
A Software Framework for Heterogeneous, Distributed

Data Fusion

Joshua J. Walters∗

ITT AES / Naval Research Laboratory
4555 Overlook Avenue

Washington DC, 20375, USA

Simon J. Julier†

ITT AES / Naval Research Laboratory
4555 Overlook Avenue SW

Washington, DC 20375, USA

Abstract - In this paper we describe a software

framework to enable heterogeneous, distributed data

fusion of disparate information sources. The frame-

work is agent-based and consists of three main el-

ements. The first is a generalization of the tar-

get state to a container of arbitrary, uncertain at-

tributes. The structure of this estimate can vary both

across time and across different nodes in the same

network. The second is the development of compos-

able process and observation models. These make it

possible to dynamically change the models at runtime

to fit the current target state estimate. Finally,

Keywords: tracking, data association, estimation, re-

source allocation, state estimates

1 Introduction

A key enabling technology for network centric warfare
is a sensor network. The network is composed of a set
of fusion nodes. Each node has the ability to sense its
environment, to communicate with other nodes, and
to be able to fuse the information collected locally and
transmitted from other nodes. The resulting network
is, in principle, scalable, flexible, and robust. Scalabil-
ity arises from the fact that there is no theoretical limit
on the overall size of the network. The flexibility arises
because the capabilities of the network can be changed
dynamically at runtime by adding and removing nodes.
Finally, the robustness arises because there is no sin-
gle point of failure: if a fusion node fails, the network
continues operate, albeit it reduced performance.

Given these advantages, sensor networks have been
the subject of intensive research. Much of this research
can be categorized into three areas. The first area con-

∗Joshua Walters is now with DCS Corporation, Alexandria,
VA. Email: joshua.walters@yahoo.com.

†Simon Julier is now with the Department of Computer Sci-
ence, University College London. Email: S.Julier@cs.ucl.ac.uk

siders the physical implementation of such networks.
Research topics include the development of compact,
low cost, and low powered hardware [1], new algo-
rithms for power management [2], and network proto-
cols for ad-hoc networks [3]. The second area addresses
the problem of developing services that can run over
sensor networks. Research technologies include net-
work distributed objects, agent-based technology [4],
Fuselet Technology [5] and web services [6]. The fi-
nal area considers the problem of fusion architectures
and algorithms that will be run in those services. Re-
search topics include the development of data fusion
algorithms to account for double counting [7, 8] and
the scheduling of broadcasts to optimize information
content [9].

Although there has been a significant amount of
work to develop software architectures that integrate
the first two research areas, relatively little work has
been carried out into how the third area can be com-
bined with the other two. A number of software li-
braries, such as Bayes++ [10], have been developed to
implement low-level algorithms (such as Kalman and
particle filters). However, these do not consider how
these algorithms would be implemented in the larger
context of a dynamic and time varying system.

In this paper we consider the problem of develop-
ing a software framework to implement a wide classes
of fusion algorithms in a generalized sensor fusion net-
work. In particular, the framework has the following
characteristics:

1. The target state is modeled as a container of ar-
bitrary, uncertain attributes. The composition of
the target’s state can change both through time
and across the network.

2. The mathematical models used to transform the
target state are assembled at runtime at each
node. The models are a function of the struc-
ture of the target state and contextual information
such as the node’s computational capabilities.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
A Software Architecture for Heterogeneous, Distributed Data Fusion

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ITT AES / Naval Research Laboratory,4555 Overlook
Avenue,Washington ,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
9th International Conference on Information Fusion, 10-13 July 2006, Florence, Italy. Sponsored by the
International Society of Information Fusion (ISIF), Aerospace & Electronic Systems Society (AES), IEEE,
ONR, ONR Global, Selex - Sistemi Integrati, Finmeccanica, BAE Systems, TNO, AFOSR’s European
Office of Aerospace Research and Development, and the NATO Undersea Research Centre. U.S.
Government or Federal Rights License

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3. To optimize communication between different
nodes, a publish and subscribe mechanism is used.

4. Nodes can use code mobility to share and upgrade
software components.

5. The architecture imposes very few restrictions on
the assumed behavior of the data fusion algo-
rithms. Therefore, almost any kind of published
data fusion algorithm can be used.

We make two assumptions:

1. There is an agreed upon standard for the naming
and interpretation of each attribute. This stan-
dard should be derived from an ontology.

