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Abstract - The paper presents an analysis of the

phased array radar allocation demands, when track-

ing highly manoeuvrable anti-ship missiles (ASM)

using a collocated radar/IRST sensor combination.

The motion of the ASM is modelled using the quan-

tized acceleration levels. The principal aim of this

analysis is to determine an upper bound on the av-

erage radar update time. This bound follows from a

Cramér-Rao type error bound for the estimation of

linear jump Markov dynamic systems [1]. Given a

dynamic motion model of an ASM, the IRST/radar

sensor characteristics and a tolerable level of target

state estimation error, we can theoretically predict

the maximum average update time required for the

phased-array radar. The presented analysis allows

us to quantify the IRST benefits in ASM defence,

without a need for extensive Monte Carlo simula-

tions.

Keywords: Tracking, performance bound, resource allo-

cation, anti-ship missile defence, IRST, phased-array radar,

data fusion.

1 Introduction

Modern anti-ship missiles (e.g. sea-skimmers, BUNT
missiles, anti-radiation missiles) combine low-altitude
flight, low radar-cross-section, high speed and maneu-
verability, and as such represent a serious threat be-
yond the capabilities of a radar-only surveillance sys-
tem. In an attempt to overcome this limitation, a mod-
ern shipboard surveillance system would typically com-
plement a phased array radar with a passive infra-red
search and track (IRST) sensor [2, 3]. Some of the
characteristics of a generic IRST sensor are: it is a
passive sensor thus it cannot in principle be detected
and, consequently, jammed; it provides angular mea-

surements (azimuth and elevation) of target position;
it is not affected by multipath at low elevation angles;
it has a very high angular accuracy and resolution wrt
radar; its detection range against anti-ship missiles is
speed dependent (longer range for higher speed) and
consequently provides a relatively constant “time to
closest point of approach”.

The principle of operation of an IRST aided radar
surveillance is as follows: the IRST passively scans the
horizon at a constant scanning interval in order to de-
tect low altitude threats. Each such detection serves as
an alert that is then used to allocate and cue an agile
beam confirm dwell with a pulse-Doppler waveform of
much higher energy than the normal radar surveillance
waveform. This principle of IRST aided phased-array
radar operation leads to a significant increase in the
confirmation range and a substantial decrease in the
radar resources required for track maintenance. As a
consequence, more tracks can be maintained and more
radar resources can be applied to track initiation [4,
Sec.14.9].

The paper explores the theoretical bound on phased
array radar allocation when tracking highly manoeu-
vrable anti-ship missiles (ASM) using a collocated
radar/IRST sensor combination. The assumption is
that during the ASM tracking, the phased array is
requested (to allocate a beam along a certain direc-
tion, transmit a suitable waveform, and process the re-
ceived echo) whenever the track error exceeds a certain
threshold. The motion of the ASM is modelled using
the quantized acceleration levels in three-dimensions.
The principal tool in developing the bound on radar
allocation is a Cramér-Rao type error bound for the
estimation of linear jump Markov dynamic systems [1].
Thus given a dynamic motion model of an ASM, the
IRST/radar sensor characteristics and a tolerable level
of target state estimation error, we can theoretically
predict the maximum average update time required for



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2006 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2006 to 00-00-2006  

4. TITLE AND SUBTITLE 
Analysis of radar allocation requirements for an IRST aided tracking of
anti-ship missiles 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
DSTO,Bldg 1082, PO Box 4331,Melbourne VIC 3001,Australia, 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
9th International Conference on Information Fusion, 10-13 July 2006, Florence, Italy. Sponsored by the
International Society of Information Fusion (ISIF), Aerospace & Electronic Systems Society (AES), IEEE,
ONR, ONR Global, Selex - Sistemi Integrati, Finmeccanica, BAE Systems, TNO, AFOSR’s European
Office of Aerospace Research and Development, and the NATO Undersea Research Centre. U.S.
Government or Federal Rights License 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



the phased-array radar (which translates into the re-
quired energy per unit time). The significance of this is
that one can predict, even before the system is built,
the upper limit on the capability of the IRST/radar
surveillance system. In addition, the relative mer-
its of having an IRST sensor to aid in tracking can
then be easily quantified, without a need for extensive
Monte Carlo simulations. The model of the phased ar-
ray radar that we consider in this study is somewhat
simplified because it ignores the details concerning the
radiated waveform, the signal processing and the mul-
tifunctional capability of radar (i.e. the interleaving
of functions such as search, track, etc). However, the
main ideas presented here can be directly extended to
more detailed sensor models.

