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Abstract – This paper compares two different 
approaches for sensor selection for distributed tracking: 
1) The Frisbee method, and 2) Global Node Selection 
(GNS). The Frisbee method is based on the proximity of 
the nodes to the predicted location of the target; GNS is 
based on minimizing the unbiased Cramer Rao lower 
bound (CRLB). Both theoretical and experimental 
results indicate that the Frisbee method is as effective as 
GNS.  Furthermore, the Frisbee method is attractive 
due to its very light computational load.  
 
Keywords: wireless network of sensors, surveillance, 
distributed target tracking.   

1  Introduction  
 
Many wireless sensor networks consist of large number 
of devices with limited sensing, computation and 
communication capabilities. These are generally battery 
powered and must be active only when it is necessary, to 
avoid inefficient energy consumption with drawback in 
the network lifetime. These networks are then 
characterised by low prime power, low data rates and 
small complexity (cost), while meeting the requirements 
for reliability and security. 
 
For wireless sensor networks to operate effectively over 
an extended amount of time, it is important for the 
network to determine which sensors should collect and 
communicate measurements at any given point in time.  
The Frisbee method, previously proposed in [1], provides 
a simple means to select nodes for wireless networks 
consisting of binary sensors that either detect or not detect 
a target. In [2], the Global Node Selection (GNS) method 
selects the nodes based on the Cramer Rao Lower Bound 

(CRLB).  GNS was designed for bearings-only sensors.  
This paper compares the performance of the Frisbee 
method with GNS for binary sensors. The results indicate 
that the Frisbee method is always as effective as GNS. 
Furthermore the Frisbee method is computationally 
simpler than GNS. 
 

 
 
Figure 1. Typical network topology (small circle: simple 
sensor; large circle: complex sensor). 
 
This paper is organized as follows. Section 2 describes 
the sensor network and the distributed tracker, which 
includes node selection.  The mathematical models and 
foundations for node selection are detailed in Section 3.  
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Section 4 describes different node selection approaches.  
Theoretical and experimental comparisons of node 
selection approaches are provided in Sections 5 and 6, 
respectively.  Finally, Section 7 provides some 
concluding remarks.  

2  Sensor networks and tracking 
 
The wireless sensor network includes a heterogeneous set 
of sensors. As described in a previous article [1], we 
consider a network consisting of two kinds of sensors:   
 
- simple sensors, which are able to reveal the presence of 
the target in their coverage area and to communicate it to 
complex sensors; 
- complex sensors, that besides target detection and 
communication capability, can also activate other sensors 
(both simple or complex), process the data received from 
them, and track the targets.  
 
This network typically has a cluster topology, where 
complex sensors are at the centre of a local star sub-
network (see Figure 1). The network is consistent with 
the Zigbee standard [3]. 
 
A flow chart of the distributed tracking algorithm 
presented in [1] is shown in Figure 2: 
- first the complex sensor selects the active simple sensors 
by using the predicted target position and by following a 
specified criterion as detailed in Section 4;  
- it receives the measurements from these sensors; 
- by using such measurements and the knowledge of 
active sensor positions, the complex sensor constructs a 
likelihood function; 
- the maximisation of this function gives the estimation of 
the target position; 
- the complex sensor also calculates the reliability of the 
estimation by computing the CRLB; 
- the sensor measurement is then used to correct the 
prediction of the tracking algorithm; 
- the algorithm finally performs the track prediction at the 
next step.  
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Figure 2. Flow cart of the tracking algorithm. 