2. Each attribute is a modeled as a real-valued scalar
and the uncertainty associated with each state can
be described as a Gaussian Mixture Model.

The second assumption is made to simplify the initial
design of the framework; future revisions will relax this
assumption.

The structure of this paper is as follows. The prob-
lem statement is discussed in more detail in Section 2.
An overview of our framework is provided in Section 3.
The target state representation is discussed in Sec-
tion 4. The operations within a single node are de-
scribed in Section 5. The issue of the interaction be-
tween multiple nodes is described in Section 6. An
example of this architecture is discussed in Section 7.
Conclusions are drawn in Section 8.

2 Problem Statement

The structure of the network is shown in Figure 1:
the network is composed of a set of fusion nodes and
communication links between those nodes. Each node
maintains its own estimate of the Common Opera-
tional/Tactical Picture (COTP). The COTP consists
of a set of entities. Each entity is a container of at-
tributes. There are many kinds of attributes includ-
ing kinematics (e.g., position, velocity), identification
(e.g., entity type, entity class), and sensor signatures
(e.g., radar cross section, color).

The internal operation of each sensor is described
by the event-driven loop shown in Figure 2. The tar-
get state is initialized. The node then waits until it
receives an event. Some types of events (such as sen-
sor observations) provide sources of new information.
Other types (such as timeouts) are control signals and
provide no new information. The target state is pre-
dicted forwards to the event time. If the event pro-
vides new information, this information is fused into
the target state. If the event does not provide any new

S 6

S 5S 4

S 3S 2

S1

Figure 1: The distributed data fusion network archi-
tecture.

No

Yes

Suboptimal

Known?
Correlations

PredictInitialize Observe

Fusion
Optimal

Fusion

Figure 2: The generalized fusion architecture.

information, the estimated target state is set to the
predicted target state. In either case, the loop returns
to its waiting condition again.

The way in which this loop is instantiated on each
node depends on four factors:

1. Local sources of information. Different fusion
nodes have different means of acquiring informa-
tion locally. Some nodes are equipped with sensors
that can directly measure various target attributes
with various levels of fidelity. Other nodes have in-
direct sources of information. For example, a node
could use a terrain traversability database to con-
strain the motion of a target of a particular class
type. Other types of nodes have no local source of
information. Instead these can act as routers or
fusion hubs, fusing estimates from several different
nodes.

2. Local processing capabilities. Sensing nodes
span from small, unattended grounds sensors
through UAVs to entire command centers. Com-
putational and storage costs can vary by many
orders of magnitude and, as a result, some types
of calculations simply cannot be carried out on
some types of nodes. As an example, certain types
of sensor data can be collected and transmitted
very easily but are computationally very difficult
to process1. Therefore, some nodes might simple
broadcast data they collect. Other nodes could

1A proximity detector provides 1 bit of information for “de-
tect” or “no-detect”. However, if this information is to be used
to refine the (x, y) position of a target, the calculations involved
become non-trivial.

Filtering loop

Agent
Interface

AgentFinder

PlatformAgent

Model
Repository

Source

Local
Information

Figure 3: The structure of each agent.

process that data, but with different levels of fi-
delity.

3. Target state representations used. The tar-
get state representation is not fixed and im-
mutable. It can change over time and across the
network [11]. Some of these choices are limited
by computational costs, some by communication
overhead and some by security issues. For exam-
ple, some attributes are privileged and can only
be distributed to a subset of nodes in the net-
work [12].

4. Available bandwidth. The bandwidth is a
function of many factors including the hardware
equipped on the node, current environmental con-
ditions, and the current sensor geometry. Decreas-
ing bandwidth causes a trade-off between the fi-
delity of the state estimate that is distributed and
the rate at which it is distributed. As an ex-
ample, the target estimate is a Gaussian mixture
model which consists of multiple modes. As the
bandwidth decreases, the update rate can only be
maintained if the distributed track state merges
modes and / or deletes attribute values.

Any software framework for generalized distributed
data fusion must address these four factors. We pro-
pose to use an agent-based architecture.

