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Abstract – Predicting the search effectiveness of a 
distributed multistatic sensor field is highly conditioned 
on information which is unknown and, for all practical 
intents, unknowable when engaged in a two-sided 
tactical situation.  Yet, it is imperative to have a method 
for assessing the military value of such systems to inform 
decisions relating to procurement, optimal employment, 
and maximal military exploitation.  The combination of 
Monte Carlo simulation methods and Bayesian fusion 
techniques allow for a robust approach for modeling the 
effects of uncertainty on the distribution of likely 
outcomes.  Exemplar analysis for an Area Clearance and 
an Area Denial scenario demonstrate how a combined 
Monte Carlo simulation and Bayesian fusion system 
might be employed to account for uncertainty and the 
types of information products they can provide a 
decision-maker. 
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1. Introduction 
 
There are many uncertainties that impact the reliability 
of any deterministic sonar system performance 
prediction.  Even in the simple and long-studied domain 
of passive sonar systems, much can be said about the 
difficulty to match observed performance with modeled 
performance.  Monostatic active sonar adds new 
complexity to solving the sonar equation with the 
addition of two-way propagation loss and a new acoustic 
driver, reverberation.  Disregarding the potential 
difficulties, many look to multistatic sonar as a means to 
increase search effectiveness.  There are attractive first 
principles motivating this  idea.  Importantly, there are 
increased opportunities for a high value target strength or 
a high Doppler geometry that an enemy submarine is not 
able to control, because it does not know the location of 
all the receivers processing the echo.  The extra receivers 
processing each ping and high target strength and high 
Doppler opportunities give rise to the expectation of an 
increased number of detections that could feed a track-
before-detect process.  There will also be an increased 
probability of high signal-to-noise ratio (SNR) detections 
associated with specular and near-specular detections 
that aid in distinguishing a submarine from clutter.  
Lastly, the construction of a multistatic field having 
separate sources and receivers allows for a cost-based 

optimization for field design that reflects the disparity in 
cost between sources and receivers.   
 
2. Cataloguing the Uncertainties 
 
While multistatic sensors offer the promise of improved 
detection opportunity, they do not alleviate the 
uncertainties intrinsic to assessing field performance.  
There are many uncertainties that may impact the bistatic 
sonar equation, formula 1 [1].  This paper catalogues 
some of the uncertainties that remain even after the range 
dependent environment is well surveyed, a reliable range 
dependent acoustic propagation model is selected, the 
target is well researched and the sonar system parameters 
ascertained and verified.   

 
Where: 

SE=SL-TLS-T-TLT-R-(AN-DI)⊕RVB+TS-DT    (1)  

SE = signal excess 
SL = source level 
TLS-T = transmission loss source to target 
TLT-R = transmission loss target to receiver 
AN = ambient noise (omnidirectional noise) 
DI = directivity index 
RVB = reverberation in the beam 
TS = target strength 
DT = detection threshold 
Note – This equation can be solved in the energy 
domain or in the power domain. 

 
2.1 Target Motion Behavior 
 
Prior to detection, enemy submarine motion in three 
dimensional space is not knowable.  The uncertainties 
include not knowing the target motion objectives, its 
depth operating profile, or its speed operating profile.  
But not knowing these important parameters does not 
mean that field performance assessment is precluded.  
What is necessary is to have estimates of credible target 
motion parameters that as a minimum include the 
possibility of aggressive behavior (e.g., driving towards 
friendly forces).  If all credible behaviors can be 
identified, then they can be modeled and evaluated as 
concurrent, competing hypotheses.  Metrics against each 
of these hypotheses can be evaluated to assess the most 
robust tactic in the presence of tactical uncertainty. 
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2.2 Target Aspect 
 
