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Comparison of Radar-Based Human
Detection Techniques

Sevgi Ziubeyde Gilrbilzl, William L. Melvin2, and Douglas B. Williams'

ISchool of Electrical and Computer Engineering
2Georgia Tech Research Institute

Georgia Institute of Technology, Atlanta, GA

Abstract - Radar offers unique advantages over other sensors
in the human detection problem, such as remote operation during
virtually all weather and lighting conditions. Many radar-based
human detection systems today employ Fourier analysis, such as
spectrograms. However, spectrograms perform poorly in high
clutter environments. Also, an inherent SNR loss is caused by the
implicit assumption of linear target phase. In this paper, human
modeling is used to derive a more accurate non-linear
approximation to the true non-linear target phase and the
liklihood ratio is optimized over unknown parameters to enhance
detection performance. Performance is compared both
analytically and through MATLAB simulations.

I. INTRODUCTION

Much of the current research in human detection is
focused on the application of Fourier transform based
techniques, such as spectrogram analysis. In 2002,
Geisheimer [1] experimentally showed that a measured
human spectrogram could be obtained by summing the
spectrograms obtain from the reflections off each
individual body part. This result was theoretically
confirmed by Van Dorp [2], who based his calculations
on a kinematic walking model developed by Thalmann
[3]. Comparisons between the human spectrogram and
the spectrograms of other animals, such as dogs, showed
that certain characteristics were unique to just humans
and that these characteristics could be used in human
detection and identification. For example, Otero [4]
proposed techniques based on features extracted from
the spectrogram to differentiate humans from dogs, or
even women from men. Greneker [5] designed and
tested a suicide bomber detection system based on
variations in the spectrogram caused by the presence of
a bomb.

However, all of these systems were used in close
proximity or in situations where the clutter was minimal.
In practice, spectrograms are almost completely
obscured in high clutter environments, rendering
impossible the accurate extraction of any information
[6]. Furthermore, application of the FFT implicitly
assumes that the target phase history is linear, an
assumption not generally true for non-linear phase
human targets. The resulting phase mismatch results in
an inherent SNR loss due to the detector, decreasing

even further the chances of detecting slow-moving
human targets.

In this paper, Thalmann's kinematic model is used as
a basis for deriving a more accurate non-linear
approximation to the true target phase. Maximum
liklihood estimates (MLE) of unknown geometry and
target parameters are obtained to maximize the
likelihood ratio and resulting matched filter output. The
performance of the FFT-based matched filter is
compared to that of the proposed optimized linear and
nonlinear phase detectors, as well as to the ideal
"clairvoyant" detector, representing the best
performance attainable with complete knowledge of the
target.

II. SIGNAL MODELLING

In general the received radar signal is comprised of
the sum of noise plus a time-delayed and phase-shifted
version of the transmitted chirp signal. For the purposes
of this paper, the noise is modeled as being complex
Gaussian. Then the target return may be expressed as

Sr (n, t) = at recKt t e 2t +v(t - )]v (1)

where at is the amplitude as given by the radar range
equation; td - 2R/c; R is the range from the antenna to

target; c is the speed of light; t is the pulse width; y is
the chirp slope; fc is the transmitted center frequency;
and n is the pulse number.

If the noise is small compared to the signal energy,
the peak of the pulse compression output occurs at the
range bin in which the target is present:

(2)yp[rt] atw i2flft =A -i4fR[n]
R2 [n]

where A is an unknown amplitude parameter and the
slow-time dependence on pulse number, n, is
emphasized with brackets. Typically this peak is
indiscernable in noise, so that the detection test must be
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applied separately over each range bin. However, in the
case of human targets, the center of the range bin, rb, is
not a sufficiently accurate approximation to the true
target location. Most human target motion will
generally remain within one range bin, excepting the
case of very long dwell times.
A better approximation of target range may be

obtained by assuming that the motion is linear along a
constant angle, 0, relative to the initial antenna-target
vector (see Fig. 1). First define r1 as the vector between
the aperture and initial target location; rn as the vector
between the aperture and target location at the nth pulse;
and h as the vector describing human motion. Then,

Irn 2

= Irt + |h| - 21rllhl cos

Since Ihl<<«rl and 1+x + for small x,

Ir11 r I-|h|cos9

Initial Final Target
Location

r

(3)

In this work, the human body has been divided into
twelve parts: head, torso, two upper arms, two lower
arms, two thighs, two lower legs and two feet. Each
body part is modeled as a point target with a cylindrical
radar cross section (RCS), excepting the head which is
modeled with a spherical RCS. The total radar return is
given by the sum of the returns from each point target.

