430’s SDO, SDI, and SCLK control signals. The
ADS141 chip is enabled by driving the ADS1_CS line low. The ADS1241 is used in the
differential mode to measure the voltages across the thermocouple terminals. In the design,
thermocouple 1 attached across screw terminal pin 1 and pin 2; thermocouple 2 attached across
screw terminal pin 3 and pin 4; and thermocouple 3 attached across screw terminal pin 5 and
pin 6.

22

Figure 14. Thermocouple design schematic.

Figure 15. MSP430 pin connection to
thermocouple circuits.

The differences that exist between this design and the original TI design results from the
firmware of the TI design being originally written in assembly language. For this design, the
firmware was completely written in C/C++ by ARL. The temperature lookup tables for this
design were generated using MATLAB simulations and the datasheets of the thermisters and
thermocouples. (The accompanying CD includes the MATLAB files thermister.m and
thermocouple_typeK.m, which contain more details on the generation of the lookup tables used
in the firmware.) In running accuracy lab tests, it was determined that the temperature
measurements came to within in ±1 °F of error, once the same calibration offset was
programmed across all of the boards.

23

8.2 Current Sensor Design Details

The current sensor is designed using the CSA-V1 Hall Effect current sensor device. The details
can be found in the GMW application note (6). The CSA-1V devices were used in the single
ended mode with its A-OUT output at 2.5 V ±2.5 V. A reading of 2.5 V implies 0 A with the
device’s sensitivity specified as ~44 mV/A. The circuit schematic of the CSA-1V to MSP430
interface is shown in figure 16. The A3 net label connects to pin 2 of the MSP430, which is the
ADC12’s A3 channel input. The maximum input of the current sensor to the MSP430’s ADC
should be no greater than 2.5 V per the MSP430 specification. A divide created by a two resistor
divider network using two 16 k resistors and a unity gain buffer amplifier, was used to feed the
A-OUT/2 to the MSP430 ADC input. A 1N5221B Zener was used for extra circuit protection.

Figure 16. CSA-1V to MSP430 interface.

To convert the voltage readings at the ADC input, one can calculate current with the following
analysis. In this analysis, Vadc = A3, which is the voltage input to the MSP430 for the current
sensor. From the voltage divider, Vadc is half of Aout which yields equation 1:

 1
2adc outV A= (1)

Equation 2 is derived from how the MSP430 ADC input is configured, where Vref is 2.5 V. This
is an MSP430 internal voltage used as the reference for theMSP430 ADC12.

 1
2adc outV A= (2)

Equation 3 is obtained from the CSA-1V specification sheet (3):

 44
csa

mVI
Amp

∝ (3)

24

Assuming a linear relationship, the current reading can be computed as equation 4, where Offset
is the zero current offset:

0.044

out
csa

AI Offset≅ + (4)

Setting equation 1 equal to Aout and substituting into equation 4 yields equation 5:

2*
0.044

adc
csa

VI Offset≅ + (5)

Substitute equation 2 into equation 5 yields equation 6:

2*(*)

0.044*4095
ref word

csa
V ADC

I Offset≅ + (6)

Plugging in values yields equation 7:

 0.0278*csa wordI ADC Offset≅ + (7)

Now assuming that when I = 0, ADCword = 2048, we solve equation 7 and get Offset = 56.9344.
Equation 7 can then be written as

 0.0278* 56.9344csa wordI ADC≅ − (8)

Equation 8 approximates converting the ADCword readings to amperes. Plugging the value for
ADCword into equation 8 to the limits of 0 and 4095 suggests the limits of the current sensor is
±56.9344 A. To verify the accuracy of equation 8, three different CSA-1V sensors were
connected to the same PDSM board to take measurements of a circuit consisting of a variable
power supply connected across the terminals of a high power resistor. The power supply voltage
was varied to generate currents from 0 A up to 12 A, in increments of 0.5 A, and the readings
were taken using a current meter. Also, the corresponding readings of the ADCword on the CSA-
1V current sensor were taken by the MSP430. Equations 9–11 were computed based on the three
data sets, and these represent the correct scaling functions in scaling the ADCword readings to
current for each of the CSA-1V sensors used in the CROWS demonstration:

 CSA-1V #1 : wordI 0.0309*ADC - 62.868= (9)

 CSA-1V #2 : wordI 0.0301*ADC - 61.113= (10)

 CSA-1V #3 : wordI 0.0296*ADC - 60.614= (11)

As shown above, all CSA-1V devices have different intersects and slopes, and all differ from
equation 8. These measurements suggest the need to calibrate each sensor for scaling accuracy.
This requirement is not practical if large numbers of these types of sensors are used. This would
require that all PDSM nodes be programmed uniquely with a scaling equation as above, and

25

calibration would be required every time a different CSA-1V sensor is used. This situation also
raises the concern that there is a logistics requirement in knowing which current sensor is
attached to a given PDSM board. Because of this, it may be necessary to investigate another type
of current sensor that will not require a calibration procedure for each sensor.

8.3 Voltage Sensor Design Details

The voltage sensor was implemented using a resistor voltage divider fed to the input of a
LP324M operational amplifier wired as a unity gain amplifier, as shown in figure 17. Figure 17
shows the voltage test point, Vs, on pin 8 of the terminal strip connector. That connector feeds
across the voltage divider network, creating voltage Vi at pin 5 of the operational amplifier. The
output of the operational amplifier, pin 7, feeds A4 of the MSP430 through a 10-ohm resistor,
which is there to prevent circuit oscillations. Because of the configuration of the circuit,
approximately the same voltage level Vi is assumed to be at pin 5, pin 7, and across the D7
diode. A 1N5221B Zener was used for circuit protection. The input impedance of the MSP430
ADC is nominally 2 K ohms, so there is negligible voltage drop across the 20-ohm resistor. For
measurements in the CROWS, we wanted to measure at most 30 V from the CROWS power
line. With R24 and R26 having values of 33 K and 2 K ohms, respectively, the following circuit
analysis shows that the voltage sensor can safely measure 0 to 43.75 V on its input when fed to a
MSP430 ADC12 input.

Figure 17. Voltage sensor implementation.

Applying the resistor voltage divider circuit yields equations 12 and 13:

2*
33 2 17.5

s s
i

V VV = =
+

 (12)

 is VV *5.17= (13)

26

Assuming the reference voltage for the MSP430 ADC12 is set to the internal reference of 2.5 V
(the maximum voltage that should reach the ADC12), the maximum voltage that should be
applied to the voltage point is shown in equation 14:

 max 17.5*(2.5) 43.75sV = = volts. (14)

Equation 14 gives the maximum voltage that should be applied across the voltage test point to
ground. Exceeding this voltage can damage the MSP430 processor.

The procedure to scale the ADC12’s data word readings to voltage follows. The ADC12 voltage
as a function of the ADC word value is

* 2.5*
4095 4095

ref word word
i adc

V ADC ADCV V= = = (15)

Substituting equation 1 into equation 4 yields equation 5,

43.75*

4095
word

s
ADCV = (16)

Equation 16 computes the test point voltage reading as a function of the reading taken on the
ADC12 input.

8.4 Onboard Accelerometer Design Details

The PDSM has a MMA7260Q accelerometer onboard. The perceived application for this
accelerometer is to allow orientation measurements of the equipment being monitored, which
could be useful if one needs to correlate other sensor measurements with the platform orientation
or measure vibrations that the PDSM is exposed to when mounted on a platform. The Freescale
Semiconductors MMA7260QT Rev 5 technical datasheet (2) provides the technical details.
Figure 18 shows the connections of the accelerometer interfaced to the MSP430. The
accelerometer readings are taken from the MSP430’s ADC12 A0, A1, and A2 channels for each
of the three axis inputs. The accelerometer has four sensitivity levels of 1.5G, 2G, 4G, and 6G
controlled by pins P4.5, P4.4, and P4.3 of the MSP430.

27

Figure 18. MMA7260Q accelerometer connections to the MSP430.

When taking measurements on these inputs, the MSP430’s ADC12 reference is set to a Vcc of
2.5 V.

Equation 17 gives the voltage across the inputs of the three axes:

4095

ref word
adc

V ADC
V = (17)

From the MMA7260Q data sheet’s static acceleration specifications, one can derive the angular
positions of the device by computing the linear equations from the points in table 3.

Table 3. MMA7260Q static acceleration
voltage verses angle.

Voltage
Angle

(°)
2.45 0
0.85 180

Here, angle is the angle of a given axis relative to the direction of the Earth’s gravity and voltage
is the reading taken by the ADC12. From this, equation 18 gives the static angle in degrees as a
function of the voltage readings.

 112.5 275.63adcAngle V= − + (18)

where the valid voltages as in the table range from 0.85 to 2.45 V.

Substituting equation 17 into equation 18 with Vref = 2.5 V yields the angle calculation as a
function of the ADC12 readings:

 0.687* 275.63wordAngle ADC= − + (19)

Equation 19 converts the binary ADC12 readings to angular values for each axis. All three
readings can be used to determine the exact orientation of the PDSM within the platform.

28

8.5 External Accelerometer Design Details

The Vibra-Metrics M3000 tri-axial accelerometer is shown in figure 19. The accelerometer (part
number 9353354) is a 10-mV/G accelerometer with a dynamic range of ±500G. It is a
piezoelectric low impedance transducer that requires 15–30 V of DC input to power each axis. A
DC bias of 7 V is generated when properly conditioned. The Vibra-Metrics Accelerometer
User’s Manual, Rev. 2, June, 2004, Part #9350-1000 (8) provides guidance on interfacing the
M3000.

Figure 19. M3000 Vibra-Metrics
external accelerometer.

The conditioning circuitry of figure 20 is designed to supply the proper current to the M3000
accelerometer. A LM334D current source with a 1N457 temperature compensating diode was
used to bias each axis on the M3000. The National App Notes, March 20005,
LM134/LM234/LM334 (5) provides complete details of this design circuit. Figure 21 shows the
actual circuit.

29

Figure 20. M300 x-axis conditioning circuitry and connection to MSP430.

Figure 21. M3000 external accelerometer conditioning circuit.

Using the LM334D application notes guidelines, the general equations for the circuit are
ISET ≈ 0.123V/R1 and R2/R1 ≈ 10. Setting ISET =2ma, results in R1 = 67 ohms and R2=
670 ohms. These values were used in the design with reasonable results.

To use the M3000, the specs require that it is driven with a nominal current source of 2 mA. The
M3000 specification sheet suggests a bias current from 1–6 mA. The Vibra-Metrics application
notes suggest biasing the current to 2 mA, so this was used as our design goal. Connecting a
28-V source, the 24-V regulator regulated to about 23.8 V. The measured bias voltage returned
from connected M3000 accelerometer (s/n 3069) was about 6.5 V. This voltage appeared to be
within a reasonable range of the expected 7 V.

30

The accelerometer G-calculation is performed based on the M3000 specification of a voltage
variation around the DC bias voltage of 10 mV/G. The ADC sensitivity is 2.5 V/4096 =
0.61 mV/bit. Table 4 shows measurements made with a voltmeter across the output pins of the
M3000 accelerometer while the circuitry was fed to the ADC of the MSP430. All of the axes
measurements are reasonably close to the expected 7 V. Differences are likely due to error
tolerances in the components used and actual regulated voltage levels. These static readings have
no significance in the actual dynamic readings; however, they do suggest the need to perform a
calibration procedure to establish 0G acceleration offsets so that these values can be subtracted
from dynamic measurements.

Table 4. Voltmeter reading across LM334D voltage M3000 orientation.

 X pin1 Y pin 7 Z pin 8
x-vertical 6.37 6.41 6.46
y-vertical 6.35 6.40 6.44
z-vertical 6.38 6.41 6.45

8.6 Resistor Divider Network Computations for Accelerometer Op-amp

To minimize circuit loading effects on the M3000’s bias current, a high input impedance unity
gain buffer operational amplifier was used after the current source, as shown in figure 20, to feed
the accelerometer output to the MSP430. The operational amplifier’s rail voltage is set to 24 V.
The M3000 accelerometer is specified to output ±500G with 10 mV/G. This setting implies a
voltage swing of 500G × 10 mV/G = ±5 V on the output of the M3000. Further, this suggests
that the operational amplifier voltage output, which has been measured at ~6.4 V with no
acceleration, can swing ±5 V around that level giving a maximum possible swing from 1.4 to
11.4 V. The operational amplifier output must be able to handle these levels. The LP324 has a
low level worse-case output voltage of 1 V, well below 1.4 V, and a high level worse-case
voltage of 24–1.9 = 22 V. Thus, the LP324 can accommodate the full swing level of the
accelerometer.

8.6.1 Computation of Resistors

In determining appropriate resistor values for feeding the MSP430 ADC12, TI Application
Report SLAA148 (4) was referenced. On the output of the buffer, a voltage divider is needed to
condition the output to within the MSP430 voltage range and selection of the resistor. The circuit
feeding the ADCs from the M3000 is a unity gain op-amp fed to the resistor divider network. To
calculate the required resistors values, the Thevenin equivalent of the op-amp resistor divider
network feeding the ADC12 is

 2

1 2

*
()

op amp
s

R V
V

R R
−=

+
, (20)

and the Thevenin resistance is

 1 2

1 2
s

R RR
R R

=
+

 (21)

31

Arbitrarily setting R1 = 9.5 K and R2 = 2.5 K yields Vs = 2.357 with Vop–amp = 11.5 V and yields
0.2197 V when Vop–amp = 1.4 V. The original operational amplifier used in this design was the
LP324, where its lower voltage limit restricted to 1 V, which effectively limited the dynamic
range of the accelerometer sensor. The latest design used the LM324, which had a lower limit of
0 V, thus allowing a wider dynamic range. It was observed in measurements that although the
LM324 did provide a wider dynamic range, it was much noisier than the LP324. Selecting the
appropriate amplifier requires further investigation.