3 Overview of the Approach

Each sensor node is modeled as a software agent. The
reason for using agents is that they offer methods of
communication across the network, lookup services,
and advertisement capabilities. The structure of each
agent is shown in Figure 3. The fusion loop from Fig-
ure 2 is augmented by a model repository and an agent

S 6

S 5S 4

S 3S 2

S1

LUS 1

LUS 2
LUS 3

Figure 4: The communication topology for the LUS.
Like the data fusion network, this is fully distributed
and can have an arbitrary network topology.

interface layer. The model repository stores the math-
ematical components used to construct the different
types of mathematical models. The agent interface
layer mediates all inter agent communication. Most
of this work is carried out through the PlatformAgent.
The PlatformAgent represents the agent stored on a
local platform and performs all operations associated
with publishing and collecting observation models, ob-
servation data, and other agent interaction messages.

All agents coordinate their activities through the
distributed network of Look-Up-Services (LUSs) illus-
trated in Figure 4. The LUS facilitates coordination
between nodes by maintaining a list of available nodes
and their capabilities. These capabilities are expressed
as a set of advertisements that include what informa-
tion a node can provide (from its onboard sensors and
track estimates), what models it contains, and what
processing capabilities it has.

Nodes communicate with one another through a
publish and subscribe mechanism. Suppose a node X
wishes to receive the set of attributes {AX} from a
node Y . X passes its registration request to Y and Y
only delivers {AX}.

To implement the agent services we use the CoABS
Grid [4], hereafter referred to as The Grid. The Grid
was originally developed for DARPA as a framework
to control large systems of software agents. In partic-
ular, it is optimized to aid communication and intelli-
gence gathering in military domains, an environment
where bandwidth availability and connected hardware
is constantly changing. The Grid wraps Sun’s Jini ser-
vices [13] and allows software agents to register and ad-
vertise capabilities to the LUS. These advertisements
are customizable and change dynamically as an agent’s
capabilities change. To support changing the capabil-
ities of an agent, the Grid supports code mobility : one
agent can download portions of the codebase of another
agent to permit it to use the new capabilities. We ex-
ploit this to allow agents to share models, attributes,

Estimate
time: Time
attributes: ArrayList<Attribute>
getTime(): Time
setTime(time: Time): void
getSampleRealization(): SampleRealization
addAttribute(name: Attribute): int
getAttributeIndex(name: Attribute): int
removeAttribute(name: Attribute): void
getAttributes(): ArrayList<Attribute>

Time
time: long
getTime(): double

«enumeration»

Attribute

BEARING
POSITION_X
POSITION_Y
POSITION_Z
TIME
DELTA_TIME
VELOCITY_X
VELOCITY_Y
VELOCITY_Z

GaussianMixtureModel
cov: ArrayList<Matrix>
mu: ArrayList<Vector>
weights: ArrayList<double>
getWeight(component: int): double
setWeight(component: int, value: double)
getCov(component: int) : Matrix
setCov(component: int, cov: Matrix)
getMu(component: int) : Vector
setMu(component: int, mu: Vector)

SampleRealization
attributes: ArrayList<Attribute>
samples: ArrayList<Vector>
getAttributes(): ArrayList<Attribute>
setAttributes(attributes: ArrayList<Attribute>)
addSample(sample: Vector)
getSample(sample_no: int): Vector

«creates»

Figure 5: The generalized estimate representation.
The estimate consists of a set of Attributes, the Gaus-
sianMixtureModel, and the Time.

and their current states with other agents.
To map these capabilities into the fusion algorithms,

we describe the architecture in three parts: the repre-
sentation of the state estimate, the operations which
occur within a node, and the operations that occur
between nodes.

4 Estimate Representation

All uncertain quantities in the architecture are referred
to as Estimates. These include the target state, sen-
sor observations, and information acquired from other
sources such as databases. Because the state space
representation can vary for the same target between
different nodes, each estimate must maintain the meta-
data s(k) to specify the structure of the estimate. This
information is contained in the Estimate class, illus-
trated in Figure 5. This aggregates three separate
classes: a container of Attributes, the GaussianMix-
tureModel that specifies the probability distribution
associated with the estimate, and the Time when the
observation was taken.

Each Attribute instance stores a specific value about
an entity. As explained above, we assume that
there is an agreed upon standard for the naming
and interpretation of each attribute. These standards
should be defined by an ontology. Dorion’s Com-
mand and Control Information Exchange Data Model
(C2IEDM) [14], for example, considers the battlespace
to be populated by a set of OBJECT-ITEMs. At-
tributes associated with each OBJECT-ITEM include
the OBJECT-ITEM-LOCATION (where is it?), the
OBJECT-ITEM-STATUS (how hostile is it?), and its

OBJECT-ITEM-AFFILIATION (how is it affiliated?).
By explicitly encoding the attribute information con-
tained within the estimate, any node can understand
what attribute information is available in the estimate
that is supplied to it.