The paper is organised as follows. Section 2 presents
a mathematical formulation of the problem, with de-
tails of the ASM motion model and sensor measure-
ment models. Section 3 is devoted to the theoretical
bound for radar allocation. Numerical analysis is pre-
sented in Section 4 and the conclusions of the study
are drawn in Section 5.

2 Problem formulation

We consider shipboard collocated phased-array radar
and an IRST, targeted by a highly manoeuvrable
ASM (see Fig.1). The two sensors are assumed to
be perfectly registered. The target (ASM) state is
x = [x ẋ y ẏ z ż]T . The motion model that
we adopt for a generic ASM is described next.

Figure 1: Illustration of the engagement scenario

2.1 Dynamic motion models

Various target dynamics models applicable to anti-ship
missile motion (both subsonic and supersonic) have
been proposed in the literature, such as the nearly con-
stant velocity model, constant acceleration model, co-
ordinated turn model, Singer (coloured process noise)
model, “weave” manoeuver model, “BUNT” manoeu-
vre model, to name a few [5, 6, 7]. Since this plethora
of (both linear and non-linear) models is neither ex-
clusive nor exhaustive, we adopt an alternative mod-
elling approach based on quantized acceleration levels
[8, 9]. The assumption here is that the acceleration
is piece-wise constant and its mean is taken from a fi-
nite set of acceleration levels. The perturbations upon
this constant acceleration is modelled as white Gaus-
sian noise. Switching from one acceleration level to
another is modelled by a first-order Markov chain.

The adopted target dynamic model is expressed as:

xk+1 = Akxk + Bka(rk+1) + wk (1)

where k is the index assigned to the continuous-time
instant tk,

Ak = I3 ⊗
[

1 Tk
0 1

]

(2)

Bk =
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. (3)

Here In denotes an n×n identity matrix, ⊗ is the Kro-
neker product, Tk = tk+1 − tk is the sampling interval;
wk is a 6×1 vector of zero-mean white Gaussian noise
with nonsingular covariance matrix

Qk = q · block-diag (Θk,Θk,Θk) (4)

where q is a parameter related to process noise inten-
sity [7, p.270], and

Θk =

[

T 3
k /3 T 2

k /2
T 2
k /2 Tk

]

. (5)

The acceleration vector a(rk+1) in (1) is a func-
tion of a discrete-valued 3D random vector rk+1 =
[rx ry rz ]Tk+1

which determines the regime (i.e. ac-
celeration level) of target motion during the period
tk < t ≤ tk+1. Here rx ∈ Rx, ry ∈ Ry , rz ∈ Rz

with

Rx = {−sx,−sx + 1, . . . ,−1, 0, 1, . . . , sx − 1, sx}
Ry = {−sy,−sy + 1, . . . ,−1, 0, 1, . . . , sy − 1, sy}
Rz = {−sz,−sz + 1, . . . ,−1, 0, 1, . . . , sz − 1, sz}

with sx, sy, and sz being positive integers. The accel-
eration vector is then

a(rk+1)) = [a0rx b0ry c0rz ]
T (6)

where a0, b0 and c0 are suitably chosen acceleration
quantum values (or units) along x, y and z axes, re-
spectively. The acceleration is thus discretised into
S = (2sx + 1)(2sy + 1)(2sz + 1) possible levels. The
target motion regime rk can switch between S mod-
els in a random manner. The evolution of the motion
regime is modelled by a first-order time-homogeneous
Markov chain with known:

1. transitional probabilities

πi,j
4
= P{rk+1 = j|rk = i}. (7)

where i = [ix iy iz]T , j = [jx jy jz ]T , with
ix, jx ∈ Rx, iy, jy ∈ Ry, iz, jz ∈ Rz ; the transi-
tional probability matrix [πi,j] is a square S × S
matrix.

2. initial regime probabilities p1(i)
4
= P(r1 = i),

where i = [ix iy iz]T , and ix ∈ Rx, iy ∈ Ry,
iz ∈ Rz .

The transitional and initial regime probabilities are
non-negative and normalised, that is:

∑

i

p1(i) = 1,
∑

j

πi,j = 1. (8)



2.2 Measurement models

The IRST provides target azimuth and elevation mea-
surements at regular sampling intervals T . The loca-
tion of the IRST/radar in the local Cartesian coordi-
nates is given by vector (xo, yo, zo)

T , however, in order
to simplify notation we will assume that xo = yo =
zo = 0. The IRST measurement vector at time k,

zIk =
[

θIk εIk
]T

is then given by

zIk = hIk(xk) + vIk (9)

where

hIk(xk) =







arctan yk

xk

arcsin zk√
x2

k
+y2

k
+z2

k






(10)

and vIk is the IRST measurement noise, assumed to
be zero-mean Gaussian with covariance matrix RI =
diag(σ2

θ,I , σ
2
ε,I).