8.6.2 Sampling Rate Estimate

To estimate the sampling rate of the ADC12, figure 22 was taken from TI MSP430 application
notes and shows the equivalent circuit for timing considerations of the ADC12. Figure 22 shows
the ADC12 input with voltage source Vs source resistance Rs, and internal resistance Ri with
typical value assumed to be 2 K. From equation 21, Rs is computed to be approximately 2 K,
and tsample as computed in figure 22 must be greater than 2.24 µs. Although this suggests a
sampling rate of 446 kHz, sampling is further restricted by the ADC12 maximum sample rating
of about 200 ksps. Laboratory measurements were shown to give reasonable sample rates of
about 100 ksps or less, but this will vary depending on the input load to the ADC12.

Figure 22. Schematic sample timing.

8.7 SD/MMC Card Design Details

The schematic of the SD card connection to the MSP430 is shown in figure 23. The SD card
implementation of the SPI protocol for communications between the MSP430 and the SD to
MSP430 pin connections are shown in figure 24. On pin 6, a 2 K pull-up resistor is used to
detect when the memory card is inserted into the SD Card Hirose connector. Inserting the
memory card into the connector causes the chip detecting a voltage level on pin 6, SD1_CD, to

32

be pulled to ground. The MSP430 firmware is programmed to detect ground level to confirm SD
card insertion. The serial data input is connected to pin 2, serial data output is connected to pin 7,
and the serial clock SCLK is connected to pin 5 of the SD card. The basis of the firmware and
hardware in this design was derived from TI Application Report, SLAA281A–November 2005–
Revised January 2006 (9).

Figure 23. SD/MMC card schematic.

Figure 24. MSP430 to SD/MMC interface.

8.8 MSP430 Clock Use and Distribution Design Details

This section describes the use of the MSP430 clocks and the clock source, defining which
peripherals use which clocks of the MSP430 and the desired clock rate settings of each. Given
the difference in clock speeds for the various peripherals, it is important to keep in mind the
settings of these clocks and their sources. Performance of the peripherals is affected by the
various MSP430 clock settings. Care must be taken in the firmware to manage these clock rates.
Table 5 is presented to make the developer aware of the need to pay close attention to the clock
settings and how they impact the system. The clock settings are primarily dictated by how fast
data must move in the system, clock specifications of the peripheral devices, and system power
requirements.

33

Table 5. Overview of the clocks embedded onboard the MSP430 chip and the corresponding clock sources.

MSP430
Clock

Peripheral Speed Clock Source Comments

MCLK MP430
CPU

8 MHz
(16 MHz)

XT2 crystal A CPU clock. Preferred to run at this rate to
maximize data processing, data transfers, storage
rate, and communications.

MCLK or
ADC12OSC

ADC12 8 MHz
(16 MHz)

or
nominal

5 MHz with
ADC12OS

C

XT2 crystal The actual rates affect sample and hold. Setup times
are defined by the ADC12 registers. Review these
carefully in the msp430 documentation. This clock
rate is not the same as the sample rate of ADC12.
The ADC12 sample rate is dictated by sample and
hold setup times and the Timer A1 interrupt rate as
used in the firmware. See msp430 documentation
and firmware for more details.

SMCLK Timer A1 1 MHz MSP430
internal
digitally
controlled
oscillator
(DCO)

Timer A1 is used for the overall sampling rate of
ADC12, taking into consideration
setup/hold/conversion times as discussed above.

SMCLK UART 1 MHz MSP430
internal DCO

The UART requires a fixed rate clock to get a
115200-baud rate. The MSP430 and GUI are
presently hardwired to 115200 baud.

SMCLK ADS1240 1 MHz MSP430
internal DCO

The ADS1240 clock rate cannot be greater than
4 MHZ; however, this clock can be locked at the
lower 1 MHZ, since we are sampling at such a low
clock rate. Specs indicate that ADS1240 clock
minimum is 1 MHZ.

SMCLK I2C 1 MHz MSP430
internal DCO

Clock source selection is done in the I2C master
initialization code. It is presently set to SMCLK,
which is set to 1 MHZ on the DCO.

9. Firmware System Level Design

This section describes the firmware design of the PDSM. Figure 25 is a block diagram of the
architecture of the network communication of the PDHMS. The communications for the PDSM
boards uses a common approach where all communications and system behavior is message
driven. With the message driven paradigm, a single master (client) and multiple slave (servers)
topology is used in the form of a star network (as shown in figure 16). The master is typically
connected to the PDCS computer via a USB port. The PDCS runs the system command and
control GUI. Through the GUI, the user can issue commands to the master to configure the
master itself and/or all of the slave nodes in the system. The master is the connection point
between the PDCS and all slave nodes in the system, thus the master acts as a communications
broker in the architecture. The master can issue commands such as making status requests of
each node, and can send configuration commands to each node and data acquisition commands
to the nodes. Each master and slave pair has a unique 3-bit address identification number that is

34

configured by setting the appropriate jumpers. The 3-bit address limits the number of nodes in
the system to eight. However, with minimal design change, the number of nodes in the system
can be increased to whatever is required. The master node must always be connected to the
PDCS, and its address identification number must always be set to zero (000). The slave
addresses must be set to settings from 1 through 7 (001–111). To avoid communications
conflicts in the network, care must be taken to ensure the address identification numbers of each
PDSM is unique. These node address settings are used by the USB/USART, wireless, and I2C
communications mediums in the system.

Figure 25. Inter-node star network communication hierarchy.

9.1 Setting PDSM Jumpers

Figure 26 shows the circuit schematic and table 6 shows the node addresses versus PDSM
jumper settings. We used JMP0, JMP1, and JMP2 to set the PDSM address identification
numbers, which corresponds to P3.0, P5.6, and P5.7 of the MSP430. P3.0, P5.6, and P5.7 are
tied to pull-up resistors via 2-K resistors. When attaching jumpers JMP0, JMP1, or JMP2, the
corresponding pin gets pulled to ground. The firmware is written to use the inverse logic levels
of the lines so that setting the jumpers gives addresses that are more natural to the user.

35

Figure 26. PDSM jumper schematic.

Table 6. Node address versus jumper settings.

JMP2 JMP1 JMP0 Address Node Name
off off off 0x0 Master
off off on 0x1 Slave1
off on off 0x2 Slave2
off on on 0x3 Slave3
on off off 0x4 Slave4
on off on 0x5 Slave5
on on off 0x6 Slave6
on on on 0x7 Slave7

The slave boards respond to messages sent from the master through the various communication
mediums. Each communication medium supports access to all defined commands within the
system. When a slave or master receives a command request on a particular medium, it always
responds on the same medium on which the request arrived.

9.2 Communication Network Design Decisions and Limitations

Each PDSM board has a USB connector. The connector is used to allow the user to issue
commands to the board through the PDHMS GUI if necessary. All nodes have the exact same
copy of firmware running on them. The node with jumper ID zero behaves as a master node and
the other jumper IDs behave as slaves. To the end user, this means that connecting a PDCS into
the USB of the master gives the user remote access to all nodes in the network through the
command structure. However, connecting a PDCS into the USB of a slave only gives the user
access to control the slave to which the PDCS is physically connected. The user cannot reliably
communicate from a slave address ID out to another node in the network with the PDCS
connected to the USB connection of a slave node. The current firmware does not support this
ability. We implemented the system in this manner to limit the communications firmware design
complexity and allow the user a little more flexibility in debug and development. A later version

36

should probably allow a PDCS to connect to any slave via USB and communicate to all nodes in
the network, effectively allowing any slave node to serve as a master node. This capacity should
be much easier to implement when using an RTOS.

The USB interface uses pins 33 and 32 of the MSP430. This makes use of the MSP430 interrupt
vectors USCIAB0TX_VECTOR and USCIAB0RX_VECTOR for transmit and receive USART
operations. The I2C interface makes use of pins 29 and 30 for communications, using the
interrupt vectors USCIAB0TX_VECTOR and USCIAB0RX_VECTOR for transmit and receive
operations. The interrupt handler must process interrupts for multiple communications channels.
Interrupt flag registers must then be monitored to determine the actual source of the interrupt to
process the interrupts correctly. This process increases the complexity of software integration
between differing communications mediums, which is one of the reasons we created the int-lib
to force these commonalities into one location in the software.

9.3 Medium Communications

To perform communications through IEEE 802.15.4, I2C, and USB, we developed a high level
application layer of function calls. These calls are required to isolate the general P&D
application software from the underlying details of the communications mediums. In this
process, receiveMsg() pseudo code handles incoming messages originating from IEEE 802.15.4,
I2C, or USB, and sendMsg() allows the PDSMs to send messages to the desired destination:

• receiveMsg()―All receive communications are interrupt driven. When a received data
communications interrupt occurs, the receiveMsg() function is called to handle the
message. Depending on the interrupt source, receiveMsg() calls the appropriate
communications device driver to receive the incoming message. Upon return from
receiveMsg(), the parameters of the function contain the message source, the message
command, the length of the data, and the data placed in the data buffer. The valid values of
a message source are dI2C, dZigBee, and dUSB. These values tell the slave where to
respond: Cmd indicates the command the slave must perform, dataLen shows the length of
the data, and dataBuff contains the received data. The following is an example of
receiveMsg() code:

void receiveMsg(unsigned short *msgSrcAdrr, unsigned short *medium,
unsigned *cmd, unsigned *dataLen, char *dataBuff);

• sendMsg()―All communications messages sent by either a master or slave are done
through the sendMsg() function call. The communications channel used to send the
message is msgDst. The valid values of a message source are dI2C, dZigBee, and dUSB.

 Cmd indicates the message command, dataLen shows the length of the data to be sent, and
dataBuff contains the data to send. A value of true is returned if the send is successful;
otherwise, false is returned upon failure. The following is an example of sendMsg() code:

37

bool sendMsg(unsigned short msgSrcAdrr, unsigned short medium,
 unsigned cmd, unsigned dataLen, char *dataBuff);

9.4 Message Bus Architecture Design

Figure 27 shows the general mechanism for inter-processor communications within the PDHMS.
Although this example shows communications from the GUI to one slave node, this mechanism
is used to communicate with all nodes in the system. Each message sent on the message bus must
have a message header. The message header defines the originating source of the message, the
destination node of the message, and the gateway to be used to pass the message from source to
destination. The source, destination, and gateway are all defined by two parameters: medium
and address. When a node initiates communications on the message bus, it must fill in this
header information correctly for the message to be sent to the proper destination and for a
potential reply message to be received back to it.

Figure 27. Message bus architecture.

In the example shown in figure 27, the GUI wants to send a message to slave node 1, and slave
node 1 sends a message back to the GUI. This process is performed using the following 4 steps:

• Step 1: The GUI node fills in the header as indicated by “1” in figure 27. The message from
the GUI always moves across the UART (USB) connection. The GUI configures the source
medium as UART and the source address as GUI. The GUI node also fills in the
destination medium as I2C and destination address as slave1. In the present system, the
gateway is always configured to be the masterNode0 (address 0) and the medium in this
example (what the gateway uses to talk to the slave) is configured as I2C. The GUI sends a
message with this header information to the master node, which is always the gateway.

38

• Step 2: Once the master node receives the message sent from the GUI in step 1, its job is to
determine if the message is for the master node or if the message should be forwarded to a
destination node. If the message is intended for the master node, the master node processes
the message according to the command set. In this example, however, the master node is
required to forward the message to slave node 1 across the I2C bus as indicated by the
destination setting in the message as sent out by the GUI. So, the master forwards the
message out to the I2C bus to slave 1 with the original information unmodified.

• Step 3: The slave 1 receives the message and processes the message according to the
command set. If the slave is required to reply back to the originating node of the message it
has just received, the slave uses the header information to determine where to send a reply
message. In this example, slave 1 sets the source medium as I2C (based on the medium
used by the message originator, in this case, the GUI) and the source destination as slave1.
The slave sets the source medium to be whatever the original source medium was from.
Using the same medium guarantees that the message will get back to the GUI since it is
communicating on the same channel as the message originated. Since this is a slave node
(slave 1), it uses the gateway medium and address information to send a message back to
the GUI. In this example, slave 1 sends a message using the gateway medium as I2C and
the gateway address as master0.

• Step 4: Upon receiving the message from the slave, the master node again determines if the
message is for itself (and processes it if it is) or forwards the message onto the destination
node. In this case, the master node forwards the message unchanged to the GUI using the
destination medium (I2C) and address (GUI) as defined in the message. This design allows
slaves to cross communicate as required.

9.5 Communications Message Format

What follows is pseudo code of what the actual message formats are in the system. All data types
are little-endian, which is derived from the MSP430 architecture.

Every message sent or received in the network is communicated in the form of one or more
message packets. The number of packets must form a complete message as defined in the
msgPacket structure. The msgPacket consists of a message header, optionally followed by a data
payload.