3  Mathematical model of the network 
 
The simple and complex sensors are able to detect the 
target.  Individually, they are unable to localize the range 
or bearing of the target. Collectively, they can 
communicate their binary detection decision to a complex 
sensor that can localize the target.  The performance of 
any localization technique depends on the sensor model. 
To describe the model, let’s first set up the geometry.  
The sensor network is composed of Ns nodes (each node 
is either a simple of complex sensor). The location of the 
i-th node can be described in Cartesian coordinates (xi,yi) 
where without loss of generality, the target is located at 
the origin.  Alternatively, the location of the i-th node can 
be represented via polar coordinates relative to the target 
via (ri,θi), where ri and θi are the range and bearing to the 
target, respectively.  For binary sensors, the sensor model 
is the probability of detection (Pd) as a function of the 
position of the node relative to the target.  A reasonable 
model for Pd that accounts for the spherical wave 
propagation is: 
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where: 
 
- faP  is the false alarm probability, and 

- 0dP  is the probability of detecting the target at a range 

of 0R . 
The model given by (1) represents the performance of the 
energy detector when interrogating Swerling I targets for 
one coherent interval [4].  
 
Using the architecture in Figure 2, the complex nodes 
chooses Na nodes to actively sense and communicate 
detection results.  Let { }1,0∈id  be the result of the i-th 
node in the active set (1 if detection occurs, 0 otherwise), 
and D represent the agglomeration of the Na nodes, i.e.,  D 
= (d1,…dNa). The likelihood that the target is located at 
(x,y) is given by (see also [5]) 
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The Maximum Likelihood Estimator (MLE) determines 
the target location that maximizes (2). The MLE is an 
attractive estimator because of its desirable asymptotic 
properties, unbiased and efficient.  However, the MLE is 
not necessarily a good estimator when the number of 
measurements is small.  A centroid estimator is an 
alternative localization technique that estimates the target 
position as the centroid of the detected nodes, 
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An estimation of the Mean Square Error (MSE) can be 
found by calculating the CRLB. The CRLB is calculated 
by inverting the Fisher Information Matrix (FIM): 
 

hkkh JCRLB ,
1−=                 (4) 

 
where J is the FIM and k and h can be referred to the x 
and y coordinates. The trace of the matrix in (4) is a lower 
bound of the MSE. 
 
 For Na, binary detectors, it can be shown that the FIM is, 
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The MLE and the centroid methods are ill-posed when no 
sensor returns a positive detection.  In essence, the 
estimated target location is at infinity because the sensor 
network results indicate that a target does not exist.  To 
be precise, the performance of the localization algorithm 
should be conditioned on the case that one or more of the 
active nodes returns a positive detection. The probability 
that at least one node detects the target is 
 

( )∏
=

−−=
aN

i
idNetworkd PP

1

11               (6) 

The FIM conditioned on a detection is 
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As the number of active sensors increase, NetworkdP  
converges to one.  Therefore, for a sufficiently number of 
active sensors, NetworkdP  is approximately one, and 

JJ ≈c . 
 
It can be shown that the performance of the MLE and 
centroid methods actually outperform the unbiased CRLB 

because they are biased.  When Na is reasonably small, it 
is possible to enumerate all possible 2Na detection results 
as Dj for j=0,…, 2Na-1, where D0 represents the case that 
all nodes do not detect a target.  In general, 
Dj={dj0,...,dji,…,djNa}. The probability that Dj occurs 
conditioned on the case that j>0 is 
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Finally, the expected MS position error of any estimator 
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where Dj is the j-th realization of the random variable D.  
 

4  Node Selection 
 
4.1  Closest nodes 
 
The tracker simply selects the Na nodes closest to the 
predicted target locations. The parameter Na allows one to 
trade-off localization performance with energy usage. In 
the case of estimation based on multilateration [6], for 
example, the condition of proximity is not sufficient: the 
sensors should surround the target over 360°. Similarly, 
for triangulation, the sensors also should surround the 
target.  As shown in [2] for triangulation, the “closest” 
selection approach can be as effective as other selection 
approaches when Na becomes larger than three.   This is 
due to the fact that the randomly distributed nodes tend to 
naturally provide the necessary viewing geometry if 
enough nodes are employed. 
 