The GaussianMixtureModel class encodes the
probability distribution used to encode the attribute
values. In general, the uncertainty in one attribute is
correlated with the uncertainty in another attribute.
Therefore, the probability must be maintained within
a single, joint structure. The Estimate class maintains
a mapping of attributes values to indices within the
GaussianMixtureModel.

The final class, Time, specifies the time at which
the estimate was calculated. Time could be based,
for example, on the last time that an observation was
received. In a general distributed data fusion net-
work there is a significant issue with clock synchro-
nization [15] and so the time value should, itself, main-
tain uncertainty. For this initial design we neglect this
uncertainty but note that data fusion algorithms have
been developed to be robust to measurements with un-
known but bounded time delays [16].

The set of attributes contained within an Estimate
can change through time. When an Attribute is to be
added to an estimate, a new instance is created and
registered with the Estimate using the addAttribute
method. This method assigns a new index to the at-
tribute, stores its value in the attribute list, and re-
sizes the GaussianMixtureModel to include the new
attribute. When an Attribute is deleted using the re-
moveAttribute, it is removed from the attribute list,
the GaussianMixtureModel is resized and all indices
updated.

5 Operations Within a Single
Node

The operation within a node consists of the steps out-
lined by the filtering loop shown in Figure 2: the es-
timate is initialized, predicted and updated. However,
these steps can only be achieved by constructing the
appropriate mathematical models and using them to
transform the uncertainty associated with an estimate.
In turn, these depend on the structure of the target es-
timate and the capabilities of the node.

5.1 Constructing the Mathematical
Models

As explained above, the structure of the target state
varies both through time and across the network. How-
ever, maintaining an exhaustive list of all possible mod-

A2

A3

A4

A5

A6

A1

A2

A3

A4

A5

A6

A1

ProcessModelStrategy

ProcessModelStrategy

ProcessModelStrategy

PredictionEstimate Process model

Figure 6: The composable process model is a set of
ProcessModelStrategy objects. Each object acts on an
input set of attributes and yields an output set. For
those attributes without an explicit model (such as at-
tribute A6) a constant-value mapping is provided.

els for all possible structures of the target state can
become prohibitively expensive.

5.1.1 Composable Models

We overcome these difficulties by making the models
composable. The principle is illustrated in Figure 6 for
a process model. The process model takes the state
estimate at a time step k and generates a new state es-
timate, with the same structure, at time step k+1. The
model is composed of a set of ProcessModelStrategy ob-
jects. Each ProcessModelStrategy takes an input of a
set of attributes and yields an output set of attributes.
The input and output attribute sets for a ProcessMod-
elStrategy do not have to be the same. For example,
the ProcessModelStrategy might take position and ve-
locity attribute information and predict a new position
based on the assumption that the velocity is constant.
Furthermore, default mappings can be provided if none
are defined.

The same approach can be provided composable ob-
servation and initialization models.

However, to compose an appropriate ProcessModel,
the appropriate strategy components must be chosen.

5.1.2 Identifying the Correct Model Strategy
Components

The choice of strategies to construct the process model
is influenced by three factors. First, the collection of
strategies are chosen such that all of the required at-
tributes are updated. Second, it is possible to use mod-
els of different fidelity to describe the behavior of the

same set of attributes. For example, a model of air-
craft motion could assume constant velocity or it could
use complicated aerodynamic equations to predict the
aircraft’s path. Finally, it is possible to have conflicts
— two ProcessModelStrategy objects could attempt to
update the same attribute value. Our solution is to use
a RuleEngine to pick and choose the collection used.
Each ModelStrategy advertises its input attributes and
output attributes that define its inputs and outputs. In
addition, each strategy can advertise something about
its computational costs as well. The RuleEngine then
picks and chooses the combination of models that pro-
vide the minimum cost. Our current strategy for avoid-
ing conflicts is to use the value from the strategy object
with the lowest cost.