The packet msgHeader has several fields. The first 2 bytes of the header contain the hexadecimal
synchronization codes 0xaa and 0x55. These values must be at the beginning of packet header
and are used for packet data integrity checks. These values are always checked on the reception
of a packet, and if they are not there, the complete packet is ignored. This check is done as a
means to detect dropped or invalid packet data. The length field is used to determine the length
of the complete packet, which includes the byte length of the packet header and the data payload.
Although the length field is a 2-byte unsigned short integer, the maximum value of length is

39

restricted to greater or less than the value of MAX_PACKET_LENGTH_BYTES. The command
field is a 2-byte short integer, which defines the command transmitted by the message. The valid
values of the command field are defined by the enumerated type PdCommandSet.

The packet data payload is optional, because some messages do not have a data payload, but only
a command. Each message packet size is limited to the size of the message header plus the size
of the maximum allowed data payload. The design defines the maximum packet data payload to
be MAX_MSG_DATA_LENGTH_BYTES. The maximum size of the packet data payload is
dictated by various aspects of the hardware, such as the available RAM memory of the MSP430
microcontroller or the largest byte size a message can be sent through a given communications
medium (i.e., through the wireless CC2420 chip, as was the case for this design). The total
packets field defines the total number of packets that make up a complete message. The receiver
of multiple message packets is required to reassemble the packet message before processing the
message. The packet number field defines which packet of the total packets is being sent, and
this value counts from one to the total number of packets. The source field defines the source
node identification and medium. This information allows the receiver of a message to reply back
to the originator, if desired. The destination field is the destination node ID and medium. The
gateway field is always the master’s node address and medium. All slaves communicate through
the master gateway back to the GUI.

For the network system to operate properly, a critical point to consider in this design is that all
nodes communicating in the system must adhere to the same message command structure. All
nodes must be programmed with the same command tables for proper command processing. If
the command table on the GUI software is updated, all nodes in the network must be
reprogrammed with the same command table as the GUI. Conversely, if the command table on
the MSP430 is modified, the GUI code’s command tables must be updated to the same values.

A complete message is made up of multiple packets. The maximum number of packets for a
complete message is defined by the totalPackets field, which has size of “char.” “Char” limits the
maximum number of packets per message to 255. Furthermore, for the present design, the
maximum number of bytes allowed per data payload is defined by
MAX_MSG_DATA_LENGTH_BYTES, which is set to 80 bytes. This setting implies that the
total data length of a complete message in the network can be no greater than 80 × 255 = 20400
bytes. These values can be adjusted depending on the need of the PDHMS, but these restrictions
are driven primarily by the limited RAM in the MSP430. If messages greater than this are
required, there are several options available. One could design a higher level message structure
that could be imposed on the interpretation of the data, use a bigger data size for totalPackets, or
consider using a MSP430 with a larger RAM that would allow increasing the data payload size,
among others.

As a design rule, slaves should not be sent messages of sizes greater than one packet. This rule is
due to the limited RAM space that slave nodes have to work with. To date, our design has been

40

able to achieve this requirement. In contrast, slaves must be able to send messages composed of
multiple packets, for instance, when slaves are commanded to send acquired data that span
multiple packets due to the size of the number of samples during a sensor acquisition.

The format of the message structures described previously is as follows:

typedef struct
{
 msgHeader hdr;

char *data; //[MAX_MSG_DATA_LENGTH_BYTES]; new
} msgPacket;

typedef struct
{

 unsigned char haa;
 unsigned char h55;
 unsigned short ln; //length of this packet
 unsigned short cmd; // command
 unsigned char totalPackets;// total number of packets for a complete message,
 //val is 1 or more

 unsigned char packetNumber;// this packet number, 1 up to totalPackets
 ChannelType src;
 ChannelType dst;
 ChannelType gtwy; //gateway, generally the master node attached to the usb gui.

} msgHeader;

typedef struct
{
 unsigned short medium; //use enum commsmedium
 unsigned short node_address; //use enum pdnodeaddr
} ChannelType;

9.6 Pseudo Code, Node Message Processing

This section describes the design behavior of the PDSM master and slave boards. The primary
function of the master PDSM is to transmit configuration and status commands between the
PDCS computer and PDSM slave boards. The master’s job is to issue the desired commands to
the slaves according to the defined command structure described previously. The primary task of
the slave nodes is to acquire data on the sensors they are configured to monitor and pass any
requested information back to the PDCS. Although the master and slave nodes conceptually have
different tasks, they both run the same firmware. This design decision was made to simplify
firmware development; thus, only one copy of firmware is required for programming all the
nodes. As previously mentioned, the node address identification jumpers dictate if a node
behaves as a master or a slave. At the user API programming level, whether a master or a slave,
the nodes perform the same type of message processing operations. The pseudo code of the
behavior nodes is as follows.

41

The network was designed so that the only master issues master node commands to the slaves. A
master node can also issue slave-related commands, because it can act as a slave to the PDCS
GUI interface. The slave nodes only issue slave-related commands, and in most cases, slave
nodes responds to commands sent to them from the master node. Generally, master type
commands allow configuration of a slave node or request status information from a slave. Slave
messages generally consist of slave nodes reporting status information or streaming acquired
data from their sensors. A slave node can also generate error-related messages if it detects a
system error. Section 9.8 presents more detailed definitions of the master and slave commands.
The primary purpose of the master PDSM board is to act as a conduit to move commands and
data to and from the PDCS and the slaves.

The following pseudo code describes the general behavior of the master and slave nodes. Upon
powering up, the InitSystem() function attempts to initialize all of the nodes peripheral and I/O
devices. If there is an initialization failure, the system terminates execution and displays a pattern
of blinking LEDs on the PDSM to indicate a failure. If power up is a success, the PDSM node
lights the red LED to indicate success, and then goes into a sleep mode using the
sleepUntilMsg() function and waits for a command to be received. The sleepUntilMsg() function
returns when a new message is in the message buffer for processing. The receiveMsg() function
is called to receive the message into a receive message buffer. It is the receiveMsg() function that
handles all communications mediums, i.e., I2C, USB, or IEEE 802.15.4. Upon returning from
receiveMsg(), the command is then processed with a command lookup table. In this case, the
switch statement acts as the lookup table to process the incoming message. The incoming
command is compared to those on the switch state, and when a match is found, the command is
processed accordingly. In this pseudo code, the “do cmd” statements are place holders for the
actual code that will be called.

We provide two examples in pseudo code to expose some detailed requirements of the
communications. In the first example, the command cmdGetStatus is received and a
sendReplyMsg() function is called with a value myStatus. The sendReplyMsg() function is
designed to reply back to the originator of the command request with the requested information,
which is the node’s status information in this case. The second example features an operating
mode where a slave node, in particular, is commanded to take data by reception of the
cmdAcquireData command as shown in the pseudo code. Upon receiving this command, the
slave acquires data blocks as shown in the forever loop. After acquiring each data block, the
node then checks for any pending messages by calling checkForMessage(), and if a message is
pending, it stops acquiring data and services the pending message. This example shows the
general processing flow of how the system is implemented in the PDSM prototype and may
require some modification to get different behaviors. For example, a user may not want data
acquisition to resume after a new message is processed. However this approach was not
implemented in order to minimize design complexity.

42

What follows is the pseudo code for RMS initialization and the processing of incoming
messages:

InitSystem(); //init all peripherals and code
for(;;)
{
 sleepUntilMsg();
 receiveMsg();
 switch(cmd)
 { //begin switch
 case: cmd1
 do cmd1;
 break;
 case: cmd2
 do cmd2;
 break;
 case: cmd3
 do cmd3;
 break;
 …
 case cmdConfigureSensors:
 configureSensors(configuration);
 break;
 case cmdGetStatus:
 sendReplyMsg(myStatus);
 break;
 case cmdAcquireData:
 forever
 {
 acquireDataBlock();
 if(checkForMessage()) break;
 }
 case: cmdN
 do cmdN;
 break;
 default:
 do invalidCmd
 break;
 }//end switch
}

9.7 Sensor Configuration

The sensor configuration message is an important message sent to the nodes that defines the
context in which a node will operate when it receives an acquire data command. The
configuration message defines several parameters such as the active sensors, sensor sampling
rates, samples per data block on each sensor, sensor sampling interval, plot settings, and data
archive settings. For more details on this implementation, see the msglib.h header file.

A key weakness to this approach is that as additional sensors are designed into the PDSM, this
message format will have to change, thus significantly affecting software throughout the design.
A better approach would be to define a configuration message for each individual sensor to

43

decouple sensors configurations from one another. The following is the top level data structure
of a sensor configuration message:

typedef struct
{
 unsigned long SensorConfigMask; //32 bit configuration mask ... see #defines below in msglib.h.
 unsigned long M3000SampleRateHz; //sample rate
 unsigned long M3000NumSamples; //samples per burst
 unsigned long OnBoardSampleRateHz; //sample rate
 unsigned long OnBoardNumSamples; //samples per burst
 unsigned long ThermCup1SampleRateHz; //sample rate
 unsigned long ThermCup1NumSamples; //samples per burst
 unsigned long ThermCup2SampleRateHz; //sample rate
 unsigned long ThermCup2NumSamples; //samples per burst
 unsigned long ThermCup3SampleRateHz; //sample rate
 unsigned long ThermCup3NumSamples; //samples per burst
 unsigned long VoltSampleRateHz; //sample rate
 unsigned long VoltNumSamples; //samples per burst
 unsigned long CurrentSampleRateHz; //sample rate
 unsigned long CurrentNumSamples; //samples per burst
 unsigned long AcquisitionIterval; /not implemented
} SensorsConfigType;

The sensor configuration mask, SensorConfigMask in the SensorConfigType structure, is a 32-
bit word. Each bit in the word represents some aspect of a sensors configuration as follows:

Bit 0 - enable M3000 x axis
Bit 1 - enable M3000 y axis
Bit 2 - enable M3000 z axis
Bit 3 - enable multiplex M3000 xyz accelerometer acquisitions
Bit 4 - archive all acquired M3000 data
Bit 5 - enable plot all acquired or playback data
Bit 6 - enable onboard x axis accelerometer
Bit 7 - enable onboard y axis accelerometer
Bit 8 - enable onboard z axis accelerometer
Bit 9 - multiplex Onboard xyz accelerometer acquisitions – not implemented
Bit 10 - archive onboard accelerometer data
Bit 11 - plot onboard accelerometer data
Bit 12 - sel1, onboard sensitivity level bit 0 control
Bit 13 - sel2, onboard sensitivity level bit 1 control
Bit 14 - enable thermocouple 1
Bit 15 - archive thermocouple 1 data
Bit 16 - plot thermocouple 1 data
Bit 17 - enable thermocouple 2
Bit 18 - archive thermocouple 2 data
Bit 19 - plot thermocouple 2 data
Bit 20 - enable thermocouple 3
Bit 21 - archive thermocouple 3 data
Bit 22 - plot thermocouple 3 data
Bit 23 - enable voltage test point
Bit 24 - archive voltage data
Bit 25 - plot voltage data
Bit 26 - enable current test point
Bit 27 - archive current data
Bit 28 - plot current data

44

Bit 29 - enable save data as ASCII, not implemented
Bit 30 - enable simple diagnostics, implemented, but very simplistic for demo purpose
Bit 31 - enable if time range selection is used during playback/retrieve data – works if real time clock functional

A design decision was made to minimize memory use, and so the 32-bit word
SensorConfigMask was devised to control configuration of the sensors. Using the
implementation as above, it soon became clear this size of this 32-bit mask becomes too limiting
when the need to add more configuration related functionality to the sensors arises. In other
words, the 32 bits soon become used up. Future implementation should look at this aspect more
carefully and devise a better approach for sensor configuration. One approach could be to use
more 32-bit words or an XML-based configuration dictionary. There could be many other
approaches, but these comments are made for consideration in future designs.