The phased-array radar is requested to provide mea-
surements of target range, range-rate, azimuth and el-
evation based on the adopted radar allocation strat-
egy. The radar measurement vector at time k, zRk =
[

ρRk ρ̇Rk θRk εRk
]T

is given by

zRk = hRk (xk) + vRk (11)

where

hRk (xk) =
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(12)

and vRk is the radar measurement noise, assumed to
be zero-mean Gaussian with covariance matrix RR =
diag(σ2

ρ , σ
2
ρ̇, σ

2
θ,R, σ

2
ε,R).

In this analysis we will assume that the radar allo-
cation is requested whenever the target track error (in
position, range, elevation or azimuth) exceed a prede-
fined threshold.

3 Radar allocation bound

The key idea of this paper is to compute the theoreti-
cal bound on required radar allocation using the pos-
terior Cramér-Rao lower bound (PCRLB) for target
state estimation. Namely, if x̂k is an unbiased target
state estimator with covariance Ck, then the following
inequality holds:

Ck
4
= E

[

(xk − x̂k)(xk − x̂k)
T
]

≥ Pk (13)

where Pk is the PCRLB and its inverse Jk = P−1

k is
the Fisher information matrix (FIM) defined in [10].
Substantial advances have recently been reported in
development of the PCRLB for target tracking, such
as an efficient PCRLB computation in the context of
nonlinear filtering [11] and the PCRLBs when measure-
ments are of uncertain origin [12, 13, 14, 15, 16]. In
this paper we will use the best-fitted Gaussian (BFG)
approximation to the PCRLB for Markovian switching
systems [1] because of the dynamic model of the ASM
described in Sec.2.1.

3.1 The BFG approximation for jump

Markov linear systems

In order to compute the PCRLB for the dynamic model
described in Sec.2.1, we have to augment the state vec-
tor to include units a0, b0 and c0. We point out that
these units are known, hence not required to be es-
timated; this fact will be reflected in the initial co-
variance matrix and the process noise covariance. We
augment the state vector as follows [17]:

x̃k = [x ẋ a0 y ẏ b0 z ż c0]
T (14)

so that the dynamic equation (1) can be written as:

x̃k+1 = F
rk+1

k x̃k + w̃k (15)

where

F
rk+1

k = I3 ⊗





1 Tk
T 2

k

2
· rψ,k+1

0 1 Tk · rψ,k+1

0 0 1



 . (16)

Here ψ takes values x, y and z (in this order). The
process noise w̃k is again zero-mean Gaussian, with

covariance matrix Q̃k = q · block-diag
(

Θ̃k , Θ̃k, Θ̃k

)

,

where Θ̃k = diag(Θk, 0).
When the dynamic equation is given in the form of

(15), we can apply the best-fitted Gaussian approxi-
mation to compute the PCRLB [1]. The BFG-PCRLB
computation requires us to specify the initial target
state x̃o and its covariance matrix, P̃o, the initial
regime probabilities p1(i), the transitional probabili-
ties πi,j, process noise covariance and sensor character-
istics (measurement error standard deviations and the
sampling time).

The main idea of the BFG-PCRLB approximation
is to approximate the linear jump Markov system de-
scribed by (15) with the linear non-switching system

x̃k+1 ≈ Φkx̃k + uk (17)

where uk is an “equivalent” zero-mean white Gaus-
sian random vector with a covariance matrix Σk. A
straightforward procedure for the sequential computa-
tion of Φk and Σk ensures that the first and the second
moment of models (15) and (17) are identical [1]. This
procedure is given in Table 1.

Example 1. Consider the case where a ship
is located in 3D space at (0, 0, 0)m and the ini-
tial location of the ASM is (17321, 10000, 0)m. The
ASM is heading towards the ship with the speed
of 400m/s. The initial covariance matrix is P̃o =
diag(σ2

x, σ
2
v , δ, σ

2
y, σ

2
v , δ, σ

2
z , σ

2
v , δ), where σx = 21 m,

σy = 13.5 m and σz = 12.8 m (computed using the
first (IRST, radar) associated measurement pair and
the spherical-to-Cartesian conversion). Furthermore,
σv = 10 m/s, and δ � 1 is a very small value which
reflects the fact that the quantum values a0, b0, c0
are known (δ has to be non-zero so that P̃o is non-
singular).