Each kinematic equation depends on two variables:
1) RV, the ratio of velocity (v) to thigh height (HT),
and 2) t%, a time index taken relative to the beginning
of a step. Mathematically,

RV
v

HT
(6)

and

nT6RV+t
1.346

(7)

where to is a constant indicating the point within the
(4) stepping cycle that the first transmitted pulse reflects

from the target. The velocity profile of each body part
can be clearly seen in the resulting human spectrogram.
The strongest return results from the low-amplitude
sinusoidal motion of the torso, while the largest
Doppler amplitude is given by the trajectory of the feet.
A typical measured spectrogram can be visually
matched to a sample simulated spectrogram, as shown
in Fig. 2.

Antena
Location

Figure 1. Target Geometry

A. Linear Phase Approximation

If we model lhl as simply a constant velocity, v, times
the pulse repetition interval, T, times the pulse number,
n, then subsituting (4) into (2) results in a linear phase
model

A e j-'4 (r-nTvcos8)

Yp [n] 2re c

rb

(5)

where the range term of the amplitude has been modeled
as rb since the effect of perturbations in the amplitude is
negligible; and Ir1I=r, an unknown parameter.

B. Non-Linear Phase Approximation

The Thalmann kinematic model for human walking
consists of a set of equations that describe the time
varying position and change in angle of key joints and
limbs. Combined, they can be used to calculate the
time-varying position of any point in the human body.

(a) (b)

Figure 2. Human spectrograms: (a) Measured (from [4])
(b) Simulated.

Because of the strong signal strength of the return
from the torso, only the torso equations of motion will
be used in calculating lhl:

|h| =OSv +OS2 +OS2B

where

OSv =0.015RV[- 1+sin(4a% -0.7z)]
OSL =AL sin(2a% -0.2z)

J -0.032 for 0.5 <RV < 2.3

AL 0.128RV2 +0.128 for RV < 0.5

and

2200

(8)

EF.t
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OSFB Aa sin(47a% + 2aJ)
A _0 -0.021 for 0.5 <RV <2.3

Aa l 0.084RV2 0.084RV for RV < 0.5

Oa 0-. 127 + 0.73 1 V

The torso model can be further simplified by
neglecting the case when RV < 0.5, as most human
targets will not fall in that range and by then averaging
the trajectories for 0.6 < RV < 2.3, the maximum RV
for which Thalmann's model is defined. The individual
torso trajectories and resulting average trajectory is
shown in Fig. 3.

Individual and Average Torso Trjedtories

estimate, P, which will change depending on whether

we apply an FFT, or a linear or nonlinear approximation
to lhl.

Assuming that we've obtained a suitable model for
the expected target return, a likelihood ratio test may be
formed to determine the detector decision rule.

p(x;HO) N e1 (11)

p(x;H,) ff e (x y~)HR1'(x P)
p(; p)= e(x;Hl)H RIR1XX-P >

Decide H, if p(x;H) > y-4Re{4'R1'x}>I
'

where y' Rety'RI1YP}.Q '(PFA) and PFA is the

desired probability of false alarm.

A. FFT-Based Detector

Taking the FFT across-slow time for each range bin
yields the following estimate to the true target signal:

(12)Yp,ffj[n]= Y (fpeak 2 ej2pkTn

04 0.6
Normalized Time

Figure 3. Individual and Averaged Torso Trajectories.

A sinusoidal curve fit to the average torso trajectory
may be then found to be

|h| = h[n] # 0-0108cos( RVn + 0 + 0.037 (9)

where RV and 0 are unknown parameters. This
expression may be substituted into (2) and (4) to obtain

A -i
e i

(r-h[ n] co s9)
Yp[n]# 2e C

rb

(10)

B. Optimized Linear Phase (OLP) Detector

Inspection of (5) reveals three unknown parameters
over which the likelihood ratio must be maximized: A,
r, and Vr_vcosO If we express yp=As, the an MLE
estimate of A may be found as

A Re{sHxl
sHs

(13)