9.8 Network Commands

For communications, all network commands and command definitions need to be defined. These
are defined in the msglib.h file with the enumerate data structure called PdCommandSet and are
relisted below. Most of these commands are not implemented, but are presented as a possible
roadmap for potential types of commands that one might consider implementing in future
development. For more details of how the commands are used, refer to the source files msglib.h
and msglib.c. Note: There is a distinction between master and slave commands, in that
commands that are intended to be issued by the master node begin with an “m” and commands
intended to be issued by slave nodes begin with an “s”. This requirement must be enforced by
the programmer. Generally, slave commands are sent in response to requests made by the master,
or if a slave is reporting on its status.
enum PdCommandSet //2 byte command word
 {
 //master command set
 mCmdRequestStatus, //cmd
 mCmdStop, //cmd
 mCmdResetBoard, //cmd
 mCmdAcquire, //cmd
 mCmdAcquireWithRealTimeDataRequest, //cmd
 mCmdConfigureSensors, //cmd, 32bit sensor config mask
 mCmdRetrieveAcquiredData, //cmd, 32bit sensor config mask
 mCmdSetRTclock, //cmd, struct RTClockConfig
 mCmdSetLED1, //cmd
 mCmdSetLED2, //cmd
 mCmdSetLED3, //cmd
 mCmdReadSDMemBlock, //cmd, unsigned long blockNo
 mCmdReadSDMemHeader, //cmd
 mCmdClearSDMemBlock, //cmd, unsigned long blockNo
 mCmdCalibrateSensors, //cmd
 mCmdCalibrateSensor, //cmd, uchar sensorID
 mCmdReadRealTimeData, //cmd
 mCmdEnableExternalTrigger, //cmd
 mCmdDisableExternalTrigger, //cmd
 mCmdCycleLEDS, //cmd

 //slave command set
 sCmdVal, //cmd, string
 sCmdTherm1Val, //cmd, short v
 sCmdTherm2Val, //cmd, short v
 sCmdTherm3Val, //cmd, short v
 sCmdThermAllVals, //cmd, short v1, short v2, short v3

45

 sCmdM3000AccelXYZvals, //cmd, short v1, short v2, short v3
 sCmdOnBrdAccelXYZvals, //cmd, short v1, short v2, short v3
 sCmdVoltageVal, //cmd, short v
 sCmdCurrentVal, //cmd, short v
 sCmdSDMemBlock, //cmd, struct memblock
 sCmdSDHeaderBlock, //cmd, struct headerblock
 sCmdRealTimeData, //cmd, struct realTimeData
 sCmdAck, //cmd, short cmdAck
 sCmdInvalid, //cmd, short, received invalid command
 sCmdAcquireNoSensorSelected, //cmd, received an mCmdAcquire cmd, but no sensor on this slave is enabled.
 sCmdStatusReport, //cmd, null terminated data string reporting node status
 sCmdM3000XADCdata, //cmd, data ... subset of M3000 X axis sensor unscaled adc data to GUI
 sCmdM3000YADCdata, //cmd, data ... subset of M3000 Y axis sensor unscaled adc data to GUI
 sCmdM3000ZADCdata, //cmd, data ... subset of M3000 Z axis sensor unscaled adc data to GUI
 sCmdM3000XYZADCdata, //cmd, data ... subset of M3000 multiplxed xyz-axis sensor unscaled adc data to GUI
 sCmdOnBoardXADCdata, //cmd, data ... subset of OnBoard X axis sensor unscaled adc data to GUI
 sCmdOnBoardYADCdata, //cmd, data ... subset of OnBoard Y axis sensor unscaled adc data to GUI
 sCmdOnBoardZADCdata, //cmd, data ... subset of OnBoard Z axis sensor unscaled adc data to GUI
 sCmdOnBoardXYZADCdata, //cmd, data ... subset of OnBoard multiplxed xyz-axis sensor unscaled adc data to GUI
 sCmdVoltsADCdata, //cmd, data ... unscaled adc voltage data to GUI
 sCmdCurrentADCdata, //cmd, data ... unscaled adc current data to GUI
 sCmdThermalCouple1, //cmd, data ... thermalcouple 1, deg C measurement, 4byte long
 sCmdThermalCouple2, //cmd, data ... thermalcouple 2, deg C measurement, 4byte long
 sCmdThermalCouple3, //cmd, data ... thermalcouple 3, deg C measurement, 4byte long
 sCmdThermister, //cmd, data ... thermalcouple 1, deg C measurement, 4byte long
 sCmdStatusMemoryCardFull, //cmd --report that memory card is full
 sCmdStatusMemoryCardByteSize, //cmd, unsigend long - byte size ... implies support of up to 4GB ????
 sCmdStatusMemoryCardAvailableBytes, //cmd, unsigend long - byte size ... implies support of up to 4GB ????
 SMemoryCardNotDetected, //cmd
 sMemoryCardInvalidSize, //cmd
 sMemoryCardInvalidFATFormat, //cmd
 sMemoryCardInvalidDirectory, //cmd
 sCmdOnBoardXYADCmean, //cmd, int16-x, int16-y - unscaled average readings across x&y axis of onboard acceler
//new commands ... slave fault detection commands
 sCmdTC1TemperatureFault, //Cmd, tval, tmin,tmax - slave reports temperature out of bounds of limits
 sCmdTC1TemperatureMinFault, //Cmd, float tval, float tmin - slave reports temperature below lower limit, units deg F
 sCmdTC1TemperatureMaxFault, //Cmd, float tval, float tmax - slave reports temperature above max limit, units deg F

 sCmdTC2TemperatureFault, //Cmd, tval, tmin,tmax - slave reports temperature out of bounds of limits
 sCmdTC2TemperatureMinFault, //Cmd, float tval, float tmin - slave reports temperature below lower limit, units deg F
 sCmdTC2TemperatureMaxFault, //Cmd, float tval, float tmax - slave reports temperature above max limit , units deg F

 sCmdTC3TemperatureFault, //Cmd, tval, tmin,tmax - slave reports temperature out of bounds of limits
 sCmdTC3TemperatureMinFault, //Cmd, float tval, float tmin - slave reports temperature below lower limit, units deg F
 sCmdTC3TemperatureMaxFault, //Cmd, float tval, float tmax -slave reports temperature above max limit , units deg F

 sCmdVoltageFault, //Cmd, vval, vmin,vmax - slave reports voltage out of bounds of limits
 sCmdVoltageMinFault, //Cmd, vval, vmin - slave reports voltage fell below lower limit
 sCmdVoltageMaxFault, //Cmd, vval, vmax - slave reports voltage rose above upper limit

 sCmdCurrentFault, //Cmd, float cval, float cmin, float cmax - slave reports current out of bounds limits
 sCmdCurrentMinFault, //Cmd, float vval, float vmin - slave reports current fell below lower limit
 sCmdCurrentMaxFault, //Cmd, float vval, float vmax - slave reports current rose above upper limit

// error commands
 sCmdVoltageFileDataHeaderError, //Cmd - data block header error
 sCmdCurrentFileDataHeaderError, //Cmd - data block header error
 sCmdTemperatureFileDataHeaderError, //Cmd - data block header error
 sCmdExternAccelFileDataHeaderError, //Cmd - data block header error
 sCmdOnbrdAccelFileDataHeaderError, //cmd - data block header error
 sCmdFileDataReadError, //cmd - generic error reading data file

//more new commands – command the slave uses for sending acquired data back to the GUI.
 sCmdArchivedM3000ADCdata, //cmd header, data block header, data
 sCmdArchivedM3000XADCdata, //cmd header, data block header, data
 sCmdArchivedM3000YADCdata, //cmd header, data block header, data
 sCmdArchivedM3000ZADCdata, //cmd header, data block header, data
 sCmdArchivedM3000XYZADCdata, //cmd header, data block header, data
 sCmdArchivedOnBoardADCdata, //cmd header, data block header, data
 sCmdArchivedOnBoardXADCdata, //cmd header, data block header, data

46

 sCmdArchivedOnBoardYADCdata, //cmd header, data block header, data
 sCmdArchivedOnBoardZADCdata, //cmd header, data block header, data
 sCmdArchivedOnBoardXYZADCdata, //cmd header, data block header, data
 sCmdArchivedVoltsADCdata, //cmd header, data block header, data
 sCmdArchivedCurrentADCdata, //cmd header, data block header, data
 sCmdArchivedThermalCouple1, //cmd header, data block header, data
 sCmdArchivedThermalCouple2, //cmd header, data block header, data
 sCmdArchivedThermalCouple3, //cmd header, data block header, data
 sCmdArchivedThermalCouple, //cmd header, data block header, data
 sCmdPlotData, //cmd header, data block header, data ... plot it.
 };

9.9 Wireless Communication Firmware Description

9.9.1 Digital Communication via a Serial Peripheral Interface

The digital interface between the MCU and transceiver allows the MCU to configure the
transceiver into different modes, read and write buffered data, and read back transceiver status
information. This communication is provided by SPI. Figure 28, taken from the CC2420
datasheet, illustrates the SPI bus interface between the CC2420 transceiver and MCU. The CSn,
SI, SO, and SCLK pins comprise the 4-pin SPI bus while the FIFO, FIFP, CCA, and SFD pins
allow the software to monitor the status of the TXFIFO and RXFIFO as well as the start of frame
delimiter and clear channel assessment pins.

Figure 28. SPI interface between the transceiver
and MCU (1).

For more details on the 4-pin SPI interface see the Chipcon CC2420 datasheet (1) and the
cCC2420 source code.

9.9.2 cCC2420 Class Structure Descriptions

The structures within the CC2420 class define the attributes of the data packets for transmission,
reception, and the network in general. BASIC_RF_TX_INFO defines the data structure, which
is used to transmit packets as follows:

typedef struct {
 WORD destPanId; // network PAN ID
 WORD destAddr; // address of intended receive node
 INT8 length; // length of transmitted packet payload
 BYTE *pPayload; // transmit packet payload

47

 BOOL ackRequest; // wireless acknowledgement enable
 BYTE haa; // appended payload header, byte 1
 BYTE hff; // appended payload header, byte 2
 UINT16 dataLength; // length of entire appended payload
 WORD storageIndex; // position within appended payload
} BASIC_RF_TX_INFO;

BASIC_RF_RX_INFO defines the data structure, which is used to receive packets as follows:

typedef struct {
 INT8 length; // length of received packet payload
 BYTE seqNumber; // order of received packets
 WORD srcAddr; // address of node that sent packet
 WORD srcPanId; // network ID
 WORD destAddr; // address of intended receive node
 BOOL ackRequest; // wireless acknowledgement enable
 INT8 rssi; // received signal strength
 BYTE *pPayload; // received packet payload
 //BYTE *pMsgData; // appended message payload
 //BYTE haa; // appended payload header, byte 1
 //BYTE hff; // appended payload header, byte 2
 //UINT16 dataLength; // length of entire appended payload
 //WORD storageIndex; // position within appended payload
} BASIC_RF_RX_INFO;

BASIC_RF_SETTINGS defines the settings used generally by all nodes in performing both
wireless transmissions and receptions:

typedef struct {
 BASIC_RF_RX_INFO *pRxInfo; // receiption struct (see above)
 UINT8 txSeqNumber; // order of transmitted packets
 volatile BOOL ackReceived; // indicates whether a wireless acknowledgment is received
 WORD panId; // network ID
 WORD myAddr; // node address of self
 BOOL receiveOn; // indicates whether CC2420 is in receive mode
 BYTE messageReady; // goes high to indicate a new message is ready
} BASIC_RF_SETTINGS;

The cCC2420 software class was defined to include all relevant functions and structures that
pertained to the operation of the CC2420 transceiver chip. For more information on the
functions relating to the operation of the CC2420 transceiver, see the cCC2420.cpp source file.

9.10 SD Card Data Storage

This section documents the general data storage format on the SD memory card. The biggest
storage sizes of memory cards used with the PDSM prototype was 2 GB; however, larger cards
can be used. For easy PC access to the data stored on the card, we decided to use a FAT32 file
system on the memory card. Although this has major advantages, a key disadvantage of FAT32
is that the I/O speeds are not as fast as using raw file I/O. If I/O storage rates are too slow when
using a FAT32 device driver, it may be possible to tweak the FAT32 device driver where

48

appropriate to achieve faster access times. For purposes of the prototype demonstration, I/O
storage rates were not a prime consideration.

Because of some limitations of the FAT32 driver used, empty directories for each sensor type
were created on the SD memory card with a PC workstation before inserting the SD card into the
PDSM memory slot. The SD card directory names were created on the PC using a simple bat
script file running the following commands on the memory card:

 mkdir ONBRDVIB
 mkdir XTRNLVIB
 mkdir TEMPER
 mkdir VOLTAGE
 mkdir CURRENT

The PDSM firmware expects these directories to exist before it can properly store data to the SD
cards. In a complete FAT32 firmware library, creating directories on the PDSM should be
possible. When a PDSM board is commanded to archive data, it creates the following files for
each sensor type if they do not already exist:

 ONBRDVIB/data.bin", //contains onboard vibration data measurements
 XTRNLVIB/data.bin", //contains external M3000 Vibrametrics measurements
 TEMPER/data.bin", //contains thermocouple measurements
 VOLTAGE/data.bin", //contains voltage test point measurements
 CURRENT/data.bin", //contains current test point measurements

If the data file already exists when a PDSM is commanded to store a data set, the data are
automatically appended to the file. This is done to preserve previous acquisitions. Which sensor
data is stored during acquisitions depends on how the PDSM board has been configured from a
command sent by the PDCS GUI. Presently there is no command implemented to delete files
from the card. It is conceivable that this would be a useful feature in future development, but it
was not done in this implementation because of the FAT32 device driver limitations.

Each data file has a well-defined data storage format. Each sample set of data for each sensor is
written to the file as a block of data. The data are stored as sequential sets of data blocks, which
consist of the data block header, followed by the raw sensor data. The data storage structure of
the file is as follows, where BlockM is the maximum number of data blocks in the file:

Block1
 DataBlockHeader;
 DataBlock
 Block2

DataBlockHeader;
 DataBlock
Block3

DataBlockHeader;
 DataBlock
 …
BlockM

DataBlockHeader;
 DataBlock

49

The DataBlock is the actual data acquired from the configured sensor, and its context is defined
by the DataBlockHeader. The DataBlockHeader is defined as follows:

DataBlockHeader
 SyncPattern_aa_55h – 2 byte syncronization pattern for data integrity.
 BlockLength – 2 bytes – length in bytes of DataBlockHeader & data - of allows up to 65k byte block length,
 although this can be restricted by processor RAM limitations.
 SampleRateHz – 4 byte uint, sample rate in Hz of the data .