Target aspect with respect to a source and nearby 
receivers in the field is a discrete phenomenon; that is to 
say that a real target will only be in one location and 
have one heading, depth and speed at any given time.  
The problem is that its exact location, heading, depth and 
speed at an exact moment in time are somewhat 
arbitrary.  Unfortunately, the field performance against 
that particular analytical instantiation is extremely 
sensitive to those parameters.  One way to accommodate 
for this is to use a sufficiently large numbers of Monte 
Carlo simulations to represent the distribution of likely 
geometries that may be encountered.  Target orientation 
will determine the value of target strength, TS in formula 
1.  Figure 1 shows how the target strength of a submarine 
hull may vary as a function of bistatic angle and bistatic 
aspect angle.  The Bistatic Angle is the source-target-
receiver angle.  The Bistatic Aspect Angle is the angle on 
the bow of the bisector of the Bistatic Angle.  Target 
orientation and speed will determine the value of 
reverberation, RVB in formula 1, once various Doppler 
filters are applied to the returned signal.  Figure 2 shows 
how the sonar system may be able to reject reverberation 
as a function of bistatic Doppler.  Target depth, which 
may be variable, will determine the selection of an 
appropriate transmission loss calculation, the TL terms in 
formula 1. 

 
Figure 2.  Notional Representation of 
Reverberation Rejection as a Function of 
Bistatic Doppler

 

 

 
2.3 Detection Uncertainty 
 
Experience to date has taught us that it is futile to attempt 
to monitor our environment and other performance 
related parameters in the hopes of being able to predict 
(model) accurately which pings will provide detection 
and which ones will not.  For example, given 20 acoustic 
“looks” each having a probability of 0.1 of generating a 
detection, there is no reliable means of anticipating which 
of the ten percent opportunities will pay-off.  Indeed, it is 
possible that none of them will.   
 
2.4 Acoustic Fluctuation 

Figure 1.  Notional Representation of Target 
Strength as a Function of Bistatic Angle and 
Bistatic Aspect Angle. 

 
Even when the signal excess equation, Formula 1, is 
supplied with the best available estimates for each term, 
there will be fluctuations in detection performance driven 
by fluctuations in the environment [2].  These 
environmental fluctuations often cannot be measured and 
their acoustic effect cannot be modeled.  As an example, 
we may be able to anticipate the presence of internal 
waves, but measuring their structure throughout  a large 
volume is prohibitively difficult.  Even if we could 
measure their structure, we are not yet able to anticipate 
the induced acoustic effect of the internal waves on a 
particular source-receiver pair as they look upon a target.  
Yet, these fluctuations can have a large effect on sensor 
performance, and so must be accounted for by some 
means. [3]  
      Our current models, databases, environmental 
sensing, and oceanographic tools enable us to reasonably 
predict median environmental conditions and thus 
median sensor performance.  Working with median 
values, we can arrive at a deterministic calculation of 
system performance.  Because of the acoustic 
fluctuations, the actual performance of the system may be 
greatly improved over or greatly diminished from 
median, deterministic expectations.  The acoustic 
fluctuation is often represented as a stochastic process, 
having a time scale.  Some fluctuations happen on the 
time scale of ping-to-ping, while other fluctuations occur 



 

over the course of hours.  There are multiple frameworks 
for accounting for these fluctuations [4] [5] [6], including 
a lambda-sigma model and a Gauss-Markov process.  
Each has its merits and application.  A detailed 
discussion of these two methods and their relative merit 
are outside the scope of this paper.  What is important is 
that fluctuations are accounted for in the performance 
prediction model.   
 

)()()( ttSEtSE ξ+=                       (2) 

Where: 
SE(t)  -  modeled signal excess that combines the 

deterministic and stochastic components 
)(tSE  - deterministic contribution to signal 

excess arrived at by solving Formula 1 
)(tξ  - stochastic contribution to signal excess 