The unknown parameters in the phase may be
estimated from the tangent of the phase, found by taking
the ratio of the imaginary and real parts of the signal.
This operation will convert the complex Gaussian noise
w into Cauchy noise with distribution

(14)

p(x;AU,y=) K=j

III. DETECTOR DESIGN

The detector must make a decision between two
hypotheses:

Ho: x=w

H1: x=yp+w

where w is Gaussian noise with covariance matrix RI
and yp=yp[n] is the true target signal. As it is not
possible to know apriori the interference covariance
matrix, instead an estimate is used, RI =E[XHOXHO]-
Similarly, the true target signal is approximated with an

Here, g is a location parameter for the Cauchy
distribution that is yp under HI and zero under Ho. The
parameter y is an unknown constant that drops out
during maximization.

The MLE estimates of r and vr can be shown to be
found by solving the following equation, where the
derivative is taken with respect to r or vr, depending on
which estimate is being computed:

xEn] Immyp[n]} r Imy~p[n]} 1
n=Ll Re{yp[n]}I Re{ p[n]9I

(15)0

2201
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The resulting set of three equations with three
unknowns is highly nonlinear, making impossible a

closed form expression for the MLE estimates.
However, these equations may be numerically solved in
MATLAB to derive a numerical solution for the
estimates. When the MLE estimates A, r, and Vr are

substituted into (5) and used in (11), the OPT detector is
obtained.

C. Optimized Non-Linear Phase (ONLP) Detector

The same procedure as outlined in the previous section is
employed to derive the MLE estimates for the optimized non-

linear phase detector based on the nonlinear motion
approximation expressed in (9). With the Thalmann-based
expression for h, (15) is numerically solved in MATLAB to
obtain MLE estimates for the unknown parameters A, r, VR,
0, and 0. Substitution of these estimates into (10) and (11)
yield the ONLP detector.

D. Clairvoyant Detector

Naturally the best possible performance is obtained if we
have sufficient information to identically know the true signal
embedded in noise, yp. Thus, the optimal clairvoyant detector
is obtained by using 5P = ypin (11).

Figure 4. Approximated and True Signal Phase Histories

0.8

06

a

0.4
IV. PERFORMANCE

Detector performance is compared both analytically and
via simulations in MATLAB. The expected receiver
operating characteristic (ROC) curves may be mathematically
written as

PD = Q2 ' (PFA) - Re{yp RIlyP}1 (16)

0.2

SNR = -20 dB

0 0.2 0.4 0.6 0.8 1
PFA

Figure 5. Theoretical ROC Curves for All Detectors

Simulations were conducted for a human target walking at
2 m/s approximately 7 km away from a radar antenna with a

transmitter power of 1.8 kW, center frequency of 1 GHz, and
a dwell time of 100 ms.

For this example, the estimates of the phase of yp are

compared in Fig. 4. Notice that the nonlinear phase
approximation closely follows the true target phase.

Theoretical and simulated PD versus PFA and PD versus

SNR curves are shown in Figs. 5, 6, 7 and 8. As expected,
the nonlinear phase detector outperforms all other detectors,
performing just under the ideal clairvoyant detector. At an

SNR of -20 dB, the ONLP detector has a PD that is roughly
five times higher than that of the FFT-based detector. The
SNR loss for the ONLP detector is 4 dB less than that of the
FFT-based detector for most PDS. The OLP detector also
performs much better than the FFT-based detector, although
still falling short of the ONLP detector.

at a SNR of -20 dB

SNR = -2O dB

0.8

0.6

a-

0.4

0.2

0.2 0.4 0.6 0.8
PFA

Figure 6. Simulated ROC Curves for All Detectors

at an SNR of -20 dB
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PFA = 0.01

SNR (dB)

Figure 7. Theoretical Probability of Detection versus SNR

at a 1% False Alarm Rate for All Detectors

PFA = 0.01

-20 -15 -10 -5

SNR (dB)

Figure 8. Simulated Probability of Detection versus SNR

at a 1% False Alarm Rate for All Detectors

V. CONCLUSIONS

A new human target detector design is presented
based on more accurate modeling of the true target
phase history and optimization of the likelihood ratio
test is presented. Theoretical analysis and MATLAB
simulations of performance show that the new detector
achieves substantially higher detection probabilities
over a range of SNRs relative to the currently obiqutous
FFT-based detector.
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