Sensor – 1 byte – identifies the sensor data was acquired from
 (one of eTC1, eTC2,eTC3, eVoltageTp, eCurrentTp,
 eExternalAccelX, eExternalAccelY, eExternalAccelZ,
 eExternalAccelXYZ, eOnboardAccelX, eOnboardAccelY,
 eOnboardAccelZ, eOnboardAccelXYZ)
SampleUnits - 1 byte sensor measurement units: once the data values are
 multiplied by SampleScaleFactor the data will be in units of
 SampleUnits. This will be an enumerate type of type
 eVoltsUnits, eAmpsUnits, eGsUnits, eCelciusUnits,
 eFarenheightUnits
SampleScaleFactor – float type – 4 bytes

 scale factor for the acquired data. Definition
 is “Sensor” specific. Multiplier to convert raw data to units of
 volts, current, degC, G’s, etc.
 NumSamples – 2 bytes number of total samples in this block of data.
 EpochTimeStamp – 4 byte time stamp –epoch time is seconds since Jan 1, 1970 when data was acquired.

The following is a key point. The design approach has focused primarily on the flexibility of
storage, not on storage speed or efficiency. There are obvious cases where there is significant
data header overhead. As an example, when measurements are taken on a thermocouple, single
point measurements are typically taken over periods of seconds, minutes, or over greater time
periods due to the nature of slow temperature changes. In the case of the PDSM design, this is
due to the slow sample rate of the ADCs attached to the thermocouples. For every 2-byte
thermocouple measurement taken, there is an overhead of 20 bytes for the data block header,
which amounts to 90% of the data block. In a second example, where the header is not
significant, if samples are taken on the current sensor, one might take 512 2-bytes samples per
block. This would lead to a header overhead of ~2% of the data block, which is more attractive.
The point to these remarks is to make the developer aware of the overhead tradeoffs and prompt
the developer to be open to exploring some other approach to a data storage format that may
offer better storage efficiency.

Another point of interest relates to the required accuracy of the timestamp applied to the data
block header. The timestamp represents the time at which a data block’s acquisition began. For
this prototype, 1 s was a reasonable resolution. However, one must be certain what an acceptable
resolution is for a particular application. Knowing this in advance will drive requirements on the
systems hardware design.

There are some additional enhancements on the file format that need to be considered. Very
likely, there should be a file header that provides some additional information that centers around
the notions of metadata such as an ASCII text block describing the nature of what is being

50

measured, a parameter identifying the board address that the data was acquired from to address
the possibility of moving memory cards from one PDSM board to another, among others. These
concepts should be designed into the next revision.

10. User’s Manual

Here we provide an overall description of the user operation of the PDSMs. This section covers
the PDSM’s I/O capabilities, sensors types, sampling rates, configuration options, data storage
formats, LED meanings, reset button use, power up state, GUI interface description, board power
up, how the board is intended to be operated, intercommunications, and playback operations.

10.1 Hardware Manual

10.1.1 PDSM Board Jumpers for I2C Communications

When using I2C communications, the master and slave jumpers must be set correctly, as shown
in figure 21. On the master board only, on the P12 connector, one must jumper the SDA and
SCL pins correctly by setting a jumper across pins 1 and 2. This is shown with the orange arrow
in figure 29. This jumper attaches a 3.3-V pull up resistor to the SDA line. For the SCL clock,
one must set a jumper across pins 3 and 4 to attach a 3.3-V pull-up resistor to the SCL clock line.
For all boards performing I2C communications, the user must connect a daisy-chained ribbon
cable from board to board using the P8 connector on each bard. This setup is shown with the
blue arrows in figure 29, where the yellow, black, and red cable interconnect two boards by
connecting the SDA, SCL, and GND pins of each board together. On must be certain to
interconnect the ground pins to minimize noise and establish a common ground between the
boards. Do not place any jumpers on the p12 connectors on the slave boards. This is indicated on
the slave board in the left of figure 29.

Figure 29. I2C connections between two boards.

51

10.1.2 Thermocouple Sensors

Figure 30 shows the thermocouples connecting to the screw terminals. The PDSM supports the
connection of three K-type thermocouples. The thermocouples used in this design were the
Omega part number SA1-K-72. Although these thermocouples are rated to handle temperatures
in the range from –75 to 350 °F, the board’s firmware is only designed to handle temperature
readings from –8 to 334 °F. These limits have not been tested and must be confirmed if an
application requires such a wide range of temperature measurements. Also, the accuracy of the
temperature measurements is about ±1 °F of error as noted in laboratory measurements. The
three thermocouples are attached to the PDSM board’s terminal connector P6, using pins 1
through 6. Thermocouple 1 connects to pins 1 and 2, thermocouple 2 connects to pins 3 and 4,
and thermocouple 3 connects to pins 5 and 6. Because of the nature of thermocouple polarity, be
sure the terminals are connected correctly for proper measurements. One key point is, what are
the actual temperature limits that would be required for a given application? This choice could
affect the temperature conversion routines as well as the actual thermocouples used in the
system. Figure 30 shows the three pairs of thermocouples wires connected the screw terminal
inputs for thermocouples one, two, and three (denoted with arrows TC1, TC2, and TC3).

Figure 30. Thermocouple wires connected to screw terminal.

10.1.3 Reset Button

Onboard the PDSM is a reset button. This button is provided in the event of the PDSM board
locking up, which occurs relatively frequently in the present design. Pressing the reset button
causes the MSP430 to cycle on a boot-up sequence. In the present release of the firmware, upon
a reset or power up, the PDSM comes up in a wait state where it is waiting to respond and
process commands received on one of its communications mediums. A board that successfully
boots up displays a lit solid red LED.

52

10.1.4 LED Status Lights

The system uses LEDs to give the user a visual on the real-time status of the PDSM. On the
present design, there are three LEDs: red, blue, and yellow. Each LED is used for a specific
purpose, and table 7 gives definitions of their functionality.

Table 7. Overview of the red LEDs status blinks.

Red LED
Blink Counts

Meaning

1 Memory Card Not Detected
2 Memory Card Initialization Failed
3 Memory Card Invalid Size
4 Memory Card Invalid FAT Format
5 Memory Card Invalid Directory
6 Memory Card Invalid File
7 Memory Card Invalid File or Directory
8 Memory Card Write Failure
9 Others as required

10.1.5 Red LED

A flashing red LED indicates a fatal system failure mode. If this LED is blinking, the P&D board
is in a fatal system failure state. This state cannot be resolved without the user taking some
physical action on the system. Examples of such a failure would be that the memory card is not
inserted or the memory card is not properly formatted. When blinking, the LED blinks a certain
number of times within a certain time interval. The number of blinks indicates the failure mode
as outlined in table 7. When in a fatal system failure mode, all other system functions are
disabled, and the user must resolve the error and reset the board.

10.1.6 Yellow LED

A lit yellow LED means that the PDSM board is acquiring and storing data to the SD memory
card. When the LED is not lit, acquisition is not being performed.

10.1.7 Blue LED

A lit blue LED is lit indicates that the PDSM board is performing communications on I2C, USB,
or the IEEE 802.15.4 interface. When the LED is not lit, these functions are not being performed.

Although we used LEDs to indicate the PDSM board’s status, future designs should consider
using other indicators on the PDSM that may be more user friendly. One possibility is using a
low-power liquid crystal display (LCD) to show ACSII status messages and report on sensor
measurements without needing to feed that data back to the GUI. This area should be further
investigated in future designs.

53

10.2 GUI Manual

The prototype GUI, shown in figure 31, represents the functionality of a PDSM. The goal with
this GUI design was to provide a simple but flexible user interface to give complete command
and control over all PDSM boards in the network. Although the interface was developed in
C/C++, it can be developed in any language as long as it implements the proper communications
messages as defined in this documentation.

Figure 31. GUI used to configure the prototype PDHMS PDSM network.

10.2.1 Communication Port Selection and Master Node Configuration

As shown in figure 31, the PDSM can be remotely configured and controlled. The interface
presently supports up to eight nodes. The master node must always have a node address of 0.
This is done by removing jumpers JMP0, JMP1, and JMP2. The master node must always be
attached to the PDCS running the GUI via a USB cable. Before communicating from the PDCS
to the master node, the “Com Port” selection must be made. This allows the user to select which
virtual communication port the master PDSM node is attached to on the PDCS. The user should
issue a cycle LEDs command to the master node as a simple test to verify that the master has
been successfully connected. The LEDs should cycle until the user issues a stop command to the
master node. If this does not work, check the selected virtual communication port and power

54

levels on the master node. Once successfully connected, the master node can then communicate
to the desired slave nodes either wirelessly or via I2C. Although the master node can be
configured to acquire data, we recommend not doing this, primarily because the system can get
overloaded and tends to drop communications messages when acquiring data and simultaneously
handling communications between the PDCS GUI and/or slave PDSMs.

10.2.2 Slave Node Selection

Each PDSM slave board can be configured to operate wirelessly or serially. A board is
configured as a slave by setting the board ID jumpers to value 1 through 7. If a board is to
communicate to the master via I2C, then the master and the slave boards must be wired together
via the I2C serial bus. For wireless communications, the boards’ antennas must be connected to
the SMA connectors.

The “Board Select” group buttons allow the operator to select which PDSM boards the GUI
commands will be sent. The operator can do this by checking or un-checking the master or one
or more of the slave checkboxes. Once done, the operator can select which medium to use for
communicating with the desired PDSM board (either wireless or serial). Selecting wireless
means the workstation communicates wirelessly from the master node to the associated PDSM
slave board. Selecting serial means the PDCS communicates from the master to the selected
slave via I2C. For wireless communication to work, an antenna must be attached to the PDSM
board. For serial communication to work, the slave PDSM board must be wired to the master
PDSM board via the I2C connections on the boards. A group of slaves can be configured at once,
or the operator can selectively pick which slaves with which to communicate.

The present design does not allow simultaneous communication between both wireless and I2C
mediums. Based on the radio box selections, the master node automatically communicates to the
desired node on the selected communication medium. To confirm successful communication to a
slave PDSM, the operator can issue a cycle LED command to the desired slave or make a status
request to receive the slave PDSM’s status information. If the slave does not respond to these
requests, one should check the board power levels, slave jumper settings, and I2C connection, or
confirm that the nodes have their antennas connected.

Through the GUI, the operator can enable or disable the desired sensor, select the sensors’
sampling rates, select whether or not to archive the acquired data, and select whether or not to
plot the data with the MATLAB display.

10.2.3 Sending Messages to the Nodes

The Send Message button and the drop-down selection box allow the operator to select the
desired command. Once selected, the user clicks on the Send Message button. The selected
message is sent to the selected PDSM board. The dropdown list commands include
mConfigureSensors, mCmdStop, mCmdAcquire, and mCmdPlayback, which are used to
configure, stop, start, and playback selected data in the PDHMS network, respectively. There are

55

other commands available and other commands can be easily added to the interface as required.
In the present design, when a new command is issued to a board, the board will stop whatever it
is doing, and then process the received command. For example, if a board is acquiring data and
receives a status request command, it will stop acquiring data and process the status request
command. After processing the status request command, it will then remain in the stop state. It
will not resume its previous acquisition until a new acquire command is issued to the node.
Future implementations will likely have the nodes resume an acquisition after processing a new
incoming command. The actual behavior will depend on the context of the new command and
the context of its current state. This aspect will require careful design.

10.2.4 Receiving Messages from the Nodes

As nodes perform their tasks, nodes may generate messages of one type or another. For instance,
a node may automatically generate error messages to the GUI if, for example, the mode attempts
to write data to the SD memory card and fails. Messages from the nodes to the GUI can be
composed of packets of acquired data taken from the PDSM’s sensors as well as simple real-time
diagnostics messages.

10.2.5 Simple Diagnostics

Selecting the Enable Diagnostics button activates the ability to check collected sensor data
against some threshold crossing in real time. If values exceed the predefined threshold settings,
then error messages will be communicated back to the GUI. The diagnostics messages are based
on very limited diagnostics routines that do threshold detections. This implementation was
designed for proof of concept demonstrations and requires further development of more
sophisticated algorithms and GUI controlled configuration parameters. The primary idea behind
this limited implementation was to demonstrate that real-time diagnostics algorithms could be
configured to scan for fault conditions in the platform and report on these faults.

10.2.6 Configuring the Sensors of Each Board to Acquire Data

The Sensor Configure group is used to configure the sensors on each of the boards that are
selected in the Board Select group. The operator can turn a sensor on or off by checking the box
in the “Enable” column. The operator can also set the desired sample rate and the number of
samples per block of samples taken, as well as the Archive or Plot buttons to archive or display
the data as it is acquired or during playback. The Sensitivity drop-down box is used to configure
the sensitivity of the onboard accelerometer.

The “Acquisition Interval” is a key configuration parameter. It defines the periodicity at which
the sample blocks are taken. The period can be seconds, minutes, hours, days, months, or years.
This board will wake up at these intervals, take the configured measurements, and then go back
to sleep. This feature was not implemented in this release.

56

10.2.7 Status Window

The Status window shows the results of all requests made to the nodes and some of the
information sent back from a node to the GUI. This window may contain the system status,
sensor measurement results, warnings, or error messages. This status window effectively gives
the user real-time feedback on the state of the desired PDSM boards. Further development
should look more carefully at how information is presented to the user so that it is presented in
the most meaningful way. Status messages should be standardized so that they are always
presented in a consistent manner to the user to prevent confusion.

10.2.8 Data Retrieval and Playback

The PDSM design has a remote “Data Retrieval and Playback” functionality. This function gives
the user remote access the data on the PDSM SD memory card through a communications
medium, either IEEE 802.15.4 or I2C. This function eliminates the need for the user to have
physical access to the SD card to view the data. Because IEEE 802.15.4 and I2C are relatively
slow (at about 250 kbps), it does take considerable time to retrieve large data sets.