5.2 Projecting Uncertainty Through
the Models

The previous subsection described how strategy ob-
jects can be assembled to dynamically build models
at runtime. However, the filtering algorithm prop-
agates estimates with uncertainties associated with
them. One means of combining the two together is to
assume that ModelStrategy objects have to, for exam-
ple, be able to provide Jacobians of their computations
to be used in an extended Kalman Filter. However, in
this paper we advocate the use of numerical techniques
such as the Unscented Transform [17] or particle fil-
ters [18]. The reason for using these techniques is that
each ModelStrategy object can be considered to be a
“black box”: it takes a set of inputs and transform
them, but no knowledge of the internal structure is re-
quired. Furthermore, using a set of discrete samples,
almost any mathematical quantity about the transfor-
mation can be calculated and thus almost any data
fusion algorithm can be used.

The numerical scheme is implemented using the
SampleRealization class. This class contains a set of
(weighted) samples drawn from the Estimate together
with an Attribute list to specify the indices for each
attribute. The process and other models are applied
to each sample in turn and the statistics of the trans-
formed set are calculated.

6 Interaction Between the
Nodes

Nodes do not operate in isolation; rather they function
in a network and they must be able to exchange models
and data.

AbstractAdvertistement

DatabaseAdvertisement ModelAdvertisement
inputs: String
outputs: String
modelName: String

AttributeAdvertisement

ProcessModelAdvertisement

ObservationModelAdvertisement

InitializationModelAdvertisement

Figure 7: The Advertisement architecture.

6.1 Negotiation Between the Nodes

Fusion nodes exchange data and models dynamically
via the Remote Method Invocation (RMI) capabilities
that underly the Grid. For the fusion nodes to under-
stand what data and/or models need to be exchanged,
they use the Grid to advertise the capabilities of the
agent and query the LUS to ascertain the capabilities
of other agents and services.

When a fusion node starts up, the first thing it does
is try to register with an instance of the Look UP Ser-
vice (LUS) on the CoABS Grid. If the node cannot
connect to an instance of a LUS, the fusion node has
two strategies it can adopt. The first is that the node
can create its own LUS. As explained above, multiple
redundant LUSs can run on the same network without
difficulty. However, some nodes (such as embedded
sensors) might not have the capability to start their
own LUS. In this case, the node operates in a stan-
dalone mode and polls for an LUS intermittently. Once
a connection has been made, the node advertises its ca-
pabilities to the LUS. It also downloads from the LUS
a list of capabilities of all of the nodes within its range.

Each node contains a rule engine that is written
specifically for that type of fusion node. This rule en-
gine contains all of the rules needed to query the LUS
for other nodes that it can communicate with and have
data and/or models that it can make use of locally. Al-
ternatively, it could request that another node in the
network perform a calculation for it, thus offloading
some of its computational burden.

All of the fusion nodes derive their advertisements
from the AbstractAdvertisement class of the Grid, from
which a class hierarchy (Figure 7) of class objects is
created that allows various types of meta data to be
posted.

There are three main types of advertisements that

are used in the architecture: AttributeAdvertisements,
DatabaseAdvertisements, and ModelAdvertisements.
The ModelAdvertisement is further developed into
advertisements for each of the types of models that are
used by the fusion algorithms. These advertisements
allow other fusion nodes to query the lookup service for
raw data, new models for processing that data, and to
discover what types of databases are on the network
for querying.

Each fusion node locally keeps an object called an
AgentFinder. The AgentFinder implements the Grid
interface ServiceListener. The ServiceListener inter-
face provides, via an event based mechanism, the abil-
ity to discover when new agents register or deregister
from the network, and when the advertisements for any
agent change. The AgentFinder keeps a local cache of
this information and thus avoids the need for addi-
tional queries across the network. From its rule engine
the fusion node will determine the best way to request
data and models from other fusion nodes and then send
out a request message requesting either data, or data
and models. These requests are stored locally by a fu-
sion node, and each time an observation/measurement
is taken by one of its sensors, it will check a local ta-
ble containing these requests in order to determine if
other fusion nodes have requested the data. The node
will determine which of the other nodes have requested
the data, publish it, and if a model was also requested
that will be included with the data. Through RMI, the
other fusion node will not have to have that model’s
codebase locally; it will be able to download it via the
capabilities of RMI and use it locally, even though it
did not originally exist locally for that remote node.

6.2 Handling Changes in Network
Topology

Over time the network topology will change as sensor
nodes are added and removed. All agents in the net-
work retain some knowledge of their topology through
querying of the LUS(s), however what happens if no
LUS is available? A LUS could be viewed as a point of
failure thus creating a more centralised network. With-
out the LUS, the organization of the sensor nodes and
distribution of their states would be very difficult to
manage. So in order to maintain the decentralized
nature of the network, i.e. it has no central node,
the architecture must be robust enough to detect if
an agent can see a LUS, and in the case of the LUS’s
absence, start its own LUS. Multiple instances of LUSs
can share information across the network.