The transitional probabilities are set as follows: the
non-switching probability is πi,i = α and the remaining



Table 1: The BFG computation of Φk and Σk

Initialisation: ε = x̃o, C = P̃o.
For k = 1, 2, 3, . . .

Φk−1 =
∑

i

Fi
k−1pk(i)

Ck =
∑

i

pk(i)
[

Fi
k−1(Ck−1 + εk−1ε

T
k−1)(F

i
k−1)

T

+Q̃k−1

]

−Φk−1εk−1ε
T
k−1Φ

T
k−1

Σk−1 = Ck −Φk−1Ck−1Φk−1

εk = Φk−1εk−1

pk+1(i) =
∑

j

πj,i pk(j)

End

1−α is equally distributed among the switching cases
so that normalisation in (8) holds. The initial non-
accelerating regime probability is set to 1, i.e. P(rx,1 =
0, ry,1 = 0, rz,1 = 0) = 1. The units of acceleration are
a0 = b0 = c0 = 1g, where g = 9.81m/s2. Figure 2
shows the 2σ uncertainty ellipsoids in the X−Y plane
of the BFG approximation for α = 0.9 and q = 0.001
m2/s3 at time steps tk = kTk, with Tk = 0.5s, k =
0, 1, . . . . In red we show the results for sx = sy = 4
and in blue for sx = sy = 8 (in both cases sz = 0).
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Figure 2: Uncertainty ellipsoids of the BFG ap-
proximation for different levels of quantized ac-
celeration. In red is the case Rx = Ry =
{−4g,−3g, . . . , 0, . . . , 3g, 4g}, in blue is Rx = Ry =
{−8g,−7g, . . . , 0, . . . , 7g, 8g}.

The first observation from Figure 2 is that the mean
of the BFG approximation is directed towards its aim
(the ship), despite the fact that the ASM is manoeu-
vring. This is true whenever the transitional probabil-
ity matrix is symmetric and the acceleration space is
quantized symmetrically around the zero acceleration
in all directions. The second more obvious observation

is that the uncertainty grows with the larger span be-
tween the minimum and maximum acceleration levels
(in this case red corresponds to ±4g while blue corre-
sponds to ±8g). The value of α also influences the size
of the uncertainty ellipsoid (results not shown here):
the higher the value of α, the smaller the uncertainty.

3.2 FIM measurement contribution

Once we determine Φk and Σk, we can apply the
Riccati-type recursion to compute the FIM [11]:

Jk = Jp(k) + Jz(k) (k = 1, 2, . . . ) (18)

where matrix

Jp(k) =
(

Φk−1J
−1

k−1
ΦT
k−1 + Σk−1

)−1
(19)

is the predicted FIM and matrix Jz(k) is the measure-

ment contribution to the FIM.
The FIM measurement contribution Jz(k) in gen-

eral depends on sensor measurement functions (in our
case hIk and hRk ), target trajectory, and the detection
characteristics of sensors (the probability of detection
Pd and the probability of false alarm Pfa). The non-
ideal detection characteristics of sensors (Pd ≤ 1 and
Pfa ≥ 0) introduce uncertainty in the measurement
origin, which reflects itself in a reduction of the mea-
surement contribution to the FIM. A comprehensive
analysis of the influence of Pd ≤ 1 and Pfa ≥ 0 on
Jz(k) is presented in [16]. For simplicity, however, in
this study we assume zero false alarms rates, while the
effect of Pd ≤ 1 will be taken into account as follows:

Jz(k) = Pd · E
{

HT
kR−1

k Hk

}

. (20)

The resulting bound, referred to as the information re-
duction factor PCRLB [15], is a conservative but rea-
sonable approximation, which becomes fairly accurate
after a few initial scans. The term E in (20) is the
expectation operator and Hk is the Jacobian of mea-
surement function hk:

Hk(x̃k) =
[

∇x̃k
hTk (x̃k)

]T
(21)

evaluated at the true value of the x̃k . Depending on
the source of a measurement at time k (IRST or radar),
function hk takes the form of hIk or hRk , respectively.
Matrix Rk in (20) is the measurement covariance, and
takes the form of RI

k or RR
k , depending on the source

of the measurement. Similarly, Pd is the probability
of detection of a sensor (P Id for IRST; PRd for radar),
and typically is a function of target range. If at time k,
both radar and IRST measurements are requested, due
to their mutual independence, eq.(20) takes an additive
form:

Jz(k) = PRd E
{

(HR
k )T (RR

k )−1HR
k

}

+ P IdE
{

(HI
k)
T (RI

k)
−1HI

k

}

.