The Retrieve/Playback Range Time Select group on the GUI allows the operator to select the
timeframe when retrieving acquired data from the PDSM boards. The data can be retrieved to the
PDCS and plotted or stored locally for a more detailed analysis. The operator selects the start and
stop playback times and then chooses a data retrieve command from the Command drop-down
list. The data is then retrieved from the SD/MMC card of the selected PDSM board. Note: When
retrieving data for playback or local storage, only select one node at a time because selecting
more than one node and requesting data will overwhelm the network and cause many dropped
packets. The network and the GUI interface currently implemented are not robust enough in
handling the data load coming from multiple sources. This limitation needs to be addressed in
future implementations. A possible solution would be to implement the full ZigBee stack for
wireless communications and implement more robust communication protocols on the I2C bus
interface.

When the GUI receives remotely requested data from the PDSM boards, it either saves the
retrieved data to a local file or sends the data to the appropriate display for plotting. The GUI can
be configured to save the data locally into separate files for each sensor. The files are
automatically named to indicate from which PDSM board the data was retrieved. The remote
PDSM sensor in playback or remote retrieval terminates its activity when commanded to do so
by the remote GUI, even if it has not completed the previous retrieval request.

10.2.9 Storing Retrieved Data to PDCS

The primary goal of data storage on the PDCS is to accommodate data sets from multiple boards
and store them in separate files. To simplify the storage process, the user is only able to select the
file location, not the filenames. The retrieved data is stored in the format as described in section
9.10. Local file data storage is named using the following convention:

57

 Filenames of Retrieved Data
Local directory\BRD# ONBRDVIB.data.bin
Local directory\BRD#XTRNLVIB.data.bin
Local directory\BRD#TEMPER.data.bin
Local directory\BRD#VOLTAGE.data.bin
Local directory\BRD#CURRENT.data.bin

where the # is replaced by the PDSM board’s address ID. IDs in current design range from 0
through 7 and are implemented across three jumpers on each PDSM board.

10.2.10 MATLAB Displays

The MATLAB engine API was used to integrate the C/C++ programmed GUI with display
routines and some simple MATLAB post-processing functions. Figure 32 shows the displays
used for viewing the sensor data. MATLAB was integrated with the GUI interface to analyze the
data in the time or frequency domain, which lays the foundation for performing post analysis and
developing prognostics algorithms. The “Scale Plot In Time” option button is used for data
display; one can switch between displaying the raw data with a time scale or displaying just the
number of data samples per block. The displays implemented to date are primarily Cartesian
displays for viewing the raw data and their frequency spectrum. Further investigation is needed
to determine the type of displays from which a user may actually benefit most.

Figure 32. Real-time data displays.

58

10.2.11 Exiting the GUI

Clicking on the Cancel button exits the GUI application. Exiting the GUI does not affect the state
of the master and slave nodes. The nodes remain in the state they were last commanded to be in
prior to exiting.

11. General Performance Measurements

11.1 Vibration Experimental Results

11.1.1 Fault Simulator and Test Setup

To verify that the PDSM’s data collection capabilities were functioning properly, we collected
vibration data from a Machinery Fault Simulator from Spectra Quest, as shown in figure 33. This
simulator provided a platform to generate vibration signatures for mechanical bearings of
different sizes rotating at different frequencies, and in the case of these measurements, the gears
were rotated at 20, 30, and 45 Hz. Data were collected using the PDSM and stored on the
memory card. The data on the memory card was analyzed and compared to data collected using
an eDAQ Lite Laboratory data acquisition system made by Somat, Inc. Both the PDSM and
eDAQ Lite measured the data using a Vibra-Metrics Model 3000 miniature tri-axial
accelerometer capable of sensing ±500 G’s.

Figure 33. Machinery fault simulator used to determine bearings
vibration signatures.

11.1.2 PDSM Data Acquisition Test Results

Frequency responses of the data for both systems were compared using an averaged Fourier
Transform of the raw data. The data were normalized using the root mean squared (RMS) value
and the DC bias was subtracted out before applying the Fourier Transform. Normalizing the raw
data by the RMS value suppressed the noise within the signal, thus minimizing any contribution
such noise would have on the vibration signature.

59

Due to data block size limitations on the PDSM board, the PDSM was limited to recording
multiple 512 sample blocks of non-continuous data, whereas the eDAQ Lite system was able to
stream continuous data without the 512 sample size limitation. To account for this discrepancy in
the systems, individual Fourier Transforms were applied to 80 randomly selected data blocks,
each containing 512 data points. The magnitudes of the Fourier Transform for each block of
data were added and then averaged to produce the frequency responses.

These frequency responses represented the vibration signatures for one of the three axes for a
healthy bearing. Figure 34a and b show the raw data collected by the PDSM board and eDAQ
Lite data acquisition system, respectively. This data correspond to data collected on the y-axis of
the tri-axial accelerometer. Data collection was performed for both systems in two separate runs
on the fault simulator with identical setups at a sampling rate of 50 kHz. The frequency of
rotation for the bearings was 45 Hz. The data were displayed in multiples of the gravitational
constant in units of m/s2. Differences in the magnitude can possibly be attributed to different
noise levels in the two systems or to gain errors in the ADC data acquisition circuitry. However,
differences in the magnitude of the raw data did not affect the frequency components of the
signal.

Figure 34. (a) Raw data for the y-axis collected by the PDSM
application and (b) raw data for the y-axis collected
by the eDAQ Lite.

Figure 35 shows the vibration signatures computed from the data shown in figure 34a and b.
Because data were collected with the two different systems for two separate runs with the same
setup parameters, some differences in the measured results were expected.

60

Figure 35. Overlaid vibration signatures for PDSM and eDAQ Lite data acquisition
systems with the peaks of interest highlighted.

Table 8 shows that the numerical comparisons for peaks 1 through 11 of the two data acquisition
systems exhibit a close correlation in frequency. The average magnitude differences between the
PDSM and eDAQ Lite data are less than 10%. The magnitudes of the peaks are less important
for the vibration signature than the accuracy of the peak frequencies. This data also show that
the two vibration signatures will converge as they are integrated over an increasing number of
data blocks.

Table 8. Vibration signature data comparison for PDSM and EDAQ lite data
acquisition systems.

61

12. CROWS Demonstration

This section provides a very brief overview of the ARL PDHMS CROWS demonstration. The
primary purpose of the exercise was to demonstrate real-time data collection and wireless
transmission by the PDSM boards, testing operation, particularly when inducing a failure. As a
final proof of concept demonstration, the ARL PDSM was installed into a CROWS at Picatinny
Arsenal on October 30, 2009. In this proof of principle demonstration two PDSM slave boards
were integrated into separate cavities of the CROWS, with a third master PDSM connected to the
PDCS. The idea was to remotely control the PDSM boards using the wireless communications
in the design. Once integrated into key locations of interest in the CROWS, the PDSM boards
were remotely configured to monitor the control circuit cards in the CROWS using the PDCS
command and control GUI. The PDSM boards monitored the accelerometer, voltage,
temperature, and current data from each of the test points within the CROWS while the CROWS
remained operational.

Figure 36 shows a PDSM module wired into the CROWS elevation control cavity. The jumper
settings on the PDSM were set to node ID 2 and the PDSM was wired to the 28-V power source
in the elevation cavity. The PDSM was wired to monitor the temperature of a resettable fuse
using thermocouple 1, the temperature of the L-chip using the thermocouple 2, the main power
voltage level using the voltage test point sensor, and the main power current using the current
test point sensor. The cavity was left open for demonstration purposes, but could have been
closed and sealed.

Figure 36. PDSM installed on the elevation control circuit card.

62

Figure 37 shows a PDSM module wired into the sealed CROWS SU motor/actuator cavity. The
jumper settings on the PDSM were set to node ID 1 and the PDSM was wired 28-V power
source in the cavity. The PDSM was wired to monitor the temperature of a resettable fuse using
thermocouple 1, the temperature of the L-chip using the thermocouple 2, the main power voltage
level using the voltage test point sensor, and the main power current using the current test point
sensor. The cavity was sealed to demonstrate that the PDSM module could be completely
integrated into the CROWS. A hole was drilled into the cavity to allow the wireless antenna to be
installed on the external surface of the cavity for communications back to the PDSM. A power
on reset was installed on the outside of the cavity to repower the PDSM board since it was now
sealed. This arrangement was necessary, because the present PDSM board design will
intermittently lock up, and the only way to regain functionality of the board is to repower it. The
actual cause of this lockup problem has not been determined and requires investigation.

Figure 37. PDSM installed and sealed in the SU motor/actuator cavity.

The PDSM boards successfully monitored the current, voltage, acceleration, and temperature test
points within the CROWS, and wirelessly passed the acquired data to the PDSC. The PDSM
sensors were successfully programmed to detect and report on test point failures. Lessons learned
from installing the PDSM boards into the CROWS were that the process is very time consuming
and runs the risk of damaging the CROWS. During the installation process, we broke some
CROWS wires that had to be repaired. Also, in one case, the CROWS would not function at all
after we installed a PDSM board for an indeterminate reason. After hours of troubleshooting, we
never determined the cause of the problem, but eventually, the CROWS became functional.
Also, during the installation, the cavities were very tight space-wise, and, in particular, when we
sealed the SU motor/actuator cavity we had to be very careful with how wires were routed from

63

the PDSM to the test points of interest. These remarks indicate that installing a PDHMS into a
system will be costly, and proper installation procedures have to be well understood and
documented.

13. Recommended Changes to the PDHMS Prototype

Throughout the report, we have made many recommendations on way to enhance the present
design. For convenience, this section consolidates most of the recommended changes,
enhancements, and design weaknesses. Using an RTOS will very likely eliminate some of these
problems. Note: These recommendations are not listed in order of importance, because
determining relative importance will depend on the nature of the future work being performed.

• We noticed in the lab that when the M3000 was not physically connected to the PDSM
board through the miniature coax connectors, the voltage levels feeding the MSP430
ADC12 were driven above the MSP430’s rating of 3.3 V. This problem must be fixed in
the next design.

• The jumpers presently allow setting addresses from 0 through 7, providing a maximum of 8
PDSM nodes in the demo system. Theoretically, 65536 of nodes could be supported in the
system by either increasing the number of jumpers to 16 or by using some other means to
control the firmware.

• A key problem with the present sensor input design is a lack of protection circuitry on the
sensor inputs. During use, we damaged several PDSM boards as a result of misconnecting
the voltage input on the power supply and voltage sensor input. Using protection circuitry
would make the design more robust to inputs that may exceed design limits

• Another concern with the present sensor input design is that using a screw terminal is not
an ideal way to connect and remove the sensors from the P&D board. Investigating a better
way to do this should be addressed in a redesign.

• When the power is removed from the board, the RTC circuitry loses its previously set time.

• When making the sensor terminal connections, several problems were apparent:

• The many wires coming off of the board to connect the external sensors can be a
problem if the space in which the PDSM board is installed is very tight.

• The screw terminal connector is not easy to work with, especially when frequently
connecting and disconnecting sensors. Some form of a quick release terminal connector
should be investigated.

64

• It is possible that a sensor may inadvertently disconnect while in use, possibly due to
system vibrations. A firmware method should be put in place to automatically detect
when a sensor is no longer connected to the PDSM board

• Although CC2420 can support ZigBee, the design does not implement ZigBee. Future
development should use the TI ZigBee stack to make the wireless communications more
robust, or implement a proprietary protocol to achieve the same results. These changes will
need to address mesh networking, automatic route rediscovery, and some form of
automatic acknowledgements to eliminate the problem of dropped packets.

• Given the low 250-kbps data rate, there is not enough bandwidth to stream large amounts
(GB) of data quickly enough. Another communication standard with a high data rate may
be needed if transferring large amounts of data becomes a requirement of the PDHMS
application. This design change would effectively eliminate the use of the CC2420
transceiver and the ZigBee protocol as described previously.

• In the firmware, we suggest eliminating the use of global variables and finding a way to
communicate this information in another manner.

• The I2C library needs to be enhanced to make it more robust in dealing with the I2C bus
communication collisions that can occur when two or more nodes attempt to access the bus
at the same time.

• The low-power sleep mode does not work. When the design goes into sleep mode, the
PDSM boards hang; therefore, we used polling instead. This area needs to be investigated
for future development in order to find a way to conserve power on the design. Using an
RTOS will very likely resolve this problem.

• The USB/UART driver library in the present hardware design does not implement
hardware handshaking control lines in the USART communications used for the USB
interface. Although it may not be needed, implementation of hardware handshaking control
lines should be considered to guarantee more robust communications on the USB/USART
interface.

• A key problem with the current GUI interface is that it is not scalable, i.e., if many
(hundreds of) nodes were added into the system. The GUI should be redesigned to support
this concept.

• We must clearly understand what the envisioned data acquisition modes are for the system,
because this knowledge dictates what the required processors we will use. We must
determine the required accuracies for each sensor as this can significantly affect the
hardware design.

• Future implementation should examine the remote sensor configuration more carefully and
devise a better approach. One approach could be to use more 32-bit words; another

65

approach could be to use an XML-based configuration dictionary. There could be many
other approaches.

• The data file storage formats must be reviewed more carefully to ensure that the storage
formats support the long-term storage requirements of the PDHMS.

• Although we used LEDs for PDSM board status indication, future designs should consider
using other indicators that may be more user friendly. For instance, one could use low-
power LCD displays to show ACSII status messages and report on sensor measurements
without the need to feed that data back to the GUI. This area should be further investigated
for future designs.