6.3 Communication Between Sensor
Nodes

The process by which nodes communicate is simple.
They already maintain local stores of dynamically up-
dated information concerning the other nodes within
their topology, from which a node can choose to re-
quest data and/or algorithms from another node. A
simple rule engine is used, where the rules for use of
data and algorithms is known a priori. The rule engine
will determine the following:

• What data from the remote agent is readily usable
locally?

• What data from the remote agent used in conjunc-
tion with local data, can be combined to create
new attributes in the state estimate? For example,
agent A contains estimates on range of a target.
Agent B contains estimates on bearing of a target.
If an algorithm for combining range and bearing
estimates that returns an estimation of position is
available, then create a new attribute field in the
local state.

• What algorithms can be downloaded from the re-
mote agent?

• If a sophisticated algorithm cannot be used locally
due to computational constraints, can the remote
agent perform the calculations?

It is interesting to note that an algorithm that is
downloaded in order to give new capabilities locally
can be kept locally and used more than once. For in-
stance, a sensor that detects bearing and range is fused
with another sensor’s data adding a position attribute
to its state. The sensor didn’t originally possess a po-
sition algorithm; it was provided by the other sensor
and downloaded through the mobility of code in the
Grid. Should the two agents lose network connectiv-
ity to each other, the sensor can still use the algorithm
locally, updating the position attribute as new observa-
tions on range and bearing are obtained. From a data
fusion stand-point, this estimate would, over time, di-
verge and statistically more noise would enter into the
calculation. However, should the two nodes come into
contact again, the estimates can readily be updated,
once again.

7 Example

Consider the scenario shown in Figure 8. A single
target is being tracked by two sets of sensors: an
unattended seismic ground sensor (USGS) and an un-
manned aerial vehicle (UAV). The target is moving

Target

USGS
UAV

Figure 8: The scenario.

through a mountain pass, which is being monitored at
first only by the USGS. The USGS observes seismic
data and, from this, it can estimate the range to the
target and its spectrogram. The USGS state vector
consists of the following states:

USGS = (range, spectrogram)

This state is updated at the command center where
a UAV is dispatched for imagery reconnaissance. The
UAV carries LIDAR and EO/IR imagery sensors. It
contains attributes for imagery both infrared and vi-
sual, position estimated from the imagery and the esti-
mated GPS position of the UAV, and a range-to-target
measured in kilometers from the LIDAR. At first, since
the USGS is within the mountain pass, until the UAV
is overhead it will not be able to communicate directly
with the USGS. Once it has reached the pass, and is
able to see the target with its sensors, the UAV will
create a state estimate consisting of the following val-
ues:

UAV = (target xyz, uav xyz, range, ir image,
visual image)

Note that both sensors start by containing only the at-
tributes that their respective onboard sensors can mea-
sure. Over time, as the two nodes continue to track the
target, they will exchange estimates from their states.
If it is determined that data from one node can be used
by another node, they will exchange that data. This
may cause the state of one of the nodes to be updated
with a new value not previously contained within the
state. Referring to our example, the UAV contains
the attribute for position within its state, and the seis-
mic sensor contains a range-to-target. These are values
that can readily be fused together to create new esti-
mates of position and range. The UAV would provide
the USGS with this data, and, if necessary, a model
for calculation. At this point the seismic sensor would
add an attribute for position within its state and the
state would become:

USGS = (range, spectrogram, target xyz)

At the same time, the UAV’s state becomes more ac-
curate since its position attribute is being fused with

the range attribute from the USGS. Notice that these
two sensor nodes do not need to exchange data from
the imagery, nor signature and intensity of the signal
contained within the spectrogram, since these values
are not readily fusable with any of the other values
contained within either node.

8 Conclusions

This paper has described an agent-based architecture
for heterogeneous distributed data fusion algorithms.
The algorithm generalizes the notion of a target state
to a dynamically adjustable collection of attributes
with uncertain values. Mathematical models can be
constructed in real time on the basis of their inputs
and outputs and their computational costs. We have
discussed how advertisements can be used to refine the
communication between agents and we have illustrated
these results in a target tracking example.