 
By example, consider a barrier search having a median 
performance of multiple detections on a transiting 
submarine.  One applies considerations for acoustic 
uncertainty (i.e., converting signal excess into 
probabilities of detection) and assuming a Poisson 
distribution of detection events, determines that there is 
virtually no chance of the submarine transiting 
undetected.  When fluctuations are ignored, this barrier 
search tactic would be deemed effective.  Next we 
consider the same barrier search scenario, but introduce 
fluctuation modeling.  When an unfortunate “draw” is 
made, either for a lambda-sigma or Gauss-Markov 
process, barrier search performance is degraded and the 
submarine may be able to transit the field undetected.  So 
far, the above could be analyzed with analytic models if 
one were provided exact source-target-receiver 
geometries for each ping event and other pertinent data 
like target depth, speed, and heading.  But, because the 
enemy submarine is not constrained to a single track or a 
single operating profile, analytic solutions are not an 
appropriate approach.  The exemplar analyses contained 
in this paper employ a fluctuation model that have two 
long term Gauss-Markov processes and one short term 
Log-Rayleigh process. 
 
3. Attributes of Monte Carlo and 
Bayesian Method 
 
This section identifies the two central engines of the 
Multi-Sensor Interaction Calculator (MUSICAL™), 
which is used to generate the exemplar analyses. 
 
3.1  Monte Carlo Simulation 
 
So far in the paper, we have seen that there are many 
conditions that drive sensor performance expectations 
even after the environment is well surveyed and reliable 
acoustic models are used to predict performance for well 
known sensors against well understood targets.  In a two-

sided tactical scenario, the enemy submarine depth, 
speed, and motion strategy cannot be known.  The actual 
location and heading of the target at any given time prior 
to detection is unknowable.  Since these unknowable data 
drive sensor performance, what is needed is a means to 
instantiate a statistically significant representation of all 
credible behaviors.  Monte Carlo simulation methods are 
well suited for this as long as the number of states is kept 
to a manageable level.  When the number of states is 
allowed to grow, there is a combinatorial explosion.  
Under those circumstances, an alternative approach such 
as Markov Chain may be advised.  However, where the 
number of threat motion hypotheses is kept to fewer than 
a dozen, Monte Carlo simulation is a suitable modeling 
framework, even on a slow desktop computer.  Lastly, 
Monte Carlo simulation is an attractive framework for 
ASW analysis because it is easy to work with and 
because it can handle complex submarine motion 
objectives with suitable fidelity. 
 
3.2  Bayesian Inferencing 
 
The Bayes Theorem, formula 3 [7], is well suited to the 
application of modeling uncertainty as it applies the 
ASW effectiveness of a distributed multistatic field.  
There are three interrelated attributes that make Bayes 
Theorem very desirable for this application.  First, it is 
constructed to deal with negative information.  Since 
normative ASW involves searching while there is no 
target within acoustic range of the sensors, having a 
means to “learn” from that condition can be quite 
valuable.  Second, the formulation as a conditional 
probability is well suited for evaluating concurrent and 
competing hypotheses.  Third, Bayes Theorem 
normalizes the implication of the negative search 
information (i.e., no detection).  This last point means 
that negative search does not diminish the probability that 
the target is somewhere within the analytical purview of 
the algorithm.  When Bayes Theorem is implemented 
properly, this attribute has great utility, but when 
implemented improperly, it becomes a liability. 
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Where: 
P[Aj|B] - is the probability that the target is in Aj 

given search event B failed to detect it, the 
posterior probability. 

P[B|Aj] - is the probability of target remaining 
undetected in area Aj given search event B, 
the likelihood function. 

P[Aj] -  is the probability of target being in area 
Aj. 

 



 

 

Denominator is the marginal probability or the 
normalizing constant represented as the sum 
of all mutually exclusive hypotheses.  

