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Statement of the Problem Studied

The goal of this proposal was to investigate the potential advantages of integrating
111-V nitride structures on Doped Sapphire substrates and doped sapphire waveguide
structures. III-V Nitride structures are typically grown on undoped synthetic sapphire or
silicon carbide neither of which efficiently luminescence. However, Cr: Sapphire and
especially Ti: Sapphire are very useful solid state laser materials used in ruby lasers (694
nm) and tunable (660-1100) Ti: Sapphire lasers respectively. Blue and Green III-V
nitride materials overlap the absorption bands of the Cr and Ti dopants in sapphire, thus
very efficient optical pumps should result. In bulk solid state lasers relatively high
optical pumping powers on the order of sever watts are required, and supporting
infrastructure to remove the heat is required. By confining the optical pump energy to the
waveguide, simultaneous pump and signal beam confinement could potentially lead to a
reduction in lasing threshold. Utilizing the red emission from the Cr in sapphire could
also permit the construction of white light LEDs. Ultimately, an integrated III-V Nitride
optical pump for Ti:Sapphire could lead to the development of ultra compact tunable
vibronic lasers for spectroscopy applications such as chemicals and biological sensing.

Specific goals of the program from the original proposal:
Part 1

1. Deposition of GaN/InGaN heterostructures and quantum Wells on Ti and
Cr- doped sapphire substrates by MOCVD.

2. Characterization of doped sapphire/InGaN structures byPL to simulate
electrical injection by laser or LED device structures

Part 2
1. Development ofDoped sapphire Waveguide Structures

a. Cr doping by high temperature diffusion method
b. Ti: doping by high temperature diffusion

2. Characterization ofDiffused waveguides
3. Growth of Wide band gap semiconductor on diffused waveguides

Part 3
1. Growth ofelectroluminescent device on doped sapphire waveguide

material

In general these goals were mostly achieved.
LED devices were successfully grown on Cr:doped sapphire substrates, and

diffused Cr:Sapphire waveguides were achieved. The diffused waveguides were
characterized by the prism coupling method. Material deposition was also performed on
doped Cr: Sapphire waveguides. However, GaN laser structures were not integrated into
the waveguide structures. This was largely due with the difficult of achieving GaN lasers
in a university environment due to the high degree ofmaterials optimization that is
required.



Summary of the Most Important Results:

The feasibility of growing high quality GaN on Chromium
doped sapphire was demonstrated.

(InGaN was also grown on Ti:Sapphire substrates with high material quality obtained,
but results not shown here for brevity.)
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As shown in the figures below GaN devices were grown on both Sapphire and
Ruby (Cr:Sapphire substrates). This resulted in dual wavelength emission at 470 and 694
nm. The mechanism for the emission is described in Figure 1 below. The growth was
performed by Mason Reed in Dr. S.M. Bedair laboratory, the characterization was
performed by Andrew Oberhofer in Dr. Muth's laboratory.
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Energy Levels ofChromium [ons in Ruby

Figure t. An energetic blue photon excites an electron from the ground state to the broad absorption
bands (4Ft or 4F2). Fast non radiative rec,ombination de-excites the electron to one of two long lived
metastable states in the 2F. doublet. The electron then decay to the ground state (4A2) emitting a
spectrally narrow photop at 694 nm. Blue photons that are not absorbed by the Cr ion are also
emitted from the LED.

The device structure and IV characteristics are shown in Figure 2 and 3
NilAn

n-GaN:Si

Cr:Sapphire

(I'igure 2. Schematic diQgram of the loGaN LED epitaxiaUy grown on. Cr:sHpphin~ substrate.
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Figure 3. Current Voltage Curve oflnGaN LED epitaxialJy grown on Cr:sapphirc substrate.
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Figure 4. Dashed line is absorption spectrum of 0.05% Cr:sapphire substrate. Solid line is the
spectrum of blue and red light emitted by InGaN LED epitaxially grown on Cr:sapphire substrate.
The light was collected through the Cr:sapphire substrate. The inset shows the characteristic doublet
(Rt and R2) of the ruby emission line at 694

A picture ofthe Gallium Nitride LED grown on doped substrates is shown in
Figure 5. Note the deep red color ofthe mby substrate.

GaN Sapphire GaN on Ruby

Figure 5. Pictures of GaN LEDs grown on undoped and doped sapphire substrates.



To explore the possible uses of this a Pulse Oximeter device was bui.lt using a hybrid
GaN/Ruby device to measure the oxygen content in blood..since the 694 nm line is coincident
with the change in absorption that occurs when the hemoglobin of blood cells absorbs oxygen it
can be used to make ratiometric measurements of the oxygen content of blood. To explore this
concept, a tern of students in the biomedical instrumentation class built a working pulse oximeter
based on this 470 run and 694 nm InGaN/Ruby type of emitter.
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Figure 6. Pulse oximeter built to demonstrate potential sensor based on InGaN doped sapphire
technology.



The feasibility of fabricating Cr:Sapphire waveguides by
diffusion was demonstrated.

Ti:doped waveguides were also fabricated, but were ofpoorer quality due to
problems maintaining the proper Oxygen stoichiometry and positioning the Ti: on the
correct lattice site.). The formation of multimode waveguides was also accomplished
by deposition ofCr: doped sapphire and subsequent annealing. It was hard to obtain
multimode waveguides by thermal diffusion. Prism coupling was used to characterize
the films. A summary of the Cr:Sapphire research is shown below. A preliminary growth
of ZnO was performed on a Cr:apphire waveguide sample.