We will be extending this architecture in two re-
spects. First, we shall integrate our architecture us-
ing Fuselet Technology [5]. Second, we shall extend
the representation of state to support complicated at-
tribute types such as non-numeric, discrete quantities.

References

[1] K. S. J. Pister, J. M. Kahn, and B. E. Boser. Smart
dust: Wireless networks of millimeter-scale sensor
nodes. Technical report, Robotics and Intelligent Ma-
chines Laboratory,University of California at Berkeley,
1999. Highlight Article in 1999 Electronics Research
Laboratory Research Summary.

[2] Mario Zagalj, Jean-Pierre Hubaux, and Christian Enz.
Minimum-energy broadcast in all-wireless networks::
Np-completeness and distribution issues. In Interna-
tional Conference on Mobile Computing and Network-
ing: Proceedings of the 8th annual international con-
ference on Mobile computing and networking, pages
172–182, Atlanta, Georgia, USA, 23–28 September
2002.

[3] J. J. Garcia-Luna-Aceves and Ewerton L. Madruga.
The core assisted mesh protocol. IEEE Journal on
Selected Areas in Communications, Special Issue on
Ad-Hoc Networks, 17(8):1380–1394, August 1999.

[4] GlobalInfotek. Control of agent based systems [on-
line, cited 03 January 2006]. Available from: http:

//coabs.globalinfotek.com.

[5] Fuselet Technology Overview [online, cited 14 Febru-
ary 2006]. Available from: http://www.fuselet.org/
tech-overview.

[6] SOAP Version 1.2 Part 0: Primer [online, cited 14
February 2006]. Available from: http://www.w3.org/
TR/soap12-part0/.

[7] S. Grime and H. F. Durrant-Whyte. Data fusion in
decentralized sensor fusion networks. Control Engi-
neering Practice, 2(5):849–863, 1994.

[8] S. J. Julier and J. K. Uhlmann. General Decentralized
Data Fusion With Covariance Intersection (CI). In
D. Hall and J. Llinas, editor, Handbook of Data Fusion.
CRC Press, Boca Raton FL, USA, 2001.

[9] Ramana Rao Kompella and Alex C. Snoeren. Practical
Lazy Scheduling in Sensor Networks. In Proceedings
of the 1st international conference on Embedded net-
worked sensor systems, pages 280–291, 5–7 November
2003.

[10] Bayes++ [online, cited 14 February 2006]. Avail-
able from: http://bayesclasses.sourceforge.net/

Bayes++.html.

[11] S. J. Julier and H. F. Durrant-Whyte. A horizon-
tal model fusion paradigm. In The Proceedings of the
SPIE AeroSense Conference: Navigation and Control
Technologies for Unmannged Systems, volume 2738,
pages 37–48, Orlando, FL, USA, April 1996.

[12] Radiant mercury. Technical report, SSC San
Diego, San Diego, CA, USA, November 2003.
Available from: http://www.fas.org/irp/program/

disseminate/radiant mercury.pdf [cited 31 January
2006].

[13] Jini.org — The Community Resource for Jini Technol-
ogy [online, cited 14 February 2006]. Available from:
http://www.jini.org.

[14] Eric Dorion, Christopher J. Matheus, and Mieczys-
law M. Kokar. Towards a formal ontology for military
coalitions operation. In Proceedings of the 10th Inter-
natoinal Command & Control Research and Technol-
ogy Symposium, The Future of C2: Coalition Interop-
erability, McClean, VA, USA, June 2005.

[15] P. Blum, L. Meier, L. Thiele. Improved Interval-Based
Clock Synchronization in Sensor Networks. In Pro-
ceedings of the Third International Symposium on In-
formation Processing in Sensor Networks (IPSN’04),
pages 349–358, Berkeley, CA, USA, 26–27 April 2004.

[16] S. Julier and J. K. Uhlmann. Fusion of time delayed
measurements with uncertain time delays. In 2005
American Control Conference, Portland, OR, USA, 8
– 10 June 2005.

[17] S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte.
A new approach for the nonlinear transformation of
means and covariances in filters and estimators. IEEE
Transactions on Automatic Control, 45(3):477–482,
March 2000.

[18] Branko Ristic, Sanjeev Arulampalam, and Neil Gor-
don. Beyond the Kalman Filter: Particle Filters for
Tracking Applications. Artech House, 2004.