4.2  Frisbee  
 
The “Frisbee” method is also a simple approach that was 
originally described in [1]. For this approach, a circle is 
centred on the prediction of the target position and all the 
sensors inside it become active. To improve the stability 
of the algorithm, the sensors inside the previous Frisbee 
remain active too (“Frisbee with memory method”). 
Given the random distribution of sensors, this method is 
effective if the number of active sensors Na is sufficiently 
large. The “closest” and “Frisbee” methods are similar in 
spirit. The primary difference is that the Frisbee approach 
is parameterized by a circular radius Rc rather than Na. In 
fact in the “Frisbee” method the number of active sensors 
is not fixed as in the “closest”, but it can vary for each 
snapshot. For uniformly distributed nodes, the value of Na 
follows a Poisson distribution with a mean value of 
λπRc

2, where λ is the sensor density.  



 
4.3  Global node selection 
 
Global node selection (GNS) chooses the Na sensors that 
lead to the smallest posterior MS position error [2].  This 
paper considers a simplified version of GNS which uses 
the trace of the FIM inverse of the current set of 
measurements. This quantity is estimated by using the 
predicted target location.  
 
The search for the Na best nodes out of a field of Ns 
sensors is NP-hard. A computationally efficient 
implementation of GNS uses a Greedy search.  As shown 
in [2], the Greedy search finds a nearly optimal solution. 
To describe the search, let’s define two complementary 
sets of sensors: 
 

sensorsactiveofset=:A  
sensorssleepingofset=:B

{ } sN
iis 1===∪ SBA  

 
At the beginning, A is empty, while B consists of all the 
sensors in the network.  
 

{ }=A  
SB =  

 
The first step is to compute the utility function, i.e., 
unbiased CRLB, for all the possible pairs of sensors. The 
pair with the best result is selected and moved from B to 
A: 
  

{ }kh ss ,:=A  

{ } { }kh ss \\: SB =  
 
In the successive steps, one sensor node at time is added 
in such a way to maximise the utility of the set A. 
 
{ } ( )( )BA ∈≡ i

i
k sUks Umaxarg/  

{ }ks∪= AA :  

{ }ks\: BB =  
 

The procedure is iterated until the cardinality of A reaches 
the desired value of Na. 
 
4.4  Optimal selection 
 
The tracker in Figure 2 uses the FIM inverse to represent 
the MS localization error. However, the localization 
methods for binary sensors are biased and their 
corresponding “biased” CRLBs are lower than the 
unbiased CRLB. In theory, the tracker can employ the 
expected MSE (see (9)) as the utility to optimize.  We 
refer to such an approach as “optimal” selection.  The 
word “optimal” is used with some caveats; namely, the 
approach is optimal for a specified localization method 

when the predicted target location matches the actual 
target location.  Unlike the calculation of the FIM, which 
requires O(Na) computations for a given hypothesized 
active set, the calculation requires O(2Na) operations. 
Even the Greedy search described in Section 4.3 does not 
make optimal selection feasible in practice.  This paper 
uses the optimal approach as a means to baseline other 
approaches in Section 5.  Furthermore, the calculation 
of (9) using the MLE is expensive because of the required 
search algorithm.  Therefore, the optimal method is 
computed for centroid method.  

5  Clairvoyant analysis 
 
This section compares the “closest” and GNS selection 
approaches for binary sensors relative to the optimal 
method under the condition that the true target location is 
used instead of the predicted target location. This 
clairvoyant comparison provides useful insights about the 
performance of node selection approaches under 
controlled conditions. For these tests, the track filter does 
not need to be employed.  Since the processing is all 
offline, the GNS minimizes the unbiased CRLB via 
exhaustive search, rather than the Greedy search.  
 
 To evaluate the approaches, we generated 1000 network 
configurations consisting of Ns=15 nodes by randomly 
placing the nodes via the uniform distribution within a 
circular region of radius 100m around the true target 
location. The sensor observation model follows (1) where 
Pfa = 0.1 and Pd0 = 78% or 28% for R0 = 3.5m. For each 
configuration, the best active set chosen by the “closest” 
and GNS methods are compared against the set chosen by 
the optimal approach, where the centroid method is the 
localization method.  The values for Na ranged from two 
to five.   
 