 
3.2.1 Low Probability “Looks” 
 
So far, this paper has argued for the perspective that 
exact sensor performance is not anticipatable.  On any 
given source-target-receiver look-event, it is not 
reasonable to ask whether or not the target would be 
detected; it is only reasonable to ask what is the 
probability that the target would be detected.  It is 
possible to envision systems and field designs where 
performance would intentionally be based on multiple 
“looks” each having a probability of detection of less 
than 0.5.  It would not be suitable for a performance 
prediction engine to round up all “looks” greater than 0.5 
probability and dismiss all “looks” less than 0.5 
probability.  To address this issue, a Bayesian framework 
may be adopted.   
      Alternatively, a system could simply Monte Carlo the 
probability of detection for each “look”, such that 20% 
of the time a 0.2 probability of detection “look” will 
result in a modeled detection and the Monte Carlo track 
eliminated. This approach has the effect of forcing 
certain outcomes onto uncertain data.  One limitation of 
this approach is that the analyst cannot readily discern if 
the tracks that escaped detection were “lucky” tracks or 
tracks that the system never even looked at.  Another 
limitation of this approach is discussed in the Positive 
Data Fusion section of this paper; when tracks are 
eliminated, they are no longer available to future 
information fusion.  It is best to keep all Monte Carlo 
target tracks and still have a way to account for the 
effects of search histories that may be comprised of 
multiple low probability of detection “looks”. 
 
3.2.2 Learning from Negative Search 
 
Much of ASW takes place without a threat submarine 
actually operating in the acoustic range of searching 
sensors.  While the absence of a submarine may be 
undesirable in an experimental setting, it may be very 
desirable in time of war.  The challenge is to discern 
whether or not a threat submarine is or may be present.  
Conducting ASW search with the purpose of discerning 
that a submarine threat is not present is known as Area 
Clearance and it must have associated with it a particular 
level of confidence.  Bayesian inferencing is an excellent 
way to infer meaning to search that occurs without 
detection on the threat submarine [8]; this is often 
referred to as negative search information.  In a Bayesian 
search engine, it is presumed that search effort results in 
no detections until some overt act is undertaken to infuse 
a detection or contact report.  Negative search 
information is accreted against each Monte Carlo track.   
      There are differences in how various Bayesian 
systems work; the below description applies to 
MUSICAL™.  The history of search events is used to 

calculate the probability that each Monte Carlo track 
would have remained undetected.  This is used to adjust 
the credibility of each of the Monte Carlo tracks, which is 
referred to as its “weight”.  As described so far, this 
would result only in the diminishment of target existing, 
if the weight of each Monte Carlo could only be 
diminished as the consequence of negative search.  But 
this is not what happens in a Bayesian framework.  The 
Bayesian framework is a closed system.  If a submarine 
is said to exist at the beginning of the analytical problem, 
it must also exist at the end of the analytical problem.  
The weights of the tracks are normalized at the end of 
each look event by the denominator of Formula (2).   
Through normalization of the Monte Carlo weights, the 
probability of the target existing remains constant, while 
at the same time the relative weight of the submarine is 
being shifted from the tracks that are under the influence 
of the multistatic field to tracks that have not been 
searched. 
 
3.2.3. Positive Data Fusion 
 
A Bayesian fusion method for calculating the threat 
density probability map (TDPM) in MUSICAL™ has the 
advantage of retaining Monte Carlo tracks even when 
they may have very low probabilities.  This is very useful 
when a detection or contact report arrives (i.e., positive 
search data).  The objective is to fuse the 
detection/contact report with the a priori TDPM.  The 
contact report may have its own distribution function 
(e.g., uniform or bivariate normal) and a credibility.  A 
type of normalized cross-product between the a priori 
and the contact report produces the new TDPM.  In a 
non-Bayesian framework there is the risk that the a priori  
density would have removed all the Monte Carlo tracks 
from the region in which contact was gained.  A 
Bayesian framework not only preserves the tracks but 
also preserves the differences between the low 
probability tracks such that the normalized cross-product 
no longer is uniform or bivariate normal in the region of 
the contact report.  In other words, the data in the contact 
report is informed by the previous search history.  This is 
especially valuable when the contact report covers a large 
area of uncertainty that falls over an area where the a 
priori TDPM is non-uniform. 
 
4. Exemplar Analysis  
 
Two exemplars are offered in this section to help 
demonstrate what a combined Monte Carlo and Bayesian 
framework might look like, when used to make 
performance predictions for a distributed multistatic 
sensing field.  The two exemplars are Area Clearance and 
an Area Denial.  
 