Jacobian HR
k is a 4×9 matrix; Jacobian HI

k has the
same entries as the lower 2×9 submatrix of HR

k . Hence
we present only the elements of HR

k , which are easily



obtained by differentiation. The non-zero elements of
HR
k are as follows:

HR
k [1, 1] = HR

k [2, 2] =
xk
ρk

HR
k [1, 4] = HR

k [2, 5] =
yk
ρk

HR
k [1, 7] = HR

k [2, 8] =
zk
ρk

HR
k [2, 1] =

ẋk(y
2
k + z2

k) − xk(ykẏk + zk żk)

ρ3
k

HR
k [2, 4] =

ẏk(x
2
k + z2

k) − yk(xkẋk + zk żk)

ρ3
k

HR
k [2, 7] =

żk(x
2
k + y2

k) − zk(xkẋk + ykẏk)

ρ3
k

HR
k [3, 1] = − yk

x2
k + y2

k

, HR
k [3, 4] =

xk
x2
k + y2

k

HR
k [4, 1] = − xkzk

ρ2
k

√

x2
k + y2

k

HR
k [4, 4] = − ykzk

ρ2
k

√

x2
k + y2

k

HR
k [4, 1] =

√

x2
k + y2

k

ρ2
k

where ρk =
√

x2
k + y2

k + z2
k.

In order to compute the measurement contribution
to the FIM as in (20), we would need to average the
product HT

kR−1

k Hk over all possible realisations of the
state vector x̃k. In general this can be done numer-
ically, e.g. via a sample based technique [1]. In our
analysis, however, we will consider one particular ASM
trajectory (see Sec.4.1) for which we will compute the
measurement contribution to the FIM.

3.3 Radar allocation requirement

The IRST provides its measurements at a regular sam-
pling interval Ti. The phased-array radar measurement
is required for track update whenever the predicted
RMS error in estimating the position of the ASM ex-
ceeds a certain threshold η. The radar allocation test is
carried out every Tk < Ti seconds and formally states:
allocate radar if

RMSEpredpos ≈
√

J−1
p [1, 1] + J−1

p [4, 4] + J−1
p [7, 7] ≥ η,

(22)
where Jp is the predicted FIM of (19). The exact ex-
pression for the RMS error in the predicted position
would involve the cross-terms such as Jp[1, 4], Jp[1, 7],
etc. (see [10, p. 9] for the general formulation of the
PCRLB for the nonlinear transformation of the state
vector). For discussion on other rules for radar alloca-
tion see [4, Sec.14.4].

4 Numerical analysis

4.1 Simulation setup

The simulated missile trajectory corresponds to a su-
personic ASM which performs a weaving manoeuvre.

The initial speed is 700 m/s, with acceleration load in
the horizontal plane oscillating with a period of 5 sec-
onds. The height of the missile is constant at 10 m.
The trajectory is shown in Figure 3 (top-down view)
for peak acceleration loads of 4, 8, 12 and 16 g.
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Figure 3: Test missile trajectory (with varying levels
of acceleration loads)

Numerical analysis is carried out assuming that the
radar has confirmed the initial IRST alert and that the
track on the incoming ASM has been established by
fusing the initial radar and IRST measurements. The
elements of the radar measurement covariance matrix
RR
k are specified as: σρ = 30 m, σρ̇ = 3 m/s, σθ,R = 3.0

mrad and σε,R = 4.5 mrad. The accuracy of IRST
measurements is characterised by σθ,I = 0.25 mrad and
σε,I = 0.64 mrad. The range at which missile tracking
starts is 16 km. The initial covariance matrix is for
the case of IRST/radar combination specified by P̃o =
diag(σ2

x, σ
2
v , δ, σ

2
y, σ

2
v , δ, σ

2
z , σ

2
v , δ), where σx = 21.8 m,

σy = 13.4 m and σz = 12.8 m, σv = 10 m/s and
δ = 10−8. For comparison, we also consider the radar-
only (no IRST) case, with σx = 39 m, σy = 53 m and
σz = 75 m (these values were obtained by spherical-
to-Cartesian conversion).