C~sapphire is a uniaxial crystal. By using transverse electric (TE) and transverse
magnetic (TM) polarized light, the ordinary and extraordinary modes are excited
respectively. The TE mode spectrum of Cr doped sapphire waveguide is shown in Fig. 7
(a). Two sharp reflectivity dips of guided modes ofthe Cr doped sapphire waveguide are
identified as the modes ofTEo and TEL Also, the substrate radiation modes are shown in
Fig. 7(a). The TM coupling curve of the laser beam into Cr doped sapphire waveguide is
shown in Fig. 7(b). TMo mode is obtained. These indicate that the presence of the Cr
metal locally increased the refractive index of the sapphire resulting in a graded index
waveguide due to diffusion.
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Figure 7 (a) TE coupling curve of the laser beam into Cr doped sapphire waveguide
(b) TM coupling curve ofthe laser beam into Cr doped sapphire waveguide

In order to obtain the knowledge of the refractive index ofCr doped sapphire
waveguide, WKB method is applied due to the graded refractive index change. The
characteristic equation for the mth-order mode for the graded waveguide is given by



~(m) I

k J[(n 2 (x)-N 2 (m)]2 dx = m1r+r/Ja +r/Js
o

And
n(xt(m» = N(m)

Where N(m) is the effective index of the mth-order mode. Xtis the turning point ofthe
WKB method. 2r/Ja ,2r/Js are the phases shift at the film-air and film-substrate.31

Also, n(x) is given b~2,33

x
n(x) = ns + dnexp(--)

d
Where ns is the refractive index of the substrate, d is the diffusion depth.

By using prism coupling method for TE polarized light at wavelength of457.9
nm, three modes are found. The effective indices change with doping depth is extracted
based on inverted WKB method and shown in Fig. 3-16. The Cr3+ ions concentration
exponentially decays. The doping depth is about 2.2J.Lm. Based on the relationship
between the diffusion depth and the diffusion coefficient ofD,34

1

d = 2(Dt) 2

then the diffusion coefficient of Cr in sapphire is 3.3 x 10-16 m2/sec.
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Figure 8. The effective indices change as a function of doping profile
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In order to study the surface morphologies of the Cr doped sapphire, AFM images
of the bulk sapphire and Cr diffused sapphire in the size of 5 JLnl by 5 JLm scans are taken
and shown in Fig. 9 (a) and (b). The root mean square values (RMS) of the surface
roughness of sapphire and Cr diffused sapphire are 0.68 nm and 0.73 nm respectively..
This indicates the materials growth on Cr diffused sapphire is a plicable.

Figure 9. (a) AFM image of bulk sapphire in the size of 5 JLm by 5 JLrn scan
(b) AFM image of Cr diffused sapphire in the size of 5 JLm by 5 JLID scan

The transmission spectrum ofCr doped sapphire was taken with a Lambda9
ultraviolet- visible-near infrared (UV-VIS-NIR) absorption spectrophotometer. The
transmission spectnml is shown in Fig 10 (a). There is about 78% of transmission of the
Cr doped sapphire from 300 nm to 800 nm. Also, based on the transmission data, the
absorbance spectmm ofCr doped sapphire waveguide as a function of wavelength is
plotted in Fig. 10 (b). The two broad absorption bands at wavelengths of around 424nm
and 566 11m are due to transitions from the A2 ground state ofC~+ to the excited 4F2 and
4FI levels. This indicates that the Cr ions were incorporated into sapphire in the trivalent
state resulting in strong emission at 694 nm.
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Figure 10 (a) Transmission spectrum of Cr doped sapphire waveguide
(b) Absorbance spectrum of Cr doped sapphire waveguide



Fig. 11 shows the cathodoluminescence spectrum of the Cr diffilsed waveguide.
The strong emission ofR) line at 694 nm is due to the transition from the E level to the
grand state of 4A2. This indicates that the Cr ions were incorporated into sapphire in the
trivalent state resulting in strong emission at 694 DID.
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Figure 11. Cathodoluminescence of Cr diffused sapphire waveguide

By using a lensed-fiber integrated with a 2 mm diameter ofball lens coupling
system, light is coupled into the Cr-diffused waveguide from the input to the output end
face at 632.8 om shown in Fig. 12. This conftrnlS that the high quality optical Cr­
diffused waveguide is fabricated.

Figure 12 Light coupled into the Cr-diffused waveguide



In summary, we demonstrated the formation of Cr diffused sapphire waveguides.
The C~+ ions are incorporated into the sapphire planar waveguide by thermal diffusion.

After diffusion, the surface of the Cr doped sapphire is very smooth, which is suitable for
devices fabrication. The light at 632.8 nm is coupled into the Cr-diffllsed planar
waveguide. These results demonstrate that the potential applications ofthe Cr-diffused
waveguide in integrated optical circuits.

One difficulty was obtaining multimode waveguides. This was accomplished by
instead of diffusing the Cr into the sapphire at high temperatures, by ablating a ruby laser
rod to place an amorphous layer of Cr:Sapphire and then re crystallizing the Cr:Sapphire.
However further work is needed to optimize this approach.

Preliminary growths of wide bandgap semiconductors were also performed on the
Cr:Sapphire waveguides. The materials were of high enough quality that they could
support optical modes, in both the Cr doped sapphire layer and the ZnO wide band gap
semiconductor. As shown in Figure 13 below.
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Figure 13.: ZoO film deposited on Cr:Sapphire waveguide.

A variety of other studies that were performed that were related to the original
proposa~ included the fabrication of GaN waveguides, and the simulation and design of
GaN waveguide devices. Additionally multiple materials were investigated using the
Prism coupling technique.
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