4.1 Area Clearance 
 
Area Clearance is the ability to claim with some measure 
of confidence that, based on some previous or ongoing 



 

search effort, a threat submarine is not likely to be 
operating in a specified region.  In the absence of a 
negative search inference engine, such as Bayes 
Theorem, analysts are left with two alternatives, neither 
of which is desirable.  One approach is for the analyst to 
make an educated guess.  There are tactical problems for 
which this is possible.  However, distributed multistatic 
sensor fields in a range dependent environment that 
exhibit spatial and temporal discontinuities in 
performance should not be treated as an intuitive 
problem.  An alternative approach that has been used is 
to create an impermeable analytical boundary around the 
sensor field, and by one means or another calculate the 
cumulative probability of detection against any target 
operating within.  This is an undesirable approach to the 
problem because “edge effects” often drive the real 
effectiveness of the distributed field.  The impermeable 
boundary means that the entire search effort (time) will 
be applied to all target tracks in the analysis space.  This 
ignores the effect of a submarine entering the field after 
the search has begun or leaving the field before it is 
completed.  Ignoring the edge effect may seriously 
compromise the analysis. 

Figure 3. Threat Density Probability Map Hour 0 

      Figure 3 shows the initial conditions of the Area 
Clearance exemplar.  A total of 6,000 Monte Carlo track 
representations of the enemy submarine have been 
randomly placed within a 100 NM by 100 NM area that 
contains some land features.  Five stationary sources 
have been placed in the battlespace and four mobile 
receivers are available to receiver bistatic echoes and 
share information with one another.  Analysis, not shown 
in this report, was conducted to evaluate if the receivers 
should be co-located with the four corner sources (i.e., 
monostaticly placed) or whether bistatic placement 
would be better.  Analysis showed that field performance 
was greater when the mobile receivers where bistaticly 
positioned.  Optimization analysis (i.e., optimal of all 
tactics evaluated) showed that the some candidate tactics 
placed the mobile receivers too close to the sources while 
other tactics placed them too far from the sources.  
Figure 3 shows the results of this optimization analysis 
with the mobile receivers circumnavigating the four 
sources at some intermediate range from them.  These 
results are very much dependent on the range dependent 
sensor performance predictions pertaining to this 
environment, target, and multistatic system. 

 
Figure 4 shows the impact that 16 hours of search 
without contact has on the initial assumption of a 
uniformly distributed target.  The central part of the 
figure seems to have no Monte Carlo tracks within it.  
For this display, Monte Carlo tracks that had a greater 
than 0.95 probability of having been detected were 
colored white, causing them to disappear.  This 
convention was adopted because those tracks are deemed 
improbable and should not distract the operator. 
      The effects of the range dependent environment on 
the performance can be seen in the TDPM.  The 
clearance around the southeast source is less than the 
clearance around the southwest source.  Additionally, 
there is path of cleared water extending out of the field to 
the south.  This is all driven by range dependent sensor 
performance.   
      A 40 by 40 NM gray box has been plotted on the 16 
hour TDPM indicating the most effectively cleared 
region.  Given the target motion assumptions and the 
range dependent multistatic performance predictions, 
there is less than a 1% chance that target would be in the 
gray region and undetected.  In other words, it represents 
the region having the least residual ASW risk.  It should 
be observed that the most effectively cleared region is not 
in the center of the formation.  A tactician relying on a 
cumulative probability of detection metric does not gain 
this insight.  An acoustician looking at range dependent 
performance may understand that performance is skewed 
to the south and west, but still could not assess the benefit 
of preferentially placing a high value unit there.  This 
exemplar shows that a combination of Monte Carlo 
simulation and Bayesian inferencing methods can 
achieve this end. 

 



 

 
Figure 5. Multiple Hypotheses for Area Denial

 

      The objective of this exemplar is to detect, classify 
and localize the threat submarine prior to it reaching a 
circle of 20 NM radius.  The placement of the circle will 
be governed by the above metric.  The search plan will 
remain unaltered, regardless of the placement of the 
circle within the battlespace.  The threat will be modeled 
as having knowledge of the circle location and the Monte 
Carlo tracks will drive towards the circle regardless of its 
placement. 