Figure 3 shows the percentage of configurations where 
the closest and GNS method selected the same active set 
as the optimal approach, i.e., the set that corresponds to 
the lowest MSE at the target location.  Figure 4 plots the 
average relative increase in RMS position error with 
respect to the optimal set. The closest set usually 
corresponds to the optimal set, and the relative increase in 
error is less than 1%.  The GNS-selected set actually 
leads to higher error, but the relative increase in errors 
levels out to a modest 16% as Na reaches four.  Finally, 
the relative performance of the closest and Fisher do not 
appear to be sensitive to the quality of the sensor, i.e., Pd0. 
 
The clairvoyant analysis indicates that even when Na is 
small, the proximity of the sensors to the target is the 
most important feature for good localization when 
employing binary sensors. Apparently, the biases of 
binary sensor localization limit the usefulness of the 
Fisher-based metric used by the GNS method (the trace of 
the inverse of the FIM), which enforces the active set to 
surround the target. As Na becomes large, the closest set 
of nodes to the target will naturally surround the target. 
Therefore, one would expect that selection method such 
as the “Frisbee” and “closest” methods should be as 
effective as GNS for any value of Na.  
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Figure 3: Probability that node selected via “closest” or 
GNS methods correspond to the best set. 
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Figure 4: Relative increase in the RMS error with respect 
to the optimal set when selecting nodes via the closest and 
GNS approaches.  
 

6  Tracking analysis 
 
This section illustrates the overall performance of the 
tracker in Figure 2 using either the “Frisbee” or GNS 
approaches for node selection.  The performance numbers 
are obtained through software that runs Monte Carlo 
simulations of a random network employing target 
detection and tracking [1]. The tracker consists of a linear 
Kalman filter using a four state white noise acceleration 
model where the state vector includes the x and y 
coordinates and their derivates. The MLE algorithm is 
used to estimate the target position from the detection 
data of the active sensors, and the CRLB is used to 
represent the measurement error covariance matrix To 
calculation of the CRLB assumes that at least one sensor 
per scan detects the target ( 1≈NetworkdP ). This 
assumption is reasonable for the values of active sensors 
and Frisbee radius fixed for the simulation. Section 6.1 
details the scenario, and Section 6.2 provides the 
performance results. 
 
 

 
6.1  The tracking scenario 
 
Targets are detected and tracked within a square 
surveillance area by randomly dispersing Ns=100 sensors.  
The resulting sensor network consists of 80 simple and 20 
complex nodes.  The size of the surveillance area is 20m 
by 20m in the example; but if it were larger, e.g., 20km 
by 20km, the corresponding MS tracking error will 
increase accordingly. Each sensor is placed in the 
surveillance area according to a uniform distribution. 
Then, the sensors are randomly shifted by a Gaussian-
distributed displacement to simulate the inaccuracy in the 
placing process. The standard deviation of the 
displacement is 0.2 m. The location of each sensor is 
supposed to be known by the network; e.g., it can be 
determined by a network initialization process (i.e. by 
performing multilateration [6]). The 80% Pd detection 
range for each sensor is 3.5 m.  The connectivity of the 
network is guaranteed as described in [7].  
 
For most collection snapshots, the target is moving 
through the surveillance area with a constant velocity.  
About halfway through the region, the target makes a 
single manoeuvre and changes direction. The stars in 
Figure 3 show the position of the target at each snapshot, 
or data collection, interval.  The number of snapshot 
intervals is 49. 

 
Figure 5. Target trajectory (crosses) and sensor positions 
(circles). 
 
6.2  Simulation results 
 
We ran simulations to measure the overall estimation 
performance of the tracker when employing either the 
Frisbee method for three values of the Frisbee radius 
(Rc=5, 6, 7 m) or the GNS using three values for the 
numbers of active sensors (Na=16, 24, 32). Figure 6 
shows the average number of sensors activated by the 
Frisbee of different radius. The number of active sensors 
is bigger near the centre of the surveillance area, while it 
is smaller near the border.  
 
Figures 7, 9, 11 and 13 plot the statistics obtained by 
using the GNS method, i.e., bias and standard deviation 
of the Cartesian coordinates, as function of the snapshot 
interval. Similarly, Figures 8, 10, 12 and 14 provide the 



localization statistics for the Frisbee method.  These 
figure show no meaningful difference between the 
performance of the GNS and Frisbee methods. 
 