• We currently implement primarily Cartesian displays for viewing the raw data and its
frequency spectrum. The type of displays a user may actually benefit most from in such a
system requires further investigation.

14. Future Development

This section describes the present PDHMS system limitations and provides our vision for what a
low-power P&D sensor system should actually look like. We discuss these items in the context
of modular units that are networked, are capable of reporting system status to GUI/user, and may
need increased processing power. This section details what we believe an ultimate PDHMS for
monitoring military equipment should look like. We need to do a white paper study examining
what others are doing in this field before making any conclusions.

Based on experience gained in this prototype efforts, we have determined that developing a
remote PDHMS can become quite complex. Such a system requires various sensor hardware;
wired and wireless communications; data storage and reporting; real-time status reporting;
hardware multi-tasking; the flexibility to adapt to different measurement and operational
environments and insert new processing algorithms; and the ability to manage potentially
thousands of networked sensor devices and computing nodes. These requirements suggest the
need for a highly flexible operating system to manage the multitude of tasks and a custom or
COTS real-time embedded operating system at the heart of the architecture. Choosing such an
operating system can be complicated; such an operating system must be chosen with these
requirements in mind. Furthermore, a key to the operating system is that a strong digital signal
processor (DSP) math library and strong communications I/O drivers must be available for the
targeted processors. There are many commercial RTOSs and DSPs that support these
requirements.

With regard to sensor, there are many sensor types on the market―acoustics, airflow, current,
chemical, electromagnetic, force, humidity, liquid, motion, optical, position, pressure, proximity,

66

speed, temperature, vibration, and voltage sensors, to name a few. Not all systems that require
monitoring will need all of these sensor types. A more sophisticated PDSM design concept
should be able to support any desired combination of sensors without requiring a major redesign.
A new design architecture should be able to add or remove any subset of the sensors as needed,
for instance, a “plug and play” concept where the user could tailor the selection of sensors by
plugging them into the PDSM carrier board. This concept requires the PDSM board to support
connecting sensor daughter cards onto it. These daughter cards would contain one or more of the
sensors and provide the needed sensor conditioning circuitry and, possibly, memory for
temporary data storage. Each daughter card would also have a standard bus for connecting onto
the PDSM board, which would allow it to transfer data from the sensor board to the PDSM card
for storage, processing, or reporting status information to the end user. The primary purpose of
the PDSM board would be to provide processing algorithms and the communications capabilities
to transfer the data and status reports to the end user through hardwired or wireless
communications channels.

As noted throughout this report, there are many design limitations that need to be addressed for
such a board to truly support the demands of a sophisticated PDHMS architecture. A primary
concern is that, although the MSP430 can do some limited processing, it not intended as a DSP
for complex algorithm implementations. It cannot support the more sophisticated processing
algorithms demanded by real-time P&D systems. A redesign might either replace or incorporate
the MSP430 with a more powerful low-power MCU, such as an ARM or TMS320 DSP. These
processors have advanced math libraries available for implementing DSP algorithms.

The prototype GUI and PDHMS, as implemented, have some key limitations. One primary
limitation is scalability. If the number of nodes in the system were to increase dramatically, for
example, to 100 nodes, this interface would not be able to scale at all as far as how information is
presented to the operator or how the operator can configure the system. Further investigation is
required to develop a more generic, scalable design.

15. Conclusions

ARL has developed and tested a wireless rudimentary P&D sensor system. We encountered
various challenges even in such a simple system; however, designing and implementing such a
prototype has given ARL greater insight into how a more sophisticated PDSM should be
designed. Various lab measurements and demonstrations were performed with the ARL
PDHMS. The ARL PDHMS has been completely documented in this report along with a detailed
summary of the systems capabilities and weaknesses. We have also provided recommendations
for improving the current design and developing future redesigns. The most notable finding is
that a more scalable user interface for the command, control, and configuration for the PDHMS
must be investigated.

67

The P&D program will continue to evolve as ARL partners with the Tank and Automotive
Research, Development and Engineering Center (TARDEC) to do work on the Integrated
Vehicle Health Monitoring System for Tactical Wheeled Vehicles. This program will further
develop the sensors and architecture design, and work towards ruggedizing the PDSM boards for
shock, vibration, environment, packaging, sensor connections, and I/O protection circuitry. In
addition, high-speed communications will be integrated into the system, controller area network
(CAN) bus will be used, and a RTOS will be implemented. Also, we will investigate a DSP,
which will likely be integrated with the present design.

68

16. References

1. “2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver – Datasheet.” Texas Instruments
Incorporated, 2008. cc2420.pdf

2. ±1.5g - 6g Three Axis Low-g, Micromachined Accelerometer; Freescale Semiconductor
Technical Data, Rev 1; Freescale Semiconductor, June 2005. MMA7260Q-Rev1.pdf

3. CSA1V Current Sensor; Rev. 002; Sentron AG, Switzerland, April 2005. CSA-1V.pdf

4. Bierl, L. Interfacing the 3-V MSP430 to 5-V Circuits; SLAA148; Texas Instruments, October
2002. slaa148-msp430-interfacing-to-higher-voltage-circuits.pdf

5. LM134/LM234/LM334 3-Terminal Adjustable Current Sources General Description;
DS005697; National Semiconductor, March 2005. LM334appnotes.pdf

6. Current Sensing with the CSA-1V Hall IC AN_102: Operation and application of the Sentron
CSA-1V-SO surface mount current sensor; AN_102; GMW, San Carlos, CA, November
2004. AN_102_REV_C.pdf

7. Implementing a Direct Thermocouple Interface with the MSP430x4xx and ADS1240;
SLAA125A; Texas Instruments, October 2001. slaa125a.pdf

8. Accelerometer, User’s Manual, Rev. 2; Vibra-Metrics Part #9350-1000, Vibra-Metrics,
Princeton Jct., NJ, June, 2004. VibraMetricsAccelerometerUsersManual.pdf

9. Interfacing the MSP430 With MMC/SD Flash Memory Cards, Application Report
SLAA281B–November 2005–Revised March 2008. slaa281b.pdf

69

Appendix. CD Directory Structure and Bill of Materials

A-1. CD Directory Structure

This section gives a brief overview of the contents of the companion CD of this report:

• ALTIUM_final-demo-design-with-mods-design-fy-2009 contains the Altium Designer
design documents for the PDSM.

• CROWS Demo Photos contains photos of the CROWS system during final demonstration.

• CROWS Demo Video contains videos of the CROWS system during final demonstration.

• Documents contains this document and all relevant technical reference documentation for
implementing the PDSM board.

• IAR Embedded Workbench contains the MSP430 firmware for all PDSM peripherals.

• PSPICE Simulations contains simple PSPICE circuit simulations of some the PDSM sensor
circuitry.

• CROWS Demo MATLAB contains the data and MATLAB code to view the PDSM data
files taken at the final CROWS demonstration.

• USB Driver contains the Windows-based device driver for communicating from the PC to
the PDSM board. This is required to be installed before the PDSM GUI will work.

• Visual Studio Projects contains the source code and executable for the PDCS GUI
interface.

A-2. Bill of Materials

Table A-1 lists the complete bill of materials for the PDSM board as generated by Altium
Designer.

70

Table A-1. Bill of materials for the PDSM board as generated by Altium Designer.

Bill of Materials

Bill of Materials For PCB Document
[PD_crows.PcbDoc]

Source Data From: PD_crows.PcbDoc

Project:
PD_crows.PrjP
CB

Variant: None

Creation Date: 2/1/2010 3:12:52 PM

Print Date: 40210 40210.64195

Footprint Comment LibRef Designat
or Description Quantit

y
CAP-T491B 10uF Cap Pol1 C1, C2,

C10
Polarized Capacitor (Radial) 3

CAP-0603 0.1uF Cap C3, C5,
C11, C16,
C18,
C19, C20,
C45, C48

Capacitor 9

CAP-0603 0.22uF Cap C6 Capacitor 1

CAP-0603 0.01uF Cap C7, C8 Capacitor 2

CAP-0603 8pF Cap C9, C14 Capacitor 2

CAP-0603 12pF Cap C15, C17 Capacitor 2

CAP-0402 0.5pF Cap C21, C23 Capacitor 2

CAP-0402 5.6pF Cap C22, C24,
C26

Capacitor 3

CAP-0402 27pF Cap C25, C27 Capacitor 2

CAP-0805 0.1uF Cap C28, C42 Capacitor 2

CAP-0402 0.1uF Cap C29, C30,
C31, C32

Capacitor 4

CAP-0402 0.01uF Cap C33, C40 Capacitor 2

CAP-0402 68pF Cap C34, C35,
C36, C37

Capacitor 4

CAP-0805 10uF Cap C38, C39 Capacitor 2

CAP-0805 100pF Cap C41 Capacitor 1

CAP-0805 2.2uF Cap C43 Capacitor 1

CAP-0603 0.33uF Cap C44 Capacitor 1

CAP-0603 10uF Cap C49 Capacitor 1

LED_SMD LED LED D1, D2,
D3

LED 3

DO-35 1N457 1N457 D4, D5,
D6

Low Leakage Diode 3

DO-35 1N5221C 1N5221B D7, D8 Silicon Zener Diode (0.3 to 0.5W) 2

71

ANT-2.4 2.4GHz
Antenna

ANT-2.45 E1 1

ARL_LOGO ARL LOGO ARL LOGO G 1

HDR2X7 Header 7X2 Header 7X2 J1 Header, 7-Pin, Dual row 1

SMA SMA-F SMA-F J3 SMA Female Connector 1

HDR1X2 Header 2 Header 2 JP1, P3 Header, 2-Pin 2

RES-0402 5.6nH Inductor L1 Inductor 1

RES-0402 7.5nH Inductor L2, L3 Inductor 2

SD_HRS SD Card
Connector
Hirose

SD Card
Connector Hirose

P1 SD Card Connector Hirose 1

MMCX2.54-V5 COAX-M COAX-M P2, P5,
P9

RF Coaxial PCB Connector, MMCX;
Thru-Hole,
Vertical Mount Plug, 50 Ohm Impedance

3

HDR1X3 Header 3 Header 3 P4 Header, 3-Pin 1

TERMSTRIP10 TERMSTRIP1
0

TERMSTRIP10 P6 1

HDR1X2 10k Thermister Header 2 P7 Header, 2-Pin 1

HDR2X2 Header 2X2 Header 2X2 P8 Header, 2-Pin, Dual row 1

RES-0603 47K RESISTOR R1 Resistor 1

RES-0805 0 RESISTOR R2, R3 Resistor 2

RES-0805 300 RESISTOR R4 Resistor 1

RES-0603 1K RESISTOR R5, R6,
R7

Resistor 3

RES-0603 560 RESISTOR R8, R9 Resistor 2

RES-0603 3.3M RESISTOR R10 Resistor 1

RES-0805 75 RESISTOR R11 Resistor 1

RES-0603 10K RESISTOR R12, R13 Resistor 2

RES-0805 10K RESISTOR R14, R15 Resistor 2

RES-0402 43K RESISTOR R16 Resistor 1

RES-0805 130K RESISTOR R17, R19,
R20, R21,
R22, R23

Resistor 6

RES-0805 2 RESISTOR R18 Resistor 1

RES-0805 44K RESISTOR R24 Resistor 1

RES-0805 4K RESISTOR R25, R26,
R27

Resistor 3

RES-0603 67 RESISTOR R28, R32,
R36

Resistor 3

RES-0603 670 RESISTOR R29, R33,
R37

Resistor 3

RES-0603 9.5K RESISTOR R30, R34,
R38

Resistor 3

RES-0603 2.5k RESISTOR R31, R35,
R39

Resistor 3

RES-0603 2K RESISTOR R40 Resistor 1

PBSW_SMD SW-PB SW-PB S1 Switch 1

SO-G8/X.6 LT1521_S LT1521_S U1 300mA low dropout regulator with
shutdown

1

D2PAK L7824CD2T L7824CD2T U2 24V Positive Voltage Regulator 1

72

SSO-G28/E4.3 ADS1241 ADS1241 U3 1

F-QFP10x10-
G64/P.5N

MSP430F1611 MSP430F169 U4 TI 16 Bit MicroController 1

QFN16 1MM MMA7260Q MMA7260Q U5 Freescale 3-Axis Accelerometer 1

QLP48 CC2420 CC2420 U6 Chipcon RF Transceiver 1

182H_N REF1004C1.2 REF1004C1.2 U7 1.2V and 2.5V Micropower Voltage
Reference

1

QFN16 0.5mm M41T62 M41T62 U8 STMicro Real Time Clock 1

M14A_L LP324M LP324M U9 Micropower Quad Operational Amplifier 1

SO8_N LM334D LM334D U10, U11,
U12

Three Terminal Adjustable Current
Source

3

XTAL SMD 2x2.4 8MHz XTAL_SMD X1 Crystal 1

XTAL SMD 3.2x1.5 32KHz XTAL TF X2, X4 Crystal TF 2

XTAL SMD UM 16MHz XTAL X3 CSX3-AA-1816.000 1

73

Bibliography

1.2V and 2.5V Micropower Voltage Reference; REF1004; Burr Brown, 2008. ref1004-1.2.pdf

1N5221B - 1N5267B 500mW Epitaxial Zener Diode; DS18006 Rev. 15-2; Diodes Incorporated.
ds18006.pdf