 
Figure 4. TDPM After 16 Hours of Search with Gray 
Box Indicating Best Cleared Area 40X40 NM Box 
 

4.2 Area Denial 
 
Area Denial is the ability to detect, classify, and respond 
to enemy submarines in a timely fashion as they attempt 
to enter into some battlespace that is being controlled.  
The nature of the response and what is meant by 
“timely” is a function of mission, threat capability, and 
friendly force capability.  Area Denial is a logical 
follow-on to Area Clearance.  Area Denial may employ 
the same resources and tactics that were used in Area 
Clearance or a different tactic might be employed.  For 
example, a barrier search might be established along 
each of the four sides of the cleared battlespace.    
      Figure 5 shows an analytical scenario where the Area  
Clearance tactic is maintained to provide Area Denial 
capability.  There are three submarine approach 
directions that are considered credible.  Monte Carlo 
simulation is well suited to the creation of three 
concurrent threat motion hypotheses.  In this case, each 
hypothesis is considered equally likely, and so an equal 
number of Monte Carlo tracks are allocated to each of 
three.  The analytical objective is to identify tactics that 
provide the greatest effectiveness against the three 
equally likely hypotheses.  As a matter of efficiency, it is 
best to evaluate these three hypotheses concurrently.  
When complex, responsive behaviors are modeled, it 
may become necessary to model the hypotheses 
concurrently.   

 
 

       

 

     Figure 6 shows the relative results of 15 candidate 
locations for the 20 NM radius circle.  When centered on 
the middle of formation, the field is effective against the 
northwest hypothesis (worth 5 points) and is minimally 
effective against the north hypothesis (worth 1 point) and 
is completely ineffective against the east hypothesis.  The 
score of 6 points is colored red to indicate that centering 
the circle in the center of the formation is poor choice.  
There are two locations colored green, indicating that 
they are effective against all three hypotheses.  To the 
west of the green location with 15 points (the maximum 
score considered), the score drops off again.  This is 
because as the circle migrates too far to the west, the 
northwest hypothesis is able to approach the circle while 
circumnavigating the acoustic effectiveness of the 
multistatic field. 

 
Figure 6.  Optimal Placement of Circle Center 

 



 

 

uctuating and it can produce unique information 

 what area within the 
ti ed

 Turriff, and D. Patrone, Simulation-
ased Undersea Warfare Assessment, Johns Hopkins 

nders, Naval 
. 

. McCabe, Comparison of Stochastic Processes 

ns Analysis, 2  Ed., Naval Institute 

ultistatic 
 

 
Search against each of the three hypotheses will show 
that each is unlikely.  If these are the only hypotheses 
being evaluated, the combined weight of the three 
hypotheses will eventually be shifted to the east 
hypothesis as it is the most difficult to disprove.  If a 
fourth concurrent hypothesis were created in which the 
threat was said to be anywhere in the region and in a 
random patrol (Figure 3), most of the weight of the first 
three hypotheses would eventually be shifted to fourth 
hypothesis.  Eventually, the TDPM would look just like 
Figure 4. 
 
Conclusions 
 
Monte Carlo simulation techniques combined with 
Bayesian integration methods provide a robust 
framework for analyzing the performance of distributed 
multistatic systems.  This combination can be used to 
account for model inputs that are unknown and/or 
fl
products that are meaningful to the ASW decision-
maker. 
      Monte Carlo simulation can account for tactical 
uncertainty with respect to target motion and motion 
objectives in a three dimensional battlespace.  Monte 
Carlo techniques also allow for the modeling of 
concurrent, competing hypotheses. 
      Bayesian integration methods supports the 
reevaluation of competing hypotheses such that as search 
is conducted, some hypotheses are evaluated as less 
likely and other hypotheses are evaluated as more likely.  

Bayesian integration methods also support the creation of 
threat density probability maps, which are quantitative 
and intuitive representations of the combined effect of 
assumed target behavior and search history.  The threat 
density probability maps allow quantifying the degree to 
which an area has been cleared and
searched region is most effec vely clear . 
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