Figures 15 and 17 highlight which sensors the GNS with 
Na=16 activate during the 10th and 35th snapshot interval.  
Similarly, Figures 16 and 18 illustrate the location of the 
active sensor via the Frisbee method using Rc=5m for the 
same intervals. The figures show that the majority of the 
active sensors selected by the two algorithms are 
coincident. Similar to the Frisbee method, the GNS also 
tends to activate the sensors that are close to the target 
position predicted by the tracking algorithm when Na is 
large.  This result is not surprising for a large number of 
active sensors.  Furthermore, Na can not be too small, 
because the binary sensors will lead to a poor 
localization. Even if Na could be small, the clairvoyant 
results from the previous section indicate that the Frisbee 
method would still be as effective as GNS.  
 

7  Conclusions 
 
This paper compares two different algorithms for sensor 
selection in wireless network distributed tracking where 
the sensors are simple detectors.  Namely, the sensors can 
only communicate whether or not they detect the presence 
of a target.  The sensor selection methods under test 
include the Frisbee method, proximity based, and GNS, 
which balances proximity and distribution around the 
target. The theoretical results were evaluated for small 
values of Na where the selection methods employed the 
true target locations. The experimental results evaluated 
the selection methods under the more realistic case that 
they use the predicted target locations. Both theoretical 
and experimental results indicate that the Frisbee is as 
effective as GNS for any number of active sensors Na. 
These results are different than the case of bearings-only 
sensors where GNS was shown to outperform a proximity 
based selection approach when Na is in the order of two to 
three nodes per snapshot [2]. Because of its 
computational simplicity, the Frisbee method is an 
appealing choice for surveillance networks consisting of 
binary sensors. 
 
Future work will investigate simple methods to further 
conserve energy.  For instance, the simple sensors can 
employ a random protocol to enter into awake and sleep 
cycles.  The protocol should be developed to ensure that a 
sufficient number of nodes are available inside a Frisbee 
so that a desired localization performance can be 
obtained.  Furthermore, the density of awake nodes 
should be large enough to ensure connectivity of the 
nodes for message passing. Some initial work in [7] will 
be helpful to the development of such protocols.  
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Figure 6. Average number of active sensors along the 
trajectory (Frisbee method). 

 
Figure 7. Bias of the x-coordinate estimation, GNS 
method. Results averaged over 500 Monte Carlo trials. 



 
Figure 8. Bias of the x-coordinate estimation, Frisbee 
method. Results averaged over 500 Monte Carlo trials. 
 
 

 
Figure 9. Bias of the y-coordinate estimation, GNS 
method. Results averaged over 500 Monte Carlo trials. 
 
 

 
Figure 10. Bias of the y-coordinate estimation, Frisbee 
method. Results averaged over 500 Monte Carlo trials. 
 

 
Figure 11. Standard deviation of the x-coordinate 
estimation, GNS method. Results averaged over 500 
Monte Carlo trials. 

 
Figure 12. Standard deviation of the x-coordinate 
estimation, Frisbee method. Results averaged over 500 
Monte Carlo trials. 
 

 
Figure 13. Standard deviation of the y-coordinate 
estimation, GNS method. Results averaged over 500 
Monte Carlo trials. 



 
Figure 14. Standard deviation of the y-coordinate 
estimation, Frisbee method. Results averaged over 500 
Monte Carlo trials. 
 
 

 
Figure 15. Sensors activated by the GNS with M=16 in 
more than 50% of the trials; 10th step of the tracking 
algorithm. 
 

 
Figure 16. Sensors activated by the Frisbee with R=5 in 
more than 50% of the trials; 10th step of the tracking 
algorithm. 

 
Figure 17. Sensors activated by the GNS with M=16 in 
more than 50% of the trials; 35th step of the tracking 
algorithm. 
 

 
Figure 18. Sensors activated by the Frisbee with R=5 in 
more than 50% of the trials; 35th step of the tracking 
algorithm.  