3M Card Connector SD Normal Polarization, Push-Push, Surfacemount; TS-2198-01; 3M
Electronics, Austin, TX, 28 November 2006. SDcardConnector-3M.pdf

ADS1240, ADS1241: 24-bit Analog-to-Digital Converter; SBAS173A; Burr-Brown Products
from Texas Instruments, June 2001. ads1241.pdf

Application Basics for the MSP430 14-Bit ADC; SLAA046; Texas Instruments, June 1999.
slaa046.pdf

Architecture and Function of the MSP430 14-Bit ADC; SLAA045; Texas Instruments, June
1999. slaa045.pdf

Biasing Internally Amplified Accelerometers; SLAP3, Application Note 3.0; Spectral Dynamics,
Inc., 1995–2002. BiasingInternallyAmplifiedAcclerometers-AppNote.pdf

Carter, B.; Brown, T. Handbook of Operational Amplifier Applications; SBOA092A; Texas
Instruments, October 2001. operational-ampfliers-sboa092a.pdf

Corson, D. W. Comparing 8-bit microcontrollers for ultra-low power applications, Low Power
Design, October 2005. someMCUcpmparisons.pdf

CP2102 Single-chip USB TO UART Bridge; Rev. 1.3, 8/08; Silicon Laboratories, Austin, TX,
2008. cp2102.pdf

Datasheet, Vibra-Metrics Model 3000, Miniature Tri-axial Accelerometer, MISTRAS Group
Inc., 2009. Model 3000 Series.pdf

Ergen, S. C. ZigBee/IEEE 802.15.4 Summary, Berkeley University, 10 September 2004.
zigbee.pdf

Foust, F. Secure Digital Card Interface for the MSP430, Dept. of Electrical and Computer
Engineering, Michigan State University, 2004. sdcard_to_msp430_appnote_foust.pdf

“IEEE Standard for Information Technology—Telecommunications and Information Exchange
Between Systems—Local and Metropolitan Area Networks Specific Requirements, Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks (LR-WPANs).” IEEE Computer Society, The
Institute of Electrical and Electronics Engineers, Inc., New York, 2003. 802.15.4-2006.pdf

74

Judd, J. E. Basics of Acceleration Measurements! Mechanical Failure Prevention Technology,
59th MFPT Forum, 12 April 2005. ACCELERATION MEASUREMENTS SESSION 4-
19-05_comp.pdf

“Keystone Miniature Sensors 1°C Accuracy.” Thermistor. RL0503 Series,pdf

L7800 Series Positive Voltage Regulators; Doc ID 2143 Rev 21; STMicroelectronics, March
2010. L78L24.pdf

LM134-LM234-LM334 Three Terminal Adjustable Current Sources; SGS-Tomson Electronics,
March 1994. LM334.pdf

LM9076 BMA-3.3, 150mA Ultra-Low Quiescent Current LDO Regulator with Delayed Reset
Output; 200830; National Semiconductor, 12 November 2007. LM9076BMA-3.3.pdf

LM9076 BMA-5.0, 150mA Ultra-Low Quiescent Current LDO Regulator with Delayed Reset
Output; 200830; National Semiconductor, 12 November 2007. LM9076BMA-5.0.pdf

LP324/LP2902 Micropower Quad Operational Amplifier; DS008562; National Semiconductor,
July 2001. LP324.pdfMSP430f241X, MSP430f261X, Mixed Signal Microcontroller;
SLAS541F; Texas Instruments, June 2007 (revised December 2009). msp430f2619.pdf

M41T93 Serial SPI bus RTC with battery switchover, Rev 4; STMicroelectrics, August 2008.
M41T93.pdf

Mitchell, G.; Conn, M.; Harris, R.; Bayba, A. Automated Data Acquisition for a Prognostics and
Diagnostics Health Monitoring System; ARL-TR-4523; U.S. Army Research Laboratory:
Adelphi, MD, July 2008. p&d_whitepaper1.pdf

MSP430F261x/241x Device Erratasheet; SLAZ033F; Texas Instruments, October 2007 (revised
January 2010). slaz033f.pdf

MSP430x2xx Family User’s Guide; SLAU144E; Texas Instruments, 2008. slau144e.pdf

MSP-FET430 Flash Emulation Tool (FET) (for Use With Code Composer Essentials for
MSP430 Version 3.1) User's Guide; SLAU157H; Texas Instruments, May 2005 (revised
November 2008). slau157h.pdf

Omega Temperature Measurement Handbook, 6th ed.; Omega Engineering Incorporated, 2007.
z019-020.pdf

Predicting the Battery Life and Data Retention Period of NVRAMs; ST AN1012;
STMicroelectronics, May 2001. m41t93-app-notes.pdf

Revised Thermocouple Reference Tables, TYPE-K Reference Tables; NIST Monograph 175
Revised to ITS-90; NIST. z218-220.pdf

75

SanDisk MultiMediaCard and, Reduced-Size MultiMediaCard, Product Manual, Version 1.0
Document No. 80-36-00320, May 2004. SanDiskSDcardManual-rs-mmcv1.0.pdf

SanDisk Secure Digital Card, Product Manual, Version 1.9; Document No. 80-13-00169; San
Disk, Milpitas, CA, December 2003. SanDiskProdManualSDCardv1.9.pdf

SD Card Specification Simplified Version of: Part E1 Secure Digital Input/Output (SDIO) Card
Specification, Version 1.00; San Disk, Milpitas, CA, October 2001, SD Association,
SD_SDIO_specsv1.pdf

Single-Chip USB to UART Bridge; DS014-1.0, Preliminary, Cygnal, August 2003. usb-
tranceiver-356495_1.pdf

“SLAA281B–November 2005–Revised March 2008, Application Report, Interfacing the
MSP430 With MMC/SD Flash Memory Cards.” Texas Instruments Incorporated.
SLAA281B.pdf

ST L78xx L78xxC Positive voltage regulators; Rev. 19; STMicroelectronics, 2008. L7824CD2T-
voltRegulatorl7805.pdf

Transient Voltage Suppression Diode Arrays, Littlefuse. SP0502BA.pdf

Type K Thermocouple, thermoelectric voltage as a function of temperature (°C); reference
junctions at 0 °C, Pyromation, Inc. emfk_c.pdf

Type K Thermocouple, thermoelectric voltage as a function of temperature (°F); reference
junctions at 0 °C, Pyromation, Inc. emfk_f.pdf

“Type MS, Epoxy Coated Thermistor” in NTC Epoxy Chip Series Thermometrics Thermistors;
920-322A; GE, 2006. Thermister.pdf

76

List of Symbols, Abbreviations, and Acronyms

ADC analog to digital converter

API application programmer interface

ARL U.S. Army Research Laboratory

CAN controller area network

CBM Condition Based Maintenance

COTS commercial of the shelf devices

CROWS Combat Remotely Operated Weapons System

DMA direct memory access

DSP digital signal processor

DSSS direct sequence spread spectrum

FCF frame control field

FCS frame check sequence

FFT Fast Fourier Transform

FIFO first-in-first-out

GUI graphical user interface

IC integrated circuit

I/O input/output

LCD liquid crystal display

LED light emitting diode

MCU microcontroller unit

MMC multimedia card

MPDU MAC protocol data unit

P&D Prognostics and Diagnostics

PANs personal area networks

77

PDCS Prognostics and Diagnostics Control Station

PDHMS Prognostics and Diagnostics Health Monitoring System

PDSM Prognostics and Diagnostics Sensor Modules

PPTC Polymer Positive Temperature Coefficient

RAM random access memory

RMS root mean squared

RTC real time clock

RTOS real time operating system

RX receive

SCL serial clock

SD secure digital

SDA serial data

SPI serial peripheral interface

SU sensor unit

TARDEC Tank and Automotive Research, Development and Engineering Center

TI Texas Instrument

TX transmit

UART universal asynchronous receiver-transmitter

USART universal synchronous/asynchronous receiver/transmitter

USB universal serial bus

78

No. of
Copies Organization

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND ENGRG
 CMND
 ARMAMENT RSRCH DEV & ENGRG
 CTR
 ARMAMENT ENGRG & TECHNLGY
 CTR
 ATTN AMSRD AAR AEF T J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND MD
 21005-5001

 2 US ARMY RDECOM-TARDEC
 CONDITION BASED MAINTENANCE
 PROGRAMS
 ATTN AMSRD TAR R G SMITH
 ATTN AMSRD TAR R K FISCHER
 6501 E 11 MILE RD MS 204
 WARREN MI 48397

 1 PM TIMS, PROFILER (MMS-P)
 AN/TMQ-52
 ATTN B GRIFFIES
 BUILDING 563
 FT MONMOUTH NJ 07703

 1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD A RIVERA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL 35898-5000

 1 US ARMY RDECOM-ARDEC
 ATTN RDAR WSF A G GARCIA
 BLDG 91
 PICATINNY NJ 07806

No. of
Copies Organization

 1 US ARMY RDECOM-ARDEC
 ATTN RDAR WSF A D MARSTON
 BLDG 61S
 PICATINNY ARSENAL NJ 07806-5000

 1 US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

 6 DIRECTOR OF ENGINEERING
 CURTISS-WRIGHT CONTROLS INC
 ELECTRONIC SYS
 ATTN A CARTER
 ATTN A KOTHARI
 ATTN B PUSZKARCZUK
 ATTN I PAZ
 ATTN P MALCHODI
 ATTN T LOGRASSO
 151 TAYLOR STR
 LITTLETON MA 01460

 1 US ARMY RSRCH LAB
 ATTN RDRL CIM G T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005-5066

 14 US ARMY RSRCH LAB
 ATTN IMNE ALC HRR
 MAIL & RECORDS MGMT
 ATTN RDRL CIM L TECHL LIB
 ATTN RDRL CIM P TECHL PUB
 ATTN RDRL SER E A BAYBA
 ATTN RDRL SER E C LY
 ATTN RDRL SER E
 D WASHINGTON
 ATTN RDRL SER E G MITCHELL
 ATTN RDRL SER E K TOM
 ATTN RDRL SER E R DEL ROSARIO
 ATTN RDRL SER M D WIKNER
 ATTN RDRL SER M E ADLER
 ATTN RDRL SER M M CONN
 ATTN RDRL SER M R HARRIS
 ATTN RDRL SER P AMIRTHARAJ
 ADELPHI MD 20783-1197

TOTAL: 62 (1 ELEC, 31 CD, 30 HCS)

	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. System Design Concept
	3. PDSM Board Design
	3.1 Communications Mediums
	3.2 Sensors

	4. Firmware Documentation
	5. Software Documentation
	6. Data Acquisition Design Decision
	7. Communications Hardware Design Details
	7.1 I2C Design Details
	7.2 USB Design Details
	7.3 Wireless Front End Design Details
	7.4 Performance Limitations of the CC2420 Transceiver
	7.5 Wireless Networking Capabilities
	7.6 Real-time Clock (RTC) Design Details
	7.7 PDSM Board Power Distribution Details

	8. Sensor Design Details
	8.1 Thermocouple Design Details
	8.2 Current Sensor Design Details
	8.3 Voltage Sensor Design Details
	8.4 Onboard Accelerometer Design Details
	8.5 External Accelerometer Design Details
	8.6 Resistor Divider Network Computations for Accelerometer Op-amp
	8.6.1 Computation of Resistors
	8.6.2 Sampling Rate Estimate

	8.7 SD/MMC Card Design Details
	8.8 MSP430 Clock Use and Distribution Design Details

	9. Firmware System Level Design
	9.1 Setting PDSM Jumpers
	9.2 Communication Network Design Decisions and Limitations
	9.3 Medium Communications
	9.4 Message Bus Architecture Design
	9.5 Communications Message Format
	9.6 Pseudo Code, Node Message Processing
	9.7 Sensor Configuration
	9.8 Network Commands
	9.9 Wireless Communication Firmware Description
	9.9.1 Digital Communication via a Serial Peripheral Interface
	9.9.2 cCC2420 Class Structure Descriptions

	9.10 SD Card Data Storage

	10. User’s Manual
	10.1 Hardware Manual
	10.1.1 PDSM Board Jumpers for I2C Communications
	10.1.2 Thermocouple Sensors
	10.1.3 Reset Button
	10.1.4 LED Status Lights
	10.1.5 Red LED
	10.1.6 Yellow LED
	10.1.7 Blue LED

	10.2 GUI Manual
	10.2.1 Communication Port Selection and Master Node Configuration
	10.2.2 Slave Node Selection
	10.2.3 Sending Messages to the Nodes
	10.2.4 Receiving Messages from the Nodes
	10.2.5 Simple Diagnostics
	10.2.6 Configuring the Sensors of Each Board to Acquire Data
	10.2.7 Status Window
	10.2.8 Data Retrieval and Playback
	10.2.9 Storing Retrieved Data to PDCS
	10.2.10 MATLAB Displays
	10.2.11 Exiting the GUI

	11. General Performance Measurements
	11.1 Vibration Experimental Results
	11.1.1 Fault Simulator and Test Setup
	11.1.2 PDSM Data Acquisition Test Results

	12. CROWS Demonstration
	13. Recommended Changes to the PDHMS Prototype
	14. Future Development
	15. Conclusions
	16. References
	Appendix. CD Directory Structure and Bill of Materials
	A-1. CD Directory Structure
	A-2. Bill of Materials

	Bibliography
	List of Symbols, Abbreviations, and Acronyms