The probability of detection Pd for both sensors is
modelled next. In the case of the IRST, following the
description in [4, Sec.2.3], the Pd versus range curve is
shown in Fig.4 in red solid line. This curve is obtained
assuming Pd = 0.9 at the nominal range of 17 km. For
the case of a radar, an attempt has been made to incor-
porate the effect of specular multipath on Pd, as shown
in Fig.4 in blue thin line. The values of multipath nulls
for the radar cannot be known in advance as they de-
pend on the height of the missile. In general multipath
also deteriorates the accuracy of elevation angle radar
measurements [18], although this effect has not been
included in the model.

4.2 Numerical results

First we analyze the positional RMS error as a function
of time for: (1) the case where an IRST is available
to complement the phased-array radar in tracking an
ASM; the IRST is scanning the horizon with Ti = 1 s;
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(2) the radar-only tracking case. The results are shown
in Fig.5 for sx = sy = 4, sz = 0, a0 = b0 = c0 = 1g,
Tk = 0.2 s, α = 0.9, q = 0.0001 and η = 100 m.
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From Fig.5 we note that sharp drops in the RMS
error indicate the instances when a radar allocation
was requested. Thus, if the radar is operating alone, it
is requested to revisit the target 7 times; with addition
of the IRST, however, the radar is requested only 3
times.

Next, in Fig.6, we analyse the average update time
of the phased-array radar as a function of: (a) the sam-
pling period of IRST Ti and (2) the value of sx = sy
which corresponds to manoeuvre ability of the incom-
ing missile. In preparation of this figure we used the
same trajectory and parameters as indicated above,
unless otherwise stated.

Fig.6.(a) was obtained for sx = sy = 8. Observe
that the IRST sampling intervals (Ti) of 0.5, 1 and
2 seconds, result in very similar radar allocation re-
quirements. There is a dramatic drop in average Tr
(i.e. a growing demand for the radar) when Ti is in-
creased from 2 seconds to 8 seconds; finally, for Ti ≥ 64
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Figure 6: Average radar update time (in seconds) ver-
sus: (a) the IRST sampling period Ti; (b) the ma-
noeuvre ability of the missile in the horizontal plane
(sx = sy)

seconds, the IRST becomes irrelevant and the system
performs as if the radar is alone.

Fig.6.(b) was obtained for sz = 0 and Ti = 1s. Ob-
serve that the higher the manoeuvre ability of the mis-
sile, the smaller the average update time of the radar
(i.e. the greater demand for the radar).

4.3 Comparison with an EKF

Next we compare the theoretical bound on average
radar sampling interval Tr, with the update time of
an Extended Kalman filter (EKF), designed to process
both radar and IRST measurements using the appro-
priate measurement functions hRk and hIk. The EKF
assumed a constant velocity dynamic motion model,
with a large amount of white process noise to account
for ASM manoeuvres. The radar allocation test is car-
ried out as in (22), except that J−1

p is replaced by the
EKF predicted covariance. The radar update times of
the EKF were averaged over 10 Monte Carlo runs and
plotted against the IRST sampling period in Fig.7.

Over the range of IRST sampling periods examined,
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Figure 7: Average radar update time (in seconds) ver-
sus the IRST sampling period Ti: blue line is the the-
oretical (upper) bound, green line is the EKF result

the EKF achieved only about half of the upper bound
on average radar update time. It may be possible to
approach the bound using a better tracking filter, such
as an IMM [7, 9] with a number of acceleration states.

Note that the results do not take into account the
potential errors in associating the measurements to the
track. If measurements were incorrectly associated, a
decrease in the average radar update time, or equiva-
lently an increase in radar resources, would be required
to maintain the desired track error limit.

5 Conclusions

The paper presented a theoretical analysis of phased-
array radar allocation requirements for tracking anti-
ship missiles with an integrated radar/IRST surveil-
lance system. The main tool in the analysis was
the posterior Cramer-Rao lower error bound for tar-
get tracking, and therefore the obtained results for
the average radar update time indicate only the up-
per bound. The presented analysis allows us to quan-
tify the IRST benefits in the anti-ship missile defence,
without a need for extensive Monte Carlo simulations.
The analysis was carried out using simplified radar and
IRST models, characterised by measurement accura-
cies and probabilities of detection. Future work will
extend the analysis by (1) using more realistic sensor
models and (2) calculating a more accurate PCRLB
in cluttered environments, via the enumeration of the
measurement sequences as in [16]. Finally it will be
necessary to verify the theoretical results by compari-
son with the experimental data.
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